diff options
author | Peter Breitenlohner <peb@mppmu.mpg.de> | 2010-03-12 11:26:04 +0000 |
---|---|---|
committer | Peter Breitenlohner <peb@mppmu.mpg.de> | 2010-03-12 11:26:04 +0000 |
commit | 6d03e7ffa9a3182297c9ccfd4f64412e2b34577b (patch) | |
tree | d119f68e4466452ec8c21b1049b7a8296d4dc37c /Build/source/texk/web2c/bibtex.ch | |
parent | d0dfa0a54bb443b2b11ea5d2ec2548554e87ce40 (diff) |
bug fix: missing quote in texlinks's svn id
git-svn-id: svn://tug.org/texlive/trunk@17440 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/texk/web2c/bibtex.ch')
-rw-r--r-- | Build/source/texk/web2c/bibtex.ch | 29 |
1 files changed, 15 insertions, 14 deletions
diff --git a/Build/source/texk/web2c/bibtex.ch b/Build/source/texk/web2c/bibtex.ch index 7600f7a4fcc..5d5e0cff9be 100644 --- a/Build/source/texk/web2c/bibtex.ch +++ b/Build/source/texk/web2c/bibtex.ch @@ -1444,23 +1444,23 @@ as the smallest prime number not less than 85\% of |hash_size| (and |>=128|). @d primes == hash_next {array holding the first |k| primes} -@d mult == hash_text {array holding odd multiples of the first |ord| primes} +@d mult == hash_text {array holding odd multiples of the first |o| primes} @<Procedures and functions for about everything@>= procedure compute_hash_prime; var hash_want: integer; {85\% of |hash_size|} -@!k: integer; {number of primes} -@!j: integer; {a number to be tested} -@!order: integer; {number of odd multiples of primes} -@!square: integer; {${\it prime}_{\it order}^2$} +@!k: integer; {number of prime numbers $p_i$ in |primes|} +@!j: integer; {a prime number candidate} +@!o: integer; {number of odd multiples of primes in |mult|} +@!square: integer; {$p_o^2$} @!n: integer; {loop index} -@!jprime: boolean; {is |j| a prime?} +@!j_prime: boolean; {is |j| a prime?} begin hash_want := (hash_size div 20) * 17; j := 1; k := 1; hash_prime := 2; primes[k] := hash_prime; -order := 2; +o := 2; square := 9; while hash_prime < hash_want do begin @@ -1468,19 +1468,20 @@ while hash_prime < hash_want do j := j + 2; if j = square then begin - mult[order] := j; - incr (order); - square := primes[order] * primes[order]; + mult[o] := j; + j := j + 2; + incr (o); + square := primes[o] * primes[o]; end; n := 2; - jprime := true; - while (n < order) and jprime do + j_prime := true; + while (n < o) and j_prime do begin while mult[n] < j do mult[n] := mult[n] + 2 * primes[n]; - if mult[n] = j then jprime := false; + if mult[n] = j then j_prime := false; incr (n); end; - until jprime; + until j_prime; incr (k); hash_prime := j; primes[k] := hash_prime; |