diff options
author | Denis Bitouzé <dbitouze@wanadoo.fr> | 2021-02-25 18:23:07 +0000 |
---|---|---|
committer | Denis Bitouzé <dbitouze@wanadoo.fr> | 2021-02-25 18:23:07 +0000 |
commit | c6101f91d071883b48b1b4b51e5eba0f36d9a78d (patch) | |
tree | 1bf7f5a881d7a4f5c5bf59d0b2821943dd822372 /Build/source/libs/mpfr/mpfr-src/src/pow_ui.c | |
parent | 07ee7222e389b0777456b427a55c22d0e6ffd267 (diff) |
French translation for tlmgr updated
git-svn-id: svn://tug.org/texlive/trunk@57912 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-src/src/pow_ui.c')
-rw-r--r-- | Build/source/libs/mpfr/mpfr-src/src/pow_ui.c | 164 |
1 files changed, 0 insertions, 164 deletions
diff --git a/Build/source/libs/mpfr/mpfr-src/src/pow_ui.c b/Build/source/libs/mpfr/mpfr-src/src/pow_ui.c deleted file mode 100644 index 456d6d18e74..00000000000 --- a/Build/source/libs/mpfr/mpfr-src/src/pow_ui.c +++ /dev/null @@ -1,164 +0,0 @@ -/* mpfr_pow_ui-- compute the power of a floating-point - by a machine integer - -Copyright 1999-2020 Free Software Foundation, Inc. -Contributed by the AriC and Caramba projects, INRIA. - -This file is part of the GNU MPFR Library. - -The GNU MPFR Library is free software; you can redistribute it and/or modify -it under the terms of the GNU Lesser General Public License as published by -the Free Software Foundation; either version 3 of the License, or (at your -option) any later version. - -The GNU MPFR Library is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public -License for more details. - -You should have received a copy of the GNU Lesser General Public License -along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see -https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., -51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ - -#define MPFR_NEED_LONGLONG_H -#include "mpfr-impl.h" - -/* sets y to x^n, and return 0 if exact, non-zero otherwise */ -int -mpfr_pow_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int n, mpfr_rnd_t rnd) -{ - unsigned long m; - mpfr_t res; - mpfr_prec_t prec, err; - int inexact; - mpfr_rnd_t rnd1; - MPFR_SAVE_EXPO_DECL (expo); - MPFR_ZIV_DECL (loop); - MPFR_BLOCK_DECL (flags); - - MPFR_LOG_FUNC - (("x[%Pu]=%.*Rg n=%lu rnd=%d", - mpfr_get_prec (x), mpfr_log_prec, x, n, rnd), - ("y[%Pu]=%.*Rg inexact=%d", - mpfr_get_prec (y), mpfr_log_prec, y, inexact)); - - /* x^0 = 1 for any x, even a NaN */ - if (MPFR_UNLIKELY (n == 0)) - return mpfr_set_ui (y, 1, rnd); - - if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) - { - if (MPFR_IS_NAN (x)) - { - MPFR_SET_NAN (y); - MPFR_RET_NAN; - } - else if (MPFR_IS_INF (x)) - { - /* Inf^n = Inf, (-Inf)^n = Inf for n even, -Inf for n odd */ - if (MPFR_IS_NEG (x) && (n & 1) == 1) - MPFR_SET_NEG (y); - else - MPFR_SET_POS (y); - MPFR_SET_INF (y); - MPFR_RET (0); - } - else /* x is zero */ - { - MPFR_ASSERTD (MPFR_IS_ZERO (x)); - /* 0^n = 0 for any n */ - MPFR_SET_ZERO (y); - if (MPFR_IS_POS (x) || (n & 1) == 0) - MPFR_SET_POS (y); - else - MPFR_SET_NEG (y); - MPFR_RET (0); - } - } - else if (MPFR_UNLIKELY (n <= 2)) - { - if (n < 2) - /* x^1 = x */ - return mpfr_set (y, x, rnd); - else - /* x^2 = sqr(x) */ - return mpfr_sqr (y, x, rnd); - } - - /* Augment exponent range */ - MPFR_SAVE_EXPO_MARK (expo); - - /* setup initial precision */ - prec = MPFR_PREC (y) + 3 + GMP_NUMB_BITS - + MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)); - mpfr_init2 (res, prec); - - rnd1 = MPFR_IS_POS (x) ? MPFR_RNDU : MPFR_RNDD; /* away */ - - MPFR_ZIV_INIT (loop, prec); - for (;;) - { - int i; - - for (m = n, i = 0; m; i++, m >>= 1) - ; - /* now 2^(i-1) <= n < 2^i */ - MPFR_ASSERTD (prec > (mpfr_prec_t) i); - err = prec - 1 - (mpfr_prec_t) i; - /* First step: compute square from x */ - MPFR_BLOCK (flags, - inexact = mpfr_sqr (res, x, MPFR_RNDU); - MPFR_ASSERTD (i >= 2); - if (n & (1UL << (i-2))) - inexact |= mpfr_mul (res, res, x, rnd1); - for (i -= 3; i >= 0 && !MPFR_BLOCK_EXCEP; i--) - { - inexact |= mpfr_sqr (res, res, MPFR_RNDU); - if (n & (1UL << i)) - inexact |= mpfr_mul (res, res, x, rnd1); - }); - /* let r(n) be the number of roundings: we have r(2)=1, r(3)=2, - and r(2n)=2r(n)+1, r(2n+1)=2r(n)+2, thus r(n)=n-1. - Using Higham's method, to each rounding corresponds a factor - (1-theta) with 0 <= theta <= 2^(1-p), thus at the end the - absolute error is bounded by (n-1)*2^(1-p)*res <= 2*(n-1)*ulp(res) - since 2^(-p)*x <= ulp(x). Since n < 2^i, this gives a maximal - error of 2^(1+i)*ulp(res). - */ - if (MPFR_LIKELY (inexact == 0 - || MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags) - || MPFR_CAN_ROUND (res, err, MPFR_PREC (y), rnd))) - break; - /* Actualisation of the precision */ - MPFR_ZIV_NEXT (loop, prec); - mpfr_set_prec (res, prec); - } - MPFR_ZIV_FREE (loop); - - if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags))) - { - mpz_t z; - - /* Internal overflow or underflow. However the approximation error has - * not been taken into account. So, let's solve this problem by using - * mpfr_pow_z, which can handle it. This case could be improved in the - * future, without having to use mpfr_pow_z. - */ - MPFR_LOG_MSG (("Internal overflow or underflow," - " let's use mpfr_pow_z.\n", 0)); - mpfr_clear (res); - MPFR_SAVE_EXPO_FREE (expo); - mpz_init (z); - mpz_set_ui (z, n); - inexact = mpfr_pow_z (y, x, z, rnd); - mpz_clear (z); - return inexact; - } - - inexact = mpfr_set (y, res, rnd); - mpfr_clear (res); - - MPFR_SAVE_EXPO_FREE (expo); - return mpfr_check_range (y, inexact, rnd); -} |