diff options
author | Karl Berry <karl@freefriends.org> | 2014-12-30 22:59:31 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2014-12-30 22:59:31 +0000 |
commit | 290049375b418246b47914c316746543a0a7e11f (patch) | |
tree | 28a186c754e91182e5be95f35a2784a1779e83c3 | |
parent | 52342328d697c341a49231053d155a030eb05b56 (diff) |
mandi (30dec14)
git-svn-id: svn://tug.org/texlive/trunk@35931 c570f23f-e606-0410-a88d-b1316a301751
-rw-r--r-- | Master/texmf-dist/doc/latex/mandi/mandi.pdf | bin | 1023509 -> 1122965 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/mandi/vdemo.py | 17 | ||||
-rw-r--r-- | Master/texmf-dist/source/latex/mandi/mandi.dtx | 5273 | ||||
-rw-r--r-- | Master/texmf-dist/source/latex/mandi/mandi.ins | 7 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/mandi/mandi.sty | 2220 |
5 files changed, 4322 insertions, 3195 deletions
diff --git a/Master/texmf-dist/doc/latex/mandi/mandi.pdf b/Master/texmf-dist/doc/latex/mandi/mandi.pdf Binary files differindex 276aff2d811..4d1097fa6d3 100644 --- a/Master/texmf-dist/doc/latex/mandi/mandi.pdf +++ b/Master/texmf-dist/doc/latex/mandi/mandi.pdf diff --git a/Master/texmf-dist/doc/latex/mandi/vdemo.py b/Master/texmf-dist/doc/latex/mandi/vdemo.py index b50f0c35eea..6af517625a1 100644 --- a/Master/texmf-dist/doc/latex/mandi/vdemo.py +++ b/Master/texmf-dist/doc/latex/mandi/vdemo.py @@ -1,22 +1,25 @@ -from __future__ import print_function, division +from __future__ import division,print_function from visual import * -giant = sphere(pos=vector(-1e11,0,0),radius=2e10,mass=2e30,color=color.red) -giant.p = vector(0, 0, -1e4) * giant.mass +G = 6.7e-11 +# create objects +giant = sphere(pos=vector(-1e11,0,0),radius=2e10,mass=2e30,color=color.red) +giant.p = vector(0,0,-1e4) * giant.mass dwarf = sphere(pos=vector(1.5e11,0,0),radius=1e10,mass=1e30,color=color.yellow) dwarf.p = -giant.p -for a in [giant, dwarf]: - a.orbit = curve(color=a.color, radius=2e9) +for a in [giant,dwarf]: + a.orbit = curve(color=a.color,radius=2e9) dt = 86400 while 1: rate(100) dist = dwarf.pos - giant.pos - force = 6.7e-11 * giant.mass * dwarf.mass * dist / mag(dist)**3 + force = G * giant.mass * dwarf.mass * dist / mag(dist)**3 giant.p = giant.p + force*dt dwarf.p = dwarf.p - force*dt - for a in [giant, dwarf]: + for a in [giant,dwarf]: a.pos = a.pos + a.p/a.mass * dt a.orbit.append(pos=a.pos) + diff --git a/Master/texmf-dist/source/latex/mandi/mandi.dtx b/Master/texmf-dist/source/latex/mandi/mandi.dtx index d0ed7d89330..c4a1e12b587 100644 --- a/Master/texmf-dist/source/latex/mandi/mandi.dtx +++ b/Master/texmf-dist/source/latex/mandi/mandi.dtx @@ -1,7 +1,7 @@ % \iffalse meta-comment % !TEX TS-program = dtxmk % -% Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com> +% Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com> % --------------------------------------------------------------------------- % This work may be distributed and/or modified under the conditions of the % LaTeX Project Public License, either version 1.3 of this license or (at @@ -32,31 +32,33 @@ %</internal> % %<*package> -\ProvidesPackage{mandi}[2013/06/14 2.2.0 Macros for physics and astronomy] +\ProvidesPackage{mandi}[2014/12/29 2.4.0 Macros for physics and astronomy] \NeedsTeXFormat{LaTeX2e}[1999/12/01] %</package> % %<*vdemo> -from __future__ import print_function, division +from __future__ import division,print_function from visual import * -giant = sphere(pos=vector(-1e11,0,0),radius=2e10,mass=2e30,color=color.red) -giant.p = vector(0, 0, -1e4) * giant.mass +G = 6.7e-11 +# create objects +giant = sphere(pos=vector(-1e11,0,0),radius=2e10,mass=2e30,color=color.red) +giant.p = vector(0,0,-1e4) * giant.mass dwarf = sphere(pos=vector(1.5e11,0,0),radius=1e10,mass=1e30,color=color.yellow) dwarf.p = -giant.p -for a in [giant, dwarf]: - a.orbit = curve(color=a.color, radius=2e9) +for a in [giant,dwarf]: + a.orbit = curve(color=a.color,radius=2e9) dt = 86400 while 1: rate(100) dist = dwarf.pos - giant.pos - force = 6.7e-11 * giant.mass * dwarf.mass * dist / mag(dist)**3 + force = G * giant.mass * dwarf.mass * dist / mag(dist)**3 giant.p = giant.p + force*dt dwarf.p = dwarf.p - force*dt - for a in [giant, dwarf]: + for a in [giant,dwarf]: a.pos = a.pos + a.p/a.mass * dt a.orbit.append(pos=a.pos) %</vdemo> @@ -76,7 +78,7 @@ while 1: \usedir{tex/latex/mandi} \preamble -Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com> +Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com> --------------------------------------------------------------------------- This work may be distributed and/or modified under the conditions of the LaTeX Project Public License, either version 1.3 of this license or (at @@ -103,7 +105,7 @@ and includes the derived files mandi.ins \generate{\file{\jobname.sty}{\from{\jobname.dtx}{package}}} \generate{\file{\jobname.ins}{\from{\jobname.dtx}{install}}} \generate{\usepreamble\empty\usepostamble\empty - \file{vdemo.py}{\from{\jobname.dtx}{vdemo}}} + \file{README.txt}{\from{\jobname.dtx}{readme}}} \obeyspaces \Msg{*************************************************************} @@ -124,7 +126,7 @@ and includes the derived files mandi.ins \usedir{tex/latex/mandi} \generate{\file{\jobname.ins}{\from{\jobname.dtx}{install}}} \generate{\usepreamble\empty\usepostamble\empty - \file{vdemo.py}{\from{\jobname.dtx}{vdemo}}} + \file{README.txt}{\from{\jobname.dtx}{readme}}} \ifx\fmtname\nameofplainTeX \expandafter\endbatchfile \else @@ -139,7 +141,8 @@ and includes the derived files mandi.ins %<*driver> \documentclass[10pt]{ltxdoc} \setlength{\marginparwidth}{0.50in} % placement of todonotes -\usepackage[italicvectors]{\jobname} % load mandi +\usepackage{\jobname} % load mandi +\usepackage{parskip} % no indents, space between paragraphs \usepackage[textwidth=1.0cm]{todonotes} % allow for todonotes \usepackage[left=0.75in,right=1.00in]{geometry} % main documentation \usepackage{array,rotating,microtype} % accessory packages @@ -168,21 +171,21 @@ and includes the derived files mandi.ins %</driver> % \fi % -% \newcommand{\pkgname}[1]{\texttt{#1}} -% \newcommand{\mandi}{\pkgname{mandi}} -% \newcommand{\mi}{\textit{Matter \& Interactions}} +% \newcommand*{\pkgname}[1]{\texttt{#1}} +% \newcommand*{\mandi}{\pkgname{mandi}} +% \newcommand*{\mi}{\textit{Matter \& Interactions}} % \hyphenation{Matter Interactions} -% \newcommand{\opt}[1]{\textsf{\textbf{#1}}} -% \newcommand{\baseunits}{\textit{baseunits}} -% \newcommand{\drvdunits}{\textit{drvdunits}} -% \newcommand{\tradunits}{\textit{tradunits}} +% \newcommand*{\opt}[1]{\textsf{\textbf{#1}}} +% \newcommand*{\baseunits}{\textit{baseunits}} +% \newcommand*{\drvdunits}{\textit{drvdunits}} +% \newcommand*{\tradunits}{\textit{tradunits}} % % \IndexPrologue{\section{Index}Page numbers refer to page where the % corresponding entry is described. Not every command defined in the % package is indexed. There may be commands similar to indexed commands % described in relevant parts of the documentation.} % -% \CheckSum{5396} +% \CheckSum{5689} % % \CharacterTable % {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z @@ -214,20 +217,6 @@ and includes the derived files mandi.ins % % ^^A \centerline{\textbf{PLEASE DO NOT DISTRIBUTE THIS VERSION.}} % -% \changes{v2.0.0}{\today}{First public release} -% \changes{v2.1.0}{\today}{No longer needs \pkgname{SIunits}. It's deprecated} -% \changes{v2.1.0}{\today}{Coexists with \pkgname{siunitx}.} -% \changes{v2.1.0}{\today}{Coexists with \pkgname{physymb}. -% Load \pkgname{physymb} before \pkgname{mandi}.} -% \changes{v2.1.0}{\today}{Added more predefined quantities.} -% \changes{v2.1.0}{\today}{Improved vector operators.} -% \changes{v2.2.0}{\today}{Completely reformatted documentation.} -% \changes{v2.2.0}{\today}{Many new physical quantities and constants.} -% \changes{v2.2.0}{\today}{Physical constants are given to three or four -% decimal places.} -% \changes{v2.2.0}{\today}{New commands, some deprecated in favor of -% \pkgname{mivector}.} -% % \newgeometry{left=1.0in,right=1.0in,top=1.0in,bottom=1.0in} % \tableofcontents % \newpage @@ -255,8 +244,8 @@ and includes the derived files mandi.ins % can be typeset with just a single command. Great thought has been given to command % names and I hope users find the conventions logical and easy to remember. % -% There are other underlying philosophies and goals embedded within \mandi, all of -% which are summarized here. They are +% There are other underlying philosophies and goals embedded within \mandi, +% all of which are summarized here. These philosophies are % \begin{itemize} % \item to employ a \textit{type what you think} model for remembering commands % \item to relieve the user of having to explicitly worry about typesetting SI units @@ -269,8 +258,8 @@ and includes the derived files mandi.ins % \item to enforce consistent notation, especially for vector quantities % \end{itemize} % -% I hope that using \mandi\ will cause users to form good habits that benefit -% physics students. +% I hope that using \mandi\ will cause users to form good habits that +% benefit physics students. % % \section{Building From Source} % I am assuming the user will use pdf\LaTeX, which creates PDF files as output, to @@ -284,13 +273,24 @@ and includes the derived files mandi.ins % |\usepackage|\textbf{[}\opt{options}\textbf{]}|{mandi}| in your document's preamble. % There are five available options, with one option being based on the absence of % two of the others. The options are described below. +% \changes{v2.4.0}{2014/12/16}{Made option names consistent with default behavior.} +% \changes{v2.4.0}{2014/12/16}{Added option for boldface vector kernels.} +% \changes{v2.4.0}{2014/12/16}{Added option for approximate values of constants.} % % \begin{itemize} -% \item \opt{italicvectors} gives italic letters for the kernels of vector -% names. Otherwise, the letters are in Roman. -% \item \opt{doubleabsbars} gives double bars in symbols for vector magnitudes. -% Otherwise, single bars are used. Double bars may be more familiar to -% students from their calculus courses. +% \item \opt{boldvectors} gives bold letters for the kernels of vector names. No +% arrows are used above the kernel. +% \item \opt{romanvectors} gives Roman letters for the kernels of vectors names. An +% arrow appears over the kernel. +% \item If neither \opt{boldvectors} nor \opt{romanvectors} is specified (the +% default), vectors are displayed with italic letters for the kernels of vector +% names and an arrow appears over the kernel. +% \item \opt{singleabsbars} gives single bars in symbols for vector magnitudes. +% Double bars may be more familiar to students from their calculus courses. +% Double bars is the default. +% \item \opt{approxconsts} gives approximate values of constants to one or two +% significant figures, depending on how they appear in \mi. Otherwise, the most +% precise currently available values are used. Precise constants is the default. % \item \opt{baseunits} causes all units to be displayed in \baseunits\ form, with % SI base units. No solidi (slashes) are used. Positive and negative exponents % are used to denote powers of various base units. @@ -312,19 +312,31 @@ and includes the derived files mandi.ins % temporarily or permanently. % \end{itemize} % +% \changes{v2.4.0}{2014/12/17}{Now coexists with the \pkgname{commath} package.} % \mandi\ coexists with the \pkgname{siunitx} package. While there is some % functional overlap between the two packages, \mandi\ is completely independent of -% \pkgname{siunitx}. -% -% \mandi\ coexists with the \pkgname{physymb} package, with which there are also -% functional overlaps and a few conflicts with identically named commands. If you -% wish to use \pkgname{physymb} and \mandi\ in the same document, be certain to load -% \pkgname{physymb} first. \mandi\ will detect its presence and behave accordingly. +% \pkgname{siunitx}. The two are designed for different purposes and probably also +% for different audiences, but can be used together if desired. \mandi\ coexists with +% the \pkgname{commath} package. If \mandi\ detects that \pkgname{commath} has been +% loaded, \pkgname{commath}'s |\abs| command will be used rather than \mandi's. +% \mandi\ no longer checks for the presence of the \pkgname{physymb} package. That +% package now incorporates \mandi\ dependencies, and the two are completely compatible. +% \changes{v2.4.0}{2014/12/19}{Removed compatibility check for the \pkgname{physymb} +% package.} % % \section{Usage} -% So what does \mandi\ allow you to do? Suppose you want to typeset a calculation of -% a particle's kinetic energy (assume the magnitude of the particle's velocity is much -% less than the magnitude of light's velocity). You could use +% So what does \mandi\ allow you to do? There are two main design goals. The first +% is typeset numerical values of scalar and vector physical quantities and their +% SI units. The idea is to simply type a command corresponding to the quantity's +% name, specifying as an argument a single scalar value or the numerical components +% of a traditional Cartesian 3-vector, and let \mandi\ take care of the units. +% +% In introductory physics courses, students typically have trouble remembering +% which units go with which quantities and, more importantly, remembering to include +% units in numerical calculations. \mandi\ is designed to help with these problems. +% Suppose you want to typeset a calculation of a particle's kinetic energy (assume +% the magnitude of the particle's velocity is much less than the magnitude of light's +% velocity). You could use % %\iffalse %<*example> @@ -336,24 +348,34 @@ and includes the derived files mandi.ins %</example> %\fi % -% but \mandi\ lets you do something more logical and more readable, like this +% which is nearly incomprehensible for people new to \LaTeX\ and that (probably) +% includes introductory physics students, but \mandi\ lets you do something more +% logical and more readable, like this % %\iffalse %<*example> %\fi \begin{dispExample} -\[ K \approx \onehalf (\mass{2})(\velocity{2})^2 \] +\[ K \approx \onehalf (\mass{2})(\velocity{2})\squared \] \end{dispExample} %\iffalse %</example> %\fi % -% which produces the same output. In the second example, note that the units are abstracted -% so the user need not remember them. +% which produces the same output. In the second example, note that the units +% are abstracted so the user need not remember them. This doesn't mean that students +% don't need to know what the various units are, but it does mean that now there is +% no way for units to be left out of a calculation. Note also that the commands +% correspond to the actual names of the quantities needed for the calculation. All +% the student needs to do is remember what quantities are needed and then construct +% the appropriate \LaTeX\ expression in a way that is very similar to writing +% program code in a language like Python, with which many students will have had +% previous experience. This may make \LaTeX\ easier for beginners to learn, and +% the second way is more readable if you come back to the source document, perhaps +% having not looked at it for a while. % -% The second way is more readable if you come back to the source document, perhaps having -% not looked at it for a while. Suppose you want to use vectors quantities. That's no problem -% because \mandi\ handles vector quantities. +% Suppose you want to use vectors quantities. That's no problem because \mandi\ +% handles vector quantities. % %\iffalse %<*example> @@ -372,22 +394,41 @@ Calculate the magnitude of \momentum{\mivector{3,2,5}}. % \mandi\ knows about them and in doing so, you give the new quantities the same % names they would normally have. % -% If you want to save time in writing out the energy principle, just use +% The second main design goal provides a similar approach to typesetting the most +% frequently used symbolic expressions in introductory physics. If you want to save +% time in writing out the expression for the electric field of a particle, just use % %\iffalse %<*example> %\fi \begin{dispExample} -\energyprinciple +\Efieldofparticle \end{dispExample} %\iffalse %</example> %\fi % -% which, as you can see, takes fewer keystrokes and it's easier to remember. +% which, as you can see, takes fewer keystrokes and it's easier to remember. Correct +% vector notation is automatically enforced, leading students to get used to seeing +% it and, hopefully, using it in their own calculations. Yes, this is a bit of an +% agenda on my part, but my experience has been that students don't recognize or +% appreciate the utility of vector notation and thus their physical reasoning may +% suffer as a result. So by using \mandi\ they use simple commands that mirror what +% they're thinking, or what they're supposed to be thinking (yes, another agenda), +% and in the process see the correct typeset output. +% +% There is another persistent problem with introductory physics textbooks, and that +% is that many authors do not use consistent notation. Many authors define the +% notation for a vector's magnitude to be either \magvect{a} or \abs{\vect{a}} in an +% early chapter, but then completely ignore that notation and simply use \(a\) +% later in the book. I have never understood the (lack of) logic behind this practice +% and find it more than annoying. Textbooks authors should know better, and should +% set a better example for introductory students. I propose that using \mandi\ +% would eliminate all last vestiges of all excuses for not setting this one good +% example for introductory students. % % This barely scratches the surface in describing \mandi\ so continue reading this -% document to see everything this package can do. +% document to see everything it can do. % % \section{Features and Commands} % \subsection{Autosized Parentheses} @@ -416,7 +457,7 @@ Calculate the magnitude of \momentum{\mivector{3,2,5}}. %</example> %\fi % -% \subsection{SI Base Units} +% \subsection{SI Base Units and Dimensions} % This is not a tutorial on SI units and the user is assumed to be familiar with SI % rules and usage. Begin by defining shortcuts for the units for the seven SI base % quantities: @@ -515,14 +556,109 @@ Command for candela, the SI unit of luminous intensity. % not Newton. Again, using these select nicknames for certain combinations of base units % is what we mean by \drvdunits\ form. % +% \subsection{SI Dimensions} +% For each SI unit, there is a corresponding dimension. Every physical quantity is some +% multiplicative product of each of the seven basic SI dimensions raised to a power. +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{dimddisplacement}{} +Command for the symbol for the dimension of displacement. +\end{docCommand} +\begin{dispExample*}{sidebyside} +displacement has dimension of \dimdisplacement +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{dimmass}{} +Command for the symbol for the dimension of mass. +\end{docCommand} +\begin{dispExample*}{sidebyside} +mass has dimension of \dimmass +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{dimduration}{} +Command for the symbol for the dimension of duration. +\end{docCommand} +\begin{dispExample*}{sidebyside} +duration has dimension of \dimduration +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{dimcurrent}{} +Command for the symbol for the dimension of current. +\end{docCommand} +\begin{dispExample*}{sidebyside} +current has dimension of \dimcurrent +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{dimtemperature}{} +Command for the symbol for the dimension of temperature. +\end{docCommand} +\begin{dispExample*}{sidebyside} +temperature has dimension of \dimtemperature +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{dimamount}{} +Command for the symbol for the dimension of amount. +\end{docCommand} +\begin{dispExample*}{sidebyside} +amount has dimension of \dimamount +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{dimluminous}{} +Command for the symbol for the dimension of luminous intensity. +\end{docCommand} +\begin{dispExample*}{sidebyside} +luminous has dimension of \dimluminous +\end{dispExample*} +%\iffalse +%</example> +%\fi +% % \subsection{Defining Physics Quantities} % %\iffalse %<*example> %\fi \begin{docCommand}{newphysicsquantity} - {\marg{newname}\marg{\baseunits}\oarg{\drvdunits}\oarg{\tradunits}} - Defines a new physics quantity and its associated commands. +{\marg{newname}\marg{\baseunits}\oarg{\drvdunits}\oarg{\tradunits}} +Defines a new physics quantity and its associated commands. \end{docCommand} %\iffalse %</example> @@ -538,9 +674,11 @@ Command for candela, the SI unit of luminous intensity. % typeset according to the options given when \mandi\ was loaded. Note that if the % \drvdunits\ and \tradunits\ forms are not specified, they will be % populated with the \baseunits\ form. -% \item A command \colDef{\cs{newnamebaseunit}}\marg{magnitude} is created that expresses +% \item A command \colDef{\cs{newnamebaseunit}}\marg{magnitude} is created that +% expresses % the quantity and its units in \baseunits\ form. -% \item A command \colDef{\cs{newnamedrvdunit}}\marg{magnitude} is created that expresses +% \item A command \colDef{\cs{newnamedrvdunit}}\marg{magnitude} is created that +% expresses % the quantity and its units in \drvdunits\ form. This command is created whether % or not the first optional argument is provided. % \item A command \colDef{\cs{newnametradunit}}\marg{magnitude} is created that @@ -556,21 +694,50 @@ Command for candela, the SI unit of luminous intensity. % \textbf{only} the quantity's numerical value. % \end{itemize} % +% As an example, consider momentum. The following commands are defined: +% +% \begin{quotation} +% \begin{tabular}{l l l} +% |\momentum{3}| &\momentum{3} & unit determined by global options \\ +% |\momentumbaseunit{3}| &\momentumbaseunit{3} & quantity with base unit \\ +% |\momentumdrvdunit{3}| &\momentumdrvdunit{3} & quantity with derived unit \\ +% |\momentumtradunit{3}| &\momentumtradunit{3} & quantity with traditional unit \\ +% |\momentumvalue{3}| &\momentumvalue{3} & selects numerical value of quantity \\ +% |\momentumonlybaseunit|&\momentumonlybaseunit & selects only base unit \\ +% |\momentumonlydrvdunit|&\momentumonlydrvdunit & selects only derived unit \\ +% |\momentumonlytradunit|&\momentumonlytradunit & selects only traditional unit +% \end{tabular} +% \end{quotation} +% +% Momentum is a vector quantity, so obviously this command really refers to the +% magnitude of a momentum vector. There is an interesting, and as far as I can tell +% unwritten, convention in physics that we use the same name for a vector and its +% magnitude with one exception, and that is for velocity, the magnitude of which we +% sometimes call speed. Conceptually, however, velocity and speed are different +% entities. Therefore, \mandi\ has different commands for them. Actually, the +% \cs{speed} command is just an alias for \cs{velocity} and should only be used for +% scalars and never for vectors. This convention means that the same name is used +% for vector quantities and the corresponding magnitudes. +% % \subsubsection{Defining Vector Quantities} % -% Nothing special is necessary for defining vector quantities, but a formatted -% vector is used when invoking the value of that quantity. +% All physical quantities are defined as in the momentum example above regardless +% of whether the quantity is a scalar or a vector. To typeset a vector quantity, +% specify an argument consisting of a vector with components as a comma separated +% list in a \cs{mivector} command. So specifying a momentum vector is as simple as % %\iffalse %<*example> %\fi \begin{dispExample} -\displacement{\mivector{3,2,-1}} +\momentum{\mivector{3,2,-1}} \end{dispExample} %\iffalse %</example> %\fi % +% where the notation corresponds to that used in \mi. +% % \subsection{First Semester Physics} % The first semester of \mi\, and indeed most traditional introductory calculus-based % physics course, focuses on mechanics, dynamics, and statistical mechanics. @@ -782,8 +949,47 @@ an energy of \ineV{10.2} %\iffalse %<*example> %\fi +\begin{docCommand}{ineVocs}{\marg{magnitude}} +Command for mass in \(\mathrm{eV}\per c^2\). +\end{docCommand} +\begin{dispExample*}{sidebyside} +a mass of \ineVocs{1.1} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{ineVoc}{\marg{magnitude}} +Command for momentum in \(\mathrm{eV}\per c\). +\end{docCommand} +\begin{dispExample*}{sidebyside} +a momentum of \ineVoc{3.6} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{inMeV}{\marg{magnitude}} +Command for energy in millions of electron volts. +\end{docCommand} +\begin{dispExample*}{sidebyside} +an energy of \inMeV{2.2} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{inMeVocs}{\marg{magnitude}} -Command for mass in \(\mathrm{MeV}\per\msup{c}{2}\). +Command for mass in \(\mathrm{MeV}\per c^2\). \end{docCommand} \begin{dispExample*}{sidebyside} a mass of \inMeVocs{0.511} @@ -808,6 +1014,58 @@ a momentum of \inMeVoc{3.6} %\iffalse %<*example> %\fi +\begin{docCommand}{inGeV}{\marg{magnitude}} +Command for energy in millions of electron volts. +\end{docCommand} +\begin{dispExample*}{sidebyside} +an energy of \inGeV{2.2} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{inGeVocs}{\marg{magnitude}} +Command for mass in \(\mathrm{GeV}\per c^2\). +\end{docCommand} +\begin{dispExample*}{sidebyside} +a mass of \inGeVocs{0.511} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{inGeVoc}{\marg{magnitude}} +Command for momentum in \(\mathrm{GeV}\per c\). +\end{docCommand} +\begin{dispExample*}{sidebyside} +a momentum of \inGeVoc{3.6} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{inamu}{\marg{magnitude}} +Command for mass in atomic mass units. +\end{docCommand} +\begin{dispExample*}{sidebyside} +an atomic mass of \inamu{4.002602} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{inAU}{\marg{magnitude}} Command for displacement in astronomical units. \end{docCommand} @@ -978,7 +1236,7 @@ a distance of \insolarD{2} %<*example> %\fi \begin{docCommand}{insolard}{\marg{magnitude}} -Identical to \cs{insular} but uses \(d\). +Identical to \cs{insolarD} but uses \(d\). \end{docCommand} \begin{dispExample*}{sidebyside} a distance of \insolard{2} @@ -987,25 +1245,28 @@ a distance of \insolard{2} %</example> %\fi % -% Angles are confusing in introductory physics because sometimes we write the unit -% and sometimes we do not. Some concepts, such as flux, are simplified by -% introducing solid angle. +% Angles are confusing in introductory physics because sometimes we write +% the unit and sometimes we do not. Some concepts, such as flux, are simplified +% by introducing solid angle. % -% Now let us move on into first semester physics, defining quantities in the approximate -% order in which they appear in \mi. Use |\scin[]{}| to get -% scientific notation, with the mantissa as the optional first argument and the exponent -% as the required second argument. |\scin| has an optional third argument that specifies -% a unit, but that is not needed or used in the following examples. +% Now let us move on into first semester physics, defining quantities in the +% approximate order in which they appear in \mi. Use |M\timestento{P}[U]| to get +% scientific notation, with the mantissa immediately preceding the command and the +% exponent as the required argument. |\timestento| has an optional second argument +% that specifies a unit, but that is not needed or used in the following examples. % %\iffalse %<*example> %\fi -\begin{docCommand}{velocityc}{\marg{magnitude}} -Command for magnitude of velocity as a fraction of \(c\). +\begin{docCommand}{velocityc}{\marg{magnitude or vector}} +Command for velocity as a fraction of \(c\). \end{docCommand} \begin{dispExample*}{sidebyside} a velocity of \velocityc{0.9987} \\ -a velocity of \velocityc{\mivector{0,0.9987,0}} +a velocity of \velocityc{\mivector{0,0.9987,0}} \\ +a velocity of \mivector{\velocityc{\frac{1}{\sqrt{3}}},\\ +\velocityc{\frac{1}{\sqrt{3}}},\\ +\velocityc{\frac{1}{\sqrt{3}}}} \end{dispExample*} %\iffalse %</example> @@ -1014,8 +1275,8 @@ a velocity of \velocityc{\mivector{0,0.9987,0}} %\iffalse %<*example> %\fi -\begin{docCommand}{velocity}{\marg{magnitude}} -Command for magnitude of velocity. +\begin{docCommand}{velocity}{\marg{magnitude or vector}} +Command for velocity. \end{docCommand} \begin{dispExample*}{sidebyside} a velocity of \velocity{2.34} \\ @@ -1028,8 +1289,29 @@ a velocity of \velocity{\mivector{3,2,-1}} %\iffalse %<*example> %\fi +\begin{docCommand}{speed}{\marg{magnitude}} +Command for speed. Technically, velocity is defined as the quotient of displacement +and duration while speed is defined as the quotient of distance traveled and +duration. They have the same dimension and unit, but are slightly conceptually +different so separate commands are provided. I've never seen speed used as anything +other than a scalar, but of course you can specify a vector if you wish. +\end{docCommand} +\begin{dispExample*}{sidebyside} +a speed of \velocity{8.25} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% + + +%\iffalse +%<*example> +%\fi \begin{docCommand}{lorentz}{\marg{magnitude}} -Command for relativistic Lorentz factor. +Command for relativistic Lorentz factor. Obviously this command doesn't do anything +visually, but is included for thinking about calculations where this quantity is +needed. \end{docCommand} \begin{dispExample*}{sidebyside} a Lorentz factor of \lorentz{2.34} @@ -1041,7 +1323,7 @@ a Lorentz factor of \lorentz{2.34} %\iffalse %<*example> %\fi -\begin{docCommand}{momentum}{\marg{magnitude}} +\begin{docCommand}{momentum}{\marg{magnitude or vector}} Command for momentum. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -1055,7 +1337,7 @@ a momentum of \momentum{\mivector{3,2,-1}} %\iffalse %<*example> %\fi -\begin{docCommand}{acceleration}{\marg{magnitude}} +\begin{docCommand}{acceleration}{\marg{magnitude or vector}} Command for acceleration. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -1069,8 +1351,36 @@ an acceleration of \acceleration{\mivector{3,2,-1}} %\iffalse %<*example> %\fi -\begin{docCommand}{impulse}{\marg{magnitude}} -Command for impulse. +\begin{docCommand}{gravitationalfield}{\marg{magnitude or vector}} +Command for gravitational field. +\end{docCommand} +\begin{dispExample*}{sidebyside} +a gravitational field of \gravitationalfield{2.34} \\ +a gravitational field of \gravitationalfield{\mivector{3,2,-1}} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{gravitationalpotential}{\marg{magnitude}} +Command for gravitational potential. +\end{docCommand} +\begin{dispExample*}{sidebyside} +a gravitational potential of \gravitationalpotential{2.34} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{impulse}{\marg{magnitude or vector}} +Command for impulse. Impulse and change in momentum are conceptually different +and a case can be made for expressing the in different, but equivalent, units. \end{docCommand} \begin{dispExample*}{sidebyside} an impulse of \impulse{2.34} \\ @@ -1083,7 +1393,7 @@ an impulse of \impulse{\mivector{3,2,-1}} %\iffalse %<*example> %\fi -\begin{docCommand}{force}{\marg{magnitude}} +\begin{docCommand}{force}{\marg{magnitude or vector}} Command for force. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -1192,7 +1502,7 @@ a volume mass density of \volumemassdensity{2.34} Command for Young's modulus. \end{docCommand} \begin{dispExample*}{sidebyside} -a Young's modulus of \youngsmodulus{\scin[2.34]{9}} +a Young's modulus of \youngsmodulus{2.34\timestento{9}} \end{dispExample*} %\iffalse %</example> @@ -1202,7 +1512,8 @@ a Young's modulus of \youngsmodulus{\scin[2.34]{9}} %<*example> %\fi \begin{docCommand}{work}{\marg{magnitude}} -Command for work. +Command for work. Energy and work are conceptually different and a case can +be made for expressing them in different, but equivalent, units. \end{docCommand} \begin{dispExample*}{sidebyside} an amount of work \work{2.34} @@ -1215,7 +1526,8 @@ an amount of work \work{2.34} %<*example> %\fi \begin{docCommand}{energy}{\marg{magnitude}} -Command for energy. Work and energy have the same unit, but are conceptually different. +Command for energy. Work and energy are conceptually different and a case can +be made for expressing them in different, but equivalent, units. \end{docCommand} \begin{dispExample*}{sidebyside} an amount of energy \energy{2.34} @@ -1240,7 +1552,20 @@ an amount of power \power{2.34} %\iffalse %<*example> %\fi -\begin{docCommand}{angularvelocity}{\marg{magnitude}} +\begin{docCommand}{specificheatcapacity}{\marg{magnitude}} +Command for specific heat capacity. +\end{docCommand} +\begin{dispExample*}{sidebyside} +a specific heat capacity of \specificheatcapacity{4.18\xtento{3}} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{angularvelocity}{\marg{magnitude or vector}} Command for angular velocity. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -1252,7 +1577,7 @@ an angular velocity of \angularvelocity{2.34} %\iffalse %<*example> %\fi -\begin{docCommand}{angularacceleration}{\marg{magnitude}} +\begin{docCommand}{angularacceleration}{\marg{magnitude or vector}} Command for angular acceleration. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -1264,7 +1589,7 @@ an angular acceleration of \angularacceleration{2.34} %\iffalse %<*example> %\fi -\begin{docCommand}{angularmomentum}{\marg{magnitude}} +\begin{docCommand}{angularmomentum}{\marg{magnitude or vector}} Command for angular momentum. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -1290,7 +1615,7 @@ a moment of inertia of \momentofinertia{2.34} %\iffalse %<*example> %\fi -\begin{docCommand}{torque}{\marg{magnitude}} +\begin{docCommand}{torque}{\marg{magnitude or vector}} Command for torque. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -1320,7 +1645,7 @@ an entropy of \entropy{2.34} Command for wavelength. \end{docCommand} \begin{dispExample*}{sidebyside} -a wavelength of \wavelength{\scin[4.00]{-7}} +a wavelength of \wavelength{4.00\timestento{-7}} \end{dispExample*} %\iffalse %</example> @@ -1333,7 +1658,7 @@ a wavelength of \wavelength{\scin[4.00]{-7}} Command for wavenumber. \end{docCommand} \begin{dispExample*}{sidebyside} -a wavenumber of \wavenumber{\scin[2.50]{6}} +a wavenumber of \wavenumber{2.50\timestento{6}} \end{dispExample*} %\iffalse %</example> @@ -1346,7 +1671,7 @@ a wavenumber of \wavenumber{\scin[2.50]{6}} Command for frequency. \end{docCommand} \begin{dispExample*}{sidebyside} -a frequency of \frequency{\scin[7.50]{14}} +a frequency of \frequency{7.50\timestento{14}} \end{dispExample*} %\iffalse %</example> @@ -1359,7 +1684,7 @@ a frequency of \frequency{\scin[7.50]{14}} Command for angularfrequency. \end{docCommand} \begin{dispExample*}{sidebyside} -an angular frequency of \angularfrequency{\scin[4.70]{15}} +an angular frequency of \angularfrequency{4.70\timestento{15}} \end{dispExample*} %\iffalse %</example> @@ -1386,7 +1711,7 @@ an angular frequency of \angularfrequency{\scin[4.70]{15}} Command for electric charge. \end{docCommand} \begin{dispExample*}{sidebyside} -a charge of \charge{\scin[2]{-9}} +a charge of \charge{2\timestento{-9}} \end{dispExample*} %\iffalse %</example> @@ -1399,7 +1724,7 @@ a charge of \charge{\scin[2]{-9}} Command for permittivity. \end{docCommand} \begin{dispExample*}{sidebyside} -a permittivity of \permittivity{\scin[9]{-12}} +a permittivity of \permittivity{9\timestento{-12}} \end{dispExample*} %\iffalse %</example> @@ -1408,11 +1733,11 @@ a permittivity of \permittivity{\scin[9]{-12}} %\iffalse %<*example> %\fi -\begin{docCommand}{electricdipolemoment}{\marg{magnitude}} +\begin{docCommand}{electricdipolemoment}{\marg{magnitude or vector}} Command for electric dipole moment. \end{docCommand} \begin{dispExample*}{sidebyside} -an electric dipole moment of \electricdipolemoment{\scin[2]{5}} +an electric dipole moment of \electricdipolemoment{2\timestento{5}} \end{dispExample*} %\iffalse %</example> @@ -1425,7 +1750,7 @@ an electric dipole moment of \electricdipolemoment{\scin[2]{5}} Command for permeability. \end{docCommand} \begin{dispExample*}{sidebyside} -a permeability of \permeability{\scin[4\pi]{-7}} +a permeability of \permeability{4\pi\timestento{-7}} \end{dispExample*} %\iffalse %</example> @@ -1434,7 +1759,7 @@ a permeability of \permeability{\scin[4\pi]{-7}} %\iffalse %<*example> %\fi -\begin{docCommand}{magneticfield}{\marg{magnitude}} +\begin{docCommand}{magneticfield}{\marg{magnitude or vector}} Command for magnetic field (also called magnetic induction). \end{docCommand} \begin{dispExample*}{sidebyside} @@ -1447,9 +1772,9 @@ a magnetic field of \magneticfield{1.25} %\iffalse %<*example> %\fi -\begin{docCommand}{cmagneticfield}{\marg{magnitude}} -Command for product of \(\mathrm{c}\) and magnetic field. This quantity is convenient -for symmetry. +\begin{docCommand}{cmagneticfield}{\marg{magnitude or vector}} +Command for product of \(\mathrm{c}\) and magnetic field. This quantity is +convenient for symmetry. \end{docCommand} \begin{dispExample*}{sidebyside} a magnetic field of \cmagneticfield{1.25} @@ -1465,7 +1790,7 @@ a magnetic field of \cmagneticfield{1.25} Command for linear charge density. \end{docCommand} \begin{dispExample*}{sidebyside} -a linear charge density of \linearchargedensity{\scin[4.5]{-3}} +a linear charge density of \linearchargedensity{4.5\timestento{-3}} \end{dispExample*} %\iffalse %</example> @@ -1504,7 +1829,7 @@ a volume charge density of \volumechargedensity{1.25} Command for electron mobility. \end{docCommand} \begin{dispExample*}{sidebyside} -a mobility of \areachargedensity{\scin[4.5]{-3}} +a mobility of \areachargedensity{4.5\timestento{-3}} \end{dispExample*} %\iffalse %</example> @@ -1517,7 +1842,7 @@ a mobility of \areachargedensity{\scin[4.5]{-3}} Command for electron number density. \end{docCommand} \begin{dispExample*}{sidebyside} -a number density of \numberdensity{\scin[2]{18}} +a number density of \numberdensity{2\timestento{18}} \end{dispExample*} %\iffalse %</example> @@ -1530,7 +1855,7 @@ a number density of \numberdensity{\scin[2]{18}} Command for polarizability. \end{docCommand} \begin{dispExample*}{sidebyside} -a polarizability of \polarizability{\scin[1.96]{-40}} +a polarizability of \polarizability{1.96\timestento{-40}} \end{dispExample*} %\iffalse %</example> @@ -1543,7 +1868,7 @@ a polarizability of \polarizability{\scin[1.96]{-40}} Command for electric potential. \end{docCommand} \begin{dispExample*}{sidebyside} -an electric potential of \polarizability{1.5} +an electric potential of \electricpotential{1.5} \end{dispExample*} %\iffalse %</example> @@ -1630,11 +1955,24 @@ an energy density of \energydensity{1.25} %\iffalse %<*example> %\fi +\begin{docCommand}{energyflux}{\marg{magnitude}} +Command for energy flux. +\end{docCommand} +\begin{dispExample*}{sidebyside} +an energy flux of \energyflux{4\timestento{26}} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{electroncurrent}{\marg{magnitude}} Command for electron current. \end{docCommand} \begin{dispExample*}{sidebyside} -an electron current of \electroncurrent{\scin[2]{18}} +an electron current of \electroncurrent{2\timestento{18}} \end{dispExample*} %\iffalse %</example> @@ -1656,7 +1994,7 @@ a conventional current of \conventionalcurrent{0.003} %\iffalse %<*example> %\fi -\begin{docCommand}{magneticdipolemoment}{\marg{magnitude}} +\begin{docCommand}{magneticdipolemoment}{\marg{magnitude or vector}} Command for magnetic dipole moment. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -1669,7 +2007,7 @@ a magnetic dipole moment of \magneticdipolemoment{1.25} %\iffalse %<*example> %\fi -\begin{docCommand}{currentdensity}{\marg{magnitude}} +\begin{docCommand}{currentdensity}{\marg{magnitude or vector}} Command for current density. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -1764,7 +2102,7 @@ a resistivity of \resistivity{1.25} Command for resistance. \end{docCommand} \begin{dispExample*}{sidebyside} -a resistance of \resistance{\scin[1]{6}} +a resistance of \resistance{1\timestento{6}} \end{dispExample*} %\iffalse %</example> @@ -1777,12 +2115,13 @@ a resistance of \resistance{\scin[1]{6}} Command for conductance. \end{docCommand} \begin{dispExample*}{sidebyside} -a conductance of \conductance{\scin[1]{6}} +a conductance of \conductance{1\timestento{6}} \end{dispExample*} %\iffalse %</example> %\fi % +%\changes{v2.4.0}{2014/12/16}{Added magnetic charge.} %\iffalse %<*example> %\fi @@ -1796,37 +2135,7 @@ a magnetic charge of \magneticcharge{1.25} %</example> %\fi % -%\iffalse -%<*example> -%\fi -\begin{docCommand}{energyflux}{\marg{magnitude}} -Command for energy flux. -\end{docCommand} -\begin{dispExample*}{sidebyside} -an energy flux of \energyflux{\scin[4]{26}} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% % \subsection{Further Words on Units} -% As you recall, when a new scalar or vector is defined, a host of other commands -% is also automatically defined. Consider momentum. The following commands are -% defined: -% -% \begin{quotation} -% \begin{tabular}{l l l} -% |\momentum{3}| & \momentum{3} & unit determined by global options \\ -% |\momentumbaseunit{3}| & \momentumbaseunit{3} & quantity with base unit \\ -% |\momentumdrvdunit{3}| & \momentumdrvdunit{3} & quantity with derived unit \\ -% |\momentumtradunit{3}| & \momentumtradunit{3} & quantity with traditional unit \\ -% |\momentumvalue{3}| & \momentumvalue{3} & selects numerical value of quantity \\ -% |\momentumonlybaseunit| & \momentumonlybaseunit & selects only base unit \\ -% |\momentumonlydrvdunit| & \momentumonlydrvdunit & selects only derived unit \\ -% |\momentumonlytradunit| & \momentumonlytradunit & selects only traditional unit -% \end{tabular} -% \end{quotation} -% % The form of a quantity's unit can be changed on the fly regardless of the global % format determined by \opt{baseunits} and \opt{drvdunits}. One way, as illustrated % in the table above, is to append |baseunit|, |drvdunit|, |tradunit| to the @@ -1939,7 +2248,7 @@ Command for perpetually using base units. %\iffalse %<*example> %\fi -\begin{docCommand}{perpusedrvdunit}{\marg{magnitude}} +\begin{docCommand}{perpusedrvdunit}{} Command for perpetually using derived units.. \end{docCommand} %\iffalse @@ -1949,13 +2258,98 @@ Command for perpetually using derived units.. %\iffalse %<*example> %\fi -\begin{docCommand}{perpusetradunit}{\marg{magnitude}} +\begin{docCommand}{perpusetradunit}{} Command for perpetually using traditional units.. \end{docCommand} %\iffalse %</example> %\fi % +%\newpage +%\changes{v2.4.0}{2014/12/16}{Added table of all predefined quantities with their +% units.} +%\newgeometry{textwidth=8.5in} +%\begin{center} +% Here are all the predefined quantities and their units. +%\end{center} +% +%\chkquantity{displacement} +%\chkquantity{mass} +%\chkquantity{duration} +%\chkquantity{current} +%\chkquantity{temperature} +%\chkquantity{amount} +%\chkquantity{luminous} +%\chkquantity{planeangle} +%\chkquantity{solidangle} +%\chkquantity{velocity} +%\chkquantity{acceleration} +%\chkquantity{gravitationalfield} +%\chkquantity{gravitationalpotential} +%\chkquantity{momentum} +%\chkquantity{impulse} +%\chkquantity{force} +%\chkquantity{springstiffness} +%\chkquantity{springstretch} +%\chkquantity{area} +%\chkquantity{volume} +%\chkquantity{linearmassdensity} +%\chkquantity{areamassdensity} +%\chkquantity{volumemassdensity} +%\chkquantity{youngsmodulus} +%\chkquantity{stress} +%\chkquantity{pressure} +%\chkquantity{strain} +%\chkquantity{work} +%\chkquantity{energy} +%\chkquantity{power} +%\chkquantity{specificheatcapacity} +%\chkquantity{angularvelocity} +%\chkquantity{angularacceleration} +%\chkquantity{angularmomentum} +%\chkquantity{momentofinertia} +%\chkquantity{torque} +%\chkquantity{entropy} +%\chkquantity{wavelength} +%\chkquantity{wavenumber} +%\chkquantity{frequency} +%\chkquantity{angularfrequency} +%\chkquantity{charge} +%\chkquantity{permittivity} +%\chkquantity{permeability} +%\chkquantity{electricfield} +%\chkquantity{electricdipolemoment} +%\chkquantity{electricflux} +%\chkquantity{magneticfield} +%\chkquantity{magneticflux} +%\chkquantity{cmagneticfield} +%\chkquantity{linearchargedensity} +%\chkquantity{areachargedensity} +%\chkquantity{volumechargedensity} +%\chkquantity{mobility} +%\chkquantity{numberdensity} +%\chkquantity{polarizability} +%\chkquantity{electricpotential} +%\chkquantity{emf} +%\chkquantity{dielectricconstant} +%\chkquantity{indexofrefraction} +%\chkquantity{relativepermittivity} +%\chkquantity{relativepermeability} +%\chkquantity{energydensity} +%\chkquantity{energyflux} +%\chkquantity{electroncurrent} +%\chkquantity{conventionalcurrent} +%\chkquantity{magneticdipolemoment} +%\chkquantity{currentdensity} +%\chkquantity{capacitance} +%\chkquantity{inductance} +%\chkquantity{conductivity} +%\chkquantity{resistivity} +%\chkquantity{resistance} +%\chkquantity{conductance} +%\chkquantity{magneticcharge} +%\restoregeometry +% % \subsection{Symbolic Expressions with Vectors} % \subsubsection{Basic Vectors} % @@ -1988,11 +2382,11 @@ Symbol for magnitude of a vector quantity. %\iffalse %<*example> %\fi -\begin{docCommand}{dirvect}{\marg{kernel}} -Symbol for direction of a vector quantity. +\begin{docCommand}{magsquaredvect}{\marg{kernel}} +Symbol for squared magnitude of a vector quantity. \end{docCommand} \begin{dispExample*}{sidebyside} -\dirvect{p} +\magsquaredvect{p} \end{dispExample*} %\iffalse %</example> @@ -2001,16 +2395,11 @@ Symbol for direction of a vector quantity. %\iffalse %<*example> %\fi -\begin{docCommand}{mivector} - {\oarg{printeddelimiter}\marg{commadelimitedlistofcomps}\oarg{unit}} -Generic workhorse command for vectors formatted as in \mi. +\begin{docCommand}{magnvect}{\marg{kernel}\marg{exponent}} +Symbol for magnitude of a vector quantity to arbitrary power. \end{docCommand} \begin{dispExample*}{sidebyside} -\begin{align*} -\msub{u}{\mu} &= \mivector{\ezero,\eone,\etwo,\ethree} \\ -\vect{v} &= \mivector{1,3,5}[\velocityonlytradunit] \\ -\vect{E} &= \mivector{\oofpezmathsymbol \frac{Q}{\msup{x}{2}},0,0} -\end{align*} +\magnvect{r}{5} \end{dispExample*} %\iffalse %</example> @@ -2019,11 +2408,11 @@ Generic workhorse command for vectors formatted as in \mi. %\iffalse %<*example> %\fi -\begin{docCommand}{ncompszerovect}{} -Symbol for the zero vector expressed in components. Deprecated. Use \cs{mivector} instead. +\begin{docCommand}{dirvect}{\marg{kernel}} +Symbol for direction of a vector quantity. Use \cs{direction} as an alias. \end{docCommand} \begin{dispExample*}{sidebyside} -\ncompszerovect +\dirvect{p} or \direction{p} \end{dispExample*} %\iffalse %</example> @@ -2032,12 +2421,16 @@ Symbol for the zero vector expressed in components. Deprecated. Use \cs{mivector %\iffalse %<*example> %\fi -\begin{docCommand}{symvect}{\marg{listofcomps}} -Command for a vector with symbolic components. Deprecated. Use \cs{mivector} instead. +\begin{docCommand}{mivector} + {\oarg{printeddelimiter}\marg{commadelimitedlistofcomps}\oarg{unit}} +Generic workhorse command for vectors formatted as in \mi. \end{docCommand} \begin{dispExample*}{sidebyside} -\symvect{\magvect{E}\cos\theta, - \magvect{E}\sin\theta,0} +\begin{align*} +\msub{u}{\mu} &= \mivector{\ezero,\eone,\etwo,\ethree} \\ +\vect{v} &= \mivector{1,3,5}[\velocityonlytradunit] \\ +\vect{E} &= \mivector{\oofpezmathsymbol \frac{Q}{x^2},0,0} +\end{align*} \end{dispExample*} %\iffalse %</example> @@ -2046,12 +2439,12 @@ Command for a vector with symbolic components. Deprecated. Use \cs{mivector} ins %\iffalse %<*example> %\fi -\begin{docCommand}{ncompsvect}{\marg{listofcomps}\oarg{unit}} -Command for a vector with numerical components and an optional unit. Deprecated. -Use \cs{mivector} instead. +\begin{docCommand}{ncompszerovect}{} +Symbol for the zero vector expressed in components. Deprecated. Use \cs{mivector} +instead. \end{docCommand} \begin{dispExample*}{sidebyside} -\ncompsvect{3,4,6}[\velocityonlytradunit] +\ncompszerovect \end{dispExample*} %\iffalse %</example> @@ -2061,10 +2454,16 @@ Use \cs{mivector} instead. %<*example> %\fi \begin{docCommand}{magvectncomps}{\marg{listofcomps}\oarg{unit}} -Expression for a vector's magnitude with numerical components and an optional unit. +Expression for a vector's magnitude with numerical components and an optional unit. The +first example is the preferred and recommended way to handle units when they are needed. +The second example requires explicitly picking out the desired unit form. The third +example demonstrates components of a unit vector. It is probably best for students to +include components' units inside the radical than to write them outside the radical. \end{docCommand} \begin{dispExample} -\magvectncomps{3.12,4.04,6.73}[\velocityonlytradunit] +\magvectncomps{\velocity{3.12},\velocity{4.04},\velocity{6.73}} \\ +\magvectncomps{3.12,4.04,6.73}[\velocityonlytradunit] \\ +\magvectncomps{\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}} \end{dispExample} %\iffalse %</example> @@ -2109,34 +2508,6 @@ Expression for a vector's magnitude in terms of its symbolic components. %</example> %\fi % -% \subsubsection{Position Vectors} -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{scompspos}{} -Expression for a position vector's traditional symbolic components. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\scompspos -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{comppos}{\marg{component}} -Isolates one symbolic component of a position vector. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\comppos{z} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% % \subsubsection{Differentials and Derivatives of Vectors} % %\iffalse @@ -2195,10 +2566,10 @@ the direction \dirDvect{E} of the change %<*example> %\fi \begin{docCommand}{ddirvect}{\marg{kernel}} -Symbol for the differential of a vector's direction. +Symbol for the differential of a vector's direction. Use \cs{ddirection} as an alias. \end{docCommand} \begin{dispExample*}{sidebyside} -the change \ddirvect{E} in the direction +the change \ddirvect{E} or \ddirection{E} in the direction of \vect{E} \end{dispExample*} %\iffalse %</example> @@ -2208,10 +2579,10 @@ the change \ddirvect{E} in the direction %<*example> %\fi \begin{docCommand}{Ddirvect}{\marg{kernel}} -Identical to \cs{ddirvect} but uses \(\Delta\). +Identical to \cs{ddirvect} but uses \(\Delta\). Use \cs{Ddirection} as an alias. \end{docCommand} \begin{dispExample*}{sidebyside} -the direction \Ddirvect{E} of the change +the direction \Ddirvect{E} or \Ddirection{E} of the change \end{dispExample*} %\iffalse %</example> @@ -2324,37 +2695,11 @@ the \compDvect{E}{y} component of the change %\iffalse %<*example> %\fi -\begin{docCommand}{scompsdpos}{} -Symbolic components of a position vector. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the change in position \scompsdpos -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{scompsDpos}{} -Identical to \cs{scompsdpos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -the change in position \scompsDpos -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{compdpos}{\marg{component}} -Isolates one component of a position vector's differential. +\begin{docCommand}{dervect}{\marg{kernel}\marg{indvar}} +Symbol for a vector's derivative with respect to an independent variable. \end{docCommand} \begin{dispExample*}{sidebyside} -the component \compdpos{z} of the change +the derivative \dervect{E}{t} \end{dispExample*} %\iffalse %</example> @@ -2363,11 +2708,11 @@ the component \compdpos{z} of the change %\iffalse %<*example> %\fi -\begin{docCommand}{compDpos}{\marg{component}} -Identical to \cs{compdpos} but uses \(\Delta\). +\begin{docCommand}{Dervect}{\marg{kernel}\marg{indvar}} +Identical to \cs{dervect} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the component \compDpos{z} of the change +the derivative \Dervect{E}{t} \end{dispExample*} %\iffalse %</example> @@ -2376,11 +2721,12 @@ the component \compDpos{z} of the change %\iffalse %<*example> %\fi -\begin{docCommand}{dervect}{\marg{kernel}\marg{indvar}} -Symbol for a vector's derivative with respect to an independent variable. +\begin{docCommand}{dermagvect}{\marg{kernel}\marg{indvar}} +Symbol for the derivative of a vector's magnitude with respect to an independent +variable. \end{docCommand} \begin{dispExample*}{sidebyside} -the derivative \dervect{E}{t} +the derivative \dermagvect{E}{t} \end{dispExample*} %\iffalse %</example> @@ -2389,11 +2735,11 @@ the derivative \dervect{E}{t} %\iffalse %<*example> %\fi -\begin{docCommand}{Dervect}{\marg{kernel}\marg{indvar}} -Identical to \cs{dervect} but uses \(\Delta\). +\begin{docCommand}{Dermagvect}{\marg{kernel}\marg{indvar}} +Identical to \cs{dermagvect} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the derivative \Dervect{E}{t} +the derivative \Dermagvect{E}{t} \end{dispExample*} %\iffalse %</example> @@ -2402,11 +2748,12 @@ the derivative \Dervect{E}{t} %\iffalse %<*example> %\fi -\begin{docCommand}{dermagvect}{\marg{kernel}\marg{indvar}} -Symbol for the derivative of a vector's magnitude with respect to an independent variable. +\begin{docCommand}{derdirvect}{\marg{kernel}\marg{indvar}} +Symbol for the derivative of a vector's direction with respect to an independent +variable. Use \cs{derdiraction} as an alias. \end{docCommand} \begin{dispExample*}{sidebyside} -the derivative \dermagvect{E}{t} +the derivative \derdirvect{E}{t} or \derdirection{E}{t} \end{dispExample*} %\iffalse %</example> @@ -2415,11 +2762,11 @@ the derivative \dermagvect{E}{t} %\iffalse %<*example> %\fi -\begin{docCommand}{Dermagvect}{\marg{kernel}\marg{indvar}} -Identical to \cs{dermagvect} but uses \(\Delta\). +\begin{docCommand}{Derdirvect}{\marg{kernel}\marg{indvar}} +Identical to \cs{derdirvect} but uses \(\Delta\). Use \cs{Derdirection} as an alias. \end{docCommand} \begin{dispExample*}{sidebyside} -the derivative \Dermagvect{E}{t} +the derivative \Derdirvect{E}{t} or \Derdirection{E}{t} \end{dispExample*} %\iffalse %</example> @@ -2481,7 +2828,8 @@ the derivative \compDervect{E}{y}{t} %<*example> %\fi \begin{docCommand}{magdervect}{\marg{kernel}\marg{indvar}} -Symbol for the magnitude of a vector's derivative with respect to an independent variable. +Symbol for the magnitude of a vector's derivative with respect to an independent +variable. \end{docCommand} \begin{dispExample*}{sidebyside} the derivative \magdervect{E}{t} @@ -2503,58 +2851,6 @@ the derivative \magDervect{E}{t} %</example> %\fi % -%\iffalse -%<*example> -%\fi -\begin{docCommand}{scompsderpos}{\marg{indvar}} -Symbolic components of a position vector's derivative with respect to an independent variable. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the derivative \scompsderpos{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{scompsDerpos}{\marg{indvar}} -Identical to \cs{scompsderpos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -the derivative \scompsDerpos{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{compderpos}{\marg{component}\marg{indvar}} -Isolates one component of a vector's derivative with respect to an independent variable. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the derivative \compderpos{z}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{compDerpos}{\marg{component}\marg{indvar}} -Identical to \cs{compderpos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -the derivative \compDerpos{z}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% % \subsubsection{Naming Conventions You Have Seen} % By now you probably understand that commands are named as closely as possible % to the way you would say or write what you want. Every time you see |comp| @@ -2564,12 +2860,17 @@ the derivative \compDerpos{z}{t} % tried to make the names simple both logically and lexically. % % \subsubsection{Subscripted or Indexed Vectors} -% Now we have commands for vectors that carry subscripts or indices, usually to identify an -% object or something similar. Basically, |vect| becomes |vectsub| and |pos| -% becomes |possub|. Ideally, a subscript should not contain mathematical -% symbols. However, if you wish to do so, just wrap the symbol with -% |\(|\(\ldots \)|\)| as you normally would. All of the commands for non-subscripted -% vectors are available for subscripted vectors. +% Now we have commands for vectors that carry subscripts or indices, usually to +% identify an object or something similar. Basically, |vect| becomes |vectsub|. +% Ideally, a subscript should not contain mathematical symbols. However, if you wish +% to do so, just wrap the symbol with |\(|\(\ldots \)|\)| as you normally would. All +% of the commands for non-subscripted vectors are available for subscripted vectors. +% +% As a matter of convention, when the initial and final values of a quantity are +% referenced, they should be labeled with subscripts |i| and |f| respectively using +% the commands in this section and similarly named commands in other sections. If +% the quantity also refers to a particular entity (e.g.\ a ball), specify the |i| +% or |f| with a comma after the label (e.g.\ |\vectsub{r}{ball,f}|). % %\iffalse %<*example> @@ -2588,10 +2889,10 @@ the vector \vectsub{p}{ball} %<*example> %\fi \begin{docCommand}{magvectsub}{\marg{kernel}\marg{sub}} -Symbol for a subscripted vector's direction. +Symbol for a subscripted vector's magnitude. \end{docCommand} \begin{dispExample*}{sidebyside} -the direction \dirvectsub{p}{ball} +\magvectsub{p}{ball} \end{dispExample*} %\iffalse %</example> @@ -2600,11 +2901,11 @@ the direction \dirvectsub{p}{ball} %\iffalse %<*example> %\fi -\begin{docCommand}{dirvectsub}{\marg{kernel}\marg{sub}} -Symbol for a subscripted vector's magnitude. +\begin{docCommand}{magsquaredvectsub}{\marg{kernel}\marg{sub}} +Symbol for a subscripted vector's squared magnitude. \end{docCommand} \begin{dispExample*}{sidebyside} -the magnitude \magvectsub{p}{ball} +\magsquaredvectsub{p}{ball} \end{dispExample*} %\iffalse %</example> @@ -2613,11 +2914,11 @@ the magnitude \magvectsub{p}{ball} %\iffalse %<*example> %\fi -\begin{docCommand}{scompsvectsub}{\marg{kernel}\marg{sub}} -Symbolic components of a subscripted vector. +\begin{docCommand}{magnvectsub}{\marg{kernel}\marg{sub}\marg{exponent}} +Symbol for a subscripted vector's magnitude to an arbitrary power. \end{docCommand} \begin{dispExample*}{sidebyside} -the vector \scompsvectsub{p}{ball} +\magnvectsub{r}{dipole}{5} \end{dispExample*} %\iffalse %</example> @@ -2626,11 +2927,11 @@ the vector \scompsvectsub{p}{ball} %\iffalse %<*example> %\fi -\begin{docCommand}{compvectsub}{\marg{kernel}\marg{component}\marg{sub}} -Isolates one component of a subscripted vector. +\begin{docCommand}{dirvectsub}{\marg{kernel}\marg{sub}} +Symbol for a subscripted vector's direction. Use \cs{directionsub} as an alias. \end{docCommand} \begin{dispExample*}{sidebyside} -the component \compvectsub{p}{z}{ball} +\dirvectsub{p}{ball} or \directionsub{p}{ball} \end{dispExample*} %\iffalse %</example> @@ -2639,24 +2940,24 @@ the component \compvectsub{p}{z}{ball} %\iffalse %<*example> %\fi -\begin{docCommand}{magvectsubscomps}{\marg{kernel}\marg{sub}} -Expression for a subscripted vector's magnitude in terms of symbolic components. +\begin{docCommand}{scompsvectsub}{\marg{kernel}\marg{sub}} +Symbolic components of a subscripted vector. \end{docCommand} \begin{dispExample*}{sidebyside} -the magnitude \magvectsubscomps{p}{ball} +the vector \scompsvectsub{p}{ball} \end{dispExample*} %\iffalse %</example> %\fi -% +% %\iffalse %<*example> %\fi -\begin{docCommand}{scompspossub}{\marg{sub}} -Symbolic components of a subscripted position vector. +\begin{docCommand}{compvectsub}{\marg{kernel}\marg{sub}\marg{component}} +Isolates one component of a subscripted vector. \end{docCommand} \begin{dispExample*}{sidebyside} -the vector \scompspossub{ball} +the component \compvectsub{p}{ball}{z} \end{dispExample*} %\iffalse %</example> @@ -2665,16 +2966,16 @@ the vector \scompspossub{ball} %\iffalse %<*example> %\fi -\begin{docCommand}{comppossub}{\marg{component}\marg{sub}} -Isolates one component of a subscripted position vector. +\begin{docCommand}{magvectsubscomps}{\marg{kernel}\marg{sub}} +Expression for a subscripted vector's magnitude in terms of symbolic components. \end{docCommand} \begin{dispExample*}{sidebyside} -the component \comppossub{x}{ball} +the magnitude \magvectsubscomps{p}{ball} \end{dispExample*} %\iffalse %</example> %\fi -% +% %\iffalse %<*example> %\fi @@ -2730,11 +3031,11 @@ the vector \scompsDvectsub{p}{ball} %\iffalse %<*example> %\fi -\begin{docCommand}{compdvectsub}{\marg{kernel}\marg{component}\marg{sub}} +\begin{docCommand}{compdvectsub}{\marg{kernel}\marg{sub}\marg{component}} Isolates one component of a subscripted vector's differential. \end{docCommand} \begin{dispExample*}{sidebyside} -the component \compdvectsub{p}{y}{ball} +the component \compdvectsub{p}{ball}{y} \end{dispExample*} %\iffalse %</example> @@ -2743,63 +3044,11 @@ the component \compdvectsub{p}{y}{ball} %\iffalse %<*example> %\fi -\begin{docCommand}{compDvectsub}{\marg{kernel}\marg{component}\marg{sub}} +\begin{docCommand}{compDvectsub}{\marg{kernel}\marg{sub}\marg{component}} Identical to \cs{compdvectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the component \compDvectsub{p}{y}{ball} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{scompsdpossub}{\marg{sub}} -Symbolic components of a subscripted position vector's differential. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the vector \scompsdpossub{ball} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{scompsDpossub}{\marg{sub}} -Identical to \cs{scopmsdpossub} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -the vector \scompsDpossub{ball} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{compdpossub}{\marg{component}\marg{sub}} -Isolates one component of a subscripted position vector's differential. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the component \compdpossub{x}{ball} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{compDpossub}{\marg{component}\marg{sub}} -Identical to \cs{compdpossub} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -the component \compDpossub{x}{ball} +the component \compDvectsub{p}{ball}{y} \end{dispExample*} %\iffalse %</example> @@ -2835,8 +3084,8 @@ the derivative \Dervectsub{p}{ball}{t} %<*example> %\fi \begin{docCommand}{dermagvectsub}{\marg{kernel}\marg{sub}\marg{indvar}} -Symbol for the derivative of a subscripted vector's magnitude with respect to an independent -variable. +Symbol for the derivative of a subscripted vector's magnitude with respect to +an independent variable. \end{docCommand} \begin{dispExample*}{sidebyside} the derivative \dermagvectsub{E}{ball}{t} @@ -2862,8 +3111,8 @@ the derivative \Dermagvectsub{E}{ball}{t} %<*example> %\fi \begin{docCommand}{scompsdervectsub}{\marg{kernel}\marg{sub}\marg{indvar}} -Symbolic components of a subscripted vector's derivative with respect to an independent -variable. +Symbolic components of a subscripted vector's derivative with respect to +an independent variable. \end{docCommand} \begin{dispExample*}{sidebyside} the vector \scompsdervectsub{p}{ball}{t} @@ -2888,12 +3137,12 @@ the vector \scompsDervectsub{p}{ball}{t} %\iffalse %<*example> %\fi -\begin{docCommand}{compdervectsub}{\marg{kernel}\marg{component}\marg{sub}\marg{indvar}} -Isolates one component of a subscripted vector's derivative with respect to an independent -variable. +\begin{docCommand}{compdervectsub}{\marg{kernel}\marg{sub}\marg{component}\marg{indvar}} +Isolates one component of a subscripted vector's derivative with respect to +an independent variable. \end{docCommand} \begin{dispExample*}{sidebyside} -the component \compdervectsub{p}{y}{ball}{t} +the component \compdervectsub{p}{ball}{y}{t} \end{dispExample*} %\iffalse %</example> @@ -2902,11 +3151,11 @@ the component \compdervectsub{p}{y}{ball}{t} %\iffalse %<*example> %\fi -\begin{docCommand}{compDervectsub}{\marg{kernel}\marg{component}\marg{sub}\marg{indvar}} +\begin{docCommand}{compDervectsub}{\marg{kernel}\marg{sub}\marg{component}\marg{indvar}} Identical to \cs{compdervectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the component \compDervectsub{p}{y}{ball}{t} +the component \compDervectsub{p}{ball}{y}{t} \end{dispExample*} %\iffalse %</example> @@ -2916,8 +3165,8 @@ the component \compDervectsub{p}{y}{ball}{t} %<*example> %\fi \begin{docCommand}{magdervectsub}{\marg{kernel}\marg{sub}\marg{indvar}} -Symbol for magnitude of a subscripted vector's derivative with respect to an independent -variable. +Symbol for magnitude of a subscripted vector's derivative with respect to +an independent variable. \end{docCommand} \begin{dispExample*}{sidebyside} the derivative \magdervectsub{p}{ball}{t} @@ -2939,116 +3188,6 @@ the derivative \magDervectsub{p}{ball}{t} %</example> %\fi % -%\iffalse -%<*example> -%\fi -\begin{docCommand}{scompsderpossub}{\marg{sub}\marg{indvar}} -Symbolic components of a subscripted position vector's derivative with respect to an -independent variable. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the vector \scompsderpossub{ball}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{scompsDerpossub}{\marg{sub}\marg{indvar}} -Identical to \cs{scompsderpossub} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -the vector \scompsDerpossub{ball}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{compderpossub}{\marg{component}\marg{sub}\marg{indvar}} -Isolates one component of a subscripted position vector's derivative with respect to an -independent variable. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the component \compderpossub{y}{ball}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{compDerpossub}{\marg{component}\marg{sub}\marg{indvar}} -Identical to \cs{compderpossub} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -the component \compDerpossub{y}{ball}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -% \subsubsection{Relative Vectors} -% Sometimes it's convenient to think of the position, velocity, momentum, or force of/on -% one thing relative to/due to another thing. -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{relpos}{\marg{sub}} -Symbol for relative position. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the vector \relpos{12} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{relvel}{\marg{sub}} -Symbol for relative velocity. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the vector \relvel{12} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{relmom}{\marg{sub}} -Symbol for relative momentum. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the vector \relmom{12} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{relfor}{\marg{sub}} -Symbol for relative force. -\end{docCommand} -\begin{dispExample*}{sidebyside} -the vector \relfor{12} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% % \subsubsection{Expressions Containing Dots} % Now we get to commands that will save you many, many keystrokes. All of the % naming conventions documented in earlier commands still apply. There are some @@ -3100,32 +3239,6 @@ Symbol for dot of two vectors as an expanded sum. %\iffalse %<*example> %\fi -\begin{docCommand}{vectdotspos}{\marg{kernel}} -Dot of a vector and a position vector with symbolic components. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\vectdotspos{F} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{vectdotepos}{\marg{kernel}} -Dot of a vector and a position vector as an expanded sum. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\vectdotepos{F} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi \begin{docCommand}{vectdotsdvect}{\marg{kernel1}\marg{kernel2}} Dot of a vector a vector's differential with symbolic components. \end{docCommand} @@ -3178,59 +3291,8 @@ Identical to \cs{vectdotedvect} but uses \(\Delta\). %\iffalse %<*example> %\fi -\begin{docCommand}{vectdotsdpos}{\marg{kernel}} -Dot of a vector and a position vector's differential with symbolic components. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\vectdotsdpos{F} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{vectdotsDpos}{\marg{kernel}} -Identical to \cs{vectdotsdpos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -\vectdotsDpos{F} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{vectdotedpos}{\marg{kernel}} -Dot of a vector and a position vector's differential as an expanded sum. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\vectdotedpos{F} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{vectdoteDpos}{\marg{kernel}} -Identical to \cs{vectdotedpos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -\vectdoteDpos{F} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{vectsubdotsvectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} +\begin{docCommand}{vectsubdotsvectsub} +{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} Dot of two subscripted vectors with symbolic components. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -3243,7 +3305,8 @@ Dot of two subscripted vectors with symbolic components. %\iffalse %<*example> %\fi -\begin{docCommand}{vectsubdotevectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} +\begin{docCommand}{vectsubdotevectsub} +{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} Dot of two subscripted vectors as an expanded sum. \end{docCommand} \begin{dispExample*}{sidebyside} @@ -3256,8 +3319,10 @@ Dot of two subscripted vectors as an expanded sum. %\iffalse %<*example> %\fi -\begin{docCommand}{vectsubdotsdvectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} -Dot of a subscripted vector and a subscripted vector's differential with symbolic components. +\begin{docCommand}{vectsubdotsdvectsub} +{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} +Dot of a subscripted vector and a subscripted vector's differential with +symbolic components. \end{docCommand} \begin{dispExample*}{sidebyside} \vectsubdotsdvectsub{A}{ball}{B}{car} @@ -3269,7 +3334,8 @@ Dot of a subscripted vector and a subscripted vector's differential with symboli %\iffalse %<*example> %\fi -\begin{docCommand}{vectsubdotsDvectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} +\begin{docCommand}{vectsubdotsDvectsub} +{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} Identical to \cs{vectsubdotsdvectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} @@ -3282,8 +3348,10 @@ Identical to \cs{vectsubdotsdvectsub} but uses \(\Delta\). %\iffalse %<*example> %\fi -\begin{docCommand}{vectsubdotedvectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} -Dot of a subscripted vector and a subscripted vector's differential as an expanded sum. +\begin{docCommand}{vectsubdotedvectsub} +{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} +Dot of a subscripted vector and a subscripted vector's differential +as an expanded sum. \end{docCommand} \begin{dispExample*}{sidebyside} \vectsubdotedvectsub{A}{ball}{B}{car} @@ -3295,7 +3363,8 @@ Dot of a subscripted vector and a subscripted vector's differential as an expand %\iffalse %<*example> %\fi -\begin{docCommand}{vectsubdoteDvectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} +\begin{docCommand}{vectsubdoteDvectsub} +{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} Identical to \cs{vectsubdotedvectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} @@ -3360,58 +3429,6 @@ Identical to \cs{vectsubdotedvect} but uses \(\Delta\). %\iffalse %<*example> %\fi -\begin{docCommand}{vectsubdotsdpos}{\marg{kernel}\marg{sub}} -Dot of a subscripted vector and a position vector's differential with symbolic components. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\vectsubdotsdpos{A}{ball} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{vectsubdotsDpos}{\marg{kernel}\marg{sub}} -Identical to \cs{vectsubdotsdpos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -\vectsubdotsDpos{A}{ball} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{vectsubdotedpos}{\marg{kernel}\marg{sub}} -Dot of a subscripted vector and a position vector's differential as an expanded sum. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\vectsubdotedpos{A}{ball} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{vectsubdoteDpos}{\marg{kernel}\marg{sub}} -Identical to \cs{vectsubdotedpos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -\vectsubdoteDpos{A}{ball} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi \begin{docCommand}{dervectdotsvect}{\marg{kernel1}\marg{indvar}\marg{kernel2}} Dot of a vector's derivative and a vector with symbolic components. \end{docCommand} @@ -3516,58 +3533,6 @@ Identical to \cs{vectdotedervect} but uses \(\Delta\). %\iffalse %<*example> %\fi -\begin{docCommand}{dervectdotspos}{\marg{kernel}\marg{indvar}} -Dot of a vector's derivative and a position vector with symbolic components. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\dervectdotspos{A}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{Dervectdotspos}{\marg{kernel}\marg{indvar}} -Identical to \cs{dervectdotspos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -\Dervectdotspos{A}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{dervectdotepos}{\marg{kernel}\marg{indvar}} -Dot of a vector's derivative and a position vector as an expanded sum. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\dervectdotepos{A}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{Dervectdotepos}{\marg{kernel}\marg{indvar}} -Identical to \cs{dervectdotepos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -\Dervectdotepos{A}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi \begin{docCommand}{dervectdotsdvect}{\marg{kernel1}\marg{indvar}\marg{kernel2}} Dot of a vector's derivative and a vector's differential with symbolic components. \end{docCommand} @@ -3617,58 +3582,6 @@ Identical to \cs{dervectdotedvect} but uses \(\Delta\). %</example> %\fi % -%\iffalse -%<*example> -%\fi -\begin{docCommand}{dervectdotsdpos}{\marg{kernel}\marg{indvar}} -Dot of a vector's derivative and a position vector's differential with symbolic components. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\dervectdotsdpos{A}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{DervectdotsDpos}{\marg{kernel}\marg{indvar}} -Identical to \cs{dervectdotsdpos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -\DervectdotsDpos{A}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{dervectdotedpos}{\marg{kernel}\marg{indvar}} -Dot of a vector's derivative and a position vector's differential as an expanded sum. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\dervectdotedpos{A}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{DervectdoteDpos}{\marg{kernel}\marg{indvar}} -Identical to \cs{dervectdotedpos} but uses \(\Delta\). -\end{docCommand} -\begin{dispExample*}{sidebyside} -\DervectdoteDpos{A}{t} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% % \subsubsection{Expressions Containing Crosses} % All of the naming conventions documented in earlier commands still apply. % @@ -3749,7 +3662,7 @@ Symbol for right associated triple scalar product. Symbols for basis vectors with lower indices up to 4. \end{docCommand} \begin{dispExample*}{sidebyside} -\ezero \eone \etwo \ethree \efour +\ezero, \eone, \etwo, \ethree, \efour \end{dispExample*} %\iffalse %</example> @@ -3762,7 +3675,7 @@ Symbols for basis vectors with lower indices up to 4. Symbols for normalized basis vectors with lower indices up to 4. \end{docCommand} \begin{dispExample*}{sidebyside} -\uezero \ueone \uetwo \uethree \uefour +\uezero, \ueone, \uetwo, \uethree, \uefour \end{dispExample*} %\iffalse %</example> @@ -3775,7 +3688,7 @@ Symbols for normalized basis vectors with lower indices up to 4. Symbols for basis bivectors with lower indices up to 4. \end{docCommand} \begin{dispExample*}{sidebyside} -\ezerozero \ezeroone \ezerotwo \ezerothree \ezerofour up to \efourfour +\ezerozero, \ezeroone, \ezerotwo, \ezerothree, \ezerofour, up to \efourfour \end{dispExample*} %\iffalse %</example> @@ -3788,7 +3701,7 @@ Symbols for basis bivectors with lower indices up to 4. Symbols for basis vectors with upper indices up to 4. \end{docCommand} \begin{dispExample*}{sidebyside} -\euzero \euone \eutwo \euthree \eufour +\euzero, \euone, \eutwo, \euthree, \eufour \end{dispExample*} %\iffalse %</example> @@ -3801,7 +3714,7 @@ Symbols for basis vectors with upper indices up to 4. Symbols for basis bivectors with upper indices up to 4. \end{docCommand} \begin{dispExample*}{sidebyside} -\euzerozero \euzeroone \euzerotwo \euzerothree \euzerofour up to \eufourfour +\euzerozero, \euzeroone, \euzerotwo, \euzerothree, \euzerofour, up to \eufourfour \end{dispExample*} %\iffalse %</example> @@ -3814,7 +3727,7 @@ Symbols for basis bivectors with upper indices up to 4. Symbols for basis vectors, with \(\gamma\) as the kernel, with lower indices up to 4. \end{docCommand} \begin{dispExample*}{sidebyside} -\gzero \gone \gtwo \gthree \gfour +\gzero, \gone, \gtwo, \gthree, \gfour \end{dispExample*} %\iffalse %</example> @@ -3827,7 +3740,7 @@ Symbols for basis vectors, with \(\gamma\) as the kernel, with lower indices up Symbols for basis vectors, with \(\gamma\) as the kernel, with upper indices up to 4. \end{docCommand} \begin{dispExample*}{sidebyside} -\guzero \guone \gutwo \guthree \gufour +\guzero, \guone, \gutwo, \guthree, \gufour \end{dispExample*} %\iffalse %</example> @@ -3840,7 +3753,7 @@ Symbols for basis vectors, with \(\gamma\) as the kernel, with upper indices up Symbols for basis bivectors, with \(\gamma\) as the kernel, with lower indices up to 4. \end{docCommand} \begin{dispExample*}{sidebyside} -\gzerozero \gzeroone \gzerotwo \gzerothree \gzerofour up to \gfourfour +\gzerozero, \gzeroone, \gzerotwo, \gzerothree, \gzerofour, up to \gfourfour \end{dispExample*} %\iffalse %</example> @@ -3853,7 +3766,7 @@ Symbols for basis bivectors, with \(\gamma\) as the kernel, with lower indices u Symbols for basis bivectors, with \(\gamma\) as the kernel, with upper indices up to 4. \end{docCommand} \begin{dispExample*}{sidebyside} -\guzerozero \guzeroone \guzerotwo \guzerothree \guzerofour up to \gufourfour +\guzerozero, \guzeroone, \guzerotwo, \guzerothree, \guzerofour, up to \gufourfour \end{dispExample*} %\iffalse %</example> @@ -3866,8 +3779,7 @@ Symbols for basis bivectors, with \(\gamma\) as the kernel, with upper indices u Typesets column vectors. \end{docCommand} \begin{dispExample*}{sidebyside} -\colvector{\msup{x}{0},\msup{x}{1},\msup{x}{2}, -\msup{x}{3}} +\colvector{x^0,x^1,x^2,x^3} \end{dispExample*} %\iffalse %</example> @@ -3880,8 +3792,7 @@ Typesets column vectors. Typesets row vectors. \end{docCommand} \begin{dispExample*}{sidebyside} -\rowvector{\msup{x}{0},\msup{x}{1},\msup{x}{2}, -\msup{x}{3}} +\rowvector{x^0,x^1,x^2,x^3} \end{dispExample*} %\iffalse %</example> @@ -3928,14 +3839,15 @@ Typesets row vectors. %<*example> %\fi \begin{docCommand}{newphysicsconstant} - {\marg{newname}\marg{symbol}\marg{value}\marg{\baseunits}\oarg{\drvdunits}\oarg{\tradunits}} + {\marg{newname}\marg{symbol}\marg{value}\marg{\baseunits}\oarg{\drvdunits} + \oarg{\tradunits}} Defines a new physical constant. \end{docCommand} \begin{dispListing} Here is how \oofpez (the Coulomb constant) is defined internally. \newphysicsconstant{oofpez} {\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}}}} -{\scin[9]{9}} +{9\timestento{9}} {\ensuremath{\m\cubed\usk\kg\usk\s^{-4}\usk\A\rpsquared}} [\m\per\farad] [\newton\usk\m\squared\per\coulomb\squared] @@ -4050,11 +3962,11 @@ Boltzmann constant. %\iffalse %<*example> %\fi -\begin{docCommand}{boltzmanninev}{} +\begin{docCommand}{boltzmannineV}{} Alternate form of Boltlzmann constant. \end{docCommand} \begin{dispExample*}{sidebyside} -\(\boltzmanninevmathsymbol \approx \boltzmanninev\) +\(\boltzmannineVmathsymbol \approx \boltzmannineV\) \end{dispExample*} %\iffalse %</example> @@ -4089,11 +4001,11 @@ Planck constant. %\iffalse %<*example> %\fi -\begin{docCommand}{planckinev}{} +\begin{docCommand}{planckineV}{} Alternate form of Planck constant. \end{docCommand} \begin{dispExample*}{sidebyside} -\(\planckmathsymbol \approx \planckinev\) +\(\planckmathsymbol \approx \planckineV\) \end{dispExample*} %\iffalse %</example> @@ -4115,11 +4027,11 @@ Reduced Planck constant (Dirac constant). %\iffalse %<*example> %\fi -\begin{docCommand}{planckbarinev}{} +\begin{docCommand}{planckbarineV}{} Alternate form of reduced Planck constant (Dirac constant). \end{docCommand} \begin{dispExample*}{sidebyside} -\(\planckbarmathsymbol \approx \planckbarinev\) +\(\planckbarmathsymbol \approx \planckbarineV\) \end{dispExample*} %\iffalse %</example> @@ -4141,11 +4053,11 @@ Planck constant times light speed. %\iffalse %<*example> %\fi -\begin{docCommand}{planckcinev}{} +\begin{docCommand}{planckcineV}{} Alternate form of Planck constant times light speed. \end{docCommand} \begin{dispExample*}{sidebyside} -\(\planckcinevmathsymbol \approx \planckcinev\) +\(\planckcineVmathsymbol \approx \planckcineV\) \end{dispExample*} %\iffalse %</example> @@ -4564,7 +4476,7 @@ Sun's apparent magnitude. Symbol for stellar luminosity. \end{docCommand} \begin{dispExample*}{sidebyside} -\Lstar \Lstar[Sirius] +\Lstar or \Lstar[Sirius] \end{dispExample*} %\iffalse %</example> @@ -4589,7 +4501,7 @@ Symbol for solar luminosity as a unit. Really just an alias for |\Lstar[\(\odot\ Symbol for stellar temperature. \end{docCommand} \begin{dispExample*}{sidebyside} -\Tstar \Tstar[Sirius] +\Tstar or \Tstar[Sirius] \end{dispExample*} %\iffalse %</example> @@ -4615,7 +4527,7 @@ Symbol for solar temperature as a unit. Really just an alias for |\Tstar[\(\odot Symbol for stellar radius. \end{docCommand} \begin{dispExample*}{sidebyside} -\Rstar \Rstar[Sirius] +\Rstar or \Rstar[Sirius] \end{dispExample*} %\iffalse %</example> @@ -4641,7 +4553,7 @@ Symbol for solar radius as a unit. Really just an alias for |\Rstar[\(\odot\)]|. Symbol for stellar mass. \end{docCommand} \begin{dispExample*}{sidebyside} -\Mstar \Mstar[Sirius] +\Mstar or \Mstar[Sirius] \end{dispExample*} %\iffalse %</example> @@ -4667,7 +4579,7 @@ Symbol for solar mass as a unit. Really just an alias for |\Mstar[\(\odot\)]|. Symbol for stellar flux. \end{docCommand} \begin{dispExample*}{sidebyside} -\Fstar \Fstar[Sirius] +\Fstar or \Fstar[Sirius] \end{dispExample*} %\iffalse %</example> @@ -4713,7 +4625,7 @@ Alias for \cs{fsolar}. Symbol for stellar absolute magnitude. \end{docCommand} \begin{dispExample*}{sidebyside} -\Magstar \Magstar[Sirius] +\Magstar or \Magstar[Sirius] \end{dispExample*} %\iffalse %</example> @@ -4723,7 +4635,8 @@ Symbol for stellar absolute magnitude. %<*example> %\fi \begin{docCommand}{Magsolar}{} -Symbol for solar absolute magnitude as a unit. Really just an alias for |\Magstar[\(\odot\)]|. +Symbol for solar absolute magnitude as a unit. Really just an alias for +|\Magstar[\(\odot\)]|. \end{docCommand} \begin{dispExample*}{sidebyside} \Magsolar @@ -4739,7 +4652,7 @@ Symbol for solar absolute magnitude as a unit. Really just an alias for |\Magsta Symbol for stellar apparent magnitude. \end{docCommand} \begin{dispExample*}{sidebyside} -\magstar \magstar[Sirius] +\magstar or \magstar[Sirius] \end{dispExample*} %\iffalse %</example> @@ -4749,7 +4662,8 @@ Symbol for stellar apparent magnitude. %<*example> %\fi \begin{docCommand}{magsolar}{} -Symbol for solar apparent magnitude as a unit. Really just an alias for |\magstar[\(\odot\)]|. +Symbol for solar apparent magnitude as a unit. Really just an alias for +|\magstar[\(\odot\)]|. \end{docCommand} \begin{dispExample*}{sidebyside} \magsolar @@ -4765,7 +4679,7 @@ Symbol for solar apparent magnitude as a unit. Really just an alias for |\magsta Symbol for stellar distance. \end{docCommand} \begin{dispExample*}{sidebyside} -\Dstar \Dstar[Sirius] +\Dstar or \Dstar[Sirius] \end{dispExample*} %\iffalse %</example> @@ -4804,6 +4718,60 @@ Alias for \cs{Dsolar} that uses a lower case d. %</example> %\fi % +%\newpage +%\changes{v2.4.0}{2014/12/16}{Added table of all predefined constants with their +% symbols and units.} +%\newgeometry{textwidth=8.5in} +%\begin{center} +% Here are all the predefined constants and their units. +%\end{center} +% +%\chkconstant{oofpez} +%\chkconstant{oofpezcs} +%\chkconstant{vacuumpermittivity} +%\chkconstant{mzofp} +%\chkconstant{vacuumpermeability} +%\chkconstant{boltzmann} +%\chkconstant{boltzmannineV} +%\chkconstant{stefanboltzmann} +%\chkconstant{planck} +%\chkconstant{planckineV} +%\chkconstant{planckbar} +%\chkconstant{planckbarineV} +%\chkconstant{planckc} +%\chkconstant{planckcineV} +%\chkconstant{rydberg} +%\chkconstant{bohrradius} +%\chkconstant{finestructure} +%\chkconstant{avogadro} +%\chkconstant{universalgrav} +%\chkconstant{surfacegravfield} +%\chkconstant{clight} +%\chkconstant{clightinfeet} +%\chkconstant{Ratom} +%\chkconstant{Mproton} +%\chkconstant{Mneutron} +%\chkconstant{Mhydrogen} +%\chkconstant{Melectron} +%\chkconstant{echarge} +%\chkconstant{Qelectron} +%\chkconstant{qelectron} +%\chkconstant{Qproton} +%\chkconstant{qproton} +%\chkconstant{MEarth} +%\chkconstant{MMoon} +%\chkconstant{MSun} +%\chkconstant{REarth} +%\chkconstant{RMoon} +%\chkconstant{RSun} +%\chkconstant{ESdist} +%\chkconstant{EMdist} +%\chkconstant{LSun} +%\chkconstant{TSun} +%\chkconstant{MagSun} +%\chkconstant{magSun} +%\restoregeometry +% % \subsection{Frequently Used Fractions} % %\iffalse @@ -4863,6 +4831,19 @@ Small fractions with numerator 4 and denominators up to 10. %\iffalse %<*example> %\fi +\begin{docCommand}{sumoverall}{\marg{variable}} +Properly typesets summation over all of some user specified entities. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\( \sumoverall{particles} \) +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{dx}{\marg{variable}} Properly typesets variables of integration (the d should not be in italics and should be properly spaced relative to the integrand). @@ -4905,10 +4886,11 @@ Properly typesets quantities evaluated at a particular point or value. %<*example> %\fi \begin{docCommand}{evaluatedat}{\marg{evaluationpoint}} -Properly indicates evaluation at a particular point or value without specifying the quantity. +Properly indicates evaluation at a particular point or value without specifying the +quantity. \end{docCommand} \begin{dispExample*}{sidebyside} -\( \mbox{LMST}\evaluatedat{\longitude{0}} \) +\( \text{LMST}\evaluatedat{\longitude{0}} \) \end{dispExample*} %\iffalse %</example> @@ -4931,51 +4913,11 @@ Typesets indefinite and definite integrals. %\iffalse %<*example> %\fi -\begin{docCommand}{Integral}{\oarg{lower}\oarg{upper}\marg{integrand}\marg{var}} -Typesets indefinite and definite integrals. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\[ \Integral{y^2}{y} \] -\[ \Integral[0][3]{y^2}{y} \] -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{opensurfintegral}{\marg{surfacename}\marg{vectorname}} +\begin{docCommand}{opensurfaceintegral}{\marg{surfacename}\marg{vectorname}} Integral over an open surface of the normal component of a vector field. \end{docCommand} \begin{dispExample*}{sidebyside} -\[ \opensurfintegral{S}{E} \] -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{opensurfIntegral}{\marg{surfacename}\marg{vectorname}} -Integral over an open surface of the normal component of a vector field. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\[ \opensurfIntegral{S}{E} \] -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{closedsurfintegral}{\marg{surfacename}\marg{vectorname}} -Integral over a closed surface of the normal component of a vector field. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\[ \closedsurfintegral{S}{E} \] +\[ \opensurfaceintegral{S}{\vect{E}} \] \end{dispExample*} %\iffalse %</example> @@ -4984,11 +4926,11 @@ Integral over a closed surface of the normal component of a vector field. %\iffalse %<*example> %\fi -\begin{docCommand}{closedsurfIntegral}{\marg{surfacename}\marg{vectorname}} +\begin{docCommand}{closedsurfaceintegral}{\marg{surfacename}\marg{vectorname}} Integral over a closed surface of the normal component of a vector field. \end{docCommand} \begin{dispExample*}{sidebyside} -\[ \closedsurfIntegral{S}{E} \] +\[ \closedsurfaceintegral{S}{\vect{E}} \] \end{dispExample*} %\iffalse %</example> @@ -5001,20 +4943,7 @@ Integral over a closed surface of the normal component of a vector field. Integral over an open path of the tangential component of a vector field. \end{docCommand} \begin{dispExample*}{sidebyside} -\[ \openlineintegral{C}{E} \] -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi -\begin{docCommand}{openlineIntegral}{\marg{pathname}\marg{vectorname}} -Integral over an open path of the tangential component of a vector field. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\[ \openlineIntegral{C}{E} \] +\[ \openlineintegral{C}{\vect{E}} \] \end{dispExample*} %\iffalse %</example> @@ -5027,31 +4956,31 @@ Integral over an open path of the tangential component of a vector field. Integral over a closed path of the tangential component of a vector field. \end{docCommand} \begin{dispExample*}{sidebyside} -\[ \closedlineintegral{C}{E} \] +\[ \closedlineintegral{C}{\vect{E}} \] \end{dispExample*} %\iffalse %</example> %\fi % +% For line integrals, I have not employed the common \dx{\vect{\ell}} symbol. +% Instead, I use \(\hat{t}\dx{\ell}\) for two main reason. The first is that +% line integrals require the component of a vector that is tangent to a curve, +% and I use \(\hat{t}\) to denote a unit tangent. The second is that the new +% notation looks more like that for surface integrals. +% %\iffalse %<*example> %\fi -\begin{docCommand}{closedlineIntegral}{\marg{pathname}\marg{vectorname}} -Integral over a closed path of the tangential component of a vector field. +\begin{docCommand}{volumeintegral}{\marg{volumename}\marg{integrand}} +Integral over a volume. \end{docCommand} \begin{dispExample*}{sidebyside} -\[ \closedlineIntegral{C}{E} \] +\[ \volumeintegral{V}{\rho} \] \end{dispExample*} %\iffalse %</example> %\fi % -% For line integrals, I have not employed the common \dx{\vect{\ell}} symbol. -% Instead, I use \(\hat{t}\dx{\ell}\) for two main reason. The first is that -% line integrals require the component of a vector that is tangent to a curve, -% and I use \(\hat{t}\) to denote a unit tangent. The second is that the new -% notation looks more like that for surface integrals. -% %\iffalse %<*example> %\fi @@ -5238,7 +5167,7 @@ Series expansion of \(f(x)\) around \(x=a\). %<*example> %\fi \begin{docCommand}{seriesexpx}{} -Series expansion of \msup{e}{x}. +Series expansion of \(e^x\). \end{docCommand} \begin{dispExample*}{sidebyside} \seriesexpx @@ -5290,7 +5219,7 @@ Series expansion of \(\tan x\). %<*example> %\fi \begin{docCommand}{seriesatox}{} -Series expansion of \msup{a}{x}. +Series expansion of \(a^x\). \end{docCommand} \begin{dispExample*}{sidebyside} \seriesatox @@ -5303,7 +5232,7 @@ Series expansion of \msup{a}{x}. %<*example> %\fi \begin{docCommand}{serieslnoneplusx}{} -Series expansion of \(\ln\quant{1+x}\). +Series expansion of \(\ln(1+x)\). \end{docCommand} \begin{dispExample*}{sidebyside} \serieslnoneplusx @@ -5316,7 +5245,7 @@ Series expansion of \(\ln\quant{1+x}\). %<*example> %\fi \begin{docCommand}{binomialseries}{} -Series expansion of \msup{\quant{1+x}}{n}. +Series expansion of \((1+x)^n\). \end{docCommand} \begin{dispExample*}{sidebyside} \binomialseries @@ -5338,6 +5267,19 @@ Dirac delta function. %</example> %\fi % +%\iffalse +%<*example> +%\fi +\begin{docCommand}{orderof}{\marg{arg}} +Order of indicator. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\orderof{x^2} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% % \subsection{Other Useful Commands} % %\iffalse @@ -5347,7 +5289,7 @@ Dirac delta function. Symbol for inverse sine and other inverse circular trig functions. \end{docCommand} \begin{dispExample*}{sidebyside} -\( \asin \acos \atan \asec \acsc \acot \) +\( \asin, \acos, \atan, \asec, \acsc, \acot \) \end{dispExample*} %\iffalse %</example> @@ -5360,7 +5302,7 @@ Symbol for inverse sine and other inverse circular trig functions. Hyperbolic and inverse hyperbolic functions not defined in \LaTeX. \end{docCommand} \begin{dispExample*}{sidebyside} -\( \sech \csch \asinh \acosh \atanh \asech \acsch \acoth \) +\( \sech, \csch, \asinh, \acosh, \atanh, \asech, \acsch, \acoth \) \end{dispExample*} %\iffalse %</example> @@ -5399,7 +5341,7 @@ Decimal exponentiation function (used in astrophysics). Logarithm to an arbitrary base. \end{docCommand} \begin{dispExample*}{sidebyside} -\logb 8 \logb[2] 8 +\logb 8, \logb[2] 8 \end{dispExample*} %\iffalse %</example> @@ -5412,7 +5354,7 @@ Logarithm to an arbitrary base. Alternate symbol for magnetic field inspired by Tom Moore. \end{docCommand} \begin{dispExample*}{sidebyside} -\cB \vect{\cB} +\cB, \vect{\cB} \end{dispExample*} %\iffalse %</example> @@ -5451,7 +5393,7 @@ Command to get fonts in Griffith's electrodynamics textbook. Symbol for flux of a vector field. \end{docCommand} \begin{dispExample*}{sidebyside} -\flux \flux[E] +\flux, \flux[E] \end{dispExample*} %\iffalse %</example> @@ -5474,8 +5416,8 @@ Absolute value function. %<*example> %\fi \begin{docCommand}{magof}{\marg{arg}} -Magnitude of a quantity (lets you selectively use double bars without setting the -\opt{doubleabsbars} option). +Magnitude of a quantity (lets you selectively use double bars even when the +\opt{singleabsbars} option is use when loading the package). \end{docCommand} \begin{dispExample*}{sidebyside} \magof{\vect{E}} @@ -5501,8 +5443,9 @@ Notation for showing the dimensions of a quantity. %<*example> %\fi \begin{docCommand}{unitsof}{\marg{arg}} -Notation for showing the units of a quantity. I propose this notation and hope to propagate -it because I could not find any standard notation for this same idea in other sources. +Notation for showing the units of a quantity. I propose this notation and hope +to propagate it because I could not find any standard notation for this same +idea in other sources. \end{docCommand} \begin{dispExample*}{sidebyside} \unitsof{\vect{v}} = \velocityonlytradunit @@ -5514,11 +5457,11 @@ it because I could not find any standard notation for this same idea in other so %\iffalse %<*example> %\fi -\begin{docCommand}{quant}{\marg{arg}} -Surrounds the argument with variable sized parentheses. Use \cs{bquant} to get square brackets. +\begin{docCommand}{Changein}{\marg{arg}} +Notation for \textit{the change in a quantity}. \end{docCommand} \begin{dispExample*}{sidebyside} -\quant{\oofpez} +\Changein{\vect{E}} \end{dispExample*} %\iffalse %</example> @@ -5527,11 +5470,12 @@ Surrounds the argument with variable sized parentheses. Use \cs{bquant} to get s %\iffalse %<*example> %\fi -\begin{docCommand}{Changein}{\marg{arg}} -Nnotation for \textit{the change in a quantity}. +\begin{docCommand}{scin}{\oarg{mantissa}\marg{exponent}\oarg{unit}} +Command for scientific notation with an optional unit. Deprecated. Use \cs{timestento} +or \cs{xtento} instead. \end{docCommand} \begin{dispExample*}{sidebyside} -\Changein{\vect{E}} +2.99\timestento{8}[\velocityonlytradunit] \end{dispExample*} %\iffalse %</example> @@ -5540,11 +5484,11 @@ Nnotation for \textit{the change in a quantity}. %\iffalse %<*example> %\fi -\begin{docCommand}{scin}{\oarg{mantissa}\marg{exponent}\oarg{unit}} -Command for scientific notation with an optional unit. +\begin{docCommand}{xtento}{\marg{exponent}\oarg{unit}} +Command for scientific notation with an optional unit. Alias for \cs{timestento}. \end{docCommand} \begin{dispExample*}{sidebyside} -\scin[2.99]{8}[\velocityonlytradunit] +2.99\xtento{8}[\velocityonlytradunit] \end{dispExample*} %\iffalse %</example> @@ -5567,8 +5511,8 @@ Command for scientific notation for computer code. Use \cs{EE} for |EE|. %<*example> %\fi \begin{docCommand}{dms}{\marg{deg}\marg{min}\marg{sec}} -Command for formatting angles and time. Use \cs{hms} for time. Note that other packages -may do this better. +Command for formatting angles and time. Use \cs{hms} for time. Note that other +packages may do this better. \end{docCommand} \begin{dispExample*}{sidebyside} \dms{23}{34}{10.27} \\ @@ -5583,7 +5527,8 @@ may do this better. %\fi \begin{docCommand}{clockreading}{\marg{hrs}\marg{min}\marg{sec}} Command for formatting a clock reading. Really an alias for \cs{hms}, but conceptually -a very different idea that introductory textbooks don't do a good enough job at articulating. +a very different idea that introductory textbooks don't do a good enough job at +articulating. \end{docCommand} \begin{dispExample*}{sidebyside} \clockreading{23}{34}{10.27} @@ -5596,11 +5541,11 @@ a very different idea that introductory textbooks don't do a good enough job at %<*example> %\fi \begin{docCommand}{latitude}{\marg{arg}} -Command for formatting latitude, useful in astronomy. Use \cs{latitudeN} or \cs{latitudeS} -to include a letter. +Command for formatting latitude, useful in astronomy. Use \cs{latitudeN} or +\cs{latitudeS} to include a letter. \end{docCommand} \begin{dispExample*}{sidebyside} -\latitude{+35} \latitudeN{35} \latitudeS{35} +\latitude{+35}, \latitudeN{35}, \latitudeS{35} \end{dispExample*} %\iffalse %</example> @@ -5614,7 +5559,7 @@ Command for formatting longitude, useful in astronomy. Use \cs{longitudeE} or \cs{longitudeW} to include a letter. \end{docCommand} \begin{dispExample*}{sidebyside} -\longitude{-81} \longitudeE{81} \longitudeW{81} +\longitude{-81}, \longitudeE{81}, \longitudeW{81} \end{dispExample*} %\iffalse %</example> @@ -5662,19 +5607,6 @@ Command for typesetting text superscripts and subscripts. %\iffalse %<*example> %\fi -\begin{docCommand}{msup}{\marg{kernel}\marg{sup}} -Command for typesetting mathematical superscripts. -\end{docCommand} -\begin{dispExample*}{sidebyside} -\msup{R}{\gamma} -\end{dispExample*} -%\iffalse -%</example> -%\fi -% -%\iffalse -%<*example> -%\fi \begin{docCommand}{msub}{\marg{kernel}\marg{sub}} Command for typesetting mathematical subscripts. \end{docCommand} @@ -5731,7 +5663,7 @@ Command for Kronecker delta symbol. Command for coordinate axes. \end{docCommand} \begin{dispExample*}{sidebyside} - \xaxis \yaxis \zaxis + \xaxis, \yaxis, \zaxis \end{dispExample*} %\iffalse %</example> @@ -5753,11 +5685,25 @@ Command for custom naming a coordinate axis. %\iffalse %<*example> %\fi +\begin{docCommand}{axis}{} +Suffix command for custom naming a coordinate axis. You are responsible for +using math mode if necessary for the thing to which you apply the suffix. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\(t\axis\) +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{xyplane}{} Commands for naming coordinate planes. All combinations are defined. \end{docCommand} \begin{dispExample} -\xyplane \yzplane \zxplane \yxplane \zyplane \xzplane +\xyplane, \yzplane, \zxplane, \yxplane, \zyplane, \xzplane \end{dispExample} %\iffalse %</example> @@ -5766,6 +5712,20 @@ Commands for naming coordinate planes. All combinations are defined. %\iffalse %<*example> %\fi +\begin{docCommand}{plane}{} +Suffix command for custom naming a coordinate plane. You are responsible for +using math mode if necessary for the thing to which you apply the suffix. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\(xt\)\plane +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{fsqrt}{\marg{arg}} Command for square root as a fractional exponent. \end{docCommand} @@ -5783,7 +5743,7 @@ Command for square root as a fractional exponent. Command for cube root of an argument. Use \cs{fcuberoot} to get fractional exponent. \end{docCommand} \begin{dispExample*}{sidebyside} -\cuberoot{x} \fcuberoot{x} +\cuberoot{x}, \fcuberoot{x} \end{dispExample*} %\iffalse %</example> @@ -5796,7 +5756,7 @@ Command for cube root of an argument. Use \cs{fcuberoot} to get fractional expon Command for fourth root of an argument. Use \cs{ffourthroot} to get fractional exponent. \end{docCommand} \begin{dispExample*}{sidebyside} -\fourthroot{x} \ffourthroot{x} +\fourthroot{x}, \ffourthroot{x} \end{dispExample*} %\iffalse %</example> @@ -5809,7 +5769,7 @@ Command for fourth root of an argument. Use \cs{ffourthroot} to get fractional e Command for fifth root of an argument. Use \cs{ffifthroot} to get fractional exponent. \end{docCommand} \begin{dispExample*}{sidebyside} -\fifthroot{x} \ffifthroot{x} +\fifthroot{x}, \ffifthroot{x} \end{dispExample*} %\iffalse %</example> @@ -5841,9 +5801,9 @@ Commands for expressions convenient in numerically evaluating Lorentz factors. S expression out loud and you'll see where the command names come from. \end{docCommand} \begin{dispExample*}{sidebyside} -\oosqrtomxs{0.22} -\oosqrtomx{0.22} -\ooomx{0.22} +\oosqrtomxs{0.22}, +\oosqrtomx{0.22}, +\ooomx{0.22}, \ooopx{0.11} \end{dispExample*} %\iffalse @@ -5851,7 +5811,7 @@ expression out loud and you'll see where the command names come from. %\fi % % \subsection{Custom Operators} -% The \(=\) operator is frequently misused, and we need other operators for other situations. +% The \(=\) operator is frequently misused. We need other operators for other cases. %\iffalse %<*example> %\fi @@ -5884,8 +5844,8 @@ symbols. Use \cs{pwordoperator} to get parentheses around the operator. %<*example> %\fi \begin{docCommand}{definedas}{} -Commands for frequently used word operators. Prepend |p| to each to get parentheses around -the operator. +Commands for frequently used word operators. Prepend |p| to each to get parentheses +around the operator. \end{docCommand} \begin{dispExample*}{sidebyside} \definedas and \associated and \adjustedby \\ @@ -5914,8 +5874,9 @@ Command for \textit{defines} or \textit{defined by} operator. %<*example> %\fi \begin{docCommand}{inframe}{\oarg{frame}} -Command for operator indicating the coordinate representation of a vector in a particular -reference frame denoted by a capital letter.\ntodo[Suggestion]{Make the arrow's length fixed.} +Command for operator indicating the coordinate representation of a vector in a +particular reference frame denoted by a capital letter. +\ntodo[Suggestion]{Make the arrow's length fixed.} \end{docCommand} \begin{dispExample*}{sidebyside} \vect{p} \inframe[S] \momentum{\mivector{1,2,3}} \\ @@ -6010,9 +5971,23 @@ hand side and \cs{RHS} to get just the right hand side. %\iffalse %<*example> %\fi +\begin{docCommand}{momentumprinciplediff}{} +Expression for the momentum principle in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\momentumprinciplediff +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{energyprinciple}{} Expression for the energy principle. Prepend \cs{LHS} to get just the left -hand side and \cs{RHS} to get just the right hand side. +hand side and \cs{RHS} to get just the right hand side. Processes other than work +and thermal energy transfer (e.g.\ radiation) are neglected. \end{docCommand} \begin{dispExample*}{sidebyside} \energyprinciple @@ -6024,6 +5999,19 @@ hand side and \cs{RHS} to get just the right hand side. %\iffalse %<*example> %\fi +\begin{docCommand}{energyprinciplediff}{} +Expression for the energy principle in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\energyprinciplediff +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{angularmomentumprinciple}{} Expression for the angular momentum principle. Prepend \cs{LHS} to get just the left hand side and \cs{RHS} to get just the right hand side. @@ -6038,6 +6026,19 @@ the left hand side and \cs{RHS} to get just the right hand side. %\iffalse %<*example> %\fi +\begin{docCommand}{angularmomentumprinciplediff}{} +Expression for the angular momentum principle in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\angularmomentumprinciplediff +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{gravitationalinteraction}{} Expression for gravitational interaction. \end{docCommand} @@ -6064,6 +6065,19 @@ Expression for electric interaction. %\iffalse %<*example> %\fi +\begin{docCommand}{springinteraction}{} +Expression for spring interaction. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\springinteraction +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{Efieldofparticle}{} Expression for a particle's electric field. \end{docCommand} @@ -6087,14 +6101,17 @@ Expression for a particle's magnetic field. %</example> %\fi % +% In the commands that take an optional label, note how to specify initial and final +% values of quantities. +% %\iffalse %<*example> %\fi -\begin{docCommand}{Esys}{} +\begin{docCommand}{Esys}{\oarg{label}} Symbol for system energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Esys +\Esys, \Esys[final], \Esys[initial] \end{dispExample*} %\iffalse %</example> @@ -6103,11 +6120,11 @@ Symbol for system energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Us}{} +\begin{docCommand}{Us}{\oarg{label}} Symbol for spring potential energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Us +\Us, \Us[final], \Us[initial] \end{dispExample*} %\iffalse %</example> @@ -6116,11 +6133,11 @@ Symbol for spring potential energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Ug}{} +\begin{docCommand}{Ug}{\oarg{label}} Symbol for gravitational potential energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Ug +\Ug, \Ug[final], \Ug[initial] \end{dispExample*} %\iffalse %</example> @@ -6129,11 +6146,11 @@ Symbol for gravitational potential energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Ue}{} +\begin{docCommand}{Ue}{\oarg{label}} Symbol for electric potential energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Ue +\Ue, \Ue[final], \Ue[initial] \end{dispExample*} %\iffalse %</example> @@ -6142,11 +6159,11 @@ Symbol for electric potential energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Ktrans}{} +\begin{docCommand}{Ktrans}{\oarg{label}} Symbol for translational kinetic energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Ktrans +\Ktrans, \Ktrans[final], \Ktrans[initial] \end{dispExample*} %\iffalse %</example> @@ -6155,11 +6172,24 @@ Symbol for translational kinetic energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Krot}{} +\begin{docCommand}{Krot}{\oarg{label}} Symbol for rotational kinetic energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Krot +\Krot, \Krot[final], \Krot[initial] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{Kvib}{\oarg{label}} +Symbol for vibrational kinetic energy. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\Kvib, \Evib[final], \Evib[initial] \end{dispExample*} %\iffalse %</example> @@ -6168,11 +6198,11 @@ Symbol for rotational kinetic energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Eparticle}{} +\begin{docCommand}{Eparticle}{\oarg{label}} Symbol for particle energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Eparticle +\Eparticle, \Eparticle[final], \Eparticle[initial] \end{dispExample*} %\iffalse %</example> @@ -6181,11 +6211,11 @@ Symbol for particle energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Einternal}{} +\begin{docCommand}{Einternal}{\oarg{label}} Symbol for internal energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Einternal +\Einternal, \Einternal[final], \Einternal[initial] \end{dispExample*} %\iffalse %</example> @@ -6194,11 +6224,11 @@ Symbol for internal energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Erest}{} +\begin{docCommand}{Erest}{\oarg{label}} Symbol for rest energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Erest +\Erest, \Erest[final], \Erest[initial] \end{dispExample*} %\iffalse %</example> @@ -6207,11 +6237,11 @@ Symbol for rest energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Echem}{} +\begin{docCommand}{Echem}{\oarg{label}} Symbol for chemical energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Echem +\Echem, \Echem[final], \Echem[initial] \end{dispExample*} %\iffalse %</example> @@ -6220,11 +6250,11 @@ Symbol for chemical energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Etherm}{} +\begin{docCommand}{Etherm}{\oarg{label}} Symbol for thermal energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Etherm +\Etherm, \Etherm[final], \Etherm[initial] \end{dispExample*} %\iffalse %</example> @@ -6233,11 +6263,11 @@ Symbol for thermal energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Evib}{} +\begin{docCommand}{Evib}{\oarg{label}} Symbol for vibrational energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Evib +\Evib, \Evib[final], \Evib[initial] \end{dispExample*} %\iffalse %</example> @@ -6246,11 +6276,24 @@ Symbol for vibrational energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Ephoton}{} +\begin{docCommand}{Ephoton}{\oarg{label}} Symbol for photon energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Ephoton +\Ephoton, \Ephoton[final], \Ephoton[initial] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{DEsys}{} +Symbol for change in system energy. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\DEsys \end{dispExample*} %\iffalse %</example> @@ -6324,6 +6367,19 @@ Symbol for change in rotational kinetic energy. %\iffalse %<*example> %\fi +\begin{docCommand}{DKvib}{} +Symbol for change in vibrational kinetic energy. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\DKvib +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi \begin{docCommand}{DEparticle}{} Symbol for change in particle energy. \end{docCommand} @@ -6415,11 +6471,24 @@ Symbol for change in photon energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Usfinal}{} +\begin{docCommand}{springpotentialenergy}{} +Expression for spring potential energy. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\springpotentialenergy +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{finalspringpotentnialenergy}{} Expression for final spring potential energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Usfinal +\finalspringpotentialenergy \end{dispExample*} %\iffalse %</example> @@ -6428,11 +6497,11 @@ Expression for final spring potential energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Usinitial}{} +\begin{docCommand}{initialspringpotentialenergy}{} Expression for initial spring potential energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Usinitial +\initialspringpotentialenergy \end{dispExample*} %\iffalse %</example> @@ -6441,11 +6510,24 @@ Expression for initial spring potential energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Uefinal}{} +\begin{docCommand}{electricpotentialenergy}{} +Expression for electric potential energy. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\electricpotentialenergy +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{finalelectricpotentialenergy}{} Expression for final electric potential energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Uefinal +\finalelectricpotentialenergy \end{dispExample*} %\iffalse %</example> @@ -6454,11 +6536,24 @@ Expression for final electric potential energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Ueinitial}{} +\begin{docCommand}{initialelectricpotentialenergy}{} Expression for initial electric potential energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Ueinitial +\initialelectricpotentialenergy +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{gravitationalpotentialenergy}{} +Expression for gravitational potential energy. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\gravitationalpotentialenergy \end{dispExample*} %\iffalse %</example> @@ -6467,11 +6562,11 @@ Expression for initial electric potential energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Ugfinal}{} +\begin{docCommand}{finalgravitationalpotentialenergy}{} Expression for final gravitational potential energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Ugfinal +\finalgravitationalpotentialenergy \end{dispExample*} %\iffalse %</example> @@ -6480,11 +6575,11 @@ Expression for final gravitational potential energy. %\iffalse %<*example> %\fi -\begin{docCommand}{Uginitial}{} +\begin{docCommand}{initialgravitationalpotentialenergy}{} Expression for initial gravitational potential energy. \end{docCommand} \begin{dispExample*}{sidebyside} -\Uginitial +\initialgravitationalpotentialenergy \end{dispExample*} %\iffalse %</example> @@ -6510,7 +6605,7 @@ Symbol for spring stiffness. Various symbols for net force. \end{docCommand} \begin{dispExample*}{sidebyside} -\Fnet \Fnetext \Fnetsys \Fsub{ball,bat} +\Fnet, \Fnetext, \Fnetsys, \Fsub{ball,bat} \end{dispExample*} %\iffalse %</example> @@ -6523,7 +6618,39 @@ Various symbols for net force. Various symbols for net torque. \end{docCommand} \begin{dispExample*}{sidebyside} -\Tnet \Tnetext \Tnetsys \Tsub{ball,bat} +\Tnet, \Tnetext, \Tnetsys, \Tsub{ball} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{Ltotal}{} +Various symbols for total angular momentum. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\Ltotal, \Lsys, \Lsub{ball} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\changes{v2.4.0}{2014/12/16}{Added Maxwell's equations in both integral and +% differential forms, both with and without magnetic monopoles.} +%\iffalse +%<*example> +%\fi +\begin{docCommand}{LHSmaxwelliint}{\oarg{surfacename}} +Left hand side of Maxwell's first equation in integral form. Note the default +value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\LHSmaxwelliint \\ + &\LHSmaxwelliint[S] +\end{align*} \end{dispExample*} %\iffalse %</example> @@ -6532,6 +6659,856 @@ Various symbols for net torque. %\iffalse %<*example> %\fi +\begin{docCommand}{RHSmaxwelliint}{} +Right hand side of Maxwell's first equation in integral form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliint \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliinta}{\oarg{volumename}} +Alternate form of right hand side of Maxwell's first equation in integral form. +Note the default value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\RHSmaxwelliinta \\ + &\RHSmaxwelliinta[\upsilon] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliintfree}{} +Right hand side of Maxwell's first equation in integral form in free space. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliintfree \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliint}{\oarg{surfacename}} +Maxwell's first equation in integral form. Note the default value of the optional +argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliint \\ + &\maxwelliint[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliinta}{\oarg{surfacename}\oarg{volumename}} +Alternate form of Maxwell's first equation in integral form. Note the default values +of the optional arguments. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliinta \\ + &\maxwelliinta[S][\upsilon] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliintfree}{\oarg{surfacename}} +Maxwell's first equation in integral form in free space. Note the default value +of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliintfree \\ + &\maxwelliintfree[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{LHSmaxwelliiint}{\oarg{surfacename}} +Left hand side of Maxwell's second equation in integral form. Note the default +value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\LHSmaxwelliiint \\ + &\LHSmaxwelliiint[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiint}{} +Right hand side of Maxwell's second equation in integral form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliiint \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiintm}{} +Right hand side of Maxwell's second equation in integral form with magnetic monopoles. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliiintm \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiintma}{\oarg{volumename}} +Alternate form of right hand side of Maxwell's second equation in integral form with +magnetic monopoles. Note the default value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\RHSmaxwelliiintma \\ + &\RHSmaxwelliiintma[\upsilon] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiintfree}{} +Right hand side of Maxwell's second equation in integral form in free space. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliiintfree \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiint}{\oarg{surfacename}} +Maxwell's second equation in integral form. Note the default value of the optional +argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliiint \\ + &\maxwelliiint[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiintm}{\oarg{surfacename}} +Maxwell's second equation in integral form with magnetic monopoles. Note the default +value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliiintm \\ + &\maxwelliiintm[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiintma}{\oarg{surfacename}\oarg{volumename}} +Alternate form of Maxwell's second equation in integral form with magnetic monopoles. +Note the default values of the optional arguments. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliiintma \\ + &\maxwelliiintma[S][\upsilon] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiintfree}{\oarg{surfacename}} +Maxwell's second equation in integral form in free space. Note the default value +of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliiintfree \\ + &\maxwelliiintfree[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{LHSmaxwelliiiint}{\oarg{boundaryname}} +Left hand side of Maxwell's third equation in integral form. Note the default value +of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\LHSmaxwelliiiint \\ + &\LHSmaxwelliiiint[C] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiiint}{\oarg{surfacename}} +Right hand side of Maxwell's third equation in integral form. Note the default value +of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\RHSmaxwelliiiint \\ + &\RHSmaxwelliiiint[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiiintm}{\oarg{surfacename}} +Right hand side of Maxwell's third equation in integral form with magnetic monopoles. +Note the default value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\RHSmaxwelliiiintm \\ + &\RHSmaxwelliiiintm[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiiintma}{\oarg{surfacename}} +Alternate form of right hand side of Maxwell's third equation in integral form with +magnetic monopoles. Note the default value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\RHSmaxwelliiiintma \\ + &\RHSmaxwelliiiintma[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiiintfree}{\oarg{surfacename}} +Right hand side of Maxwell's third equation in integral form in free space. +Note the default value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\RHSmaxwelliiiintfree \\ + &\RHSmaxwelliiiintfree[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiiint}{\oarg{boundaryname}\oarg{surfacename}} +Maxwell's third equation in integral form. Note the default values of the optional +arguments. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliiiint \\ + &\maxwelliiiint[C][S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiiintm}{\oarg{boundaryname}\oarg{surfacename}} +Maxwell's third equation in integral form with magnetic monopoles. Note the default +values of the optional arguments. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliiiintm \\ + &\maxwelliiiintm[C][S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiiintma}{\oarg{boundaryname}\oarg{surfacename}} +Alternate form of Maxwell's third equation in integral form with magnetic monopoles. +Note the default values of the optional arguments. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliiiintma \\ + &\maxwelliiiintma[C][S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiiintfree}{\oarg{boundaryname}\oarg{surfacename}} +Maxwell's third equation in integral form in free space. Note the default values +of the optional arguments. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwelliiiintfree \\ + &\maxwelliiiintfree[C][S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{LHSmaxwellivint}{\oarg{boundaryname}} +Left hand side of Maxwell's fourth equation in integral form. Note the default +value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\LHSmaxwellivint \\ + &\LHSmaxwellivint[C] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwellivint}{\oarg{surfacename}} +Right hand side of Maxwell's fourth equation in integral form. Note the default +value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\RHSmaxwellivint \\ + &\RHSmaxwellivint[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwellivinta}{\oarg{surfacename}} +Alternate form of right hand side of Maxwell's fourth equation in integral form. +Note the default value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\RHSmaxwellivinta \\ + &\RHSmaxwellivinta[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwellivintfree}{\oarg{surfacename}} +Right hand side of Maxwell's fourth equation in integral form in free space. +Note the default value of the optional argument. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\RHSmaxwellivintfree \\ + &\RHSmaxwellivintfree[S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwellivint}{\oarg{boundaryname}\oarg{surfacename}} +Maxwell's fourth equation in integral form. Note the default values of the +optional arguments. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwellivint \\ + &\maxwellivint[C][S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwellivinta}{\oarg{boundaryname}\oarg{surfacename}} +Alternate form of Maxwell's fourth equation in integral form. Note the default +values of the optional arguments. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwellivinta \\ + &\maxwellivinta[C][S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwellivintfree}{\oarg{boundaryname}\oarg{surfacename}} +Maxwell's fourth equation in integral form in free space. Note the default values +of the optional arguments. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\begin{align*} + &\maxwellivintfree \\ + &\maxwellivintfree[C][S] +\end{align*} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{LHSmaxwellidif}{} +Left hand side of Maxwell's first equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \LHSmaxwellidif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwellidif}{} +Right hand side of Maxwell's first equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwellidif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwellidiffree}{} +Right hand side of Maxwell's first equation in differential form in free space. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwellidiffree \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwellidif}{} +Maxwell's first equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \maxwellidif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwellidiffree}{} +Maxwell's first equation in differential form in free space. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \maxwellidiffree \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{LHSmaxwelliidif}{} +Left hand side of Maxwell's second equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \LHSmaxwelliidif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliidif}{} +Right hand side of Maxwell's second equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliidif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliidifm}{} +Right hand side of Maxwell's second equation in differential form with magnetic +monopoles. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliidifm \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliidiffree}{} +Right hand side of Maxwell's second equation in differential form in free space. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliidiffree \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliidif}{} +Maxwell's second equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \maxwelliidif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliidifm}{} +Maxwell's second equation in differential form with magnetic monopoles. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \maxwelliidifm \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwellidiiffree}{} +Maxwell's second equation in differential form in free space. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \maxwelliidiffree \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{LHSmaxwelliiidif}{} +Left hand side of Maxwell's third equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \LHSmaxwelliiidif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiidif}{} +Right hand side of Maxwell's third equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliiidif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiidifm}{} +Right hand side of Maxwell's third equation in differential form with magnetic +monopoles. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliiidifm \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwelliiidiffree}{} +Right hand side of Maxwell's third equation in differential form in free space. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwelliiidiffree \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiidif}{} +Maxwell's third equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \maxwelliiidif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiidifm}{} +Maxwell's third equation in differential form with magnetic monopoles. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \maxwelliiidifm \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwelliiidiffree}{} +Maxwell's third equation in differential form in free space. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \maxwelliiidiffree \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{LHSmaxwellivdif}{} +Left hand side of Maxwell's fourth equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \LHSmaxwellivdif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwellivdif}{} +Right hand side of Maxwell's fourth equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwellivdif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSmaxwellivdiffree}{} +Right hand side of Maxwell's fourth equation in differential form in free space. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSmaxwellivdiffree \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwellivdif}{} +Maxwell's fourth equation in differential form. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \maxwellivdif \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{maxwellivdiffree}{} +Maxwell's fourth equation in differential form in free space. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \maxwellivdiffree \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\changes{v2.4.0}{2014/12/16}{Added Lorentz force, with and without magnetic +% monopoles.} +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSlorentzforce}{} +Right hand side of Lorentz force. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSlorentzforce \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\iffalse +%<*example> +%\fi +\begin{docCommand}{RHSlorentzforcem}{} +Right hand side of Lorentz force with magnetic monopoles. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\[ \RHSlorentzforcem \] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\changes{v2.4.0}{2014/12/16}{\pkgname{vpythonline} now uses a uniform style.} +%\iffalse +%<*example> +%\fi \begin{docCommand}{vpythonline}{\marg{vpythoncode}} Command for a single line of VPython code used inline. \end{docCommand} @@ -6542,6 +7519,7 @@ Command for a single line of VPython code used inline. %</example> %\fi % +%\changes{v2.4.0}{2014/12/16}{\pkgname{vpythonblock} now uses a uniform style.} %\iffalse %<*example> %\fi @@ -6550,9 +7528,11 @@ Environment for a block of VPython code. \end{docEnvironment} \begin{dispExample} \begin{vpythonblock} + from __future__ import division,print_function from visual import * - sphere(center=pos(1,2,3),color=color.green) - MyArrow=arrow(pos=earth.pos, axis=fscale*Fnet, color=color.green) + sphere(pos=vector(1,2,3),color=color.green) + # create a named arrow + MyArrow=arrow(pos=earth.pos,axis=fscale*Fnet,color=color.green) print ("arrow.pos = "), arrow.pos \end{vpythonblock} \end{dispExample} @@ -6560,6 +7540,7 @@ Environment for a block of VPython code. %</example> %\fi % +%\changes{v2.4.0}{2014/12/16}{\pkgname{vpythonfile} now uses a uniform style.} %\iffalse %<*example> %\fi @@ -6700,8 +7681,8 @@ neque, id pulvinar odio lorem non turpis. Nullam sit amet enim.] %<*example> %\fi \begin{docCommand}{smallanswerbox}{\oarg{txt}\oarg{bgclr}} -Answer box with height 0.10 that of current \cs{textheight} and width 0.90 that of current -\cs{linewidth}. +Answer box with height 0.10 that of current \cs{textheight} and width 0.90 that of +current \cs{linewidth}. \end{docCommand} \begin{dispExample} \smallanswerbox[][red] @@ -6714,8 +7695,8 @@ Answer box with height 0.10 that of current \cs{textheight} and width 0.90 that %<*example> %\fi \begin{docCommand}{mediumanswerbox}{\oarg{txt}\oarg{bgclr}} -Answer box with height 0.20 that of current \cs{textheight} and width 0.90 that of current -\cs{linewidth}. +Answer box with height 0.20 that of current \cs{textheight} and width 0.90 that of +current \cs{linewidth}. \end{docCommand} \begin{dispExample} \mediumanswerbox[][lightgray] @@ -6728,8 +7709,8 @@ Answer box with height 0.20 that of current \cs{textheight} and width 0.90 that %<*example> %\fi \begin{docCommand}{largeanswerbox}{\oarg{txt}\oarg{bgclr}} -Answer box with height 0.25 that of current \cs{textheight} and width 0.90 that of current -\cs{linewidth} (too large to show here). +Answer box with height 0.25 that of current \cs{textheight} and width 0.90 that of +current \cs{linewidth} (too large to show here). \end{docCommand} \begin{dispListing} \largeanswerbox[][lightgray] @@ -6742,8 +7723,8 @@ Answer box with height 0.25 that of current \cs{textheight} and width 0.90 that %<*example> %\fi \begin{docCommand}{largeranswerbox}{\oarg{txt}\oarg{bgclr}} -Answer box with height 0.33 that of current \cs{textheight} and width 0.90 that of current -\cs{linewidth} (too large to show here). +Answer box with height 0.33 that of current \cs{textheight} and width 0.90 that of +current \cs{linewidth} (too large to show here). \end{docCommand} \begin{dispListing} \largeranswerbox[][lightgray] @@ -6756,8 +7737,8 @@ Answer box with height 0.33 that of current \cs{textheight} and width 0.90 that %<*example> %\fi \begin{docCommand}{hugeanswerbox}{\oarg{txt}\oarg{bgclr}} -Answer box with height 0.50 that of current \cs{textheight} and width 0.90 that of current -\cs{linewidth} (too large to show here). +Answer box with height 0.50 that of current \cs{textheight} and width 0.90 that of +current \cs{linewidth} (too large to show here). \end{docCommand} \begin{dispListing} \hugeanswerbox[][lightgray] @@ -6770,8 +7751,8 @@ Answer box with height 0.50 that of current \cs{textheight} and width 0.90 that %<*example> %\fi \begin{docCommand}{hugeranswerbox}{\oarg{txt}\oarg{bgclr}} -Answer box with height 0.75 that of current \cs{textheight} and width 0.90 that of current -\cs{linewidth} (too large to show here). +Answer box with height 0.75 that of current \cs{textheight} and width 0.90 that of +current \cs{linewidth} (too large to show here). \end{docCommand} \begin{dispListing} \hugeranswerbox[][lightgray] @@ -6784,8 +7765,8 @@ Answer box with height 0.75 that of current \cs{textheight} and width 0.90 that %<*example> %\fi \begin{docCommand}{fullpageanswerbox}{\oarg{txt}\oarg{bgclr}} -Answer box with height 1.00 that of current \cs{textheight} and width 0.90 that of current -\cs{linewidth} (too large to show here). +Answer box with height 1.00 that of current \cs{textheight} and width 0.90 that of +current \cs{linewidth} (too large to show here). \end{docCommand} \begin{dispListing} \fullpageanswerbox[][lightgray] @@ -6850,13 +7831,13 @@ Environment for mathematical derivations based on the |align| environment. \begin{miderivation} \gamma &= \relgamma{\magvect{v}} && \text{given} \\ - \msup{\gamma}{2}&= \ooomx{\msup{(\frac{\magvect{v}}{c})}{2}} + \gamma\squared &= \ooomx{(\frac{\magvect{v}}{c})\squared} &&\text{square both sides}\\ - \frac{1}{\msup{\gamma}{2}}&=1-\msup{(\frac{\magvect{v}}{c})}{2} + \frac{1}{\gamma\squared} &= 1-(\frac{\magvect{v}}{c})\squared &&\text{reciprocal of both sides} \\ - \msup{(\frac{\magvect{v}}{c})}{2}&=1-\frac{1}{\msup{\gamma}{2}} + (\frac{\magvect{v}}{c})\squared &= 1-\frac{1}{\gamma\squared} &&\text{rearrange} \\ - \frac{\magvect{v}}{c}&=\sqrt{1-\frac{1}{\msup{\gamma}{2}}} + \frac{\magvect{v}}{c} &= \sqrt{1-\frac{1}{\gamma\squared}} &&\text{square root of both sides} \end{miderivation} \end{dispExample} @@ -6920,13 +7901,13 @@ Environment for mathematical derivations based on the |align| environment. \begin{bwderivation} \gamma &= \relgamma{\magvect{v}} && \text{given} \\ - \msup{\gamma}{2}&= \ooomx{\msup{(\frac{\magvect{v}}{c})}{2}} + \gamma\squared &= \ooomx{(\frac{\magvect{v}}{c})\squared} &&\text{square both sides}\\ - \frac{1}{\msup{\gamma}{2}}&=1-\msup{(\frac{\magvect{v}}{c})}{2} + \frac{1}{\gamma\squared} &= 1-(\frac{\magvect{v}}{c})\squared &&\text{reciprocal of both sides} \\ - \msup{(\frac{\magvect{v}}{c})}{2}&=1-\frac{1}{\msup{\gamma}{2}} + (\frac{\magvect{v}}{c})\squared &= 1-\frac{1}{\gamma\squared} &&\text{rearrange} \\ - \frac{\magvect{v}}{c}&=\sqrt{1-\frac{1}{\msup{\gamma}{2}}} + \frac{\magvect{v}}{c}&=\sqrt{1-\frac{1}{\gamma\squared}} &&\text{square root of both sides} \end{bwderivation} \end{dispExample} @@ -6934,6 +7915,31 @@ Environment for mathematical derivations based on the |align| environment. %</example> %\fi % +%\iffalse +%<*example> +%\fi +\begin{docEnvironment}{mysolution}{} +Alias for simple environment for mathematical derivations based on the |align| +environment. +\end{docEnvironment} +\begin{dispExample} +\begin{mysolution} + \gamma &= \relgamma{\magvect{v}} + && \text{given} \\ + \gamma\squared &= \ooomx{(\frac{\magvect{v}}{c})\squared} + &&\text{square both sides}\\ + \frac{1}{\gamma\squared} &= 1-(\frac{\magvect{v}}{c})\squared + &&\text{reciprocal of both sides} \\ + (\frac{\magvect{v}}{c})\squared &= 1-\frac{1}{\gamma\squared} + &&\text{rearrange} \\ + \frac{\magvect{v}}{c} &= \sqrt{1-\frac{1}{\gamma\squared}} + &&\text{square root of both sides} +\end{mysolution} +\end{dispExample} +%\iffalse +%</example> +%\fi +% % \subsection{Miscellaneous Commands} % %\iffalse @@ -6975,28 +7981,6 @@ Sshows factors dividing to a sneaky one. %</example> %\fi % -% \subsection{Experimental Commands} -% Commands defined in this section are not guaranteed to work consistently and are -% included for experimental uses only. They may or may not exist in future releases. -% Most are an attempt to simplify existing commands for subscripted vectors. -% -%\begin{center} -%\begin{tabular}{lcl} -% \multicolumn{2}{l}{Experimental Syntax} & Existing Syntax \\ -% \hline \\ -% \verb|\vecto{E}| & \vecto{E} & \verb|\vect{E}|\\ -% \verb|\vecto{E}[ball]| & \vecto{E}[ball] & \verb|\vectsub{E}{ball}|\\ -% \verb|\compvecto{E}{y}| & \compvecto{E}{y} & \verb|\compvect{E}{y}|\\ -% \verb|\compvecto{E}{x}[ball]|& \compvecto{E}{x}[ball]& \verb|\compvectsub{E}{x}{ball}|\\ -% \verb|\scompsvecto{E}| & \scompsvecto{E} & \verb|\scompsvect{E}|\\ -% \verb|\scompsvecto{E}[ball]| & \scompsvecto{E}[ball] & \verb|\scompsvectsub{E}{ball}|\\ -% \verb|\compposo{y}| & \compposo{y} & \verb|\comppos{y}|\\ -% \verb|\compposo{y}[ball]| & \compposo{y}[ball] & \verb|\comppossub{y}{ball}|\\ -% \verb|\scompsposo| & \scompsposo & \verb|\scompspos|\\ -% \verb|\scompsposo[ball]| & \scompsposo[ball] & \verb|\scompspossub{ball}| -%\end{tabular} -%\end{center} -% % \StopEventually{} % % \newpage @@ -7010,10 +7994,11 @@ Sshows factors dividing to a sneaky one. \RequirePackage{amsmath} \RequirePackage{amssymb} \RequirePackage{array} -\RequirePackage{bigints} \RequirePackage{cancel} \RequirePackage[dvipsnames]{xcolor} \RequirePackage{environ} +\RequirePackage{esint} +\RequirePackage[g]{esvect} \RequirePackage{etoolbox} \RequirePackage{filehook} \RequirePackage{extarrows} @@ -7030,172 +8015,206 @@ Sshows factors dividing to a sneaky one. \RequirePackage{xspace} \RequirePackage{ifthen} \RequirePackage{calligra} +\RequirePackage{hyperref} \DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n} \DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{} \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `basename #1 .tif`.png} \DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it} \usetikzlibrary{shadows} -\definecolor{vpythoncolor}{rgb}{0.95,0.95,0.95} -\newcommand{\lstvpython}{\lstset{language=Python,numbers=left,numberstyle=\tiny, - backgroundcolor=\color{vpythoncolor},upquote=true,breaklines}} +%\changes{v2.4.0}{2014/12/16}{Introduced a uniform style for VPython code.} +\definecolor{vbgcolor}{rgb}{1,1,1} +\definecolor{vshadowcolor}{rgb}{0.5,0.5,0.5} +\lstdefinestyle{vpython}{% % style for VPython code + language=Python,% % select language + morekeywords={visual,arrow,box,cone,% % VPython specific keywords + convex,curve,cylinder,ellipsoid,extrusion,faces,helix,label,points,pyramid,ring,% + sphere,text,frame,graphs,vector,pos,axis,radius,color,opacity,material,up,% + make_trail,trail_type,trail_object,scene,mag,mag2,norm,dot,cross,proj,comp,% + diff_angle,rotate,astuple,radians,shaftwidth,headwidth,headlength,height,width,% + size,degrees,interval,retain,__future__,division,print_function,rate},% + frame=shadowbox,% % shadowbox around listing + rulesepcolor=\color{vshadowcolor},% % shadow color + basicstyle=\footnotesize,% % basic font for code listings + commentstyle=\bfseries\color{red}, % font for comments + keywordstyle=\bfseries\color{blue},% % font for keywords + showstringspaces=true,% % show spaces in strings + numbers=left,% % where to put line numbers + numberstyle=\tiny,% % set to 'none' for no line numbers + xleftmargin=20pt,% % extra left margin + backgroundcolor=\color{vbgcolor},% % some people find this annoying + upquote=true,% % how to typeset quotes + breaklines=true}% % break long lines \newcolumntype{C}[1]{>{\centering}m{#1}} -\newboolean{@optitalicvectors} -\newboolean{@optdoubleabsbars} +\newboolean{@optromanvectors} +\newboolean{@optboldvectors} +\newboolean{@optsingleabsbars} \newboolean{@optbaseunits} \newboolean{@optdrvdunits} -\setboolean{@optitalicvectors}{false} -\setboolean{@optdoubleabsbars}{false} -\setboolean{@optbaseunits}{false} -\setboolean{@optdrvdunits}{false} -\DeclareOption{italicvectors}{\setboolean{@optitalicvectors}{true}} -\DeclareOption{doubleabsbars}{\setboolean{@optdoubleabsbars}{true}} +\newboolean{@optapproxconsts} +\setboolean{@optromanvectors}{false} % this is where you set the default option +\setboolean{@optboldvectors}{false} % this is where you set the default option +\setboolean{@optsingleabsbars}{false} % this is where you set the default option +\setboolean{@optbaseunits}{false} % this is where you set the default option +\setboolean{@optdrvdunits}{false} % this is where you set the default option +\setboolean{@optapproxconsts}{false} % this is where you set the default option +\DeclareOption{romanvectors}{\setboolean{@optromanvectors}{true}} +\DeclareOption{boldvectors}{\setboolean{@optboldvectors}{true}} +\DeclareOption{singleabsbars}{\setboolean{@optsingleabsbars}{true}} \DeclareOption{baseunits}{\setboolean{@optbaseunits}{true}} \DeclareOption{drvdunits}{\setboolean{@optdrvdunits}{true}} +\DeclareOption{approxconsts}{\setboolean{@optapproxconsts}{true}} \ProcessOptions\relax % \end{macrocode} % -% \newpage % \noindent This block of code fixes a conflict with the amssymb package. % \begin{macrocode} \@ifpackageloaded{amssymb}{% \csundef{square} - \typeout{mandi: Package amssymb detected. Its \protect\square\space has been redefined.} + \typeout{mandi: Package amssymb detected. Its \protect\square\space has been + redefined.} }{% \typeout{mandi: Package amssymb not detected.} }% % \end{macrocode} % +% \begin{macrocode} +\newcommand*{\mandiversion}{2.4.0} +\typeout{mandi: You're using mandi version \mandiversion.} +% \end{macrocode} +% % \noindent This block of code defines unit names and symbols. % \begin{macrocode} -\newcommand{\per}{\ensuremath{/}} -\newcommand{\usk}{\ensuremath{\cdot}} -\newcommand{\unit}[2]{\ensuremath{{#1}\,{#2}}} -\newcommand{\ampere}{\ensuremath{\mathrm{A}}} -\newcommand{\arcminute}{\ensuremath{'}} -\newcommand{\arcsecond}{\ensuremath{''}} -\newcommand{\atomicmassunit}{\ensuremath{\mathrm{u}}} -\newcommand{\candela}{\ensuremath{\mathrm{cd}}} -\newcommand{\coulomb}{\ensuremath{\mathrm{C}}} -\newcommand{\degree}{\ensuremath{^{\circ}}} -\newcommand{\electronvolt}{\ensuremath{\mathrm{eV}}} -\newcommand{\eV}{\electronvolt} -\newcommand{\farad}{\ensuremath{\mathrm{F}}} -\newcommand{\henry}{\ensuremath{\mathrm{H}}} -\newcommand{\hertz}{\ensuremath{\mathrm{Hz}}} -\newcommand{\hour}{\ensuremath{\mathrm{h}}} -\newcommand{\joule}{\ensuremath{\mathrm{J}}} -\newcommand{\kelvin}{\ensuremath{\mathrm{K}}} -\newcommand{\kilogram}{\ensuremath{\mathrm{kg}}} -\newcommand{\metre}{\ensuremath{\mathrm{m}}} -\newcommand{\minute}{\ensuremath{\mathrm{min}}} -\newcommand{\mole}{\ensuremath{\mathrm{mol}}} -\newcommand{\newton}{\ensuremath{\mathrm{N}}} -\newcommand{\ohm}{\ensuremath{\Omega}} -\newcommand{\pascal}{\ensuremath{\mathrm{Pa}}} -\newcommand{\radian}{\ensuremath{\mathrm{rad}}} -\newcommand{\second}{\ensuremath{\mathrm{s}}} -\newcommand{\siemens}{\ensuremath{\mathrm{S}}} -\newcommand{\steradian}{\ensuremath{\mathrm{sr}}} -\newcommand{\tesla}{\ensuremath{\mathrm{T}}} -\newcommand{\volt}{\ensuremath{\mathrm{V}}} -\newcommand{\watt}{\ensuremath{\mathrm{W}}} -\newcommand{\weber}{\ensuremath{\mathrm{Wb}}} -\newcommand{\C}{\coulomb} -\newcommand{\F}{\farad} +\newcommand*{\per}{\ensuremath{/}} +\newcommand*{\usk}{\ensuremath{\cdot}} +\newcommand*{\unit}[2]{\ensuremath{{#1}\,{#2}}} +\newcommand*{\ampere}{\ensuremath{\mathrm{A}}} +\newcommand*{\arcminute}{\ensuremath{'}} +\newcommand*{\arcsecond}{\ensuremath{''}} +\newcommand*{\atomicmassunit}{\ensuremath{\mathrm{u}}} +\newcommand*{\candela}{\ensuremath{\mathrm{cd}}} +\newcommand*{\coulomb}{\ensuremath{\mathrm{C}}} +\newcommand*{\degree}{\ensuremath{^{\circ}}} +\newcommand*{\electronvolt}{\ensuremath{\mathrm{eV}}} +\newcommand*{\eV}{\electronvolt} +\newcommand*{\farad}{\ensuremath{\mathrm{F}}} +\newcommand*{\henry}{\ensuremath{\mathrm{H}}} +\newcommand*{\hertz}{\ensuremath{\mathrm{Hz}}} +\newcommand*{\hour}{\ensuremath{\mathrm{h}}} +\newcommand*{\joule}{\ensuremath{\mathrm{J}}} +\newcommand*{\kelvin}{\ensuremath{\mathrm{K}}} +\newcommand*{\kilogram}{\ensuremath{\mathrm{kg}}} +\newcommand*{\metre}{\ensuremath{\mathrm{m}}} +\newcommand*{\minute}{\ensuremath{\mathrm{min}}} +\newcommand*{\mole}{\ensuremath{\mathrm{mol}}} +\newcommand*{\newton}{\ensuremath{\mathrm{N}}} +\newcommand*{\ohm}{\ensuremath{\Omega}} +\newcommand*{\pascal}{\ensuremath{\mathrm{Pa}}} +\newcommand*{\radian}{\ensuremath{\mathrm{rad}}} +\newcommand*{\second}{\ensuremath{\mathrm{s}}} +\newcommand*{\siemens}{\ensuremath{\mathrm{S}}} +\newcommand*{\steradian}{\ensuremath{\mathrm{sr}}} +\newcommand*{\tesla}{\ensuremath{\mathrm{T}}} +\newcommand*{\volt}{\ensuremath{\mathrm{V}}} +\newcommand*{\watt}{\ensuremath{\mathrm{W}}} +\newcommand*{\weber}{\ensuremath{\mathrm{Wb}}} +\newcommand*{\C}{\coulomb} +\newcommand*{\F}{\farad} %\H is already defined as a LaTeX accent -\newcommand{\J}{\joule} -\newcommand{\N}{\newton} -\newcommand{\Pa}{\pascal} -\newcommand{\rad}{\radian} -\newcommand{\sr}{\steradian} +\newcommand*{\J}{\joule} +\newcommand*{\N}{\newton} +\newcommand*{\Pa}{\pascal} +\newcommand*{\rad}{\radian} +\newcommand*{\sr}{\steradian} %\S is already defined as a LaTeX symbol -\newcommand{\T}{\tesla} -\newcommand{\V}{\volt} -\newcommand{\W}{\watt} -\newcommand{\Wb}{\weber} -\newcommand{\square}[1]{\ensuremath{\mathrm{#1}^{2}}} % prefix 2 -\newcommand*{\cubic}[1]{\ensuremath{\mathrm{#1}^{3}}} % prefix 3 -\newcommand*{\quartic}[1]{\ensuremath{\mathrm{#1}^{4}}} % prefix 4 -\newcommand*{\reciprocal}[1]{\ensuremath{\mathrm{#1}^{-1}}} % prefix -1 -\newcommand*{\reciprocalsquare}[1]{\ensuremath{\mathrm{#1}^{-2}}} % prefix -2 -\newcommand*{\reciprocalcubic}[1]{\ensuremath{\mathrm{#1}^{-3}}} % prefix -3 -\newcommand*{\reciprocalquartic}[1]{\ensuremath{\mathrm{#1}^{-4}}} % prefix -4 -\newcommand*{\squared}{\ensuremath{^{\mathrm{2}}}} % postfix 2 -\newcommand*{\cubed}{\ensuremath{^{\mathrm{3}}}} % postfix 3 -\newcommand*{\quarted}{\ensuremath{^{\mathrm{4}}}} % postfix 4 -\newcommand*{\reciprocaled}{\ensuremath{^{\mathrm{-1}}}} % postfix -1 -\newcommand*{\reciprocalsquared}{\ensuremath{^{\mathrm{-2}}}} % postfix -2 -\newcommand*{\reciprocalcubed}{\ensuremath{^{\mathrm{-3}}}} % postfix -3 -\newcommand*{\reciprocalquarted}{\ensuremath{^{\mathrm{-4}}}} % postfix -4 +\newcommand*{\T}{\tesla} +\newcommand*{\V}{\volt} +\newcommand*{\W}{\watt} +\newcommand*{\Wb}{\weber} +\newcommand*{\square}[1]{\ensuremath{{#1}^2}} % prefix 2 +\newcommand*{\cubic}[1]{\ensuremath{{#1}^3}} % prefix 3 +\newcommand*{\quartic}[1]{\ensuremath{{#1}^4}} % prefix 4 +\newcommand*{\reciprocal}[1]{\ensuremath{{#1}^{-1}}} % prefix -1 +\newcommand*{\reciprocalsquare}[1]{\ensuremath{{#1}^{-2}}} % prefix -2 +\newcommand*{\reciprocalcubic}[1]{\ensuremath{{#1}^{-3}}} % prefix -3 +\newcommand*{\reciprocalquartic}[1]{\ensuremath{{#1}^{-4}}} % prefix -4 +\newcommand*{\squared}{\ensuremath{^2}} % postfix 2 +\newcommand*{\cubed}{\ensuremath{^3}} % postfix 3 +\newcommand*{\quarted}{\ensuremath{^4}} % postfix 4 +\newcommand*{\reciprocaled}{\ensuremath{^{-1}}} % postfix -1 +\newcommand*{\reciprocalsquared}{\ensuremath{^{-2}}} % postfix -2 +\newcommand*{\reciprocalcubed}{\ensuremath{^{-3}}} % postfix -3 +\newcommand*{\reciprocalquarted}{\ensuremath{^{-4}}} % postfix -4 % \end{macrocode} % % \noindent Define a new named physics quantity or physical constant and % commands for selecting units. My thanks to Ulrich Diez for contributing % this code. % \begin{macrocode} -\newcommand\mi@exchangeargs[2]{#2#1}% -\newcommand\mi@name{}% +\newcommand*\mi@exchangeargs[2]{#2#1}% +\newcommand*\mi@name{}% \long\def\mi@name#1#{\romannumeral0\mi@innername{#1}}% -\newcommand\mi@innername[2]{% +\newcommand*\mi@innername[2]{% \expandafter\mi@exchangeargs\expandafter{\csname#2\endcsname}{#1}}% \begingroup \@firstofone{% \endgroup - \newcommand\mi@forkifnull[3]{% - \romannumeral\iffalse{\fi\expandafter\@secondoftwo\expandafter + \newcommand*\mi@forkifnull[3]{% + \romannumeral\iffalse{\fi\expandafter\@secondoftwo\expandafter% {\expandafter{\string#1}\expandafter\@secondoftwo\string}% \expandafter\@firstoftwo\expandafter{\iffalse}\fi0 #3}{0 #2}}}% -\newcommand\selectbaseunit[3]{#1} -\newcommand\selectdrvdunit[3]{#2} -\newcommand\selecttradunit[3]{#3} -\newcommand\selectunit{} -\newcommand\perpusebaseunit{\let\selectunit=\selectbaseunit} -\newcommand\perpusedrvdunit{\let\selectunit=\selectdrvdunit} -\newcommand\perpusetradunit{\let\selectunit=\selecttradunit} -\newcommand\hereusebaseunit[1]{% +\newcommand*\selectbaseunit[3]{#1} +\newcommand*\selectdrvdunit[3]{#2} +\newcommand*\selecttradunit[3]{#3} +\newcommand*\selectunit{} +\newcommand*\perpusebaseunit{\let\selectunit=\selectbaseunit} +\newcommand*\perpusedrvdunit{\let\selectunit=\selectdrvdunit} +\newcommand*\perpusetradunit{\let\selectunit=\selecttradunit} +\newcommand*\hereusebaseunit[1]{% \begingroup\perpusebaseunit#1\endgroup}% -\newcommand\hereusedrvdunit[1]{% +\newcommand*\hereusedrvdunit[1]{% \begingroup\perpusedrvdunit#1\endgroup}% -\newcommand\hereusetradunit[1]{% +\newcommand*\hereusetradunit[1]{% \begingroup\perpusetradunit#1\endgroup}% \newenvironment{usebaseunit}{\perpusebaseunit}{}% \newenvironment{usedrvdunit}{\perpusedrvdunit}{}% \newenvironment{usetradunit}{\perpusetradunit}{}% \newcommand*\newphysicsquantity{\definephysicsquantity{\newcommand}} \newcommand*\redefinephysicsquantity{\definephysicsquantity{\renewcommand}} -\newcommandx\definephysicsquantity[5][4=,5=]{% +\newcommandx*\definephysicsquantity[5][4=,5=]{% \innerdefinewhatsoeverquantityfork{#3}{#4}{#5}{#1}{#2}{}{[1]}{##1}}% \newcommand*\newphysicsconstant{\definephysicsconstant{\newcommand}} \newcommand*\redefinephysicsconstant{\definephysicsconstant{\renewcommand}} -\newcommandx\definephysicsconstant[7][6=,7=]{% +\newcommandx*\definephysicsconstant[7][6=,7=]{% \innerdefinewhatsoeverquantityfork{#5}{#6}{#7}{#1}{#2}{#3}{}{#4}}% -\newcommand\innerdefinewhatsoeverquantityfork[3]{% +\newcommand*\innerdefinewhatsoeverquantityfork[3]{% \expandafter\innerdefinewhatsoeverquantity\romannumeral0% \mi@forkifnull{#3}{\mi@forkifnull{#2}{{#1}}{{#2}}{#1}}% {\mi@forkifnull{#2}{{#1}}{{#2}}{#3}}{#1}}% -\newcommand\innerdefinewhatsoeverquantity[8]{% - \mi@name#4{#5}#7{\ensuremath{\unit{#8}{\selectunit{#3}{#1}{#2}}}}% - \mi@name#4{#5baseunit}#7{\ensuremath{\unit{#8}{#3}}}% - \mi@name#4{#5drvdunit}#7{\ensuremath{\unit{#8}{#1}}}% - \mi@name#4{#5tradunit}#7{\ensuremath{\unit{#8}{#2}}}% - \mi@name#4{#5onlyunit}{\ensuremath{\selectunit{#3}{#1}{#2}}}% +\newcommand*\innerdefinewhatsoeverquantity[8]{% + \mi@name#4{#5}#7{\unit{#8}{\selectunit{#3}{#1}{#2}}}% + \mi@name#4{#5baseunit}#7{\unit{#8}{#3}}% + \mi@name#4{#5drvdunit}#7{\unit{#8}{#1}}% + \mi@name#4{#5tradunit}#7{\unit{#8}{#2}}% + \mi@name#4{#5onlyunit}{\selectunit{#3}{#1}{#2}}% \mi@name#4{#5onlybaseunit}{\ensuremath{#3}}% \mi@name#4{#5onlydrvdunit}{\ensuremath{#1}}% \mi@name#4{#5onlytradunit}{\ensuremath{#2}}% \mi@name#4{#5value}#7{\ensuremath{#8}}% \mi@forkifnull{#7}{% \ifx#4\renewcommand\mi@name\let{#5mathsymbol}=\relax\fi - \mi@name\newcommand{#5mathsymbol}{\ensuremath{#6}}}{}}% + \mi@name\newcommand*{#5mathsymbol}{\ensuremath{#6}}}{}}% % \end{macrocode} % % \noindent This block of code processes the options. % \begin{macrocode} -\ifthenelse{\boolean{@optitalicvectors}} - {\typeout{mandi: You'll get italic vector kernels.}} - {\typeout{mandi: You'll get Roman vector kernels.}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\typeout{mandi: You'll get double absolute value bars.}} +\ifthenelse{\boolean{@optboldvectors}} + {\typeout{mandi: You'll get bold vectors.}} + {\ifthenelse{\boolean{@optromanvectors}} + {\typeout{mandi: You'll get Roman vectors.}} + {\typeout{mandi: You'll get italic vectors.}}} +\ifthenelse{\boolean{@optsingleabsbars}} {\typeout{mandi: You'll get single absolute value bars.}} + {\typeout{mandi: You'll get double absolute value bars.}} \ifthenelse{\boolean{@optbaseunits}} {\perpusebaseunit % \typeout{mandi: You'll get base units.}} @@ -7204,6 +8223,16 @@ Sshows factors dividing to a sneaky one. \typeout{mandi: You'll get derived units.}} {\perpusetradunit % \typeout{mandi: You'll get traditional units.}}} +\ifthenelse{\boolean{@optapproxconsts}} + {\typeout{mandi: You'll get approximate constants.}} + {\typeout{mandi: You'll get precise constants.}} +% \end{macrocode} +% +% \noindent This is a utility command for picking constants. +% \begin{macrocode} +\ifthenelse{\boolean{@optapproxconsts}} + {\newcommand*{\mi@p}[2]{#1}} % approximate value + {\newcommand*{\mi@p}[2]{#2}} % precise value % \end{macrocode} % % \noindent This block of code makes parentheses adjustable. @@ -7219,58 +8248,52 @@ Sshows factors dividing to a sneaky one. \catcode`)\active \xdef){\right\string)} \endgroup \mathcode`(="8000 \mathcode`)="8000 -\typeout{mandi: parentheses made adjustable in math mode.} -% \end{macrocode} -% -% \noindent This block of code fixes square root symbol. -% \begin{macrocode} -\let\oldr@@t\r@@t -\def\r@@t#1#2{% -\setbox0=\hbox{\(\oldr@@t#1{#2\,}\)}\dimen0=\ht0 -\advance\dimen0-0.2\ht0 -\setbox2=\hbox{\vrule height\ht0 depth -\dimen0}% -{\box0\lower0.4pt\box2}} -\LetLtxMacro{\oldsqrt}{\sqrt} -\renewcommand*{\sqrt}[2][\relax]{\oldsqrt[#1]{#2}} -\typeout{mandi: square root symbol fixed.} +\typeout{mandi: Parentheses have been made adjustable in math mode.} % \end{macrocode} % % \noindent SI base unit of length or spatial displacement % \begin{macrocode} -\newcommand{\m}{\metre} +\newcommand*{\m}{\metre} % \end{macrocode} % % \noindent SI base unit of mass % \begin{macrocode} -\newcommand{\kg}{\kilogram} +\newcommand*{\kg}{\kilogram} % \end{macrocode} % % \noindent SI base unit of time or temporal displacement % \begin{macrocode} -\newcommand{\s}{\second} +\newcommand*{\s}{\second} % \end{macrocode} % % \noindent SI base unit of electric current % \begin{macrocode} -\newcommand{\A}{\ampere} +\newcommand*{\A}{\ampere} % \end{macrocode} % % \noindent SI base unit of thermodynamic temperature % \begin{macrocode} -\newcommand{\K}{\kelvin} +\newcommand*{\K}{\kelvin} % \end{macrocode} % % \noindent SI base unit of amount % \begin{macrocode} -\newcommand{\mol}{\mole} +\newcommand*{\mol}{\mole} % \end{macrocode} % % \noindent SI base unit of luminous intensity % \begin{macrocode} -\newcommand{\cd}{\candela} +\newcommand*{\cd}{\candela} % \end{macrocode} % % \begin{macrocode} +\newcommand*{\dimdisplacement}{\ensuremath{\mathrm{L}}} +\newcommand*{\dimmass}{\ensuremath{\mathrm{M}}} +\newcommand*{\dimduration}{\ensuremath{\mathrm{T}}} +\newcommand*{\dimcurrent}{\ensuremath{\mathrm{I}}} +\newcommand*{\dimtemperature}{\ensuremath{\mathrm{\Theta}}} +\newcommand*{\dimamount}{\ensuremath{\mathrm{N}}} +\newcommand*{\dimluminous}{\ensuremath{\mathrm{J}}} \newphysicsquantity{displacement}{\m}[\m][\m] \newphysicsquantity{mass}{\kg}[\kg][\kg] \newphysicsquantity{duration}{\s}[\s][\s] @@ -7278,132 +8301,156 @@ Sshows factors dividing to a sneaky one. \newphysicsquantity{temperature}{\K}[\K][\K] \newphysicsquantity{amount}{\mol}[\mol][\mol] \newphysicsquantity{luminous}{\cd}[\cd][\cd] -\newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\rad] -\newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\sr] -\newcommand{\indegrees}[1]{\ensuremath{\unit{#1}{\degree}}} -\newcommand{\inFarenheit}[1]{\ensuremath{\unit{#1}{\degree\mathrm{F}}}} -\newcommand{\inCelsius}[1]{\ensuremath{\unit{#1}{\degree\mathrm{C}}}} -\newcommand{\inarcminutes}[1]{\ensuremath{\unit{#1}{\arcminute}}} -\newcommand{\inarcseconds}[1]{\ensuremath{\unit{#1}{\arcsecond}}} -\newcommand{\ineV}[1]{\ensuremath{\unit{#1}{\electronvolt}}} -\newcommand{\inMeVocs}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per\msup{c}{2}}}} -\newcommand{\inMeVoc}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per c}}} -\newcommand{\inAU}[1]{\ensuremath{\unit{#1}{\mathrm{AU}}}} -\newcommand{\inly}[1]{\ensuremath{\unit{#1}{\mathrm{ly}}}} -\newcommand{\incyr}[1]{\ensuremath{\unit{#1}{c\usk\mathrm{year}}}} -\newcommand{\inpc}[1]{\ensuremath{\unit{#1}{\mathrm{pc}}}} -\newcommand{\insolarL}[1]{\ensuremath{\unit{#1}{\Lsolar}}} -\newcommand{\insolarT}[1]{\ensuremath{\unit{#1}{\Tsolar}}} -\newcommand{\insolarR}[1]{\ensuremath{\unit{#1}{\Rsolar}}} -\newcommand{\insolarM}[1]{\ensuremath{\unit{#1}{\Msolar}}} -\newcommand{\insolarF}[1]{\ensuremath{\unit{#1}{\Fsolar}}} -\newcommand{\insolarf}[1]{\ensuremath{\unit{#1}{\fsolar}}} -\newcommand{\insolarMag}[1]{\ensuremath{\unit{#1}{\Magsolar}}} -\newcommand{\insolarmag}[1]{\ensuremath{\unit{#1}{\magsolar}}} -\newcommand{\insolarD}[1]{\ensuremath{\unit{#1}{\Dsolar}}} -\newcommand{\insolard}[1]{\ensuremath{\unit{#1}{\dsolar}}} -\newcommand{\velocityc}[1]{\ensuremath{#1c}} +\newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\relax] +\newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\relax] +\newcommand*{\indegrees}[1]{\unit{#1}{\degree}} +\newcommand*{\inFarenheit}[1]{\unit{#1}{\degree\mathrm{F}}} +\newcommand*{\inCelsius}[1]{\unit{#1}{\degree\mathrm{C}}} +\newcommand*{\inarcminutes}[1]{\unit{#1}{\arcminute}} +\newcommand*{\inarcseconds}[1]{\unit{#1}{\arcsecond}} +\newcommand*{\ineV}[1]{\unit{#1}{\electronvolt}} +\newcommand*{\ineVocs}[1]{\unit{#1}{\mathrm{eV}\per c^2}} +\newcommand*{\ineVoc}[1]{\unit{#1}{\mathrm{eV}\per c}} +\newcommand*{\inMeV}[1]{\unit{#1}{\mathrm{MeV}}} +\newcommand*{\inMeVocs}[1]{\unit{#1}{\mathrm{MeV}\per c^2}} +\newcommand*{\inMeVoc}[1]{\unit{#1}{\mathrm{MeV}\per c}} +\newcommand*{\inGeV}[1]{\unit{#1}{\mathrm{GeV}}} +\newcommand*{\inGeVocs}[1]{\unit{#1}{\mathrm{GeV}\per c^2}} +\newcommand*{\inGeVoc}[1]{\unit{#1}{\mathrm{GeV}\per c}} +\newcommand*{\inamu}[1]{\unit{#1}{\mathrm{u}}} +\newcommand*{\ingram}[1]{\unit{#1}{\mathrm{g}}} +\newcommand*{\ingrampercubiccm}[1]{\unit{#1}{\mathrm{g}\per\cubic\mathrm{cm}}} +\newcommand*{\inAU}[1]{\unit{#1}{\mathrm{AU}}} +\newcommand*{\inly}[1]{\unit{#1}{\mathrm{ly}}} +\newcommand*{\incyr}[1]{\unit{#1}{c\usk\mathrm{year}}} +\newcommand*{\inpc}[1]{\unit{#1}{\mathrm{pc}}} +\newcommand*{\insolarL}[1]{\unit{#1}{\Lsolar}} +\newcommand*{\insolarT}[1]{\unit{#1}{\Tsolar}} +\newcommand*{\insolarR}[1]{\unit{#1}{\Rsolar}} +\newcommand*{\insolarM}[1]{\unit{#1}{\Msolar}} +\newcommand*{\insolarF}[1]{\unit{#1}{\Fsolar}} +\newcommand*{\insolarf}[1]{\unit{#1}{\fsolar}} +\newcommand*{\insolarMag}[1]{\unit{#1}{\Magsolar}} +\newcommand*{\insolarmag}[1]{\unit{#1}{\magsolar}} +\newcommand*{\insolarD}[1]{\unit{#1}{\Dsolar}} +\newcommand*{\insolard}[1]{\unit{#1}{\dsolar}} +\newcommand*{\velocityc}[1]{\ensuremath{#1c}} \newphysicsquantity{velocity}{\m\usk\reciprocal\s}[\m\usk\reciprocal\s][\m\per\s] -\newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg][\m\per\s\squared] -\newcommand{\lorentz}[1]{\ensuremath{#1}} +\newcommand*{\speed}{\velocity} +\newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg]% + [\m\per\s\squared] +\newphysicsquantity{gravitationalfield}{\m\usk\s\reciprocalsquared}[\N\per\kg]% + [\N\per\kg] +\newphysicsquantity{gravitationalpotential}{\square\m\usk\reciprocalsquare\s}% + [\J\per\kg][\J\per\kg] +\newcommand*{\lorentz}[1]{\ensuremath{#1}} \newphysicsquantity{momentum}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s] -\newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s] +\newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\N\usk\s] \newphysicsquantity{force}{\m\usk\kg\usk\s\reciprocalsquared}[\N][\N] \newphysicsquantity{springstiffness}{\kg\usk\s\reciprocalsquared}[\N\per\m][\N\per\m] \newphysicsquantity{springstretch}{\m} \newphysicsquantity{area}{\m\squared} \newphysicsquantity{volume}{\cubic\m} \newphysicsquantity{linearmassdensity}{\reciprocal\m\usk\kg}[\kg\per\m][\kg\per\m] -\newphysicsquantity{areamassdensity}{\m\reciprocalsquared\usk\kg}[\kg\per\m\squared] -[\kg\per\m\squared] -\newphysicsquantity{volumemassdensity}{\m\reciprocalcubed\usk\kg}[\kg\per\m\cubed] -[\kg\per\m\cubed] -\newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared} -[\N\per\m\squared][\Pa] +\newphysicsquantity{areamassdensity}{\m\reciprocalsquared\usk\kg}[\kg\per\m\squared]% + [\kg\per\m\squared] +\newphysicsquantity{volumemassdensity}{\m\reciprocalcubed\usk\kg}[\kg\per\m\cubed]% + [\kg\per\m\cubed] +\newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}% + [\N\per\m\squared][\Pa] +\newphysicsquantity{stress}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}% + [\N\per\m\squared][\Pa] +\newphysicsquantity{pressure}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}% + [\N\per\m\squared][\Pa] +\newphysicsquantity{strain}{\relax}[\relax][\relax] \newphysicsquantity{work}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m] -\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m] -\newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s] +\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\N\usk\m][\J] +\newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\J\per\s][\W] +\newphysicsquantity{specificheatcapacity}{\J\per\K\usk\kg}[\J\per\K\usk\kg]% + [\J\per\K\usk\kg] \newphysicsquantity{angularvelocity}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s] -\newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}[\rad\per\s\squared] -[\rad\per\s\squared] -\newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s] -[\kg\usk\m\squared\per\s] -\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared][\kg\usk\m\squared] -\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad][\N\usk\m] +\newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}% + [\rad\per\s\squared][\rad\per\s\squared] +\newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s]% + [\kg\usk\m\squared\per\s] +\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared]% + [\kg\usk\m\squared] +\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad]% + [\N\usk\m] \newphysicsquantity{entropy}{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\K} -[\J\per\K][\J\per\K] + [\J\per\K][\J\per\K] \newphysicsquantity{wavelength}{\m}[\m][\m] \newphysicsquantity{wavenumber}{\reciprocal\m}[\per\m][\per\m] \newphysicsquantity{frequency}{\reciprocal\s}[\hertz][\hertz] \newphysicsquantity{angularfrequency}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s] \newphysicsquantity{charge}{\A\usk\s}[\C][\C] \newphysicsquantity{permittivity} -{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared} -[\F\per\m][\C\squared\per\N\usk\m\squared] -\newphysicsquantity{permeability} -{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m][\T\usk\m\per\A] -\newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A} -[\V\per\m][\N\per\C] +{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared}% + [\F\per\m][\C\squared\per\N\usk\m\squared] +\newphysicsquantity{permeability}% + {\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m]% + [\T\usk\m\per\A] +\newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}% + [\V\per\m][\N\per\C] \newphysicsquantity{electricdipolemoment}{\m\usk\s\usk\A}[\C\usk\m][\C\usk\m] -\newphysicsquantity{electricflux}{\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A} -[\V\usk\m][\N\usk\m\squared\per\C] -\newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T] -[\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared -\newphysicsquantity{magneticflux} -{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s] -[\T\usk\m\squared] % also \Wb and \J\per\A -\newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A} -[\V\per\m][\N\per\C] +\newphysicsquantity{electricflux}% + {\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}% + [\V\usk\m][\N\usk\m\squared\per\C] +\newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T]% + [\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared +\newphysicsquantity{magneticflux}% + {\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s]% + [\T\usk\m\squared] % also \Wb and \J\per\A +\newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}% + [\V\per\m][\N\per\C] \newphysicsquantity{linearchargedensity}{\reciprocal\m\usk\s\usk\A}[\C\per\m][\C\per\m] -\newphysicsquantity{areachargedensity}{\reciprocalsquare\m\usk\s\usk\A} -[\C\per\square\m][\C\per\square\m] -\newphysicsquantity{volumechargedensity}{\reciprocalcubic\m\usk\s\usk\A} -[\C\per\cubic\m][\C\per\cubic\m] -\newphysicsquantity{mobility} -{\m\squared\usk\kg\usk\s\reciprocalquarted\usk\reciprocal\A}[\m\squared\per\volt\usk\s] -[(\m\per\s)\per(\N\per\C)] +\newphysicsquantity{areachargedensity}{\reciprocalsquare\m\usk\s\usk\A}% + [\C\per\square\m][\C\per\square\m] +\newphysicsquantity{volumechargedensity}{\reciprocalcubic\m\usk\s\usk\A}% + [\C\per\cubic\m][\C\per\cubic\m] +\newphysicsquantity{mobility}% + {\m\squared\usk\kg\usk\s\reciprocalquarted\usk\reciprocal\A}[\m\squared\per\volt\usk\s] + [(\m\per\s)\per(\N\per\C)] \newphysicsquantity{numberdensity}{\reciprocalcubic\m}[\per\cubic\m][\per\cubic\m] -\newphysicsquantity{polarizability}{\reciprocal\kg\usk\s\quarted\usk\square\A} -[\C\usk\square\m\per\V][\C\usk\m\per(\N\per\C)] -\newphysicsquantity{electricpotential} -{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}[\J\per\C][\V] -\newphysicsquantity{emf}{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A} -[\J\per\C][\V] +\newphysicsquantity{polarizability}{\reciprocal\kg\usk\s\quarted\usk\square\A}% + [\C\usk\square\m\per\V][\C\usk\m\per(\N\per\C)] +\newphysicsquantity{electricpotential}% + {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}[\J\per\C][\V] +\newphysicsquantity{emf}{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}% + [\J\per\C][\V] \newphysicsquantity{dielectricconstant}{}[][] \newphysicsquantity{indexofrefraction}{}[][] \newphysicsquantity{relativepermittivity}{}[][] \newphysicsquantity{relativepermeability}{}[][] -\newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s} -[\J\per\cubic\m][\J\per\cubic\m] -\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed} -[\W\per\m\squared][\W\per\m\squared] -\newphysicsquantity{electroncurrent}{\reciprocal\s} -[\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s] +\newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s}% + [\J\per\cubic\m][\J\per\cubic\m] +\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed}% + [\W\per\m\squared][\W\per\m\squared] +\newphysicsquantity{electroncurrent}{\reciprocal\s}% + [\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s] \newphysicsquantity{conventionalcurrent}{\A}[\C\per\s][\A] \newphysicsquantity{magneticdipolemoment}{\square\m\usk\A}[\J\per\T][\A\usk\square\m] -\newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m] -[\A\per\square\m] -\newphysicsquantity{capacitance} -{\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V] -% also \C\squared\per\N\usk\m, \s\per\ohm -\newphysicsquantity{inductance} -{\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry] -[\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A -\newphysicsquantity{conductivity} -{\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m] -[(\A\per\square\m)\per(\V\per\m)] -\newphysicsquantity{resistivity} -{\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m] -[(\V\per\m)\per(\A\per\square\m)] -\newphysicsquantity{resistance} -{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm] -\newphysicsquantity{conductance} -{\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens] +\newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m]% + [\A\per\square\m] +\newphysicsquantity{capacitance}% + {\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V] + % also \C\squared\per\N\usk\m, \s\per\ohm +\newphysicsquantity{inductance}% + {\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry]% + [\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A +\newphysicsquantity{conductivity}% + {\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m]% + [(\A\per\square\m)\per(\V\per\m)] +\newphysicsquantity{resistivity}% + {\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m]% + [(\V\per\m)\per(\A\per\square\m)] +\newphysicsquantity{resistance}% + {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm] +\newphysicsquantity{conductance}% + {\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens] \newphysicsquantity{magneticcharge}{\m\usk\A}[\m\usk\A][\m\usk\A] -\newcommand{\lv}{\ensuremath{\left\langle}} -\newcommand{\rv}{\ensuremath{\right\rangle}} -\newcommand{\symvect}{\mivector} -\newcommand{\ncompsvect}{\mivector} +\newcommand*{\lv}{\ensuremath{\left\langle}} +\newcommand*{\rv}{\ensuremath{\right\rangle}} \ExplSyntaxOn % Written in LaTeX3 \NewDocumentCommand{\magvectncomps}{ m O{} } {% @@ -7428,419 +8475,347 @@ Sshows factors dividing to a sneaky one. }% \ExplSyntaxOff % -\newcommand{\zerovect}{\vect{0}} -\newcommand{\ncompszerovect}{\mivector{0,0,0}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\vect}[1]{\ensuremath{\vec{#1}}}} - {\newcommand{\vect}[1]{\ensuremath{\vec{\mathrm{#1}}}}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\newcommand{\magvect}[1]{\ensuremath{\magof{\vect{#1}}}}} - {\newcommand{\magvect}[1]{\ensuremath{\abs{\vect{#1}}}}} -\newcommand{\dmagvect}[1]{\ensuremath{\dx{\magvect{#1}}}} -\newcommand{\Dmagvect}[1]{\ensuremath{\Delta\!\magvect{#1}}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\dirvect}[1]{\ensuremath{\widehat{{#1}}}}} - {\newcommand{\dirvect}[1]{\ensuremath{\widehat{\mathrm{#1}}}}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\compvect}[2]{\ensuremath{\ssub{#1}{\(#2\)}}}} - {\newcommand{\compvect}[2]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\)}}}} -\newcommand{\scompsvect}[1]{\ensuremath{\lv - \compvect{#1}{x}, - \compvect{#1}{y}, +\newcommand*{\zerovect}{\vect{0}} +\newcommand*{\ncompszerovect}{\mivector{0,0,0}} +\ifthenelse{\boolean{@optboldvectors}} + {\newcommand*{\vect}[1]{\ensuremath{\boldsymbol{#1}}}} + {\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\vect}[1]{\ensuremath{\vv{\mathrm{#1}}}}} + {\newcommand*{\vect}[1]{\ensuremath{\vv{#1}}}}} +\ifthenelse{\boolean{@optsingleabsbars}} + {\newcommand*{\magvect}[1]{\ensuremath{\abs{\vect{#1}}}}} + {\newcommand*{\magvect}[1]{\ensuremath{\magof{\vect{#1}}}}} +\newcommand*{\magsquaredvect}[1]{\ensuremath{\magvect{#1}\squared}} +\newcommand*{\magnvect}[2]{\ensuremath{\magvect{#1}^{#2}}} +\newcommand*{\dmagvect}[1]{\ensuremath{\dx{\magvect{#1}}}} +\newcommand*{\Dmagvect}[1]{\ensuremath{\Delta\!\magvect{#1}}} +\ifthenelse{\boolean{@optboldvectors}} + {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{\boldsymbol{#1}}}}} + {\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{\mathrm{#1}}}}} + {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{#1}}}}} +\newcommand*{\direction}{\dirvect} +\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\compvect}[2]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\)}}}} + {\newcommand*{\compvect}[2]{\ensuremath{\ssub{#1}{\(#2\)}}}} +\newcommand*{\scompsvect}[1]{\ensuremath{\lv% + \compvect{#1}{x},% + \compvect{#1}{y},% \compvect{#1}{z}\rv}} -\newcommand{\magvectscomps}[1]{\ensuremath{\sqrt{ - \msup{\compvect{#1}{x}}{2}+ - \msup{\compvect{#1}{y}}{2}+ - \msup{\compvect{#1}{z}}{2}}}} -\newcommand{\dvect}[1]{\ensuremath{\mathrm{d}\vect{#1}}} -\newcommand{\Dvect}[1]{\ensuremath{\Delta\vect{#1}}} -\newcommand{\dirdvect}[1]{\ensuremath{\widehat{\dvect{#1}}}} -\newcommand{\dirDvect}[1]{\ensuremath{\widehat{\Dvect{#1}}}} -\newcommand{\ddirvect}[1]{\ensuremath{\mathrm{d}\dirvect{E}}} -\newcommand{\Ddirvect}[1]{\ensuremath{\Delta\dirvect{E}}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\newcommand{\magdvect}[1]{\ensuremath{\magof{\dvect{#1}}}} - \newcommand{\magDvect}[1]{\ensuremath{\magof{\Dvect{#1}}}}} - {\newcommand{\magdvect}[1]{\ensuremath{\abs{\dvect{#1}}}} - \newcommand{\magDvect}[1]{\ensuremath{\abs{\Dvect{#1}}}}} -\newcommand{\compdvect}[2]{\ensuremath{\mathrm{d}\compvect{#1}{#2}}} -\newcommand{\compDvect}[2]{\ensuremath{\Delta\compvect{#1}{#2}}} -\newcommand{\scompsdvect}[1]{\ensuremath{\lv - \compdvect{#1}{x}, - \compdvect{#1}{y}, +\newcommand*{\magvectscomps}[1]{\ensuremath{\sqrt{% + \compvect{#1}{x}\squared +% + \compvect{#1}{y}\squared +% + \compvect{#1}{z}\squared}}} +\newcommand*{\dvect}[1]{\ensuremath{\mathrm{d}\vect{#1}}} +\newcommand*{\Dvect}[1]{\ensuremath{\Delta\vect{#1}}} +\newcommand*{\dirdvect}[1]{\ensuremath{\widehat{\dvect{#1}}}} +\newcommand*{\dirDvect}[1]{\ensuremath{\widehat{\Dvect{#1}}}} +\newcommand*{\ddirvect}[1]{\ensuremath{\mathrm{d}\dirvect{#1}}} +\newcommand*{\ddirection}{\ddirvect} +\newcommand*{\Ddirvect}[1]{\ensuremath{\Delta\dirvect{#1}}} +\newcommand*{\Ddirection}{\Ddirvect} +\ifthenelse{\boolean{@optsingleabsbars}} + {\newcommand*{\magdvect}[1]{\ensuremath{\abs{\dvect{#1}}}} + \newcommand*{\magDvect}[1]{\ensuremath{\abs{\Dvect{#1}}}}} + {\newcommand*{\magdvect}[1]{\ensuremath{\magof{\dvect{#1}}}} + \newcommand*{\magDvect}[1]{\ensuremath{\magof{\Dvect{#1}}}}} +\newcommand*{\compdvect}[2]{\ensuremath{\mathrm{d}\compvect{#1}{#2}}} +\newcommand*{\compDvect}[2]{\ensuremath{\Delta\compvect{#1}{#2}}} +\newcommand*{\scompsdvect}[1]{\ensuremath{\lv% + \compdvect{#1}{x},% + \compdvect{#1}{y},% \compdvect{#1}{z}\rv}} -\newcommand{\scompsDvect}[1]{\ensuremath{\lv - \compDvect{#1}{x}, - \compDvect{#1}{y}, +\newcommand*{\scompsDvect}[1]{\ensuremath{\lv% + \compDvect{#1}{x},% + \compDvect{#1}{y},% \compDvect{#1}{z}\rv}} -\newcommand{\dervect}[2]{\ensuremath{\frac{\dvect{#1}}{\mathrm{d}{#2}}}} -\newcommand{\Dervect}[2]{\ensuremath{\frac{\Dvect{#1}}{\Delta{#2}}}} -\newcommand{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#2}}{#3}}} -\newcommand{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#2}}{#3}}} -\newcommand{\scompsdervect}[2]{\ensuremath{\lv - \compdervect{#1}{x}{#2}, - \compdervect{#1}{y}{#2}, +\newcommand*{\dervect}[2]{\ensuremath{\frac{\dvect{#1}}{\mathrm{d}{#2}}}} +\newcommand*{\Dervect}[2]{\ensuremath{\frac{\Dvect{#1}}{\Delta{#2}}}} +\newcommand*{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#2}}{#3}}} +\newcommand*{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#2}}{#3}}} +\newcommand*{\scompsdervect}[2]{\ensuremath{\lv% + \compdervect{#1}{x}{#2},% + \compdervect{#1}{y}{#2},% \compdervect{#1}{z}{#2}\rv}} -\newcommand{\scompsDervect}[2]{\ensuremath{\lv - \compDervect{#1}{x}{#2}, - \compDervect{#1}{y}{#2}, +\newcommand*{\scompsDervect}[2]{\ensuremath{\lv% + \compDervect{#1}{x}{#2},% + \compDervect{#1}{y}{#2},% \compDervect{#1}{z}{#2}\rv}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\newcommand{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}} - \newcommand{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}} - {\newcommand{\magdervect}[2]{\ensuremath{\abs{\dervect{#1}{#2}}}} - \newcommand{\magDervect}[2]{\ensuremath{\abs{\Dervect{#1}{#2}}}}} -\newcommand{\dermagvect}[2]{\ensuremath{\dbyd{\magvect{#1}}{#2}}} -\newcommand{\Dermagvect}[2]{\ensuremath{\DbyD{\magvect{#1}}{#2}}} -\newcommand{\scompspos}{\mivector{x,y,z}} -\newcommand{\comppos}[1]{\ensuremath{{#1}}} -\newcommand{\scompsdpos}{\mivector{\mathrm{d}x,\mathrm{d}y,\mathrm{d}z}} -\newcommand{\scompsDpos}{\mivector{\Delta x,\Delta y,\Delta z}} -\newcommand{\compdpos}[1]{\ensuremath{\mathrm{d}{#1}}} -\newcommand{\compDpos}[1]{\ensuremath{\Delta{#1}}} -\newcommand{\scompsderpos}[1]{\ensuremath{\lv - \frac{\mathrm{d}x}{\mathrm{d}{#1}},\frac{\mathrm{d}y}{\mathrm{d}{#1}}, - \frac{\mathrm{d}z}{\mathrm{d}{#1}}\rv}} -\newcommand{\scompsDerpos}[1]{\ensuremath{\lv - \frac{\Delta x}{\Delta{#1}},\frac{\Delta y}{\Delta{#1}}, - \frac{\Delta z}{\Delta{#1}}\rv}} -\newcommand{\compderpos}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}} -\newcommand{\compDerpos}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}} -\newcommand{\vectsub}[2]{\ensuremath{\ssub{\vect{#1}}{#2}}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{#1}{\(#2\),#3}}}} - {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\),#3}}}} -\newcommand{\scompsvectsub}[2]{\ensuremath{\lv - \compvectsub{#1}{x}{#2}, - \compvectsub{#1}{y}{#2}, - \compvectsub{#1}{z}{#2}\rv}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\newcommand{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}} - {\newcommand{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}} -\newcommand{\magvectsubscomps}[2]{\ensuremath{\sqrt{ - \msup{\compvectsub{#1}{x}{#2}}{2}+ - \msup{\compvectsub{#1}{y}{#2}}{2}+ - \msup{\compvectsub{#1}{z}{#2}}{2}}}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}} - {\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}} -\newcommand{\dvectsub}[2]{\ensuremath{\mathrm{d}\vectsub{#1}{#2}}} -\newcommand{\Dvectsub}[2]{\ensuremath{\Delta\vectsub{#1}{#2}}} -\newcommand{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}} -\newcommand{\compDvectsub}[3]{\ensuremath{\Delta\compvectsub{#1}{#2}{#3}}} -\newcommand{\scompsdvectsub}[2]{\ensuremath{\lv - \compdvectsub{#1}{x}{#2}, - \compdvectsub{#1}{y}{#2}, - \compdvectsub{#1}{z}{#2}\rv}} -\newcommand{\scompsDvectsub}[2]{\ensuremath{\lv - \compDvectsub{#1}{x}{#2}, - \compDvectsub{#1}{y}{#2}, - \compDvectsub{#1}{z}{#2}\rv}} -\newcommand{\dermagvectsub}[3]{\ensuremath{\dbyd{\magvectsub{#1}{#2}}{#3}}} -\newcommand{\Dermagvectsub}[3]{\ensuremath{\DbyD{\magvectsub{#1}{#2}}{#3}}} -\newcommand{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}} -\newcommand{\Dervectsub}[3]{\ensuremath{\DbyD{\vectsub{#1}{#2}}{#3}}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\newcommand{\magdervectsub}[3]{\ensuremath{\magof{\dervectsub{#1}{#2}{#3}}}} - \newcommand{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}} - {\newcommand{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}} - \newcommand{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}} -\newcommand{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}} -\newcommand{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#3}}{#4}}} -\newcommand{\scompsdervectsub}[3]{\ensuremath{\lv - \compdervectsub{#1}{x}{#2}{#3}, - \compdervectsub{#1}{y}{#2}{#3}, - \compdervectsub{#1}{z}{#2}{#3}\rv}} -\newcommand{\scompsDervectsub}[3]{\ensuremath{\lv - \compDervectsub{#1}{x}{#2}{#3}, - \compDervectsub{#1}{y}{#2}{#3}, - \compDervectsub{#1}{z}{#2}{#3}\rv}} -\newcommand{\comppossub}[2]{\ensuremath{\ssub{#1}{#2}}} -\newcommand{\scompspossub}[1]{\ensuremath{\lv - \comppossub{x}{#1}, - \comppossub{y}{#1}, - \comppossub{z}{#1}\rv}} -\newcommand{\compdpossub}[2]{\ensuremath{\mathrm{d}\comppossub{#1}{#2}}} -\newcommand{\compDpossub}[2]{\ensuremath{\Delta\comppossub{#1}{#2}}} -\newcommand{\scompsdpossub}[1]{\ensuremath{\lv - \compdpossub{x}{#1}, - \compdpossub{y}{#1}, - \compdpossub{z}{#1}\rv}} -\newcommand{\scompsDpossub}[1]{\ensuremath{\lv - \compDpossub{x}{#1}, - \compDpossub{y}{#1}, - \compDpossub{z}{#1}\rv}} -\newcommand{\compderpossub}[3]{\ensuremath{\dbyd{\comppossub{#1}{#2}}{#3}}} -\newcommand{\compDerpossub}[3]{\ensuremath{\DbyD{\comppossub{#1}{#2}}{#3}}} -\newcommand{\scompsderpossub}[2]{\ensuremath{\lv - \compderpossub{x}{#1}{#2}, - \compderpossub{y}{#1}{#2}, - \compderpossub{z}{#1}{#2}\rv}} -\newcommand{\scompsDerpossub}[2]{\ensuremath{\lv - \compDerpossub{x}{#1}{#2}, - \compDerpossub{y}{#1}{#2}, - \compDerpossub{z}{#1}{#2}\rv}} -\newcommand{\relpos}[1]{\ensuremath{\vectsub{r}{#1}}} -\newcommand{\relvel}[1]{\ensuremath{\vectsub{v}{#1}}} -\newcommand{\relmom}[1]{\ensuremath{\vectsub{p}{#1}}} -\newcommand{\relfor}[1]{\ensuremath{\vectsub{F}{#1}}} -\newcommand{\vectdotvect}[2]{\ensuremath{{#1}\bullet{#2}}} -\newcommand{\vectdotsvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsvect{#2}}} -\newcommand{\vectdotevect}[2]{\ensuremath{ - \compvect{#1}{x}\compvect{#2}{x}+ - \compvect{#1}{y}\compvect{#2}{y}+ +\ifthenelse{\boolean{@optsingleabsbars}} + {\newcommand*{\magdervect}[2]{\ensuremath{\abs{\dervect{#1}{#2}}}} + \newcommand*{\magDervect}[2]{\ensuremath{\abs{\Dervect{#1}{#2}}}}} + {\newcommand*{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}} + \newcommand*{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}} +\newcommand*{\dermagvect}[2]{\ensuremath{\dbyd{\magvect{#1}}{#2}}} +\newcommand*{\Dermagvect}[2]{\ensuremath{\DbyD{\magvect{#1}}{#2}}} +\newcommand*{\derdirvect}[2]{\ensuremath{\dbyd{\dirvect{#1}}{#2}}} +\newcommand*{\derdirection}{\derdirvect} +\newcommand*{\Derdirvect}[2]{\ensuremath{\DbyD{\dirvect{#1}}{#2}}} +\newcommand*{\Derdirection}{\Derdirvect} +\ifthenelse{\boolean{@optboldvectors}} + {\newcommand*{\vectsub}[2]{\ensuremath{\boldsymbol{#1}_{\text{\tiny{}#2}}}}} + {\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\vectsub}[2]{\ensuremath{\vv{\mathrm{#1}}_{\text{\tiny{#2}}}}}} + {\newcommand*{\vectsub}[2]{\ensuremath{\vv{#1}_{\text{\tiny{#2}}}}}}} +\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{#2,\(#3\)}}}} + {\newcommand*{\compvectsub}[3]{\ensuremath{\ssub{#1}{#2,\(#3\)}}}} +\newcommand*{\scompsvectsub}[2]{\ensuremath{\lv% + \compvectsub{#1}{#2}{x},% + \compvectsub{#1}{#2}{y},% + \compvectsub{#1}{#2}{z}\rv}} +\ifthenelse{\boolean{@optsingleabsbars}} + {\newcommand*{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}} + {\newcommand*{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}} +\newcommand*{\magsquaredvectsub}[2]{\ensuremath{\magvectsub{#1}{#2}\squared}} +\newcommand*{\magnvectsub}[3]{\ensuremath{\magvectsub{#1}{#2}^{#3}}} +\newcommand*{\magvectsubscomps}[2]{\ensuremath{\sqrt{% + \compvectsub{#1}{#2}{x}\squared +% + \compvectsub{#1}{#2}{y}\squared +% + \compvectsub{#1}{#2}{z}\squared}}} +\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}} + {\newcommand*{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}} +\newcommand*{\directionsub}{\dirvectsub} +\newcommand*{\dvectsub}[2]{\ensuremath{\mathrm{d}\vectsub{#1}{#2}}} +\newcommand*{\Dvectsub}[2]{\ensuremath{\Delta\vectsub{#1}{#2}}} +\newcommand*{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}} +\newcommand*{\compDvectsub}[3]{\ensuremath{\Delta\compvectsub{#1}{#2}{#3}}} +\newcommand*{\scompsdvectsub}[2]{\ensuremath{\lv% + \compdvectsub{#1}{#2}{x},% + \compdvectsub{#1}{#2}{y},% + \compdvectsub{#1}{#2}{z}\rv}} +\newcommand*{\scompsDvectsub}[2]{\ensuremath{\lv% + \compDvectsub{#1}{#2}{x},% + \compDvectsub{#1}{#2}{y},% + \compDvectsub{#1}{#2}{z}\rv}} +\newcommand*{\dermagvectsub}[3]{\ensuremath{\dbyd{\magvectsub{#1}{#2}}{#3}}} +\newcommand*{\Dermagvectsub}[3]{\ensuremath{\DbyD{\magvectsub{#1}{#2}}{#3}}} +\newcommand*{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}} +\newcommand*{\Dervectsub}[3]{\ensuremath{\DbyD{\vectsub{#1}{#2}}{#3}}} +\ifthenelse{\boolean{@optsingleabsbars}} + {\newcommand*{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}} + \newcommand*{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}} + {\newcommand*{\magdervectsub}[3]{\ensuremath{\magof{\dervectsub{#1}{#2}{#3}}}} + \newcommand*{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}} +\newcommand*{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}} +\newcommand*{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#3}}{#4}}} +\newcommand*{\scompsdervectsub}[3]{\ensuremath{\lv% + \compdervectsub{#1}{#2}{x}{#3},% + \compdervectsub{#1}{#2}{y}{#3},% + \compdervectsub{#1}{#2}{z}{#3}\rv}} +\newcommand*{\scompsDervectsub}[3]{\ensuremath{\lv% + \compDervectsub{#1}{#2}{x}{#3},% + \compDervectsub{#1}{#2}{y}{#3},% + \compDervectsub{#1}{#2}{z}{#3}\rv}} +\newcommand*{\vectdotvect}[2]{\ensuremath{{#1}\bullet{#2}}} +\newcommand*{\vectdotsvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsvect{#2}}} +\newcommand*{\vectdotevect}[2]{\ensuremath{% + \compvect{#1}{x}\compvect{#2}{x}+% + \compvect{#1}{y}\compvect{#2}{y}+% \compvect{#1}{z}\compvect{#2}{z}}} -\newcommand{\vectdotspos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompspos}} -\newcommand{\vectdotepos}[1]{\ensuremath{ - \compvect{#1}{x}\comppos{x}+ - \compvect{#1}{y}\comppos{y}+ - \compvect{#1}{z}\comppos{z}}} -\newcommand{\vectdotsdvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsdvect{#2}}} -\newcommand{\vectdotsDvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsDvect{#2}}} -\newcommand{\vectdotedvect}[2]{\ensuremath{ - \compvect{#1}{x}\compdvect{#2}{x}+ - \compvect{#1}{y}\compdvect{#2}{y}+ +\newcommand*{\vectdotsdvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsdvect{#2}}} +\newcommand*{\vectdotsDvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsDvect{#2}}} +\newcommand*{\vectdotedvect}[2]{\ensuremath{% + \compvect{#1}{x}\compdvect{#2}{x}+% + \compvect{#1}{y}\compdvect{#2}{y}+% \compvect{#1}{z}\compdvect{#2}{z}}} -\newcommand{\vectdoteDvect}[2]{\ensuremath{ - \compvect{#1}{x}\compDvect{#2}{x}+ - \compvect{#1}{y}\compDvect{#2}{y}+ +\newcommand*{\vectdoteDvect}[2]{\ensuremath{% + \compvect{#1}{x}\compDvect{#2}{x}+% + \compvect{#1}{y}\compDvect{#2}{y}+% \compvect{#1}{z}\compDvect{#2}{z}}} -\newcommand{\vectdotsdpos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompsdpos}} -\newcommand{\vectdotsDpos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompsDpos}} -\newcommand{\vectdotedpos}[1]{\ensuremath{ - \compvect{#1}{x}\compdpos{x}+ - \compvect{#1}{y}\compdpos{y}+ - \compvect{#1}{z}\compdpos{z}}} -\newcommand{\vectdoteDpos}[1]{\ensuremath{ - \compvect{#1}{x}\compDpos{x}+ - \compvect{#1}{y}\compDpos{y}+ - \compvect{#1}{z}\compDpos{z}}} -\newcommand{\vectsubdotsvectsub}[4]{\ensuremath{ +\newcommand*{\vectsubdotsvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsvectsub{#3}{#4}}} -\newcommand{\vectsubdotevectsub}[4]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compvectsub{#3}{x}{#4}+ - \compvectsub{#1}{y}{#2}\compvectsub{#3}{y}{#4}+ - \compvectsub{#1}{z}{#2}\compvectsub{#3}{z}{#4}}} -\newcommand{\vectsubdotsdvectsub}[4]{\ensuremath{% +\newcommand*{\vectsubdotevectsub}[4]{\ensuremath{% + \compvectsub{#1}{#2}{x}\compvectsub{#3}{#4}{x}+% + \compvectsub{#1}{#2}{y}\compvectsub{#3}{#4}{y}+% + \compvectsub{#1}{#2}{z}\compvectsub{#3}{#4}{z}}} +\newcommand*{\vectsubdotsdvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsdvectsub{#3}{#4}}} -\newcommand{\vectsubdotsDvectsub}[4]{\ensuremath{% +\newcommand*{\vectsubdotsDvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsDvectsub{#3}{#4}}} -\newcommand{\vectsubdotedvectsub}[4]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compdvectsub{#3}{x}{#4}+ - \compvectsub{#1}{y}{#2}\compdvectsub{#3}{y}{#4}+ - \compvectsub{#1}{z}{#2}\compdvectsub{#3}{z}{#4}}} -\newcommand{\vectsubdoteDvectsub}[4]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compDvectsub{#3}{x}{#4}+ - \compvectsub{#1}{y}{#2}\compDvectsub{#3}{y}{#4}+ - \compvectsub{#1}{z}{#2}\compDvectsub{#3}{z}{#4}}} -\newcommand{\vectsubdotsdvect}[3]{\ensuremath{ +\newcommand*{\vectsubdotedvectsub}[4]{\ensuremath{% + \compvectsub{#1}{#2}{x}\compdvectsub{#3}{#4}{x}+% + \compvectsub{#1}{#2}{y}\compdvectsub{#3}{#4}{y}+% + \compvectsub{#1}{#2}{z}\compdvectsub{#3}{#4}{z}}} +\newcommand*{\vectsubdoteDvectsub}[4]{\ensuremath{% + \compvectsub{#1}{#2}{x}\compDvectsub{#3}{#4}{x}+% + \compvectsub{#1}{#2}{y}\compDvectsub{#3}{#4}{y}+% + \compvectsub{#1}{#2}{z}\compDvectsub{#3}{#4}{z}}} +\newcommand*{\vectsubdotsdvect}[3]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsdvect{#3}}} -\newcommand{\vectsubdotsDvect}[3]{\ensuremath{ +\newcommand*{\vectsubdotsDvect}[3]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsDvect{#3}}} -\newcommand{\vectsubdotedvect}[3]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compdvect{x}{#3}+ - \compvectsub{#1}{y}{#2}\compdvect{y}{#3}+ - \compvectsub{#1}{z}{#2}\compdvect{z}{#3}}} -\newcommand{\vectsubdoteDvect}[3]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compDvect{x}{#3}+ - \compvectsub{#1}{y}{#2}\compDvect{y}{#3}+ - \compvectsub{#1}{z}{#2}\compDvect{z}{#3}}} -\newcommand{\vectsubdotsdpos}[2]{\ensuremath{ - \scompsvectsub{#1}{#2}\bullet\scompsdpos}} -\newcommand{\vectsubdotsDpos}[2]{\ensuremath{ - \scompsvectsub{#1}{#2}\bullet\scompsDpos}} -\newcommand{\vectsubdotedpos}[2]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compdpos{x}+ - \compvectsub{#1}{y}{#2}\compdpos{y}+ - \compvectsub{#1}{z}{#2}\compdpos{z}}} -\newcommand{\vectsubdoteDpos}[2]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compDpos{x}+ - \compvectsub{#1}{y}{#2}\compDpos{y}+ - \compvectsub{#1}{z}{#2}\compDpos{z}}} -\newcommand{\dervectdotsvect}[3]{\ensuremath{ +\newcommand*{\vectsubdotedvect}[3]{\ensuremath{% + \compvectsub{#1}{#2}{x}\compdvect{#3}{x}+% + \compvectsub{#1}{#2}{y}\compdvect{#3}{y}+% + \compvectsub{#1}{#2}{z}\compdvect{#3}{z}}} +\newcommand*{\vectsubdoteDvect}[3]{\ensuremath{% + \compvectsub{#1}{#2}{x}\compDvect{#3}{x}+% + \compvectsub{#1}{#2}{y}\compDvect{#3}{y}+% + \compvectsub{#1}{#2}{z}\compDvect{#3}{z}}} +\newcommand*{\dervectdotsvect}[3]{\ensuremath{% \scompsdervect{#1}{#2}\bullet\scompsvect{#3}}} -\newcommand{\Dervectdotsvect}[3]{\ensuremath{ +\newcommand*{\Dervectdotsvect}[3]{\ensuremath{% \scompsDervect{#1}{#2}\bullet\scompsvect{#3}}} -\newcommand{\dervectdotevect}[3]{\ensuremath{ - \compdervect{#1}{x}{#2}\compvect{x}{#3}+ - \compdervect{#1}{y}{#2}\compvect{y}{#3}+ - \compdervect{#1}{z}{#2}\compvect{z}{#3}}} -\newcommand{\Dervectdotevect}[3]{\ensuremath{ - \compDervect{#1}{x}{#2}\compvect{x}{#3}+ - \compDervect{#1}{y}{#2}\compvect{y}{#3}+ - \compDervect{#1}{z}{#2}\compvect{z}{#3}}} -\newcommand{\vectdotsdervect}[3]{\ensuremath{ +\newcommand*{\dervectdotevect}[3]{\ensuremath{% + \compdervect{#1}{x}{#2}\compvect{#3}{x}+% + \compdervect{#1}{y}{#2}\compvect{#3}{y}+% + \compdervect{#1}{z}{#2}\compvect{#3}{z}}} +\newcommand*{\Dervectdotevect}[3]{\ensuremath{% + \compDervect{#1}{x}{#2}\compvect{#3}{x}+% + \compDervect{#1}{y}{#2}\compvect{#3}{y}+% + \compDervect{#1}{z}{#2}\compvect{#3}{z}}} +\newcommand*{\vectdotsdervect}[3]{\ensuremath{% \scompsvect{#1}\bullet\scompsdervect{#2}{#3}}} -\newcommand{\vectdotsDervect}[3]{\ensuremath{ +\newcommand*{\vectdotsDervect}[3]{\ensuremath{% \scompsvect{#1}\bullet\scompsDervect{#2}{#3}}} -\newcommand{\vectdotedervect}[3]{\ensuremath{ - \compvect{#1}{x}\compdervect{#2}{x}{#3}+ - \compvect{#1}{y}\compdervect{#2}{y}{#3}+ +\newcommand*{\vectdotedervect}[3]{\ensuremath{% + \compvect{#1}{x}\compdervect{#2}{x}{#3}+% + \compvect{#1}{y}\compdervect{#2}{y}{#3}+% \compvect{#1}{z}\compdervect{#2}{z}{#3}}} -\newcommand{\vectdoteDervect}[3]{\ensuremath{ - \compvect{#1}{x}\compDervect{#2}{x}{#3}+ - \compvect{#1}{y}\compDervect{#2}{y}{#3}+ +\newcommand*{\vectdoteDervect}[3]{\ensuremath{% + \compvect{#1}{x}\compDervect{#2}{x}{#3}+% + \compvect{#1}{y}\compDervect{#2}{y}{#3}+% \compvect{#1}{z}\compDervect{#2}{z}{#3}}} -\newcommand{\dervectdotspos}[2]{\ensuremath{ - \scompsdervect{#1}{#2}\bullet\scompspos}} -\newcommand{\Dervectdotspos}[2]{\ensuremath{ - \scompsDervect{#1}{#2}\bullet\scompspos}} -\newcommand{\dervectdotepos}[2]{\ensuremath{ - \compdervect{#1}{x}{#2}\comppos{x}+ - \compdervect{#1}{y}{#2}\comppos{y}+ - \compdervect{#1}{z}{#2}\comppos{z}}} -\newcommand{\Dervectdotepos}[2]{\ensuremath{ - \compDervect{#1}{x}{#2}\comppos{x}+ - \compDervect{#1}{y}{#2}\comppos{y}+ - \compDervect{#1}{z}{#2}\comppos{z}}} -\newcommand{\dervectdotsdvect}[3]{\ensuremath{ +\newcommand*{\dervectdotsdvect}[3]{\ensuremath{% \scompsdervect{#1}{#2}\bullet\scompsdvect{#3}}} -\newcommand{\DervectdotsDvect}[3]{\ensuremath{ +\newcommand*{\DervectdotsDvect}[3]{\ensuremath{% \scompsDervect{#1}{#2}\bullet\scompsDvect{#3}}} -\newcommand{\dervectdotedvect}[3]{\ensuremath{ - \compdervect{#1}{x}{#2}\compdvect{#3}{x}+ - \compdervect{#1}{y}{#2}\compdvect{#3}{y}+ +\newcommand*{\dervectdotedvect}[3]{\ensuremath{% + \compdervect{#1}{x}{#2}\compdvect{#3}{x}+% + \compdervect{#1}{y}{#2}\compdvect{#3}{y}+% \compdervect{#1}{z}{#2}\compdvect{#3}{z}}} -\newcommand{\DervectdoteDvect}[3]{\ensuremath{ - \compDervect{#1}{x}{#2}\compDvect{#3}{x}+ - \compDervect{#1}{y}{#2}\compDvect{#3}{y}+ +\newcommand*{\DervectdoteDvect}[3]{\ensuremath{% + \compDervect{#1}{x}{#2}\compDvect{#3}{x}+% + \compDervect{#1}{y}{#2}\compDvect{#3}{y}+% \compDervect{#1}{z}{#2}\compDvect{#3}{z}}} -\newcommand{\dervectdotsdpos}[2]{\ensuremath{ - \scompsdervect{#1}{#2}\bullet\scompsdpos}} -\newcommand{\DervectdotsDpos}[2]{\ensuremath{ - \scompsDervect{#1}{#2}\bullet\scompsDpos}} -\newcommand{\dervectdotedpos}[2]{\ensuremath{ - \compdervect{#1}{x}{#2}\compdpos{x}+ - \compdervect{#1}{y}{#2}\compdpos{y}+ - \compdervect{#1}{z}{#2}\compdpos{z}}} -\newcommand{\DervectdoteDpos}[2]{\ensuremath{ - \compDervect{#1}{x}{#2}\compDpos{x}+ - \compDervect{#1}{y}{#2}\compDpos{y}+ - \compDervect{#1}{z}{#2}\compDpos{z}}} -\newcommand{\vectcrossvect}[2]{\ensuremath{{#1}\times{#2}}} -\newcommand{\ltriplecross}[3]{\ensuremath{({#1}\times{#2})\times{#3}}} -\newcommand{\rtriplecross}[3]{\ensuremath{{#1}\times({#2}\times{#3})}} -\newcommand{\ltriplescalar}[3]{\ensuremath{{#1}\times{#2}\bullet{#3}}} -\newcommand{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\times{#3}}} -\newcommand{\ezero}{\ensuremath{\msub{\mathbf{e}}{0}}} -\newcommand{\eone}{\ensuremath{\msub{\mathbf{e}}{1}}} -\newcommand{\etwo}{\ensuremath{\msub{\mathbf{e}}{2}}} -\newcommand{\ethree}{\ensuremath{\msub{\mathbf{e}}{3}}} -\newcommand{\efour}{\ensuremath{\msub{\mathbf{e}}{4}}} -\newcommand{\ek}[1]{\ensuremath{\msub{\mathbf{e}}{#1}}} -\newcommand{\e}{\ek} -\newcommand{\uezero}{\ensuremath{\msub{\widehat{\mathbf{e}}}{0}}} -\newcommand{\ueone}{\ensuremath{\msub{\widehat{\mathbf{e}}}{1}}} -\newcommand{\uetwo}{\ensuremath{\msub{\widehat{\mathbf{e}}}{2}}} -\newcommand{\uethree}{\ensuremath{\msub{\widehat{\mathbf{e}}}{3}}} -\newcommand{\uefour}{\ensuremath{\msub{\widehat{\mathbf{e}}}{4}}} -\newcommand{\uek}[1]{\ensuremath{\msub{\widehat{\mathbf{e}}}{#1}}} -\newcommand{\ue}{\uek} -\newcommand{\ezerozero}{\ek{00}} -\newcommand{\ezeroone}{\ek{01}} -\newcommand{\ezerotwo}{\ek{02}} -\newcommand{\ezerothree}{\ek{03}} -\newcommand{\ezerofour}{\ek{04}} -\newcommand{\eoneone}{\ek{11}} -\newcommand{\eonetwo}{\ek{12}} -\newcommand{\eonethree}{\ek{13}} -\newcommand{\eonefour}{\ek{14}} -\newcommand{\etwoone}{\ek{21}} -\newcommand{\etwotwo}{\ek{22}} -\newcommand{\etwothree}{\ek{23}} -\newcommand{\etwofour}{\ek{24}} -\newcommand{\ethreeone}{\ek{31}} -\newcommand{\ethreetwo}{\ek{32}} -\newcommand{\ethreethree}{\ek{33}} -\newcommand{\ethreefour}{\ek{34}} -\newcommand{\efourone}{\ek{41}} -\newcommand{\efourtwo}{\ek{42}} -\newcommand{\efourthree}{\ek{43}} -\newcommand{\efourfour}{\ek{44}} -\newcommand{\euzero}{\ensuremath{\msup{\mathbf{e}}{0}}} -\newcommand{\euone}{\ensuremath{\msup{\mathbf{e}}{1}}} -\newcommand{\eutwo}{\ensuremath{\msup{\mathbf{e}}{2}}} -\newcommand{\euthree}{\ensuremath{\msup{\mathbf{e}}{3}}} -\newcommand{\eufour}{\ensuremath{\msup{\mathbf{e}}{4}}} -\newcommand{\euk}[1]{\ensuremath{\msup{\mathbf{e}}{#1}}} -\newcommand{\eu}{\euk} -\newcommand{\euzerozero}{\euk{00}} -\newcommand{\euzeroone}{\euk{01}} -\newcommand{\euzerotwo}{\euk{02}} -\newcommand{\euzerothree}{\euk{03}} -\newcommand{\euzerofour}{\euk{04}} -\newcommand{\euoneone}{\euk{11}} -\newcommand{\euonetwo}{\euk{12}} -\newcommand{\euonethree}{\euk{13}} -\newcommand{\euonefour}{\euk{14}} -\newcommand{\eutwoone}{\euk{21}} -\newcommand{\eutwotwo}{\euk{22}} -\newcommand{\eutwothree}{\euk{23}} -\newcommand{\eutwofour}{\euk{24}} -\newcommand{\euthreeone}{\euk{31}} -\newcommand{\euthreetwo}{\euk{32}} -\newcommand{\euthreethree}{\euk{33}} -\newcommand{\euthreefour}{\euk{34}} -\newcommand{\eufourone}{\euk{41}} -\newcommand{\eufourtwo}{\euk{42}} -\newcommand{\eufourthree}{\euk{43}} -\newcommand{\eufourfour}{\euk{44}} -\newcommand{\gzero}{\ensuremath{\msub{\mathbf{\gamma}}{0}}} -\newcommand{\gone}{\ensuremath{\msub{\mathbf{\gamma}}{1}}} -\newcommand{\gtwo}{\ensuremath{\msub{\mathbf{\gamma}}{2}}} -\newcommand{\gthree}{\ensuremath{\msub{\mathbf{\gamma}}{3}}} -\newcommand{\gfour}{\ensuremath{\msub{\mathbf{\gamma}}{4}}} -\newcommand{\gk}[1]{\ensuremath{\msub{\mathbf{\gamma}}{#1}}} -\newcommand{\g}{\gk} -\newcommand{\gzerozero}{\gk{00}} -\newcommand{\gzeroone}{\gk{01}} -\newcommand{\gzerotwo}{\gk{02}} -\newcommand{\gzerothree}{\gk{03}} -\newcommand{\gzerofour}{\gk{04}} -\newcommand{\goneone}{\gk{11}} -\newcommand{\gonetwo}{\gk{12}} -\newcommand{\gonethree}{\gk{13}} -\newcommand{\gonefour}{\gk{14}} -\newcommand{\gtwoone}{\gk{21}} -\newcommand{\gtwotwo}{\gk{22}} -\newcommand{\gtwothree}{\gk{23}} -\newcommand{\gtwofour}{\gk{24}} -\newcommand{\gthreeone}{\gk{31}} -\newcommand{\gthreetwo}{\gk{32}} -\newcommand{\gthreethree}{\gk{33}} -\newcommand{\gthreefour}{\gk{34}} -\newcommand{\gfourone}{\gk{41}} -\newcommand{\gfourtwo}{\gk{42}} -\newcommand{\gfourthree}{\gk{43}} -\newcommand{\gfourfour}{\gk{44}} -\newcommand{\guzero}{\ensuremath{\msup{\mathbf{\gamma}}{0}}} -\newcommand{\guone}{\ensuremath{\msup{\mathbf{\gamma}}{1}}} -\newcommand{\gutwo}{\ensuremath{\msup{\mathbf{\gamma}}{2}}} -\newcommand{\guthree}{\ensuremath{\msup{\mathbf{\gamma}}{3}}} -\newcommand{\gufour}{\ensuremath{\msup{\mathbf{\gamma}}{4}}} -\newcommand{\guk}[1]{\ensuremath{\msup{\mathbf{\gamma}}{#1}}} -\newcommand{\gu}{\guk} -\newcommand{\guzerozero}{\guk{00}} -\newcommand{\guzeroone}{\guk{01}} -\newcommand{\guzerotwo}{\guk{02}} -\newcommand{\guzerothree}{\guk{03}} -\newcommand{\guzerofour}{\guk{04}} -\newcommand{\guoneone}{\guk{11}} -\newcommand{\guonetwo}{\guk{12}} -\newcommand{\guonethree}{\guk{13}} -\newcommand{\guonefour}{\guk{14}} -\newcommand{\gutwoone}{\guk{21}} -\newcommand{\gutwotwo}{\guk{22}} -\newcommand{\gutwothree}{\guk{23}} -\newcommand{\gutwofour}{\guk{24}} -\newcommand{\guthreeone}{\guk{31}} -\newcommand{\guthreetwo}{\guk{32}} -\newcommand{\guthreethree}{\guk{33}} -\newcommand{\guthreefour}{\guk{34}} -\newcommand{\gufourone}{\guk{41}} -\newcommand{\gufourtwo}{\guk{42}} -\newcommand{\gufourthree}{\guk{43}} -\newcommand{\gufourfour}{\guk{44}} +\newcommand*{\vectcrossvect}[2]{\ensuremath{{#1}\boldsymbol{\times}{#2}}} +\newcommand*{\ltriplecross}[3]{\ensuremath{({#1}\boldsymbol{\times}{#2})% + \boldsymbol{\times}{#3}}} +\newcommand*{\rtriplecross}[3]{\ensuremath{{#1}\boldsymbol{\times}% + ({#2}\boldsymbol{\times}{#3})}} +\newcommand*{\ltriplescalar}[3]{\ensuremath{{#1}\boldsymbol{\times}{#2}\bullet{#3}}} +\newcommand*{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\boldsymbol{\times}{#3}}} +\newcommand*{\ezero}{\ensuremath{\msub{\boldsymbol{e}}{0}}} +\newcommand*{\eone}{\ensuremath{\msub{\boldsymbol{e}}{1}}} +\newcommand*{\etwo}{\ensuremath{\msub{\boldsymbol{e}}{2}}} +\newcommand*{\ethree}{\ensuremath{\msub{\boldsymbol{e}}{3}}} +\newcommand*{\efour}{\ensuremath{\msub{\boldsymbol{e}}{4}}} +\newcommand*{\ek}[1]{\ensuremath{\msub{\boldsymbol{e}}{#1}}} +\newcommand*{\e}{\ek} +\newcommand*{\uezero}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{0}}} +\newcommand*{\ueone}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{1}}} +\newcommand*{\uetwo}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{2}}} +\newcommand*{\uethree}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{3}}} +\newcommand*{\uefour}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{4}}} +\newcommand*{\uek}[1]{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{#1}}} +\newcommand*{\ue}{\uek} +\newcommand*{\ezerozero}{\ek{00}} +\newcommand*{\ezeroone}{\ek{01}} +\newcommand*{\ezerotwo}{\ek{02}} +\newcommand*{\ezerothree}{\ek{03}} +\newcommand*{\ezerofour}{\ek{04}} +\newcommand*{\eoneone}{\ek{11}} +\newcommand*{\eonetwo}{\ek{12}} +\newcommand*{\eonethree}{\ek{13}} +\newcommand*{\eonefour}{\ek{14}} +\newcommand*{\etwoone}{\ek{21}} +\newcommand*{\etwotwo}{\ek{22}} +\newcommand*{\etwothree}{\ek{23}} +\newcommand*{\etwofour}{\ek{24}} +\newcommand*{\ethreeone}{\ek{31}} +\newcommand*{\ethreetwo}{\ek{32}} +\newcommand*{\ethreethree}{\ek{33}} +\newcommand*{\ethreefour}{\ek{34}} +\newcommand*{\efourone}{\ek{41}} +\newcommand*{\efourtwo}{\ek{42}} +\newcommand*{\efourthree}{\ek{43}} +\newcommand*{\efourfour}{\ek{44}} +\newcommand*{\euzero}{\ensuremath{\boldsymbol{e}^0}} +\newcommand*{\euone}{\ensuremath{\boldsymbol{e}^1}} +\newcommand*{\eutwo}{\ensuremath{\boldsymbol{e}^2}} +\newcommand*{\euthree}{\ensuremath{\boldsymbol{e}^3}} +\newcommand*{\eufour}{\ensuremath{\boldsymbol{e}^4}} +\newcommand*{\euk}[1]{\ensuremath{\boldsymbol{e}^{#1}}} +\newcommand*{\eu}{\euk} +\newcommand*{\euzerozero}{\euk{00}} +\newcommand*{\euzeroone}{\euk{01}} +\newcommand*{\euzerotwo}{\euk{02}} +\newcommand*{\euzerothree}{\euk{03}} +\newcommand*{\euzerofour}{\euk{04}} +\newcommand*{\euoneone}{\euk{11}} +\newcommand*{\euonetwo}{\euk{12}} +\newcommand*{\euonethree}{\euk{13}} +\newcommand*{\euonefour}{\euk{14}} +\newcommand*{\eutwoone}{\euk{21}} +\newcommand*{\eutwotwo}{\euk{22}} +\newcommand*{\eutwothree}{\euk{23}} +\newcommand*{\eutwofour}{\euk{24}} +\newcommand*{\euthreeone}{\euk{31}} +\newcommand*{\euthreetwo}{\euk{32}} +\newcommand*{\euthreethree}{\euk{33}} +\newcommand*{\euthreefour}{\euk{34}} +\newcommand*{\eufourone}{\euk{41}} +\newcommand*{\eufourtwo}{\euk{42}} +\newcommand*{\eufourthree}{\euk{43}} +\newcommand*{\eufourfour}{\euk{44}} +\newcommand*{\gzero}{\ensuremath{\msub{\boldsymbol{\gamma}}{0}}} +\newcommand*{\gone}{\ensuremath{\msub{\boldsymbol{\gamma}}{1}}} +\newcommand*{\gtwo}{\ensuremath{\msub{\boldsymbol{\gamma}}{2}}} +\newcommand*{\gthree}{\ensuremath{\msub{\boldsymbol{\gamma}}{3}}} +\newcommand*{\gfour}{\ensuremath{\msub{\boldsymbol{\gamma}}{4}}} +\newcommand*{\gk}[1]{\ensuremath{\msub{\boldsymbol{\gamma}}{#1}}} +\newcommand*{\g}{\gk} +\newcommand*{\gzerozero}{\gk{00}} +\newcommand*{\gzeroone}{\gk{01}} +\newcommand*{\gzerotwo}{\gk{02}} +\newcommand*{\gzerothree}{\gk{03}} +\newcommand*{\gzerofour}{\gk{04}} +\newcommand*{\goneone}{\gk{11}} +\newcommand*{\gonetwo}{\gk{12}} +\newcommand*{\gonethree}{\gk{13}} +\newcommand*{\gonefour}{\gk{14}} +\newcommand*{\gtwoone}{\gk{21}} +\newcommand*{\gtwotwo}{\gk{22}} +\newcommand*{\gtwothree}{\gk{23}} +\newcommand*{\gtwofour}{\gk{24}} +\newcommand*{\gthreeone}{\gk{31}} +\newcommand*{\gthreetwo}{\gk{32}} +\newcommand*{\gthreethree}{\gk{33}} +\newcommand*{\gthreefour}{\gk{34}} +\newcommand*{\gfourone}{\gk{41}} +\newcommand*{\gfourtwo}{\gk{42}} +\newcommand*{\gfourthree}{\gk{43}} +\newcommand*{\gfourfour}{\gk{44}} +\newcommand*{\guzero}{\ensuremath{\boldsymbol{\gamma}^0}} +\newcommand*{\guone}{\ensuremath{\boldsymbol{\gamma}^1}} +\newcommand*{\gutwo}{\ensuremath{\boldsymbol{\gamma}^2}} +\newcommand*{\guthree}{\ensuremath{\boldsymbol{\gamma}^3}} +\newcommand*{\gufour}{\ensuremath{\boldsymbol{\gamma}^4}} +\newcommand*{\guk}[1]{\ensuremath{\boldsymbol{\gamma}^{#1}}} +\newcommand*{\gu}{\guk} +\newcommand*{\guzerozero}{\guk{00}} +\newcommand*{\guzeroone}{\guk{01}} +\newcommand*{\guzerotwo}{\guk{02}} +\newcommand*{\guzerothree}{\guk{03}} +\newcommand*{\guzerofour}{\guk{04}} +\newcommand*{\guoneone}{\guk{11}} +\newcommand*{\guonetwo}{\guk{12}} +\newcommand*{\guonethree}{\guk{13}} +\newcommand*{\guonefour}{\guk{14}} +\newcommand*{\gutwoone}{\guk{21}} +\newcommand*{\gutwotwo}{\guk{22}} +\newcommand*{\gutwothree}{\guk{23}} +\newcommand*{\gutwofour}{\guk{24}} +\newcommand*{\guthreeone}{\guk{31}} +\newcommand*{\guthreetwo}{\guk{32}} +\newcommand*{\guthreethree}{\guk{33}} +\newcommand*{\guthreefour}{\guk{34}} +\newcommand*{\gufourone}{\guk{41}} +\newcommand*{\gufourtwo}{\guk{42}} +\newcommand*{\gufourthree}{\guk{43}} +\newcommand*{\gufourfour}{\guk{44}} \ExplSyntaxOn % Vectors formated as in M\&I, written in LaTeX3 \NewDocumentCommand{\mivector}{ O{,} m o }% {% @@ -7898,458 +8873,567 @@ Sshows factors dividing to a sneaky one. \rowvector[,]{\msub{#2}{0},\msub{#2}{1},\msub{#2}{2},\msub{#2}{3}}% }% }% -\newphysicsconstant{oofpez}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}}}} -{\scin[8.9876]{9}}{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared} -[\m\per\farad][\newton\usk\m\squared\per\coulomb\squared] -\newcommand{\coulombconstant}{\oofpez} -\newphysicsconstant{oofpezcs}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o} -c^2\phantom{_o}}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} +\newphysicsconstant{oofpez}{\ensuremath{\frac{1} +{\phantom{_o}4\pi\epsilon_0}}}{\mi@p{9}{8.9876}\timestento{9}} +{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared}[\m\per\farad] +[\newton\usk\m\squared\per\coulomb\squared] +\newcommand*{\coulombconstant}{\oofpez} +\newphysicsconstant{oofpezcs}{\ensuremath{\frac{1} +{\phantom{_o}4\pi\epsilon_0 c^2\phantom{_o}}}}{\tento{-7}} +{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} [\T\usk\m\squared][\N\usk\s\squared\per\C\squared] -\newcommand{\altcoulombconstant}{\oofpezcs} -\newphysicsconstant{vacuumpermittivity}{\ensuremath{\ssub{\epsilon}{o}}}{\scin[8.8542]{-12}} +\newcommand*{\altcoulombconstant}{\oofpezcs} +\newphysicsconstant{vacuumpermittivity}{\ensuremath{\epsilon_0}} +{\mi@p{9.0}{8.8542}\timestento{-12}} {\m\reciprocalcubed\usk\reciprocal\kg\usk\s\quarted\usk\A\squared}[\F\per\m] [\C\squared\per\N\usk\m\squared] -\newphysicsconstant{mzofp}{\ensuremath{\frac{\phantom{_oo}\ssub{\mu}{o}\phantom{_o}} -{4\pi}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} +\newphysicsconstant{mzofp} +{\ensuremath{\frac{\phantom{_oo}\mu_0\phantom{_o}}{4\pi}}} +{\tento{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} [\henry\per\m][\tesla\usk\m\per\A] -\newcommand{\biotsavartconstant}{\mzofp} -\newphysicsconstant{vacuumpermeability}{\ensuremath{\ssub{\mu}{o}}}{\scin[4\pi]{-7}} -{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m] -[\T\usk\m\per\A] -\newphysicsconstant{boltzmann}{\ensuremath{\ssub{k}{B}}}{\scin[1.3806]{-23}} +\newcommand*{\biotsavartconstant}{\mzofp} +\newphysicsconstant{vacuumpermeability}{\ensuremath{\mu_0}} +{4\pi\timestento{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} +[\henry\per\m][\T\usk\m\per\A] +\newphysicsconstant{boltzmann}{\ensuremath{k_B}} +{\mi@p{1.4}{1.3806}\timestento{-23}} {\m\squared\usk\kg\usk\reciprocalsquare\s\usk\reciprocal\K}[\joule\per\K][\J\per\K] -\newcommand{\boltzmannconstant}{\boltzmann} -\newphysicsconstant{boltzmanninev}{\ensuremath{\ssub{k}{B}}}{\scin[8.6173]{-5}} +\newcommand*{\boltzmannconstant}{\boltzmann} +\newphysicsconstant{boltzmannineV}{\ensuremath{k_B}} +{\mi@p{8.6}{8.6173}\timestento{-5}} {\eV\usk\reciprocal\K}[\eV\per\K][\eV\per\K] -\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}}{\scin[5.6704]{-8}} +\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}} +{\mi@p{5.7}{5.6704}\timestento{-8}} {\kg\usk\s\reciprocalcubed\usk\K\reciprocalquarted}[\W\per\m\squared\usk\K^4] [\W\per\m\squared\usk\K\quarted] -\newcommand{\stefanboltzmannconstant}{\stefanboltzmann} -\newphysicsconstant{planck}{\ensuremath{h}}{\scin[6.6261]{-34}} +\newcommand*{\stefanboltzmannconstant}{\stefanboltzmann} +\newphysicsconstant{planck}{\ensuremath{h}}{\mi@p{6.6}{6.6261}\timestento{-34}} {\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s] -\newcommand{\planckconstant}{\planck} -\newphysicsconstant{planckinev}{\ensuremath{h}}{\scin[4.1357]{-15}} +\newcommand*{\planckconstant}{\planck} +\newphysicsconstant{planckineV}{\ensuremath{h}}{\mi@p{4.1}{4.1357}\timestento{-15}} {\eV\usk\s}[\eV\usk\s][\eV\usk\s] -\newphysicsconstant{planckbar}{\ensuremath{\hbar}}{\scin[1.0546]{-34}} +\newphysicsconstant{planckbar}{\ensuremath{\hslash}}{\mi@p{1.1}{1.0546}\timestento{-34}} {\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s] -\newcommand{\reducedplanckconstant}{\planckbar} -\newphysicsconstant{planckbarinev}{\ensuremath{\hbar}}{\scin[6.5821]{-16}} -{\eV\usk\s}[\eV\usk\s][\eV\usk\s] -\newphysicsconstant{planckc}{\ensuremath{hc}}{\scin[1.9864]{-25}} +\newcommand*{\reducedplanckconstant}{\planckbar} +\newphysicsconstant{planckbarineV}{\ensuremath{\hslash}} +{\mi@p{6.6}{6.5821}\timestento{-16}}{\eV\usk\s}[\eV\usk\s][\eV\usk\s] +\newphysicsconstant{planckc}{\ensuremath{hc}}{\mi@p{2.0}{1.9864}\timestento{-25}} {\m\cubed\usk\kg\usk\reciprocalsquare\s}[\J\usk\m][\J\usk\m] -\newcommand{\planckconstanttimesc}{\planckc} -\newphysicsconstant{planckcinev}{\ensuremath{hc}}{\scin[1.9864]{-25}} -{\eV\usk\ensuremath{\mathrm{n}\m}}[\eV\usk\ensuremath{\mathrm{n}\m}] -[\eV\usk\ensuremath{\mathrm{n}\m}] -\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}}{\scin[1.0974]{7}} -{\reciprocal\m}[\reciprocal\m][\reciprocal\m] -\newcommand{\rydbergconstant}{\rydberg} -\newphysicsconstant{bohrradius}{\ensuremath{\msub{a}{0}}}{\scin[5.2918]{-11}}{\m}[\m][\m] -\newphysicsconstant{finestructure}{\ensuremath{\alpha}}{\scin[7.2974]{-3}}{\relax} -\newcommand{\finestructureconstant}{\finestructure} -\newphysicsconstant{avogadro}{\ensuremath{\ssub{N}{A}}}{\scin[6.0221]{23}} -{\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol] -\newcommand{\avogadroconstant}{\avogadro} -\newphysicsconstant{universalgrav}{\ensuremath{G}}{\scin[6.6738]{-11}} +\newcommand*{\planckconstanttimesc}{\planckc} +\newphysicsconstant{planckcineV}{\ensuremath{hc}} +{\mi@p{2.0}{1.9864}\timestento{-25}}{\eV\usk\text{n}\m}[\eV\usk\text{n}\m] +[\eV\usk\text{n}\m] +\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}} +{\mi@p{1.1}{1.0974}\timestento{7}}{\reciprocal\m}[\reciprocal\m][\reciprocal\m] +\newcommand*{\rydbergconstant}{\rydberg} +\newphysicsconstant{bohrradius}{\ensuremath{a_0}}{\mi@p{5.3}{5.2918}\timestento{-11}} +{\m}[\m][\m] +\newphysicsconstant{finestructure}{\ensuremath{\alpha}} +{\mi@p{\frac{1}{137}}{7.2974\timestento{-3}}}{\relax} +\newcommand*{\finestructureconstant}{\finestructure} +\newphysicsconstant{avogadro}{\ensuremath{N_A}} +{\mi@p{6.0}{6.0221}\timestento{23}}{\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol] +\newcommand*{\avogadroconstant}{\avogadro} +\newphysicsconstant{universalgrav}{\ensuremath{G}}{\mi@p{6.7}{6.6738}\timestento{-11}} {\m\cubed\usk\reciprocal\kg\usk\s\reciprocalsquared}[\J\usk\m\per\kg\squared] [\N\usk\m\squared\per\kg\squared] -\newcommand{\universalgravitationalconstant}{\universalgrav} -\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{9.80}{\m\usk\s\reciprocalsquared} -[\N\per\kg][\m\per\s\squared] -\newcommand{\earthssurfacegravitationalfield}{\surfacegravfield} -\newphysicsconstant{clight}{\ensuremath{c}}{\scin[2.9979]{8}}{\m\usk\reciprocal\s} -[\m\per\s][\m\per\s] -\newcommand{\photonconstant}{\clight} -\newphysicsconstant{clightinfeet}{\ensuremath{c}}{0.9836} -{\ensuremath{\mathrm{ft}\usk\reciprocal\mathrm{n}\s}} -[\ensuremath{\mathrm{ft}\per\mathrm{n}\s}][\ensuremath{\mathrm{ft}\per\mathrm{n}\s}] -\newphysicsconstant{Ratom}{\ensuremath{\ssub{r}{atom}}}{\scin{-10}}{\m}[\m][\m] -\newcommand{\radiusofatom}{\Ratom} -\newphysicsconstant{Mproton}{\ensuremath{\ssub{m}{proton}}}{\scin[1.6726]{-27}} -{\kg}[\kg][\kg] -\newcommand{\massofproton}{\Mproton} -\newphysicsconstant{Mneutron}{\ensuremath{\ssub{m}{neutron}}}{\scin[1.6749]{-27}} -{\kg}[\kg][\kg] -\newcommand{\massofneutron}{\Mneutron} -\newphysicsconstant{Mhydrogen}{\ensuremath{\ssub{m}{hydrogen}}}{\scin[1.6737]{-27}} -{\kg}[\kg][\kg] -\newcommand{\massofhydrogen}{\Mhydrogen} -\newphysicsconstant{Melectron}{\ensuremath{\ssub{m}{electron}}}{\scin[9.1094]{-31}} -{\kg}[\kg][\kg] -\newcommand{\massofelectron}{\Melectron} -\newphysicsconstant{echarge}{\ensuremath{e}}{\scin[1.6022]{-19}}{\A\usk\s}[\C][\C] -\newcommand{\elementarycharge}{\echarge} -\newphysicsconstant{Qelectron}{\ensuremath{\ssub{Q}{electron}}}{-\echargevalue} +\newcommand*{\universalgravitationalconstant}{\universalgrav} +\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{\mi@p{9.8}{9.80}} +{\m\usk\s\reciprocalsquared}[\N\per\kg][\N\per\kg] +\newcommand*{\earthssurfacegravitationalfield}{\surfacegravfield} +\newphysicsconstant{clight}{\ensuremath{c}} +{\mi@p{3}{2.9979}\timestento{8}}{\m\usk\reciprocal\s}[\m\per\s][\m\per\s] +\newcommand*{\photonconstant}{\clight} +\newphysicsconstant{clightinfeet}{\ensuremath{c}}{\mi@p{1}{0.9836}} +{\text{ft}\usk\reciprocal{\text{n}\s}}[\text{ft}\per\text{n}\s] +[\text{ft}\per\mathrm{n}\s] +\newphysicsconstant{Ratom}{\ensuremath{r_{\text{atom}}}}{\tento{-10}}{\m}[\m][\m] +\newphysicsconstant{Mproton}{\ensuremath{m_p}} +{\mi@p{1.7}{1.6726}\timestento{-27}}{\kg}[\kg][\kg] +\newphysicsconstant{Mneutron}{\ensuremath{m_n}} +{\mi@p{1.7}{1.6749}\timestento{-27}}{\kg}[\kg][\kg] +\newphysicsconstant{Mhydrogen}{\ensuremath{m_H}} +{\mi@p{1.7}{1.6737}\timestento{-27}}{\kg}[\kg][\kg] +\newphysicsconstant{Melectron}{\ensuremath{m_e}} +{\mi@p{9.1}{9.1094}\timestento{-31}}{\kg}[\kg][\kg] +\newphysicsconstant{echarge}{\ensuremath{e}} +{\mi@p{1.6}{1.6022}\timestento{-19}}{\A\usk\s}[\C][\C] +\newcommand*{\elementarycharge}{\echarge} +\newphysicsconstant{Qelectron}{\ensuremath{Q_e}}{-\echargevalue} {\A\usk\s}[\C][\C] -\newphysicsconstant{qelectron}{\ensuremath{\ssub{q}{electron}}}{-\echargevalue} +\newphysicsconstant{qelectron}{\ensuremath{q_e}}{-\echargevalue} {\A\usk\s}[\C][\C] -\newcommand{\chargeofelectron}{\Qelectron} -\newphysicsconstant{Qproton}{\ensuremath{\ssub{Q}{proton}}}{+\echargevalue} +\newphysicsconstant{Qproton}{\ensuremath{Q_p}}{+\echargevalue} {\A\usk\s}[\C][\C] -\newphysicsconstant{qproton}{\ensuremath{\ssub{q}{proton}}}{+\echargevalue} +\newphysicsconstant{qproton}{\ensuremath{q_p}}{+\echargevalue} {\A\usk\s}[\C][\C] -\newcommand{\chargeofproton}{\Qproton} -\newphysicsconstant{MEarth}{\ensuremath{\ssub{M}{Earth}}}{\scin[5.9736]{24}}{\kg}[\kg][\kg] -\newcommand{\massofEarth}{\MEarth} -\newphysicsconstant{MMoon}{\ensuremath{\ssub{M}{Moon}}}{\scin[7.3459]{22}}{\kg}[\kg][\kg] -\newcommand{\massofMoon}{\MMoon} -\newphysicsconstant{MSun}{\ensuremath{\ssub{M}{Sun}}}{\scin[1.9891]{30}}{\kg}[\kg][\kg] -\newcommand{\massofSun}{\MSun} -\newphysicsconstant{REarth}{\ensuremath{\ssub{R}{Earth}}}{\scin[6.3675]{6}}{\m}[\m][\m] -\newcommand{\radiusofEarth}{\REarth} -\newphysicsconstant{RMoon}{\ensuremath{\ssub{R}{Moon}}}{\scin[1.7375]{6}}{\m}[\m][\m] -\newcommand{\radiusofMoon}{\RMoon} -\newphysicsconstant{RSun}{\ensuremath{\ssub{R}{Sun}}}{\scin[6.9634]{8}}{\m}[\m][\m] -\newcommand{\radiusofSun}{\RSun} -\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\scin[1.4960]{11}}{\m}[\m][\m] -\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\scin[1.4960]{11}}{\m}[\m][\m] -\newcommand{\EarthSundistance}{\ESdist} -\newcommand{\SunEarthdistance}{\SEdist} -\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}{\scin[3.8440]{8}}{\m}[\m][\m] -\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}{\scin[3.8440]{8}}{\m}[\m][\m] -\newcommand{\EarthMoondistance}{\ESdist} -\newcommand{\MoonEarthdistance}{\SEdist} -\newphysicsconstant{LSun}{\ensuremath{\ssub{L}{Sun}}}{\scin[3.8460]{26}} - {\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s] -\newphysicsconstant{TSun}{\ensuremath{\ssub{T}{Sun}}}{5778}{\K}[\K][\K] -\newphysicsconstant{MagSun}{\ensuremath{\ssub{M}{Sun}}}{+4.83}{}[][] -\newphysicsconstant{magSun}{\ensuremath{\ssub{m}{Sun}}}{-26.74}{}[][] -\newcommand{\Lstar}[1][\(\star\)]{\ensuremath{\ssub{L}{#1}}} -\newcommand{\Lsolar}{\ensuremath{\Lstar[\(\odot\)]}} -\newcommand{\Tstar}[1][\(\star\)]{\ensuremath{\ssub{T}{#1}}} -\newcommand{\Tsolar}{\ensuremath{\Tstar[\(\odot\)]}} -\newcommand{\Rstar}[1][\(\star\)]{\ensuremath{\ssub{R}{#1}}} -\newcommand{\Rsolar}{\ensuremath{\Rstar[\(\odot\)]}} -\newcommand{\Mstar}[1][\(\star\)]{\ensuremath{\ssub{M}{#1}}} -\newcommand{\Msolar}{\ensuremath{\Mstar[\(\odot\)]}} -\newcommand{\Fstar}[1][\(\star\)]{\ensuremath{\ssub{F}{#1}}} -\newcommand{\fstar}[1][\(\star\)]{\ensuremath{\ssub{f}{#1}}} -\newcommand{\Fsolar}{\ensuremath{\Fstar[\(\odot\)]}} -\newcommand{\fsolar}{\ensuremath{\fstar[\(\odot\)]}} -\newcommand{\Magstar}[1][\(\star\)]{\ensuremath{\ssub{M}{#1}}} -\newcommand{\magstar}[1][\(\star\)]{\ensuremath{\ssub{m}{#1}}} -\newcommand{\Magsolar}{\ensuremath{\Magstar[\(\odot\)]}} -\newcommand{\magsolar}{\ensuremath{\magstar[\(\odot\)]}} -\newcommand{\Dstar}[1][\(\star\)]{\ensuremath{\ssub{D}{#1}}} -\newcommand{\dstar}[1][\(\star\)]{\ensuremath{\ssub{d}{#1}}} -\newcommand{\Dsolar}{\ensuremath{\Dstar[\(\odot\)]}} -\newcommand{\dsolar}{\ensuremath{\dstar[\(\odot\)]}} -\newcommand{\onehalf}{\ensuremath{\frac{1}{2}}\xspace} -\newcommand{\onethird}{\ensuremath{\frac{1}{3}}\xspace} -\newcommand{\onefourth}{\ensuremath{\frac{1}{4}}\xspace} -\newcommand{\onefifth}{\ensuremath{\frac{1}{5}}\xspace} -\newcommand{\onesixth}{\ensuremath{\frac{1}{6}}\xspace} -\newcommand{\oneseventh}{\ensuremath{\frac{1}{7}}\xspace} -\newcommand{\oneeighth}{\ensuremath{\frac{1}{8}}\xspace} -\newcommand{\oneninth}{\ensuremath{\frac{1}{9}}\xspace} -\newcommand{\onetenth}{\ensuremath{\frac{1}{10}}\xspace} -\newcommand{\twooneths}{\ensuremath{\frac{2}{1}}\xspace} -\newcommand{\twohalves}{\ensuremath{\frac{2}{2}}\xspace} -\newcommand{\twothirds}{\ensuremath{\frac{2}{3}}\xspace} -\newcommand{\twofourths}{\ensuremath{\frac{2}{4}}\xspace} -\newcommand{\twofifths}{\ensuremath{\frac{2}{5}}\xspace} -\newcommand{\twosixths}{\ensuremath{\frac{2}{6}}\xspace} -\newcommand{\twosevenths}{\ensuremath{\frac{2}{7}}\xspace} -\newcommand{\twoeighths}{\ensuremath{\frac{2}{8}}\xspace} -\newcommand{\twoninths}{\ensuremath{\frac{2}{9}}\xspace} -\newcommand{\twotenths}{\ensuremath{\frac{2}{10}}\xspace} -\newcommand{\threeoneths}{\ensuremath{\frac{3}{1}}\xspace} -\newcommand{\threehalves}{\ensuremath{\frac{3}{2}}\xspace} -\newcommand{\threethirds}{\ensuremath{\frac{3}{3}}\xspace} -\newcommand{\threefourths}{\ensuremath{\frac{3}{4}}\xspace} -\newcommand{\threefifths}{\ensuremath{\frac{3}{5}}\xspace} -\newcommand{\threesixths}{\ensuremath{\frac{3}{6}}\xspace} -\newcommand{\threesevenths}{\ensuremath{\frac{3}{7}}\xspace} -\newcommand{\threeeighths}{\ensuremath{\frac{3}{8}}\xspace} -\newcommand{\threeninths}{\ensuremath{\frac{3}{9}}\xspace} -\newcommand{\threetenths}{\ensuremath{\frac{3}{10}}\xspace} -\newcommand{\fouroneths}{\ensuremath{\frac{4}{1}}\xspace} -\newcommand{\fourhalves}{\ensuremath{\frac{4}{2}}\xspace} -\newcommand{\fourthirds}{\ensuremath{\frac{4}{3}}\xspace} -\newcommand{\fourfourths}{\ensuremath{\frac{4}{4}}\xspace} -\newcommand{\fourfifths}{\ensuremath{\frac{4}{5}}\xspace} -\newcommand{\foursixths}{\ensuremath{\frac{4}{6}}\xspace} -\newcommand{\foursevenths}{\ensuremath{\frac{4}{7}}\xspace} -\newcommand{\foureighths}{\ensuremath{\frac{4}{8}}\xspace} -\newcommand{\fourninths}{\ensuremath{\frac{4}{9}}\xspace} -\newcommand{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace} -\newcommand{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}} -\newcommand{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}} -\@ifpackageloaded{physymb}{% - \typeout{mandi: Package physymb detected. Its commands will be used.} -}{% - \newcommand{\evalat}[2]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}}} -}% -\newcommand{\evaluatedat}[1]{\ensuremath{\Bigg.\Bigg\rvert_{#1}}} -\newcommandx{\integral}[4][1,2,usedefault]{\ensuremath{ +\newphysicsconstant{MEarth}{\ensuremath{M_{\text{Earth}}}} +{\mi@p{6.0}{5.9736}\timestento{24}}{\kg}[\kg][\kg] +\newphysicsconstant{MMoon}{\ensuremath{M_{\text{Moon}}}} +{\mi@p{7.3}{7.3459}\timestento{22}}{\kg}[\kg][\kg] +\newphysicsconstant{MSun}{\ensuremath{M_{\text{Sun}}}} +{\mi@p{2.0}{1.9891}\timestento{30}} +{\kg}[\kg][\kg] +\newphysicsconstant{REarth}{\ensuremath{R_{\text{Earth}}}} +{\mi@p{6.4}{6.3675}\timestento{6}}{\m}[\m][\m] +\newphysicsconstant{RMoon}{\ensuremath{R_{\text{Moon}}}} +{\mi@p{1.7}{1.7375}\timestento{6}}{\m}[\m][\m] +\newphysicsconstant{RSun}{\ensuremath{R_{\text{Sun}}}}{\mi@p{7.0}{6.9634}\timestento{8}} +{\m}[\m][\m] +\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\mi@p{1.5}{1.4960}\timestento{11}}{\m} +[\m][\m] +\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\mi@p{1.5}{1.4960}\timestento{11}}{\m} +[\m][\m] +\newcommand*{\EarthSundistance}{\ESdist} +\newcommand*{\SunEarthdistance}{\SEdist} +\newphysicsconstant{EMdist}{\magvectsub{r}{EM}} +{\mi@p{3.8}{3.8440}\timestento{8}}{\m}[\m][\m] +\newphysicsconstant{MEdist}{\magvectsub{r}{ME}} +{\mi@p{3.8}{3.8440}\timestento{8}}{\m}[\m][\m] +\newcommand*{\EarthMoondistance}{\ESdist} +\newcommand*{\MoonEarthdistance}{\SEdist} +\newphysicsconstant{LSun}{\ensuremath{L_{\text{Sun}}}} +{\mi@p{3.8}{3.8460}\timestento{26}}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W] +[\J\per\s] +\newphysicsconstant{TSun}{\ensuremath{T_{\text{Sun}}}}{\mi@p{5800}{5778}}{\K}[\K][\K] +\newphysicsconstant{MagSun}{\ensuremath{M_{\text{Sun}}}}{+4.83}{}[][] +\newphysicsconstant{magSun}{\ensuremath{m_{\text{Sun}}}}{-26.74}{}[][] +\newcommand*{\Lstar}[1][\(\star\)]{\ensuremath{L_{\text{#1}}}\xspace} +\newcommand*{\Lsolar}{\ensuremath{\Lstar[\(\odot\)]}\xspace} +\newcommand*{\Tstar}[1][\(\star\)]{\ensuremath{T_{\text{#1}}}\xspace} +\newcommand*{\Tsolar}{\ensuremath{\Tstar[\(\odot\)]}\xspace} +\newcommand*{\Rstar}[1][\(\star\)]{\ensuremath{R_{\text{#1}}}\xspace} +\newcommand*{\Rsolar}{\ensuremath{\Rstar[\(\odot\)]}\xspace} +\newcommand*{\Mstar}[1][\(\star\)]{\ensuremath{M_{\text{#1}}}\xspace} +\newcommand*{\Msolar}{\ensuremath{\Mstar[\(\odot\)]}\xspace} +\newcommand*{\Fstar}[1][\(\star\)]{\ensuremath{F_{\text{#1}}}\xspace} +\newcommand*{\fstar}[1][\(\star\)]{\ensuremath{f_{\text{#1}}}\xspace} +\newcommand*{\Fsolar}{\ensuremath{\Fstar[\(\odot\)]}\xspace} +\newcommand*{\fsolar}{\ensuremath{\fstar[\(\odot\)]}\xspace} +\newcommand*{\Magstar}[1][\(\star\)]{\ensuremath{M_{\text{#1}}}\xspace} +\newcommand*{\magstar}[1][\(\star\)]{\ensuremath{m_{\text{#1}}}\xspace} +\newcommand*{\Magsolar}{\ensuremath{\Magstar[\(\odot\)]}\xspace} +\newcommand*{\magsolar}{\ensuremath{\magstar[\(\odot\)]}\xspace} +\newcommand*{\Dstar}[1][\(\star\)]{\ensuremath{D_{\text{#1}}}\xspace} +\newcommand*{\dstar}[1][\(\star\)]{\ensuremath{d_{\text{#1}}}\xspace} +\newcommand*{\Dsolar}{\ensuremath{\Dstar[\(\odot\)]}\xspace} +\newcommand*{\dsolar}{\ensuremath{\dstar[\(\odot\)]}\xspace} +\newcommand*{\onehalf}{\ensuremath{\frac{1}{2}}\xspace} +\newcommand*{\onethird}{\ensuremath{\frac{1}{3}}\xspace} +\newcommand*{\onefourth}{\ensuremath{\frac{1}{4}}\xspace} +\newcommand*{\onefifth}{\ensuremath{\frac{1}{5}}\xspace} +\newcommand*{\onesixth}{\ensuremath{\frac{1}{6}}\xspace} +\newcommand*{\oneseventh}{\ensuremath{\frac{1}{7}}\xspace} +\newcommand*{\oneeighth}{\ensuremath{\frac{1}{8}}\xspace} +\newcommand*{\oneninth}{\ensuremath{\frac{1}{9}}\xspace} +\newcommand*{\onetenth}{\ensuremath{\frac{1}{10}}\xspace} +\newcommand*{\twooneths}{\ensuremath{\frac{2}{1}}\xspace} +\newcommand*{\twohalves}{\ensuremath{\frac{2}{2}}\xspace} +\newcommand*{\twothirds}{\ensuremath{\frac{2}{3}}\xspace} +\newcommand*{\twofourths}{\ensuremath{\frac{2}{4}}\xspace} +\newcommand*{\twofifths}{\ensuremath{\frac{2}{5}}\xspace} +\newcommand*{\twosixths}{\ensuremath{\frac{2}{6}}\xspace} +\newcommand*{\twosevenths}{\ensuremath{\frac{2}{7}}\xspace} +\newcommand*{\twoeighths}{\ensuremath{\frac{2}{8}}\xspace} +\newcommand*{\twoninths}{\ensuremath{\frac{2}{9}}\xspace} +\newcommand*{\twotenths}{\ensuremath{\frac{2}{10}}\xspace} +\newcommand*{\threeoneths}{\ensuremath{\frac{3}{1}}\xspace} +\newcommand*{\threehalves}{\ensuremath{\frac{3}{2}}\xspace} +\newcommand*{\threethirds}{\ensuremath{\frac{3}{3}}\xspace} +\newcommand*{\threefourths}{\ensuremath{\frac{3}{4}}\xspace} +\newcommand*{\threefifths}{\ensuremath{\frac{3}{5}}\xspace} +\newcommand*{\threesixths}{\ensuremath{\frac{3}{6}}\xspace} +\newcommand*{\threesevenths}{\ensuremath{\frac{3}{7}}\xspace} +\newcommand*{\threeeighths}{\ensuremath{\frac{3}{8}}\xspace} +\newcommand*{\threeninths}{\ensuremath{\frac{3}{9}}\xspace} +\newcommand*{\threetenths}{\ensuremath{\frac{3}{10}}\xspace} +\newcommand*{\fouroneths}{\ensuremath{\frac{4}{1}}\xspace} +\newcommand*{\fourhalves}{\ensuremath{\frac{4}{2}}\xspace} +\newcommand*{\fourthirds}{\ensuremath{\frac{4}{3}}\xspace} +\newcommand*{\fourfourths}{\ensuremath{\frac{4}{4}}\xspace} +\newcommand*{\fourfifths}{\ensuremath{\frac{4}{5}}\xspace} +\newcommand*{\foursixths}{\ensuremath{\frac{4}{6}}\xspace} +\newcommand*{\foursevenths}{\ensuremath{\frac{4}{7}}\xspace} +\newcommand*{\foureighths}{\ensuremath{\frac{4}{8}}\xspace} +\newcommand*{\fourninths}{\ensuremath{\frac{4}{9}}\xspace} +\newcommand*{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace} +\newcommand*{\sumoverall}[1]{\ensuremath{\displaystyle\sum_{\substack{\text{\tiny{all }} + \text{\tiny{{#1}}}}}}} +\newcommand*{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}} +\newcommand*{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}} +\newcommand*{\evalat}[2]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}}} +\newcommand*{\evaluatedat}[1]{\ensuremath{\Bigg.\Bigg\rvert_{#1}}} +\newcommandx{\integral}[4][1,2,usedefault]{\ensuremath{% \int_{\ifthenelse{\equal{#1}{}}{}{#4=#1}}^{\ifthenelse{\equal{#2}{}}{}{#4=#2}}} {#3}\dx{#4}} -\newcommandx{\Integral}[4][1,2,usedefault]{\ensuremath{ - \bigint_{\ifthenelse{\equal{#1}{}}{}{#4=#1}}^{\ifthenelse{\equal{#2}{}}{} - {#4=#2}}}{#3}\dx{#4}} -\newcommand{\opensurfintegral}[2]{\ensuremath{ - \int\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}} -\newcommand{\opensurfIntegral}[2]{\ensuremath{ - \bigint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}} - \vectdotvect{\vect{#2}}{\dirvect{n}} - \dx{A}}} -\newcommand{\closedsurfintegral}[2]{\ensuremath{ - \oint\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}} -\newcommand{\closedsurfIntegral}[2]{\ensuremath{ - \bigoint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}}\;\; - \vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}} -\newcommand{\openlineintegral}[2]{\ensuremath{ - \int\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{t}} - \dx{\ell}}} -\newcommand{\openlineIntegral}[2]{\ensuremath{ - \bigint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}} - \vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}} -\newcommand{\closedlineintegral}[2]{\ensuremath{ - \oint\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}} -\newcommand{\closedlineIntegral}[2]{\ensuremath{ - \bigoint\nolimits_{\mskip -25.00mu\displaystyle\mathbf {#1}}\;\; - \vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}} +\newcommand*{\opensurfaceintegral}[2]{\ensuremath{% + \iint\nolimits_{#1}\vectdotvect{#2}{\dirvect{n}}\dx{A}}} +\newcommand*{\closedsurfaceintegral}[2]{\ensuremath{% + \varoiint\nolimits_{#1}\vectdotvect{#2}{\dirvect{n}}\dx{A}}} +\newcommand*{\openlineintegral}[2]{\ensuremath{% + \int\nolimits_{#1}\vectdotvect{#2}{\dirvect{t}}\dx{\ell}}} +\newcommand*{\closedlineintegral}[2]{\ensuremath{% + \oint\nolimits_{#1}\vectdotvect{#2}{\dirvect{t}}\dx{\ell}}} +\newcommand*{\volumeintegral}[2]{\ensuremath{\iiint\nolimits_{#1}{#2}\dx{V}}} \newcommandx{\dbydt}[1][1]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}t}}} \newcommandx{\DbyDt}[1][1]{\ensuremath{\frac{\Delta{#1}}{\Delta t}}} \newcommandx{\ddbydt}[1][1]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}t^{2}}}} \newcommandx{\DDbyDt}[1][1]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta t^{2}}}} \newcommandx{\pbypt}[1][1]{\ensuremath{\frac{\partial{#1}}{\partial t}}} \newcommandx{\ppbypt}[1][1]{\ensuremath{\frac{\partial^{2}{#1}}{\partial t^{2}}}} -\newcommand{\dbyd}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}} -\newcommand{\DbyD}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}} -\newcommand{\ddbyd}[2]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}{#2}^{2}}}} -\newcommand{\DDbyD}[2]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta{#2}^{2}}}} -\newcommand{\pbyp}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}} -\newcommand{\ppbyp}[2]{\ensuremath{\frac{\partial^{2}{#1}}{\partial{#2}^{2}}}} -\newcommand{\seriesfofx}{\ensuremath{% +\newcommand*{\dbyd}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}} +\newcommand*{\DbyD}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}} +\newcommand*{\ddbyd}[2]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}{#2}^{2}}}} +\newcommand*{\DDbyD}[2]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta{#2}^{2}}}} +\newcommand*{\pbyp}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}} +\newcommand*{\ppbyp}[2]{\ensuremath{\frac{\partial^{2}{#1}}{\partial{#2}^{2}}}} +\newcommand*{\seriesfofx}{\ensuremath{% f(x) \approx f(a) + \frac{f^\prime (a)}{1!}(x-a) + \frac{f^{\prime\prime}(a)}{2!}(x-a)^2 + \frac{f^{\prime\prime\prime}(a)}{3!}(x-a)^3 + \ldots}\xspace} -\newcommand{\seriesexpx}{\ensuremath{% +\newcommand*{\seriesexpx}{\ensuremath{% e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots}\xspace} -\newcommand{\seriessinx}{\ensuremath{% +\newcommand*{\seriessinx}{\ensuremath{% \sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots}\xspace} -\newcommand{\seriescosx}{\ensuremath{% +\newcommand*{\seriescosx}{\ensuremath{% \cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots}\xspace} -\newcommand{\seriestanx}{\ensuremath{% +\newcommand*{\seriestanx}{\ensuremath{% \tan x \approx x + \frac{x^3}{3} + \frac{2x^5}{15} + \ldots}\xspace} -\newcommand{\seriesatox}{\ensuremath{% +\newcommand*{\seriesatox}{\ensuremath{% a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ldots} \xspace} -\newcommand{\serieslnoneplusx}{\ensuremath{% -\ln(1 \pm x) \approx \pm\; x - \frac{x^2}{2} \pm \frac{x^3}{3} - \frac{x^4}{4} \pm \ldots} -\xspace} -\newcommand{\binomialseries}{\ensuremath{% +\newcommand*{\serieslnoneplusx}{\ensuremath{% +\ln(1 \pm x) \approx \pm\; x - \frac{x^2}{2} \pm \frac{x^3}{3} - \frac{x^4}{4} \pm +\ldots}\xspace} +\newcommand*{\binomialseries}{\ensuremath{% (1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots}\xspace} -\@ifpackageloaded{physymb}{% - \typeout{mandi: Package physymb detected. Its commands will be used.} -}{% - \newcommand{\gradient}{\ensuremath{\nabla}} - \newcommand{\divergence}{\ensuremath{\nabla\bullet}} - \newcommand{\curl}{\ensuremath{\nabla\times}} - \newcommand{\laplacian}{\ensuremath{\msup{\nabla}{2}}} - \newcommand{\dalembertian}{\ensuremath{\Box}} -}% -\newcommand{\diracdelta}[1]{\ensuremath{\boldsymbol{\delta}\quant{#1}}} -\@ifpackageloaded{physymb}{% - \typeout{mandi: Package physymb detected. Its commands will be used.} -}{% - \DeclareMathOperator{\asin}{\sin^{-1}} - \DeclareMathOperator{\acos}{\cos^{-1}} - \DeclareMathOperator{\atan}{\tan^{-1}} - \DeclareMathOperator{\asec}{\sec^{-1}} - \DeclareMathOperator{\acsc}{\csc^{-1}} - \DeclareMathOperator{\acot}{\cot^{-1}} - \DeclareMathOperator{\sech}{sech} - \DeclareMathOperator{\csch}{csch} - \DeclareMathOperator{\asinh}{\sinh^{-1}} - \DeclareMathOperator{\acosh}{\cosh^{-1}} - \DeclareMathOperator{\atanh}{\tanh^{-1}} - \DeclareMathOperator{\asech}{\sech^{-1}} - \DeclareMathOperator{\acsch}{\csch^{-1}} - \DeclareMathOperator{\acoth}{\coth^{-1}} - \DeclareMathOperator{\sgn}{sgn} -}% +\newcommand*{\gradient}{\ensuremath{\boldsymbol{\nabla}}} +\newcommand*{\divergence}{\ensuremath{\boldsymbol{\nabla}\bullet}} +\newcommand*{\curl}{\ensuremath{\boldsymbol{\nabla\times}}} +\newcommand*{\laplacian}{\ensuremath{\boldsymbol{\nabla}^2}} +\newcommand*{\dalembertian}{\ensuremath{\boldsymbol{\Box}}} +\newcommand*{\diracdelta}[1]{\ensuremath{\delta}(#1)} +\newcommand*{\orderof}[1]{\ensuremath{\mathcal{O}(#1)}} +\DeclareMathOperator{\asin}{\sin^{-1}} +\DeclareMathOperator{\acos}{\cos^{-1}} +\DeclareMathOperator{\atan}{\tan^{-1}} +\DeclareMathOperator{\asec}{\sec^{-1}} +\DeclareMathOperator{\acsc}{\csc^{-1}} +\DeclareMathOperator{\acot}{\cot^{-1}} +\DeclareMathOperator{\sech}{sech} +\DeclareMathOperator{\csch}{csch} +\DeclareMathOperator{\asinh}{\sinh^{-1}} +\DeclareMathOperator{\acosh}{\cosh^{-1}} +\DeclareMathOperator{\atanh}{\tanh^{-1}} +\DeclareMathOperator{\asech}{\sech^{-1}} +\DeclareMathOperator{\acsch}{\csch^{-1}} +\DeclareMathOperator{\acoth}{\coth^{-1}} +\DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\dex}{dex} -\newcommand{\logb}[1][\relax]{\ensuremath{\log_{_{#1}}}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\cB}{\ensuremath{c\mskip -5.00mu B}}} - {\newcommand{\cB}{\ensuremath{\textsf{c}\mskip -3.00mu\mathrm{B}}}} -\newcommand{\newpi}{\ensuremath{\pi\mskip -7.8mu\pi}} -\newcommand{\scripty}[1]{\ensuremath{\mathcalligra{#1}}} +\newcommand*{\logb}[1][\relax]{\ensuremath{\log_{#1}}} +\ifthenelse{\boolean{@optboldvectors}} + {\newcommand*{\cB}{\ensuremath{\boldsymbol{c\mskip -3.00mu B}}}} + {\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\cB}{\ensuremath{\textsf{c}\mskip -3.00mu\mathrm{B}}}} + {\newcommand*{\cB}{\ensuremath{c\mskip -3.00mu B}}}} +\newcommand*{\newpi}{\ensuremath{\pi\mskip -7.8mu\pi}} +\newcommand*{\scripty}[1]{\ensuremath{\mathcalligra{#1}}} \newcommandx{\flux}[1][1]{\ensuremath{\ssub{\Phi}{#1}}} -\@ifpackageloaded{physymb}{% - \typeout{mandi: Package physymb detected. Its commands will be used.} +\@ifpackageloaded{commath}{% + \typeout{mandi: Package commath detected. Its \protect\abs\space command will + be used.} }{% - \newcommand{\abs}[1]{\ensuremath{\left\lvert{#1}\right\rvert}} + \typeout{mandi: Package commath not detected. mandi's \protect\abs\space command + will be used.} + \newcommand*{\abs}[1]{\ensuremath{\left\lvert{#1}\right\rvert}} }% -\newcommand{\magof}[1]{\ensuremath{\left\lVert{#1}\right\rVert}} -\newcommand{\dimsof}[1]{\ensuremath{\left[{#1}\right]}} -\newcommand{\unitsof}[1]{\ensuremath{\left[{#1}\right]_{_{u}}}} -\newcommand{\quant}[1]{\ensuremath{\left({#1}\right)}} -\newcommand{\bquant}[1]{\ensuremath{\left[{#1}\right]}} -\newcommand{\changein}[1]{\ensuremath{\delta{#1}}} -\newcommand{\Changein}[1]{\ensuremath{\Delta{#1}}} +\newcommand*{\magof}[1]{\ensuremath{\left\lVert{#1}\right\rVert}} +\newcommand*{\dimsof}[1]{\ensuremath{\left[{#1}\right]}} +\newcommand*{\unitsof}[1]{\ensuremath{\left[{#1}\right]_u}} +\newcommand*{\changein}[1]{\ensuremath{\delta{#1}}} +\newcommand*{\Changein}[1]{\ensuremath{\Delta{#1}}} \newcommandx{\scin}[3][1,3=\!\!,usedefault]{\ensuremath{% \ifthenelse{\equal{#1}{}} - {\unit{\msup{10}{#2}}{#3}} - {\unit{\msup{{#1}\times 10}{#2}}{#3}}}} -\newcommand{\ee}[2]{\texttt{{#1}e{#2}}} -\newcommand{\EE}[2]{\texttt{{#1}E{#2}}} -\newcommand{\dms}[3]{\ensuremath{\indegrees{#1}\inarcminutes{#2}\inarcseconds{#3}}} -\newcommand{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}} -\newcommand{\clockreading}{\hms} -\newcommand{\latitude}[1]{\ensuremath{\unit{#1}{\degree}}} -\newcommand{\latitudeN}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{N}}}} -\newcommand{\latitudeS}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{S}}}} -\newcommand{\longitude}[1]{\ensuremath{\unit{#1}{\degree}}} -\newcommand{\longitudeE}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{E}}}} -\newcommand{\longitudeW}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{W}}}} -% I have never liked \LaTeX's default subscript positioning, so I have this -% command instead. There may be a better way of doing this. -\newcommand{\ssub}[2]{\ensuremath{{#1}_{_{_{\mbox{\tiny{#2}}}}}}} -% I have never liked \LaTeX's default superscript positioning, so I have this -% command instead. There may be a better way of doing this. -\newcommand{\ssup}[2]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}}} -\newcommand{\ssud}[3]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}_{_{_{\mbox{\tiny{#3}}}}}}} -% I have never liked \LaTeX's default subscript positioning, so I have this -% command instead. There may be a better way of doing this. -\newcommand{\msub}[2]{\ensuremath{#1^{^{\scriptstyle{{}}}}_{_{_{\scriptstyle{#2}}}}}} -% I have never liked \LaTeX's default superscript positioning, so I have this -% command instead. There may be a better way of doing this. -\newcommand{\msup}[2]{\ensuremath{#1^{^{\scriptstyle{#2}}}}} -\newcommand{\msud}[3]{\ensuremath{#1^{^{\scriptstyle{#2}}}_{_{_{\scriptstyle{#3}}}}}} -\newcommand{\levicivita}[1]{\ensuremath{\msub{\varepsilon}{#1}}} -\newcommand{\kronecker}[1]{\ensuremath{\msub{\delta}{#1}}} -\newcommand{\xaxis}{\ensuremath{x\mbox{-axis }}} -\newcommand{\yaxis}{\ensuremath{y\mbox{-axis }}} -\newcommand{\zaxis}{\ensuremath{z\mbox{-axis }}} -\newcommand{\naxis}[1]{\ensuremath{{#1}\mbox{-axis}}} -\newcommand{\xyplane}{\ensuremath{xy\mbox{-plane }}} -\newcommand{\yzplane}{\ensuremath{yz\mbox{-plane }}} -\newcommand{\zxplane}{\ensuremath{zx\mbox{-plane }}} -\newcommand{\yxplane}{\ensuremath{yx\mbox{-plane }}} -\newcommand{\zyplane}{\ensuremath{zy\mbox{-plane }}} -\newcommand{\xzplane}{\ensuremath{xz\mbox{-plane }}} + {\unit{10^{#2}}{#3}} + {\unit{{#1}\times 10^{#2}}{#3}}}} +\newcommandx{\timestento}[2][2=\!\!,usedefault]{\ensuremath{% + \ifthenelse{\equal{#2}{}} + {\unit{\;\times\;10^{#1}}{}} + {\unit{\;\times\;10^{#1}}{#2}}}} +\newcommand*{\xtento}{\timestento} +\newcommandx{\tento}[2][2=\!\!,usedefault]{\ensuremath{% + \ifthenelse{\equal{#2}{}} + {\unit{10^{#1}}{}} + {\unit{10^{#1}}{#2}}}} +\newcommand*{\ee}[2]{\texttt{{#1}e{#2}}} +\newcommand*{\EE}[2]{\texttt{{#1}E{#2}}} +\newcommand*{\dms}[3]{\ensuremath{\indegrees{#1}\inarcminutes{#2}\inarcseconds{#3}}} +\newcommand*{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}} +\newcommand*{\clockreading}{\hms} +\newcommand*{\latitude}[1]{\unit{#1}{\degree}} +\newcommand*{\latitudeN}[1]{\unit{#1}{\degree\;\mathrm{N}}} +\newcommand*{\latitudeS}[1]{\unit{#1}{\degree\;\mathrm{S}}} +\newcommand*{\longitude}[1]{\unit{#1}{\degree}} +\newcommand*{\longitudeE}[1]{\unit{#1}{\degree\;\mathrm{E}}} +\newcommand*{\longitudeW}[1]{\unit{#1}{\degree\;\mathrm{W}}} +\newcommand*{\ssub}[2]{\ensuremath{#1_{\text{#2}}}} +\newcommand*{\ssup}[2]{\ensuremath{#1^{\text{#2}}}} +\newcommand*{\ssud}[3]{\ensuremath{#1^{\text{#2}}_{\text{#3}}}} +\newcommand*{\msub}[2]{\ensuremath{#1_{#2}}} +\newcommand*{\msup}[2]{\ensuremath{#1^{#2}}} +\newcommand*{\msud}[3]{\ensuremath{#1^{#2}_{#3}}} +\newcommand*{\levicivita}[1]{\ensuremath{\varepsilon_{\scriptscriptstyle{#1}}}} +\newcommand*{\kronecker}[1]{\ensuremath{\delta_{\scriptscriptstyle{#1}}}} +\newcommand*{\xaxis}{\ensuremath{x\text{-axis}}\xspace} +\newcommand*{\yaxis}{\ensuremath{y\text{-axis}}\xspace} +\newcommand*{\zaxis}{\ensuremath{z\text{-axis}}\xspace} +\newcommand*{\naxis}[1]{\ensuremath{{#1}\text{-axis}}\xspace} +\newcommand*{\axis}{\ensuremath{\text{-axis}}\xspace} +\newcommand*{\xyplane}{\ensuremath{xy\text{-plane}}\xspace} +\newcommand*{\yzplane}{\ensuremath{yz\text{-plane}}\xspace} +\newcommand*{\zxplane}{\ensuremath{zx\text{-plane}}\xspace} +\newcommand*{\yxplane}{\ensuremath{yx\text{-plane}}\xspace} +\newcommand*{\zyplane}{\ensuremath{zy\text{-plane}}\xspace} +\newcommand*{\xzplane}{\ensuremath{xz\text{-plane}}\xspace} +\newcommand*{\plane}{\ensuremath{\text{-plane}}\xspace} % Frequently used roots. Prepend |f| for fractional exponents. -\newcommand{\cuberoot}[1]{\ensuremath{\sqrt[3]{#1}}} -\newcommand{\fourthroot}[1]{\ensuremath{\sqrt[4]{#1}}} -\newcommand{\fifthroot}[1]{\ensuremath{\sqrt[5]{#1}}} -\newcommand{\fsqrt}[1]{\ensuremath{\msup{#1}{\onehalf}}} -\newcommand{\fcuberoot}[1]{\ensuremath{\msup{#1}{\onethird}}} -\newcommand{\ffourthroot}[1]{\ensuremath{\msup{#1}{\onefourth}}} -\newcommand{\ffifthroot}[1]{\ensuremath{\msup{#1}{\onefifth}}} -\newcommand{\relgamma}[1]{\ensuremath{ - \frac{1}{\sqrt{1-\msup{\quant{\frac{#1}{c}}}{2}}}}} -\newcommand{\frelgamma}[1]{\ensuremath{ - \msup{\quant{1-\frac{\msup{{#1}}{2}}{\msup{c}{2}}}}{-\onehalf}}} -\newcommand{\oosqrtomxs}[1]{\ensuremath{\frac{1}{\sqrt{1-\msup{#1}{2}}}}} -\newcommand{\oosqrtomx}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}}}}} -\newcommand{\ooomx}[1]{\ensuremath{\frac{1}{1-{#1}}}} -\newcommand{\ooopx}[1]{\ensuremath{\frac{1}{1+{#1}}}} -\newcommand{\isequals}{\wordoperator{?}{=}\xspace} -\newcommand{\wordoperator}[2]{\ensuremath{% +\newcommand*{\cuberoot}[1]{\ensuremath{\sqrt[3]{#1}}} +\newcommand*{\fourthroot}[1]{\ensuremath{\sqrt[4]{#1}}} +\newcommand*{\fifthroot}[1]{\ensuremath{\sqrt[5]{#1}}} +\newcommand*{\fsqrt}[1]{\ensuremath{{#1}^\onehalf}} +\newcommand*{\fcuberoot}[1]{\ensuremath{{#1}^\onethird}} +\newcommand*{\ffourthroot}[1]{\ensuremath{{#1}^\onefourth}} +\newcommand*{\ffifthroot}[1]{\ensuremath{{#1}^\onefifth}} +\newcommand*{\relgamma}[1]{\ensuremath{% + \frac{1}{\sqrt{1-(\frac{#1}{c})\squared}}}} +\newcommand*{\frelgamma}[1]{\ensuremath{% + (1-\frac{{#1}\squared}{c\squared})^{-\onehalf}}} +\newcommand*{\oosqrtomxs}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}\squared}}}} +\newcommand*{\oosqrtomx}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}}}}} +\newcommand*{\ooomx}[1]{\ensuremath{\frac{1}{1-{#1}}}} +\newcommand*{\ooopx}[1]{\ensuremath{\frac{1}{1+{#1}}}} +\newcommand*{\isequals}{\wordoperator{?}{=}\xspace} +\newcommand*{\wordoperator}[2]{\ensuremath{% \mathrel{\vcenter{\offinterlineskip \halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex} {#1}\cr\noalign{\vskip.5ex}{#2}\cr}}}}} -\newcommand{\definedas}{\wordoperator{defined}{as}\xspace} -\newcommand{\associated}{\wordoperator{associated}{with}\xspace} -\newcommand{\adjustedby}{\wordoperator{adjusted}{by}\xspace} -\newcommand{\earlierthan}{\wordoperator{earlier}{than}\xspace} -\newcommand{\laterthan}{\wordoperator{later}{than}\xspace} -\newcommand{\forevery}{\wordoperator{for}{every}\xspace} -\newcommand{\pwordoperator}[2]{\ensuremath{\left(% - \mathrel{\vcenter{\offinterlineskip - \halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex} +\newcommand*{\definedas}{\wordoperator{defined}{as}\xspace} +\newcommand*{\associated}{\wordoperator{associated}{with}\xspace} +\newcommand*{\adjustedby}{\wordoperator{adjusted}{by}\xspace} +\newcommand*{\earlierthan}{\wordoperator{earlier}{than}\xspace} +\newcommand*{\laterthan}{\wordoperator{later}{than}\xspace} +\newcommand*{\forevery}{\wordoperator{for}{every}\xspace} +\newcommand*{\pwordoperator}[2]{\ensuremath{\left(% + \mathrel{\vcenter{\offinterlineskip% + \halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex}% {#1}\cr\noalign{\vskip.5ex}{#2}\cr}}}\right)}}% -\newcommand{\pdefinedas}{\pwordoperator{defined}{as}\xspace} -\newcommand{\passociated}{\pwordoperator{associated}{with}\xspace} -\newcommand{\padjustedby}{\pwordoperator{adjusted}{by}\xspace} -\newcommand{\pearlierthan}{\pwordoperator{earlier}{than}\xspace} -\newcommand{\platerthan}{\pwordoperator{later}{than}\xspace} -\newcommand{\pforevery}{\pwordoperator{for}{every}\xspace} -\newcommand{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace} -\newcommand{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}}\xspace} -\newcommand{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace} -\newcommand{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace} -\newcommand{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}} -\newcommand{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}} -\newcommand{\brelatedto}[2]{\ensuremath{% +\newcommand*{\pdefinedas}{\pwordoperator{defined}{as}\xspace} +\newcommand*{\passociated}{\pwordoperator{associated}{with}\xspace} +\newcommand*{\padjustedby}{\pwordoperator{adjusted}{by}\xspace} +\newcommand*{\pearlierthan}{\pwordoperator{earlier}{than}\xspace} +\newcommand*{\platerthan}{\pwordoperator{later}{than}\xspace} +\newcommand*{\pforevery}{\pwordoperator{for}{every}\xspace} +\newcommand*{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace} +\newcommand*{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}} + \xspace} +\newcommand*{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace} +\newcommand*{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace} +\newcommand*{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}} +\newcommand*{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}} +\newcommand*{\brelatedto}[2]{\ensuremath{% \xLongleftrightarrow[\text{\tiny{#1}}]{\text{\tiny{#2}}}}} -\newcommand{\momentumprinciple}{\ensuremath{ - \vectsub{p}{sys,f}=\vectsub{p}{sys,i}+\Fnetsys\Delta t}} -\newcommand{\LHSmomentumprinciple}{\ensuremath{% - \vectsub{p}{sys,f}}} -\newcommand{\RHSmomentumprinciple}{\ensuremath{% - \vectsub{p}{sys,i}+\Fnetsys\Delta t}} -\newcommand{\energyprinciple}{\ensuremath{\ssub{E}{sys,f}=\ssub{E}{sys,i}+ - \ssub{W}{ext}+Q}} -\newcommand{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,f}}} -\newcommand{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,i}+\ssub{W}{ext}+Q}} -\newcommand{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}= - \vectsub{L}{sys,A,i}+\Tnetsys\Delta t}} -\newcommand{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}}} -\newcommand{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,i}+ - \Tnetsys\Delta t}} -\newcommand{\gravitationalinteraction}{\ensuremath{% - \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\msup{\magvectsub{r}{12}}{2}} - \quant{-\dirvectsub{r}{12}}}} -\newcommand{\electricinteraction}{\ensuremath{% - \oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\msup{\magvectsub{r}{12}}{2}} +\newcommand*{\momentumprinciple}{\ensuremath{% + \vectsub{p}{sys,final}=\vectsub{p}{sys,initial}+\Fnetsys\Delta t}} +\newcommand*{\LHSmomentumprinciple}{\ensuremath{\vectsub{p}{sys,final}}} +\newcommand*{\RHSmomentumprinciple}{\ensuremath{\vectsub{p}{sys,initial}+\Fnetsys + \Delta t}} +\newcommand*{\momentumprinciplediff}{\ensuremath{\Dvectsub{p}{sys}=\Fnetsys\Delta t}} +\newcommand*{\energyprinciple}{\ensuremath{\ssub{E}{sys,final}=\ssub{E}{sys,initial}+W + +Q}} +\newcommand*{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,final}}} +\newcommand*{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,initial}+W+Q}} +\newcommand*{\energyprinciplediff}{\ensuremath{\Delta\ssub{E}{sys}=W+Q}} +\newcommand*{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,final}= + \vectsub{L}{\(A\),sys,initial}+\Tsub{net}\Delta t}} +\newcommand*{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,final}}} +\newcommand*{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,initial}+ + \Tsub{net}\Delta t}} +\newcommand*{\angularmomentumprinciplediff}{\ensuremath{\Dvectsub{L}{\(A\),sys}= + \Tsub{net}\Delta t}} +\newcommand*{\gravitationalinteraction}{\ensuremath{% + \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\magvectsub{r}{12}\squared} + (-\dirvectsub{r}{12})}} +\newcommand*{\electricinteraction}{\ensuremath{% + \oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\magvectsub{r}{12}\squared} \dirvectsub{r}{12}}} -\newcommand{\Bfieldofparticle}{\ensuremath{% - \mzofpmathsymbol\frac{Q\magvect{v}}{\msup{\magvect{r}}{2}}\dirvect{v}\times\dirvect{r}}} -\newcommand{\Efieldofparticle}{\ensuremath{% - \oofpezmathsymbol\frac{Q}{\msup{\magvect{r}}{2}}\dirvect{r}}} -\newcommand{\Esys}{\ssub{E}{sys}} -\newcommandx{\Us}[1][1]{\ssub{\ssub{U}{s}}{#1}} -\newcommandx{\Ug}[1][1]{\ssub{\ssub{U}{g}}{#1}} -\newcommandx{\Ue}[1][1]{\ssub{\ssub{U}{e}}{#1}} -\newcommandx{\Ktrans}[1][1]{\ssub{\ssub{K}{trans}}{#1}} -\newcommandx{\Krot}[1][1]{\ssub{\ssub{K}{rot}}{#1}} -\newcommandx{\Eparticle}[1][1]{\ssub{\ssub{E}{particle}}{#1}} -\newcommandx{\Einternal}[1][1]{\ssub{\ssub{E}{internal}}{#1}} -\newcommandx{\Erest}[1][1]{\ssub{\ssub{E}{rest}}{#1}} -\newcommandx{\Echem}[1][1]{\ssub{\ssub{E}{chem}}{#1}} -\newcommandx{\Etherm}[1][1]{\ssub{\ssub{E}{therm}}{#1}} -\newcommandx{\Evib}[1][1]{\ssub{\ssub{E}{vib}}{#1}} -\newcommandx{\Ephoton}[1][1]{\ssub{\ssub{E}{photon}}{#1}} -\newcommand{\DEsys}{\Changein\Esys} -\newcommand{\DUs}{\Changein\Us} -\newcommand{\DUg}{\Changein\Ug} -\newcommand{\DUe}{\Changein\Ue} -\newcommand{\DKtrans}{\Changein\Ktrans} -\newcommand{\DKrot}{\Changein\Krot} -\newcommand{\DEparticle}{\Changein\Eparticle} -\newcommand{\DEinternal}{\Changein\Einternal} -\newcommand{\DErest}{\Changein\Erest} -\newcommand{\DEchem}{\Changein\Echem} -\newcommand{\DEtherm}{\Changein\Etherm} -\newcommand{\DEvib}{\Changein\Evib} -\newcommand{\DEphoton}{\Changein\Ephoton} -\newcommand{\Usfinal}{\ssub{\left(\onehalf\ks \msup{s}{2}\right)}{f}} -\newcommand{\Usinitial}{\ssub{\left(\onehalf\ks \msup{s}{2}\right)}{i}} -\newcommand{\Ugfinal}{\ssub{\left(-G\frac{\msub{M}{1}\msub{M}{2}} - {\magvectsub{r}{12}}\right)}{f}} -\newcommand{\Uginitial}{\ssub{\left(-G\frac{\msub{M}{1}\msub{M}{2}} - {\magvectsub{r}{12}}\right)}{i}} -\newcommand{\Uefinal}{\ssub{\left(\oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}} - {\magvectsub{r}{12}}\right)}{f}} -\newcommand{\Ueinitial}{\ssub{\left(\oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}} - {\magvectsub{r}{12}}\right)}{i}} -\newcommand{\ks}{\ssub{k}{s}} -\newcommand{\Fnet}{\ensuremath{\vectsub{F}{net}}} -\newcommand{\Fnetext}{\ensuremath{\vectsub{F}{net,ext}}} -\newcommand{\Fnetsys}{\ensuremath{\vectsub{F}{net,sys}}} -\newcommand{\Fsub}[1]{\ensuremath{\vectsub{F}{#1}}} -\newcommand{\Tnet}{\ensuremath{\vectsub{T}{net}}} -\newcommand{\Tnetext}{\ensuremath{\vectsub{T}{net,ext}}} -\newcommand{\Tnetsys}{\ensuremath{\vectsub{T}{net,sys}}} -\newcommand{\Tsub}[1]{\ensuremath{\vectsub{T}{#1}}} -\newcommand{\vpythonline}{\lstinline[language=Python,numbers=left,numberstyle=\tiny,% - upquote=true,breaklines]} -\lstnewenvironment{vpythonblock}{\lstvpython}{} -\newcommand{\vpythonfile}{\lstinputlisting[language=Python,numbers=left,% - numberstyle=\tiny,upquote=true,breaklines]} +\newcommand*{\springinteraction}{\ensuremath{\ks\magvect{s}(-\dirvect{s})}} +\newcommand*{\Bfieldofparticle}{\ensuremath{% + \mzofpmathsymbol\frac{Q\magvect{v}}{\magvect{r}\squared}\dirvect{v}\times\dirvect{r}}} +\newcommand*{\Efieldofparticle}{\ensuremath{% + \oofpezmathsymbol\frac{Q}{\magvect{r}\squared}\dirvect{r}}} +\newcommandx{\Esys}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{sys}}{\ssub{E}{sys,#1}}} +\newcommandx{\Us}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(s\)}}{\ssub{U}{\(s\),#1}}} +\newcommandx{\Ug}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(g\)}}{\ssub{U}{\(g\),#1}}} +\newcommandx{\Ue}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(e\)}}{\ssub{U}{\(e\),#1}}} +\newcommandx{\Ktrans}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{trans}} + {\ssub{K}{trans,#1}}} +\newcommandx{\Krot}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{rot}}{\ssub{K}{rot,#1}}} +\newcommandx{\Kvib}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{vib}}{\ssub{K}{vib,#1}}} +\newcommandx{\Eparticle}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{particle}} + {\ssub{E}{particle,#1}}} +\newcommandx{\Einternal}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{internal}} + {\ssub{E}{internal,#1}}} +\newcommandx{\Erest}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{rest}}{\ssub{E}{rest,#1}}} +\newcommandx{\Echem}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{chem}}{\ssub{E}{chem,#1}}} +\newcommandx{\Etherm}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{therm}} + {\ssub{E}{therm,#1}}} +\newcommandx{\Evib}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{vib}}{\ssub{E}{vib,#1}}} +\newcommandx{\Ephoton}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{photon}} + {\ssub{E}{photon,#1}}} +\newcommand*{\DEsys}{\Changein\Esys} +\newcommand*{\DUs}{\Changein\Us} +\newcommand*{\DUg}{\Changein\Ug} +\newcommand*{\DUe}{\Changein\Ue} +\newcommand*{\DKtrans}{\Changein\Ktrans} +\newcommand*{\DKrot}{\Changein\Krot} +\newcommand*{\DKvib}{\Changein\Kvib} +\newcommand*{\DEparticle}{\Changein\Eparticle} +\newcommand*{\DEinternal}{\Changein\Einternal} +\newcommand*{\DErest}{\Changein\Erest} +\newcommand*{\DEchem}{\Changein\Echem} +\newcommand*{\DEtherm}{\Changein\Etherm} +\newcommand*{\DEvib}{\Changein\Evib} +\newcommand*{\DEphoton}{\Changein\Ephoton} +\newcommand*{\springpotentialenergy}{\onehalf\ks\magsquaredvect{s}} +\newcommand*{\finalspringpotentialenergy} + {\ssub{\left(\springpotentialenergy\right)}{\!\!final}} +\newcommand*{\initialspringpotentialenergy} + {\ssub{\left(\springpotentialenergy\right)}{\!\!initial}} +\newcommand*{\gravitationalpotentialenergy}{\ensuremath{% + -G\frac{\msub{M}{1}\msub{M}{2}}{\magvectsub{r}{12}}}} +\newcommand*{\finalgravitationalpotentialenergy} + {\ssub{\left(\gravitationalpotentialenergy\right)}{\!\!final}} +\newcommand*{\initialgravitationalpotentialenergy} + {\ssub{\left(\gravitationalpotentialenergy\right)}{\!\!initial}} +\newcommand*{\electricpotentialenergy}{\ensuremath{% + \oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}}{\magvectsub{r}{12}}}} +\newcommand*{\finalelectricpotentialenergy} + {\ssub{\left(\electricpotentialenergy\right)}{\!\!final}} +\newcommand*{\initialelectricpotentialenergy} + {\ssub{\left(\electricpotentialenergy\right)}{\!\!initial}} +\newcommand*{\ks}{\msub{k}{s}} +\newcommand*{\Fnet}{\ensuremath{\vectsub{F}{net}}} +\newcommand*{\Fnetext}{\ensuremath{\vectsub{F}{net,ext}}} +\newcommand*{\Fnetsys}{\ensuremath{\vectsub{F}{net,sys}}} +\newcommand*{\Fsub}[1]{\ensuremath{\vectsub{F}{#1}}} +\newcommand*{\Ltotal}{\ensuremath{\vectsub{L}{\(A\),total}}} +\newcommand*{\Lsys}{\ensuremath{\vectsub{L}{\(A\),sys}}} +\newcommand*{\Lsub}[1]{\ensuremath{\vectsub{L}{\(A\),{#1}}}} +\newcommand*{\Tnet}{\ensuremath{\vectsub{\tau}{\(A\),net}}} +\newcommand*{\Tnetext}{\ensuremath{\vectsub{\tau}{\(A\),net,ext}}} +\newcommand*{\Tnetsys}{\ensuremath{\vectsub{\tau}{\(A\),net,sys}}} +\newcommand*{\Tsub}[1]{\ensuremath{\vectsub{\tau}{\(A\),#1}}} +\newcommand*{\LHSmaxwelliint}[1][\partial V]{\ensuremath{% + \closedsurfaceintegral{#1}{\vect{E}}}} +\newcommand*{\RHSmaxwelliint}{\ensuremath{\frac{\ssub{Q}{\(e\),net}}% + {\vacuumpermittivitymathsymbol}}} +\newcommand*{\RHSmaxwelliinta}[1][V]{\ensuremath{% + \frac{1}{\vacuumpermittivitymathsymbol}\volumeintegral{#1}{\msub{\rho}{e}}}} +\newcommand*{\RHSmaxwelliintfree}{\ensuremath{0}} +\newcommand*{\maxwelliint}[1][\partial V]{\ensuremath{% + \LHSmaxwelliint[#1]=\RHSmaxwelliint}} +\newcommandx*{\maxwelliinta}[2][1={\partial V},2={V},usedefault]{\ensuremath{% + \LHSmaxwelliint[#1]=\RHSmaxwelliinta[#2]}} +\newcommand*{\maxwelliintfree}[1][\partial V]{\ensuremath{% + \LHSmaxwelliint[#1]=\RHSmaxwelliintfree}} +\newcommand*{\LHSmaxwelliiint}[1][\partial V]{\ensuremath{% + \closedsurfaceintegral{#1}{\vect{B}}}} +\newcommand*{\RHSmaxwelliiint}{\ensuremath{0}} +\newcommand*{\RHSmaxwelliiintm}{\ensuremath{% + \vacuumpermeabilitymathsymbol\ssub{Q}{\(m\),net}}} +\newcommand*{\RHSmaxwelliiintma}[1][V]{\ensuremath{% + \vacuumpermeabilitymathsymbol\volumeintegral{#1}{\msub{\rho}{m}}}} +\newcommand*{\RHSmaxwelliiintfree}{\ensuremath{0}} +\newcommand*{\maxwelliiint}[1][\partial V]{\ensuremath{% + \LHSmaxwelliiint[#1]=\RHSmaxwelliiint}} +\newcommand*{\maxwelliiintm}[1][\partial V]{\ensuremath{% + \LHSmaxwelliiint[#1]=\RHSmaxwelliiintm}} +\newcommandx*{\maxwelliiintma}[2][1={\partial V},2={V},usedefault]{\ensuremath{% + \LHSmaxwelliiint[#1]=\RHSmaxwelliiintma[#2]}} +\newcommand*{\maxwelliiintfree}[1][\partial V]{\ensuremath{% + \LHSmaxwelliiint[#1]=\RHSmaxwelliiintfree}} +\newcommand*{\LHSmaxwelliiiint}[1][\partial\Omega]{\ensuremath{% + \closedlineintegral{#1}{\vect{E}}}} +\newcommand*{\RHSmaxwelliiiint}[1][\Omega]{\ensuremath{% + -\dbydt\opensurfaceintegral{#1}{\vect{B}}}} +\newcommand*{\RHSmaxwelliiiintm}[1][\Omega]{\ensuremath{% + -\dbydt\opensurfaceintegral{#1}{\vect{B}}% + -\vacuumpermeabilitymathsymbol\ssub{I}{\(m\),net}}} +\newcommand*{\RHSmaxwelliiiintma}[1][\Omega]{\ensuremath{% + -\dbydt\opensurfaceintegral{#1}{\vect{B}}% + -\vacuumpermeabilitymathsymbol\opensurfaceintegral{#1}{\vectsub{J}{\(m\)}}}} +\newcommand*{\RHSmaxwelliiiintfree}{\RHSmaxwelliiiint} +\newcommandx*{\maxwelliiiint}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiint[#2]}} +\newcommandx*{\maxwelliiiintm}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiintm[#2]}} +\newcommandx*{\maxwelliiiintma}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiintma[#2]}} +\newcommand*{\maxwelliiiintfree}{\maxwelliiiint} +\newcommand*{\LHSmaxwellivint}[1][\partial\Omega]{\ensuremath{% + \closedlineintegral{#1}{\vect{B}}}} +\newcommand*{\RHSmaxwellivint}[1][\Omega]{\ensuremath{% + \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol% + \dbydt\opensurfaceintegral{#1}{\vect{E}}+% + \vacuumpermeabilitymathsymbol\ssub{I}{\(e\),net}}} +\newcommand*{\RHSmaxwellivinta}[1][\Omega]{\ensuremath{% + \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol% + \dbydt\opensurfaceintegral{#1}{\vect{E}}+% + \vacuumpermeabilitymathsymbol\opensurfaceintegral{#1}{\vectsub{J}{\(e\)}}}} +\newcommand*{\RHSmaxwellivintfree}[1][\Omega]{\ensuremath{% + \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol% + \dbydt\opensurfaceintegral{#1}{\vect{E}}}} +\newcommandx*{\maxwellivint}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivint[#2]}} +\newcommandx*{\maxwellivinta}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivinta[#2]}} +\newcommandx*{\maxwellivintfree}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivintfree[#2]}} +\newcommand*{\LHSmaxwellidif}{\ensuremath{\divergence{\vect{E}}}} +\newcommand*{\RHSmaxwellidif}{\ensuremath{\frac{\msub{\rho}{e}} + {\vacuumpermittivitymathsymbol}}} +\newcommand*{\RHSmaxwellidiffree}{\ensuremath{0}} +\newcommand*{\maxwellidif}{\ensuremath{\LHSmaxwellidif=\RHSmaxwellidif}} +\newcommand*{\maxwellidiffree}{\ensuremath{\LHSmaxwellidif=\RHSmaxwellidiffree}} +\newcommand*{\LHSmaxwelliidif}{\ensuremath{\divergence{\vect{B}}}} +\newcommand*{\RHSmaxwelliidif}{\ensuremath{0}} +\newcommand*{\RHSmaxwelliidifm}{\ensuremath{\vacuumpermeabilitymathsymbol% + \msub{\rho}{m}}} +\newcommand*{\RHSmaxwelliidiffree}{\ensuremath{0}} +\newcommand*{\maxwelliidif}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidif}} +\newcommand*{\maxwelliidifm}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidifm}} +\newcommand*{\maxwelliidiffree}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidiffree}} +\newcommand*{\LHSmaxwelliiidif}{\ensuremath{\curl{\vect{E}}}} +\newcommand*{\RHSmaxwelliiidif}{\ensuremath{-\pbypt[\vect{B}]}} +\newcommand*{\RHSmaxwelliiidifm}{\ensuremath{-\pbypt[\vect{B}]-% + \vacuumpermeabilitymathsymbol\vectsub{J}{\(m\)}}} +\newcommand*{\RHSmaxwelliiidiffree}{\RHSmaxwelliiidif} +\newcommand*{\maxwelliiidif}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidif}} +\newcommand*{\maxwelliiidifm}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidifm}} +\newcommand*{\maxwelliiidiffree}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidif}} +\newcommand*{\LHSmaxwellivdif}{\ensuremath{\curl{\vect{B}}}} +\newcommand*{\RHSmaxwellivdif}{\ensuremath{\vacuumpermeabilitymathsymbol% + \vacuumpermittivitymathsymbol\pbypt[\vect{E}]+% + \vacuumpermeabilitymathsymbol\vectsub{J}{\(e\)}}} +\newcommand*{\RHSmaxwellivdiffree}{\ensuremath{\vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol\pbypt[\vect{E}]}} +\newcommand*{\maxwellivdif}{\ensuremath{\LHSmaxwellivdif=\RHSmaxwellivdif}} +\newcommand*{\maxwellivdiffree}{\ensuremath{\LHSmaxwellivdif=\RHSmaxwellivdiffree}} +\newcommand*{\RHSlorentzforce}{\ensuremath{\msub{q}{e}\left(\vect{E}+% + \vectcrossvect{\vect{v}}{\vect{B}}\right)}} +\newcommand*{\RHSlorentzforcem}{\ensuremath{\RHSlorentzforce+\msub{q}{m}\left(% + \vect{B}-\vectcrossvect{\vect{v}}{\frac{\vect{E}}{c^2}}\right)}} +\newcommand*{\vpythonline}{\lstinline[style=vpython]} +\lstnewenvironment{vpythonblock}{\lstset{style=vpython}}{} +\newcommand*{\vpythonfile}{\lstinputlisting[style=vpython]} \newcommandx{\emptyanswer}[2][1=0.80,2=0.1,usedefault] {\begin{minipage}{#1\textwidth}\hfill\vspace{#2\textheight}\end{minipage}} \newenvironmentx{activityanswer}[5][1=white,2=black,3=black,4=0.90,5=0.10,usedefault]{% @@ -8388,7 +9472,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \vspace{\baselineskip}% \end{center}% }% -\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=,7=0.0,usedefault] +\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=, +7=0.0,usedefault] {\begin{center}% \fcolorbox{#3}{#2}{% \begin{minipage}[c]{#5\textwidth}\color{#4}% @@ -8433,65 +9518,50 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% - \emptyanswer[#5][#6]% - }% + \emptyanswer[#5][#6]}% \vspace{\baselineskip}% - \end{center}% - }% - {\emptybox[#1][#2][#3][#4][#5][#6]% - }% + \end{center}}% + {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \newcommandx{\largeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.25,% usedefault]{% \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% - \emptyanswer[#5][#6]% - }% + \emptyanswer[#5][#6]}% \vspace{\baselineskip}% - \end{center}% - }% - {\emptybox[#1][#2][#3][#4][#5][#6]% - }% + \end{center}}% + {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \newcommandx{\largeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.33,% usedefault]{% \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% - \emptyanswer[#5][#6]% - }% + \emptyanswer[#5][#6]}% \vspace{\baselineskip}% - \end{center}% - }% - {\emptybox[#1][#2][#3][#4][#5][#6]% - }% + \end{center}}% + {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \newcommandx{\hugeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.50,% usedefault]{% \ifthenelse{\equal{#1}{}} {\begin{center}% \fcolorbox{#3}{#2}{% - \emptyanswer[#5][#6]% - }% + \emptyanswer[#5][#6]}% \vspace{\baselineskip}% - \end{center}% - }% - {\emptybox[#1][#2][#3][#4][#5][#6]% - }% + \end{center}}% + {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \newcommandx{\hugeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.75,% usedefault]{% \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% - \emptyanswer[#5][#6]% - }% + \emptyanswer[#5][#6]}% \vspace{\baselineskip}% - \end{center}% - }% - {\emptybox[#1][#2][#3][#4][#5][#6]% - }% + \end{center}}% + {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \newcommandx{\fullpageanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=1.00,% usedefault]{% @@ -8504,12 +9574,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \mdfdefinestyle{miinstructornotestyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, frametitle={INSTRUCTOR NOTE}, - frametitlebackgroundcolor=cyan!60, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=cyan!25, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{miinstructornote}{% \begin{mdframed}[style=miinstructornotestyle] \begin{adjactivityanswer}[cyan!25][cyan!25][black] @@ -8518,12 +9588,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{mdframed} }% \mdfdefinestyle{mistudentnotestyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, frametitle={STUDENT NOTE}, - frametitlebackgroundcolor=cyan!60, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=cyan!25, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{mistudentnote}{% \begin{mdframed}[style=mistudentnotestyle] \begin{adjactivityanswer}[cyan!25][cyan!25][black] @@ -8532,12 +9602,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{mdframed} }% \mdfdefinestyle{miderivationstyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=0pt, rightmargin=0pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=0pt,rightmargin=0pt,linewidth=1,roundcorner=10, frametitle={DERIVATION}, - frametitlebackgroundcolor=orange!60, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=orange!60,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=orange!25, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{miderivation}{% \begin{mdframed}[style=miderivationstyle] \setcounter{equation}{0} @@ -8547,12 +9617,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{mdframed} }% \mdfdefinestyle{bwinstructornotestyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, frametitle={INSTRUCTOR NOTE}, - frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=gray!20, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{bwinstructornote}{% \begin{mdframed}[style=bwinstructornotestyle] \begin{adjactivityanswer}[gray!20][gray!20][black] @@ -8561,12 +9631,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{mdframed} }% \mdfdefinestyle{bwstudentnotestyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, frametitle={STUDENT NOTE}, - frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=gray!20, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{bwstudentnote}{% \begin{mdframed}[style=bwstudentnotestyle] \begin{adjactivityanswer}[gray!20][gray!20][black] @@ -8575,12 +9645,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{mdframed} }% \mdfdefinestyle{bwderivationstyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=0pt, rightmargin=0pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=0pt,rightmargin=0pt,linewidth=1,roundcorner=10, frametitle={DERIVATION}, - frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=gray!20, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{bwderivation}{% \begin{mdframed}[style=bwderivationstyle] \setcounter{equation}{0} @@ -8589,9 +9659,14 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{align*} \end{mdframed} }% -\newcommand{\checkpoint}{% +\NewEnviron{mysolution}{% + \begin{align*} + \BODY + \end{align*} +}% +\newcommand*{\checkpoint}{% \vspace{1cm}\begin{center}|--------- CHECKPOINT ---------|\end{center}}% -\newcommand{\image}[2]{% +\newcommand*{\image}[2]{% \begin{figure}[h!] \begin{center}% \includegraphics[scale=1]{#1}% @@ -8599,11 +9674,11 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \label{#1}% \end{center}% \end{figure}} -\newcommand{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}} +\newcommand*{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}} % undocumented diagnostic command -\newcommand{\chkquantity}[1]{% +\newcommand*{\chkquantity}[1]{% \begin{center} - \begin{tabular}{C{3cm} C{3cm} C{3cm} C{3cm}} + \begin{tabular}{C{4.5cm} C{4cm} C{4cm} C{4cm}} name & baseunit & drvdunit & tradunit \tabularnewline \cs{#1} & \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname & \csname #1onlytradunit\endcsname @@ -8611,9 +9686,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{center} }% % undocumented diagnostic command -\newcommand{\chkconstant}[1]{% +\newcommand*{\chkconstant}[1]{% \begin{center} - \begin{tabular}{C{3cm} C{1cm} C{2cm} C{3cm} C{3cm} C{3cm}} + \begin{tabular}{C{4cm} C{2cm} C{3cm} C{3cm} C{3cm} C{3cm}} name & symbol & value & baseunit & drvdunit & tradunit \tabularnewline \cs{#1} & \csname #1mathsymbol\endcsname & \csname #1value\endcsname & \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname & @@ -8621,45 +9696,15 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{tabular} \end{center} }% -% new |\vect| that allows for subscripts -% #1 = kernel #2 = subscript -\newcommandx{\vecto}[2][2,usedefault]{\ensuremath{% - \ifthenelse{\equal{#2}{}}% - {\vec{#1}}% - {\ssub{\vec{#1}}{#2}}}}% -% new |\compvect| that allows for subscripts -% #1 = kernel #2 = component #3 = subscript -\newcommandx{\compvecto}[3][3,usedefault]{\ensuremath{% - \ifthenelse{\equal{#3}{}}% - {\ssub{#1}{\(#2\)}}% - {\ssub{#1}{\(#2\),#3}}}}% -% new |\scompsvect| that allows for subscripts -% #1 = kernel #2 = subscript -\newcommandx{\scompsvecto}[2][2,usedefault]{\ensuremath{% - \ifthenelse{\equal{#2}{}}% - {\lv\compvecto{#1}{x},\compvecto{#1}{y},\compvecto{#1}{z}\rv}% - {\lv\compvecto{#1}{x}[#2],\compvecto{#1}{y}[#2],\compvecto{#1}{z}[#2]\rv}}}% -% new |\comppos| that allows for subscripts -\newcommandx{\compposo}[2][2,usedefault]{\ensuremath{% -% #1 = component #2 = subscript - \ifthenelse{\equal{#1}{}}% - {#1}% - {\ssub{#1}{#2}}}}% -% new |\scompspos| that allows for subscripts -% #1 = subscript -\newcommandx{\scompsposo}[1][1,usedefault]{\ensuremath{% - \ifthenelse{\equal{#1}{}}% - {\lv\compposo{x},\compposo{y},\compposo{z}\rv}% - {\lv\compposo{x}[#1],\compposo{y}[#1],\compposo{z}[#1]\rv}}}% % \end{macrocode} % \newpage % \section{Acknowledgements} % I thank Marcel Heldoorn, Joseph Wright, Scott Pakin, Thomas Sturm, Aaron Titus, -% Ruth Chabay, and Bruce Sherwood. Special thanks to Martin Scharrer for his -% \texttt{sty2dtx.pl} utility, which saved me days of typing. Special thanks also -% to Herbert Schulz for his custom \texttt{dtx} engine for \texttt{TeXShop}. Very -% special thanks to Ulrich Diez for providing the mechanism that defines physics -% quantities and constants. +% David Zaslavsky, Ruth Chabay, and Bruce Sherwood. Special thanks to Martin +% Scharrer for his \texttt{sty2dtx.pl} utility, which saved me days of typing. +% Special thanks also to Herbert Schulz for his custom \texttt{dtx} engine for +% \texttt{TeXShop}. Very special thanks to Ulrich Diez for providing the mechanism +% that defines physics quantities and constants. % % \iffalse %</package> diff --git a/Master/texmf-dist/source/latex/mandi/mandi.ins b/Master/texmf-dist/source/latex/mandi/mandi.ins index 05b68326fb8..743a77a224e 100644 --- a/Master/texmf-dist/source/latex/mandi/mandi.ins +++ b/Master/texmf-dist/source/latex/mandi/mandi.ins @@ -6,7 +6,7 @@ %% %% mandi.dtx (with options: `install') %% -%% Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com> +%% Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com> %% --------------------------------------------------------------------------- %% This work may be distributed and/or modified under the conditions of the %% LaTeX Project Public License, either version 1.3 of this license or (at @@ -34,7 +34,7 @@ \usedir{tex/latex/mandi} \preamble -Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com> +Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com> --------------------------------------------------------------------------- This work may be distributed and/or modified under the conditions of the LaTeX Project Public License, either version 1.3 of this license or (at @@ -61,7 +61,7 @@ and includes the derived files mandi.ins \generate{\file{\jobname.sty}{\from{\jobname.dtx}{package}}} \generate{\file{\jobname.ins}{\from{\jobname.dtx}{install}}} \generate{\usepreamble\empty\usepostamble\empty - \file{vdemo.py}{\from{\jobname.dtx}{vdemo}}} + \file{README.txt}{\from{\jobname.dtx}{readme}}} \obeyspaces \Msg{*************************************************************} @@ -76,6 +76,7 @@ and includes the derived files mandi.ins \Msg{* *} \Msg{*************************************************************} \endbatchfile + \endinput %% %% End of file `mandi.ins'. diff --git a/Master/texmf-dist/tex/latex/mandi/mandi.sty b/Master/texmf-dist/tex/latex/mandi/mandi.sty index 46db7c1f230..700d2db36c8 100644 --- a/Master/texmf-dist/tex/latex/mandi/mandi.sty +++ b/Master/texmf-dist/tex/latex/mandi/mandi.sty @@ -6,7 +6,7 @@ %% %% mandi.dtx (with options: `package') %% -%% Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com> +%% Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com> %% --------------------------------------------------------------------------- %% This work may be distributed and/or modified under the conditions of the %% LaTeX Project Public License, either version 1.3 of this license or (at @@ -28,15 +28,17 @@ %% mandi.pdf. %% --------------------------------------------------------------------------- %% -\ProvidesPackage{mandi}[2013/06/14 2.2.0 Macros for physics and astronomy] +\ProvidesPackage{mandi}[2014/12/29 2.4.0 Macros for physics and astronomy] \NeedsTeXFormat{LaTeX2e}[1999/12/01] + \RequirePackage{amsmath} \RequirePackage{amssymb} \RequirePackage{array} -\RequirePackage{bigints} \RequirePackage{cancel} \RequirePackage[dvipsnames]{xcolor} \RequirePackage{environ} +\RequirePackage{esint} +\RequirePackage[g]{esvect} \RequirePackage{etoolbox} \RequirePackage{filehook} \RequirePackage{extarrows} @@ -53,151 +55,182 @@ \RequirePackage{xspace} \RequirePackage{ifthen} \RequirePackage{calligra} +\RequirePackage{hyperref} \DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n} \DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{} \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `basename #1 .tif`.png} \DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it} \usetikzlibrary{shadows} -\definecolor{vpythoncolor}{rgb}{0.95,0.95,0.95} -\newcommand{\lstvpython}{\lstset{language=Python,numbers=left,numberstyle=\tiny, - backgroundcolor=\color{vpythoncolor},upquote=true,breaklines}} +\definecolor{vbgcolor}{rgb}{1,1,1} +\definecolor{vshadowcolor}{rgb}{0.5,0.5,0.5} +\lstdefinestyle{vpython}{% % style for VPython code + language=Python,% % select language + morekeywords={visual,arrow,box,cone,% % VPython specific keywords + convex,curve,cylinder,ellipsoid,extrusion,faces,helix,label,points,pyramid,ring,% + sphere,text,frame,graphs,vector,pos,axis,radius,color,opacity,material,up,% + make_trail,trail_type,trail_object,scene,mag,mag2,norm,dot,cross,proj,comp,% + diff_angle,rotate,astuple,radians,shaftwidth,headwidth,headlength,height,width,% + size,degrees,interval,retain,__future__,division,print_function,rate},% + frame=shadowbox,% % shadowbox around listing + rulesepcolor=\color{vshadowcolor},% % shadow color + basicstyle=\footnotesize,% % basic font for code listings + commentstyle=\bfseries\color{red}, % font for comments + keywordstyle=\bfseries\color{blue},% % font for keywords + showstringspaces=true,% % show spaces in strings + numbers=left,% % where to put line numbers + numberstyle=\tiny,% % set to 'none' for no line numbers + xleftmargin=20pt,% % extra left margin + backgroundcolor=\color{vbgcolor},% % some people find this annoying + upquote=true,% % how to typeset quotes + breaklines=true}% % break long lines \newcolumntype{C}[1]{>{\centering}m{#1}} -\newboolean{@optitalicvectors} -\newboolean{@optdoubleabsbars} +\newboolean{@optromanvectors} +\newboolean{@optboldvectors} +\newboolean{@optsingleabsbars} \newboolean{@optbaseunits} \newboolean{@optdrvdunits} -\setboolean{@optitalicvectors}{false} -\setboolean{@optdoubleabsbars}{false} -\setboolean{@optbaseunits}{false} -\setboolean{@optdrvdunits}{false} -\DeclareOption{italicvectors}{\setboolean{@optitalicvectors}{true}} -\DeclareOption{doubleabsbars}{\setboolean{@optdoubleabsbars}{true}} +\newboolean{@optapproxconsts} +\setboolean{@optromanvectors}{false} % this is where you set the default option +\setboolean{@optboldvectors}{false} % this is where you set the default option +\setboolean{@optsingleabsbars}{false} % this is where you set the default option +\setboolean{@optbaseunits}{false} % this is where you set the default option +\setboolean{@optdrvdunits}{false} % this is where you set the default option +\setboolean{@optapproxconsts}{false} % this is where you set the default option +\DeclareOption{romanvectors}{\setboolean{@optromanvectors}{true}} +\DeclareOption{boldvectors}{\setboolean{@optboldvectors}{true}} +\DeclareOption{singleabsbars}{\setboolean{@optsingleabsbars}{true}} \DeclareOption{baseunits}{\setboolean{@optbaseunits}{true}} \DeclareOption{drvdunits}{\setboolean{@optdrvdunits}{true}} +\DeclareOption{approxconsts}{\setboolean{@optapproxconsts}{true}} \ProcessOptions\relax \@ifpackageloaded{amssymb}{% \csundef{square} - \typeout{mandi: Package amssymb detected. Its \protect\square\space has been redefined.} + \typeout{mandi: Package amssymb detected. Its \protect\square\space has been + redefined.} }{% \typeout{mandi: Package amssymb not detected.} }% -\newcommand{\per}{\ensuremath{/}} -\newcommand{\usk}{\ensuremath{\cdot}} -\newcommand{\unit}[2]{\ensuremath{{#1}\,{#2}}} -\newcommand{\ampere}{\ensuremath{\mathrm{A}}} -\newcommand{\arcminute}{\ensuremath{'}} -\newcommand{\arcsecond}{\ensuremath{''}} -\newcommand{\atomicmassunit}{\ensuremath{\mathrm{u}}} -\newcommand{\candela}{\ensuremath{\mathrm{cd}}} -\newcommand{\coulomb}{\ensuremath{\mathrm{C}}} -\newcommand{\degree}{\ensuremath{^{\circ}}} -\newcommand{\electronvolt}{\ensuremath{\mathrm{eV}}} -\newcommand{\eV}{\electronvolt} -\newcommand{\farad}{\ensuremath{\mathrm{F}}} -\newcommand{\henry}{\ensuremath{\mathrm{H}}} -\newcommand{\hertz}{\ensuremath{\mathrm{Hz}}} -\newcommand{\hour}{\ensuremath{\mathrm{h}}} -\newcommand{\joule}{\ensuremath{\mathrm{J}}} -\newcommand{\kelvin}{\ensuremath{\mathrm{K}}} -\newcommand{\kilogram}{\ensuremath{\mathrm{kg}}} -\newcommand{\metre}{\ensuremath{\mathrm{m}}} -\newcommand{\minute}{\ensuremath{\mathrm{min}}} -\newcommand{\mole}{\ensuremath{\mathrm{mol}}} -\newcommand{\newton}{\ensuremath{\mathrm{N}}} -\newcommand{\ohm}{\ensuremath{\Omega}} -\newcommand{\pascal}{\ensuremath{\mathrm{Pa}}} -\newcommand{\radian}{\ensuremath{\mathrm{rad}}} -\newcommand{\second}{\ensuremath{\mathrm{s}}} -\newcommand{\siemens}{\ensuremath{\mathrm{S}}} -\newcommand{\steradian}{\ensuremath{\mathrm{sr}}} -\newcommand{\tesla}{\ensuremath{\mathrm{T}}} -\newcommand{\volt}{\ensuremath{\mathrm{V}}} -\newcommand{\watt}{\ensuremath{\mathrm{W}}} -\newcommand{\weber}{\ensuremath{\mathrm{Wb}}} -\newcommand{\C}{\coulomb} -\newcommand{\F}{\farad} -\newcommand{\J}{\joule} -\newcommand{\N}{\newton} -\newcommand{\Pa}{\pascal} -\newcommand{\rad}{\radian} -\newcommand{\sr}{\steradian} -\newcommand{\T}{\tesla} -\newcommand{\V}{\volt} -\newcommand{\W}{\watt} -\newcommand{\Wb}{\weber} -\newcommand{\square}[1]{\ensuremath{\mathrm{#1}^{2}}} % prefix 2 -\newcommand*{\cubic}[1]{\ensuremath{\mathrm{#1}^{3}}} % prefix 3 -\newcommand*{\quartic}[1]{\ensuremath{\mathrm{#1}^{4}}} % prefix 4 -\newcommand*{\reciprocal}[1]{\ensuremath{\mathrm{#1}^{-1}}} % prefix -1 -\newcommand*{\reciprocalsquare}[1]{\ensuremath{\mathrm{#1}^{-2}}} % prefix -2 -\newcommand*{\reciprocalcubic}[1]{\ensuremath{\mathrm{#1}^{-3}}} % prefix -3 -\newcommand*{\reciprocalquartic}[1]{\ensuremath{\mathrm{#1}^{-4}}} % prefix -4 -\newcommand*{\squared}{\ensuremath{^{\mathrm{2}}}} % postfix 2 -\newcommand*{\cubed}{\ensuremath{^{\mathrm{3}}}} % postfix 3 -\newcommand*{\quarted}{\ensuremath{^{\mathrm{4}}}} % postfix 4 -\newcommand*{\reciprocaled}{\ensuremath{^{\mathrm{-1}}}} % postfix -1 -\newcommand*{\reciprocalsquared}{\ensuremath{^{\mathrm{-2}}}} % postfix -2 -\newcommand*{\reciprocalcubed}{\ensuremath{^{\mathrm{-3}}}} % postfix -3 -\newcommand*{\reciprocalquarted}{\ensuremath{^{\mathrm{-4}}}} % postfix -4 -\newcommand\mi@exchangeargs[2]{#2#1}% -\newcommand\mi@name{}% +\newcommand*{\mandiversion}{2.4.0} +\typeout{mandi: You're using mandi version \mandiversion.} +\newcommand*{\per}{\ensuremath{/}} +\newcommand*{\usk}{\ensuremath{\cdot}} +\newcommand*{\unit}[2]{\ensuremath{{#1}\,{#2}}} +\newcommand*{\ampere}{\ensuremath{\mathrm{A}}} +\newcommand*{\arcminute}{\ensuremath{'}} +\newcommand*{\arcsecond}{\ensuremath{''}} +\newcommand*{\atomicmassunit}{\ensuremath{\mathrm{u}}} +\newcommand*{\candela}{\ensuremath{\mathrm{cd}}} +\newcommand*{\coulomb}{\ensuremath{\mathrm{C}}} +\newcommand*{\degree}{\ensuremath{^{\circ}}} +\newcommand*{\electronvolt}{\ensuremath{\mathrm{eV}}} +\newcommand*{\eV}{\electronvolt} +\newcommand*{\farad}{\ensuremath{\mathrm{F}}} +\newcommand*{\henry}{\ensuremath{\mathrm{H}}} +\newcommand*{\hertz}{\ensuremath{\mathrm{Hz}}} +\newcommand*{\hour}{\ensuremath{\mathrm{h}}} +\newcommand*{\joule}{\ensuremath{\mathrm{J}}} +\newcommand*{\kelvin}{\ensuremath{\mathrm{K}}} +\newcommand*{\kilogram}{\ensuremath{\mathrm{kg}}} +\newcommand*{\metre}{\ensuremath{\mathrm{m}}} +\newcommand*{\minute}{\ensuremath{\mathrm{min}}} +\newcommand*{\mole}{\ensuremath{\mathrm{mol}}} +\newcommand*{\newton}{\ensuremath{\mathrm{N}}} +\newcommand*{\ohm}{\ensuremath{\Omega}} +\newcommand*{\pascal}{\ensuremath{\mathrm{Pa}}} +\newcommand*{\radian}{\ensuremath{\mathrm{rad}}} +\newcommand*{\second}{\ensuremath{\mathrm{s}}} +\newcommand*{\siemens}{\ensuremath{\mathrm{S}}} +\newcommand*{\steradian}{\ensuremath{\mathrm{sr}}} +\newcommand*{\tesla}{\ensuremath{\mathrm{T}}} +\newcommand*{\volt}{\ensuremath{\mathrm{V}}} +\newcommand*{\watt}{\ensuremath{\mathrm{W}}} +\newcommand*{\weber}{\ensuremath{\mathrm{Wb}}} +\newcommand*{\C}{\coulomb} +\newcommand*{\F}{\farad} +\newcommand*{\J}{\joule} +\newcommand*{\N}{\newton} +\newcommand*{\Pa}{\pascal} +\newcommand*{\rad}{\radian} +\newcommand*{\sr}{\steradian} +\newcommand*{\T}{\tesla} +\newcommand*{\V}{\volt} +\newcommand*{\W}{\watt} +\newcommand*{\Wb}{\weber} +\newcommand*{\square}[1]{\ensuremath{{#1}^2}} % prefix 2 +\newcommand*{\cubic}[1]{\ensuremath{{#1}^3}} % prefix 3 +\newcommand*{\quartic}[1]{\ensuremath{{#1}^4}} % prefix 4 +\newcommand*{\reciprocal}[1]{\ensuremath{{#1}^{-1}}} % prefix -1 +\newcommand*{\reciprocalsquare}[1]{\ensuremath{{#1}^{-2}}} % prefix -2 +\newcommand*{\reciprocalcubic}[1]{\ensuremath{{#1}^{-3}}} % prefix -3 +\newcommand*{\reciprocalquartic}[1]{\ensuremath{{#1}^{-4}}} % prefix -4 +\newcommand*{\squared}{\ensuremath{^2}} % postfix 2 +\newcommand*{\cubed}{\ensuremath{^3}} % postfix 3 +\newcommand*{\quarted}{\ensuremath{^4}} % postfix 4 +\newcommand*{\reciprocaled}{\ensuremath{^{-1}}} % postfix -1 +\newcommand*{\reciprocalsquared}{\ensuremath{^{-2}}} % postfix -2 +\newcommand*{\reciprocalcubed}{\ensuremath{^{-3}}} % postfix -3 +\newcommand*{\reciprocalquarted}{\ensuremath{^{-4}}} % postfix -4 +\newcommand*\mi@exchangeargs[2]{#2#1}% +\newcommand*\mi@name{}% \long\def\mi@name#1#{\romannumeral0\mi@innername{#1}}% -\newcommand\mi@innername[2]{% +\newcommand*\mi@innername[2]{% \expandafter\mi@exchangeargs\expandafter{\csname#2\endcsname}{#1}}% \begingroup \@firstofone{% \endgroup - \newcommand\mi@forkifnull[3]{% - \romannumeral\iffalse{\fi\expandafter\@secondoftwo\expandafter + \newcommand*\mi@forkifnull[3]{% + \romannumeral\iffalse{\fi\expandafter\@secondoftwo\expandafter% {\expandafter{\string#1}\expandafter\@secondoftwo\string}% \expandafter\@firstoftwo\expandafter{\iffalse}\fi0 #3}{0 #2}}}% -\newcommand\selectbaseunit[3]{#1} -\newcommand\selectdrvdunit[3]{#2} -\newcommand\selecttradunit[3]{#3} -\newcommand\selectunit{} -\newcommand\perpusebaseunit{\let\selectunit=\selectbaseunit} -\newcommand\perpusedrvdunit{\let\selectunit=\selectdrvdunit} -\newcommand\perpusetradunit{\let\selectunit=\selecttradunit} -\newcommand\hereusebaseunit[1]{% +\newcommand*\selectbaseunit[3]{#1} +\newcommand*\selectdrvdunit[3]{#2} +\newcommand*\selecttradunit[3]{#3} +\newcommand*\selectunit{} +\newcommand*\perpusebaseunit{\let\selectunit=\selectbaseunit} +\newcommand*\perpusedrvdunit{\let\selectunit=\selectdrvdunit} +\newcommand*\perpusetradunit{\let\selectunit=\selecttradunit} +\newcommand*\hereusebaseunit[1]{% \begingroup\perpusebaseunit#1\endgroup}% -\newcommand\hereusedrvdunit[1]{% +\newcommand*\hereusedrvdunit[1]{% \begingroup\perpusedrvdunit#1\endgroup}% -\newcommand\hereusetradunit[1]{% +\newcommand*\hereusetradunit[1]{% \begingroup\perpusetradunit#1\endgroup}% \newenvironment{usebaseunit}{\perpusebaseunit}{}% \newenvironment{usedrvdunit}{\perpusedrvdunit}{}% \newenvironment{usetradunit}{\perpusetradunit}{}% \newcommand*\newphysicsquantity{\definephysicsquantity{\newcommand}} \newcommand*\redefinephysicsquantity{\definephysicsquantity{\renewcommand}} -\newcommandx\definephysicsquantity[5][4=,5=]{% +\newcommandx*\definephysicsquantity[5][4=,5=]{% \innerdefinewhatsoeverquantityfork{#3}{#4}{#5}{#1}{#2}{}{[1]}{##1}}% \newcommand*\newphysicsconstant{\definephysicsconstant{\newcommand}} \newcommand*\redefinephysicsconstant{\definephysicsconstant{\renewcommand}} -\newcommandx\definephysicsconstant[7][6=,7=]{% +\newcommandx*\definephysicsconstant[7][6=,7=]{% \innerdefinewhatsoeverquantityfork{#5}{#6}{#7}{#1}{#2}{#3}{}{#4}}% -\newcommand\innerdefinewhatsoeverquantityfork[3]{% +\newcommand*\innerdefinewhatsoeverquantityfork[3]{% \expandafter\innerdefinewhatsoeverquantity\romannumeral0% \mi@forkifnull{#3}{\mi@forkifnull{#2}{{#1}}{{#2}}{#1}}% {\mi@forkifnull{#2}{{#1}}{{#2}}{#3}}{#1}}% -\newcommand\innerdefinewhatsoeverquantity[8]{% - \mi@name#4{#5}#7{\ensuremath{\unit{#8}{\selectunit{#3}{#1}{#2}}}}% - \mi@name#4{#5baseunit}#7{\ensuremath{\unit{#8}{#3}}}% - \mi@name#4{#5drvdunit}#7{\ensuremath{\unit{#8}{#1}}}% - \mi@name#4{#5tradunit}#7{\ensuremath{\unit{#8}{#2}}}% - \mi@name#4{#5onlyunit}{\ensuremath{\selectunit{#3}{#1}{#2}}}% +\newcommand*\innerdefinewhatsoeverquantity[8]{% + \mi@name#4{#5}#7{\unit{#8}{\selectunit{#3}{#1}{#2}}}% + \mi@name#4{#5baseunit}#7{\unit{#8}{#3}}% + \mi@name#4{#5drvdunit}#7{\unit{#8}{#1}}% + \mi@name#4{#5tradunit}#7{\unit{#8}{#2}}% + \mi@name#4{#5onlyunit}{\selectunit{#3}{#1}{#2}}% \mi@name#4{#5onlybaseunit}{\ensuremath{#3}}% \mi@name#4{#5onlydrvdunit}{\ensuremath{#1}}% \mi@name#4{#5onlytradunit}{\ensuremath{#2}}% \mi@name#4{#5value}#7{\ensuremath{#8}}% \mi@forkifnull{#7}{% \ifx#4\renewcommand\mi@name\let{#5mathsymbol}=\relax\fi - \mi@name\newcommand{#5mathsymbol}{\ensuremath{#6}}}{}}% -\ifthenelse{\boolean{@optitalicvectors}} - {\typeout{mandi: You'll get italic vector kernels.}} - {\typeout{mandi: You'll get Roman vector kernels.}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\typeout{mandi: You'll get double absolute value bars.}} + \mi@name\newcommand*{#5mathsymbol}{\ensuremath{#6}}}{}}% +\ifthenelse{\boolean{@optboldvectors}} + {\typeout{mandi: You'll get bold vectors.}} + {\ifthenelse{\boolean{@optromanvectors}} + {\typeout{mandi: You'll get Roman vectors.}} + {\typeout{mandi: You'll get italic vectors.}}} +\ifthenelse{\boolean{@optsingleabsbars}} {\typeout{mandi: You'll get single absolute value bars.}} + {\typeout{mandi: You'll get double absolute value bars.}} \ifthenelse{\boolean{@optbaseunits}} {\perpusebaseunit % \typeout{mandi: You'll get base units.}} @@ -206,6 +239,12 @@ \typeout{mandi: You'll get derived units.}} {\perpusetradunit % \typeout{mandi: You'll get traditional units.}}} +\ifthenelse{\boolean{@optapproxconsts}} + {\typeout{mandi: You'll get approximate constants.}} + {\typeout{mandi: You'll get precise constants.}} +\ifthenelse{\boolean{@optapproxconsts}} + {\newcommand*{\mi@p}[2]{#1}} % approximate value + {\newcommand*{\mi@p}[2]{#2}} % precise value \def\resetMathstrut@{% \setbox\z@\hbox{% \mathchardef\@tempa\mathcode`\[\relax @@ -217,23 +256,21 @@ \catcode`)\active \xdef){\right\string)} \endgroup \mathcode`(="8000 \mathcode`)="8000 -\typeout{mandi: parentheses made adjustable in math mode.} -\let\oldr@@t\r@@t -\def\r@@t#1#2{% -\setbox0=\hbox{\(\oldr@@t#1{#2\,}\)}\dimen0=\ht0 -\advance\dimen0-0.2\ht0 -\setbox2=\hbox{\vrule height\ht0 depth -\dimen0}% -{\box0\lower0.4pt\box2}} -\LetLtxMacro{\oldsqrt}{\sqrt} -\renewcommand*{\sqrt}[2][\relax]{\oldsqrt[#1]{#2}} -\typeout{mandi: square root symbol fixed.} -\newcommand{\m}{\metre} -\newcommand{\kg}{\kilogram} -\newcommand{\s}{\second} -\newcommand{\A}{\ampere} -\newcommand{\K}{\kelvin} -\newcommand{\mol}{\mole} -\newcommand{\cd}{\candela} +\typeout{mandi: Parentheses have been made adjustable in math mode.} +\newcommand*{\m}{\metre} +\newcommand*{\kg}{\kilogram} +\newcommand*{\s}{\second} +\newcommand*{\A}{\ampere} +\newcommand*{\K}{\kelvin} +\newcommand*{\mol}{\mole} +\newcommand*{\cd}{\candela} +\newcommand*{\dimdisplacement}{\ensuremath{\mathrm{L}}} +\newcommand*{\dimmass}{\ensuremath{\mathrm{M}}} +\newcommand*{\dimduration}{\ensuremath{\mathrm{T}}} +\newcommand*{\dimcurrent}{\ensuremath{\mathrm{I}}} +\newcommand*{\dimtemperature}{\ensuremath{\mathrm{\Theta}}} +\newcommand*{\dimamount}{\ensuremath{\mathrm{N}}} +\newcommand*{\dimluminous}{\ensuremath{\mathrm{J}}} \newphysicsquantity{displacement}{\m}[\m][\m] \newphysicsquantity{mass}{\kg}[\kg][\kg] \newphysicsquantity{duration}{\s}[\s][\s] @@ -241,131 +278,156 @@ \newphysicsquantity{temperature}{\K}[\K][\K] \newphysicsquantity{amount}{\mol}[\mol][\mol] \newphysicsquantity{luminous}{\cd}[\cd][\cd] -\newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\rad] -\newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\sr] -\newcommand{\indegrees}[1]{\ensuremath{\unit{#1}{\degree}}} -\newcommand{\inFarenheit}[1]{\ensuremath{\unit{#1}{\degree\mathrm{F}}}} -\newcommand{\inCelsius}[1]{\ensuremath{\unit{#1}{\degree\mathrm{C}}}} -\newcommand{\inarcminutes}[1]{\ensuremath{\unit{#1}{\arcminute}}} -\newcommand{\inarcseconds}[1]{\ensuremath{\unit{#1}{\arcsecond}}} -\newcommand{\ineV}[1]{\ensuremath{\unit{#1}{\electronvolt}}} -\newcommand{\inMeVocs}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per\msup{c}{2}}}} -\newcommand{\inMeVoc}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per c}}} -\newcommand{\inAU}[1]{\ensuremath{\unit{#1}{\mathrm{AU}}}} -\newcommand{\inly}[1]{\ensuremath{\unit{#1}{\mathrm{ly}}}} -\newcommand{\incyr}[1]{\ensuremath{\unit{#1}{c\usk\mathrm{year}}}} -\newcommand{\inpc}[1]{\ensuremath{\unit{#1}{\mathrm{pc}}}} -\newcommand{\insolarL}[1]{\ensuremath{\unit{#1}{\Lsolar}}} -\newcommand{\insolarT}[1]{\ensuremath{\unit{#1}{\Tsolar}}} -\newcommand{\insolarR}[1]{\ensuremath{\unit{#1}{\Rsolar}}} -\newcommand{\insolarM}[1]{\ensuremath{\unit{#1}{\Msolar}}} -\newcommand{\insolarF}[1]{\ensuremath{\unit{#1}{\Fsolar}}} -\newcommand{\insolarf}[1]{\ensuremath{\unit{#1}{\fsolar}}} -\newcommand{\insolarMag}[1]{\ensuremath{\unit{#1}{\Magsolar}}} -\newcommand{\insolarmag}[1]{\ensuremath{\unit{#1}{\magsolar}}} -\newcommand{\insolarD}[1]{\ensuremath{\unit{#1}{\Dsolar}}} -\newcommand{\insolard}[1]{\ensuremath{\unit{#1}{\dsolar}}} -\newcommand{\velocityc}[1]{\ensuremath{#1c}} +\newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\relax] +\newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\relax] +\newcommand*{\indegrees}[1]{\unit{#1}{\degree}} +\newcommand*{\inFarenheit}[1]{\unit{#1}{\degree\mathrm{F}}} +\newcommand*{\inCelsius}[1]{\unit{#1}{\degree\mathrm{C}}} +\newcommand*{\inarcminutes}[1]{\unit{#1}{\arcminute}} +\newcommand*{\inarcseconds}[1]{\unit{#1}{\arcsecond}} +\newcommand*{\ineV}[1]{\unit{#1}{\electronvolt}} +\newcommand*{\ineVocs}[1]{\unit{#1}{\mathrm{eV}\per c^2}} +\newcommand*{\ineVoc}[1]{\unit{#1}{\mathrm{eV}\per c}} +\newcommand*{\inMeV}[1]{\unit{#1}{\mathrm{MeV}}} +\newcommand*{\inMeVocs}[1]{\unit{#1}{\mathrm{MeV}\per c^2}} +\newcommand*{\inMeVoc}[1]{\unit{#1}{\mathrm{MeV}\per c}} +\newcommand*{\inGeV}[1]{\unit{#1}{\mathrm{GeV}}} +\newcommand*{\inGeVocs}[1]{\unit{#1}{\mathrm{GeV}\per c^2}} +\newcommand*{\inGeVoc}[1]{\unit{#1}{\mathrm{GeV}\per c}} +\newcommand*{\inamu}[1]{\unit{#1}{\mathrm{u}}} +\newcommand*{\ingram}[1]{\unit{#1}{\mathrm{g}}} +\newcommand*{\ingrampercubiccm}[1]{\unit{#1}{\mathrm{g}\per\cubic\mathrm{cm}}} +\newcommand*{\inAU}[1]{\unit{#1}{\mathrm{AU}}} +\newcommand*{\inly}[1]{\unit{#1}{\mathrm{ly}}} +\newcommand*{\incyr}[1]{\unit{#1}{c\usk\mathrm{year}}} +\newcommand*{\inpc}[1]{\unit{#1}{\mathrm{pc}}} +\newcommand*{\insolarL}[1]{\unit{#1}{\Lsolar}} +\newcommand*{\insolarT}[1]{\unit{#1}{\Tsolar}} +\newcommand*{\insolarR}[1]{\unit{#1}{\Rsolar}} +\newcommand*{\insolarM}[1]{\unit{#1}{\Msolar}} +\newcommand*{\insolarF}[1]{\unit{#1}{\Fsolar}} +\newcommand*{\insolarf}[1]{\unit{#1}{\fsolar}} +\newcommand*{\insolarMag}[1]{\unit{#1}{\Magsolar}} +\newcommand*{\insolarmag}[1]{\unit{#1}{\magsolar}} +\newcommand*{\insolarD}[1]{\unit{#1}{\Dsolar}} +\newcommand*{\insolard}[1]{\unit{#1}{\dsolar}} +\newcommand*{\velocityc}[1]{\ensuremath{#1c}} \newphysicsquantity{velocity}{\m\usk\reciprocal\s}[\m\usk\reciprocal\s][\m\per\s] -\newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg][\m\per\s\squared] -\newcommand{\lorentz}[1]{\ensuremath{#1}} +\newcommand*{\speed}{\velocity} +\newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg]% + [\m\per\s\squared] +\newphysicsquantity{gravitationalfield}{\m\usk\s\reciprocalsquared}[\N\per\kg]% + [\N\per\kg] +\newphysicsquantity{gravitationalpotential}{\square\m\usk\reciprocalsquare\s}% + [\J\per\kg][\J\per\kg] +\newcommand*{\lorentz}[1]{\ensuremath{#1}} \newphysicsquantity{momentum}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s] -\newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s] +\newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\N\usk\s] \newphysicsquantity{force}{\m\usk\kg\usk\s\reciprocalsquared}[\N][\N] \newphysicsquantity{springstiffness}{\kg\usk\s\reciprocalsquared}[\N\per\m][\N\per\m] \newphysicsquantity{springstretch}{\m} \newphysicsquantity{area}{\m\squared} \newphysicsquantity{volume}{\cubic\m} \newphysicsquantity{linearmassdensity}{\reciprocal\m\usk\kg}[\kg\per\m][\kg\per\m] -\newphysicsquantity{areamassdensity}{\m\reciprocalsquared\usk\kg}[\kg\per\m\squared] -[\kg\per\m\squared] -\newphysicsquantity{volumemassdensity}{\m\reciprocalcubed\usk\kg}[\kg\per\m\cubed] -[\kg\per\m\cubed] -\newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared} -[\N\per\m\squared][\Pa] +\newphysicsquantity{areamassdensity}{\m\reciprocalsquared\usk\kg}[\kg\per\m\squared]% + [\kg\per\m\squared] +\newphysicsquantity{volumemassdensity}{\m\reciprocalcubed\usk\kg}[\kg\per\m\cubed]% + [\kg\per\m\cubed] +\newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}% + [\N\per\m\squared][\Pa] +\newphysicsquantity{stress}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}% + [\N\per\m\squared][\Pa] +\newphysicsquantity{pressure}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}% + [\N\per\m\squared][\Pa] +\newphysicsquantity{strain}{\relax}[\relax][\relax] \newphysicsquantity{work}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m] -\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m] -\newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s] +\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\N\usk\m][\J] +\newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\J\per\s][\W] +\newphysicsquantity{specificheatcapacity}{\J\per\K\usk\kg}[\J\per\K\usk\kg]% + [\J\per\K\usk\kg] \newphysicsquantity{angularvelocity}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s] -\newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}[\rad\per\s\squared] -[\rad\per\s\squared] -\newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s] -[\kg\usk\m\squared\per\s] -\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared][\kg\usk\m\squared] -\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad][\N\usk\m] +\newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}% + [\rad\per\s\squared][\rad\per\s\squared] +\newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s]% + [\kg\usk\m\squared\per\s] +\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared]% + [\kg\usk\m\squared] +\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad]% + [\N\usk\m] \newphysicsquantity{entropy}{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\K} -[\J\per\K][\J\per\K] + [\J\per\K][\J\per\K] \newphysicsquantity{wavelength}{\m}[\m][\m] \newphysicsquantity{wavenumber}{\reciprocal\m}[\per\m][\per\m] \newphysicsquantity{frequency}{\reciprocal\s}[\hertz][\hertz] \newphysicsquantity{angularfrequency}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s] \newphysicsquantity{charge}{\A\usk\s}[\C][\C] \newphysicsquantity{permittivity} -{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared} -[\F\per\m][\C\squared\per\N\usk\m\squared] -\newphysicsquantity{permeability} -{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m][\T\usk\m\per\A] -\newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A} -[\V\per\m][\N\per\C] +{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared}% + [\F\per\m][\C\squared\per\N\usk\m\squared] +\newphysicsquantity{permeability}% + {\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m]% + [\T\usk\m\per\A] +\newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}% + [\V\per\m][\N\per\C] \newphysicsquantity{electricdipolemoment}{\m\usk\s\usk\A}[\C\usk\m][\C\usk\m] -\newphysicsquantity{electricflux}{\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A} -[\V\usk\m][\N\usk\m\squared\per\C] -\newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T] -[\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared -\newphysicsquantity{magneticflux} -{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s] -[\T\usk\m\squared] % also \Wb and \J\per\A -\newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A} -[\V\per\m][\N\per\C] +\newphysicsquantity{electricflux}% + {\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}% + [\V\usk\m][\N\usk\m\squared\per\C] +\newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T]% + [\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared +\newphysicsquantity{magneticflux}% + {\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s]% + [\T\usk\m\squared] % also \Wb and \J\per\A +\newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}% + [\V\per\m][\N\per\C] \newphysicsquantity{linearchargedensity}{\reciprocal\m\usk\s\usk\A}[\C\per\m][\C\per\m] -\newphysicsquantity{areachargedensity}{\reciprocalsquare\m\usk\s\usk\A} -[\C\per\square\m][\C\per\square\m] -\newphysicsquantity{volumechargedensity}{\reciprocalcubic\m\usk\s\usk\A} -[\C\per\cubic\m][\C\per\cubic\m] -\newphysicsquantity{mobility} -{\m\squared\usk\kg\usk\s\reciprocalquarted\usk\reciprocal\A}[\m\squared\per\volt\usk\s] -[(\m\per\s)\per(\N\per\C)] +\newphysicsquantity{areachargedensity}{\reciprocalsquare\m\usk\s\usk\A}% + [\C\per\square\m][\C\per\square\m] +\newphysicsquantity{volumechargedensity}{\reciprocalcubic\m\usk\s\usk\A}% + [\C\per\cubic\m][\C\per\cubic\m] +\newphysicsquantity{mobility}% + {\m\squared\usk\kg\usk\s\reciprocalquarted\usk\reciprocal\A}[\m\squared\per\volt\usk\s] + [(\m\per\s)\per(\N\per\C)] \newphysicsquantity{numberdensity}{\reciprocalcubic\m}[\per\cubic\m][\per\cubic\m] -\newphysicsquantity{polarizability}{\reciprocal\kg\usk\s\quarted\usk\square\A} -[\C\usk\square\m\per\V][\C\usk\m\per(\N\per\C)] -\newphysicsquantity{electricpotential} -{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}[\J\per\C][\V] -\newphysicsquantity{emf}{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A} -[\J\per\C][\V] +\newphysicsquantity{polarizability}{\reciprocal\kg\usk\s\quarted\usk\square\A}% + [\C\usk\square\m\per\V][\C\usk\m\per(\N\per\C)] +\newphysicsquantity{electricpotential}% + {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}[\J\per\C][\V] +\newphysicsquantity{emf}{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}% + [\J\per\C][\V] \newphysicsquantity{dielectricconstant}{}[][] \newphysicsquantity{indexofrefraction}{}[][] \newphysicsquantity{relativepermittivity}{}[][] \newphysicsquantity{relativepermeability}{}[][] -\newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s} -[\J\per\cubic\m][\J\per\cubic\m] -\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed} -[\W\per\m\squared][\W\per\m\squared] -\newphysicsquantity{electroncurrent}{\reciprocal\s} -[\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s] +\newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s}% + [\J\per\cubic\m][\J\per\cubic\m] +\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed}% + [\W\per\m\squared][\W\per\m\squared] +\newphysicsquantity{electroncurrent}{\reciprocal\s}% + [\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s] \newphysicsquantity{conventionalcurrent}{\A}[\C\per\s][\A] \newphysicsquantity{magneticdipolemoment}{\square\m\usk\A}[\J\per\T][\A\usk\square\m] -\newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m] -[\A\per\square\m] -\newphysicsquantity{capacitance} -{\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V] -\newphysicsquantity{inductance} -{\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry] -[\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A -\newphysicsquantity{conductivity} -{\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m] -[(\A\per\square\m)\per(\V\per\m)] -\newphysicsquantity{resistivity} -{\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m] -[(\V\per\m)\per(\A\per\square\m)] -\newphysicsquantity{resistance} -{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm] -\newphysicsquantity{conductance} -{\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens] +\newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m]% + [\A\per\square\m] +\newphysicsquantity{capacitance}% + {\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V] + % also \C\squared\per\N\usk\m, \s\per\ohm +\newphysicsquantity{inductance}% + {\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry]% + [\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A +\newphysicsquantity{conductivity}% + {\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m]% + [(\A\per\square\m)\per(\V\per\m)] +\newphysicsquantity{resistivity}% + {\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m]% + [(\V\per\m)\per(\A\per\square\m)] +\newphysicsquantity{resistance}% + {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm] +\newphysicsquantity{conductance}% + {\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens] \newphysicsquantity{magneticcharge}{\m\usk\A}[\m\usk\A][\m\usk\A] -\newcommand{\lv}{\ensuremath{\left\langle}} -\newcommand{\rv}{\ensuremath{\right\rangle}} -\newcommand{\symvect}{\mivector} -\newcommand{\ncompsvect}{\mivector} +\newcommand*{\lv}{\ensuremath{\left\langle}} +\newcommand*{\rv}{\ensuremath{\right\rangle}} \ExplSyntaxOn % Written in LaTeX3 \NewDocumentCommand{\magvectncomps}{ m O{} } {% @@ -389,419 +451,347 @@ }% }% \ExplSyntaxOff -\newcommand{\zerovect}{\vect{0}} -\newcommand{\ncompszerovect}{\mivector{0,0,0}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\vect}[1]{\ensuremath{\vec{#1}}}} - {\newcommand{\vect}[1]{\ensuremath{\vec{\mathrm{#1}}}}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\newcommand{\magvect}[1]{\ensuremath{\magof{\vect{#1}}}}} - {\newcommand{\magvect}[1]{\ensuremath{\abs{\vect{#1}}}}} -\newcommand{\dmagvect}[1]{\ensuremath{\dx{\magvect{#1}}}} -\newcommand{\Dmagvect}[1]{\ensuremath{\Delta\!\magvect{#1}}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\dirvect}[1]{\ensuremath{\widehat{{#1}}}}} - {\newcommand{\dirvect}[1]{\ensuremath{\widehat{\mathrm{#1}}}}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\compvect}[2]{\ensuremath{\ssub{#1}{\(#2\)}}}} - {\newcommand{\compvect}[2]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\)}}}} -\newcommand{\scompsvect}[1]{\ensuremath{\lv - \compvect{#1}{x}, - \compvect{#1}{y}, +\newcommand*{\zerovect}{\vect{0}} +\newcommand*{\ncompszerovect}{\mivector{0,0,0}} +\ifthenelse{\boolean{@optboldvectors}} + {\newcommand*{\vect}[1]{\ensuremath{\boldsymbol{#1}}}} + {\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\vect}[1]{\ensuremath{\vv{\mathrm{#1}}}}} + {\newcommand*{\vect}[1]{\ensuremath{\vv{#1}}}}} +\ifthenelse{\boolean{@optsingleabsbars}} + {\newcommand*{\magvect}[1]{\ensuremath{\abs{\vect{#1}}}}} + {\newcommand*{\magvect}[1]{\ensuremath{\magof{\vect{#1}}}}} +\newcommand*{\magsquaredvect}[1]{\ensuremath{\magvect{#1}\squared}} +\newcommand*{\magnvect}[2]{\ensuremath{\magvect{#1}^{#2}}} +\newcommand*{\dmagvect}[1]{\ensuremath{\dx{\magvect{#1}}}} +\newcommand*{\Dmagvect}[1]{\ensuremath{\Delta\!\magvect{#1}}} +\ifthenelse{\boolean{@optboldvectors}} + {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{\boldsymbol{#1}}}}} + {\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{\mathrm{#1}}}}} + {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{#1}}}}} +\newcommand*{\direction}{\dirvect} +\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\compvect}[2]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\)}}}} + {\newcommand*{\compvect}[2]{\ensuremath{\ssub{#1}{\(#2\)}}}} +\newcommand*{\scompsvect}[1]{\ensuremath{\lv% + \compvect{#1}{x},% + \compvect{#1}{y},% \compvect{#1}{z}\rv}} -\newcommand{\magvectscomps}[1]{\ensuremath{\sqrt{ - \msup{\compvect{#1}{x}}{2}+ - \msup{\compvect{#1}{y}}{2}+ - \msup{\compvect{#1}{z}}{2}}}} -\newcommand{\dvect}[1]{\ensuremath{\mathrm{d}\vect{#1}}} -\newcommand{\Dvect}[1]{\ensuremath{\Delta\vect{#1}}} -\newcommand{\dirdvect}[1]{\ensuremath{\widehat{\dvect{#1}}}} -\newcommand{\dirDvect}[1]{\ensuremath{\widehat{\Dvect{#1}}}} -\newcommand{\ddirvect}[1]{\ensuremath{\mathrm{d}\dirvect{E}}} -\newcommand{\Ddirvect}[1]{\ensuremath{\Delta\dirvect{E}}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\newcommand{\magdvect}[1]{\ensuremath{\magof{\dvect{#1}}}} - \newcommand{\magDvect}[1]{\ensuremath{\magof{\Dvect{#1}}}}} - {\newcommand{\magdvect}[1]{\ensuremath{\abs{\dvect{#1}}}} - \newcommand{\magDvect}[1]{\ensuremath{\abs{\Dvect{#1}}}}} -\newcommand{\compdvect}[2]{\ensuremath{\mathrm{d}\compvect{#1}{#2}}} -\newcommand{\compDvect}[2]{\ensuremath{\Delta\compvect{#1}{#2}}} -\newcommand{\scompsdvect}[1]{\ensuremath{\lv - \compdvect{#1}{x}, - \compdvect{#1}{y}, +\newcommand*{\magvectscomps}[1]{\ensuremath{\sqrt{% + \compvect{#1}{x}\squared +% + \compvect{#1}{y}\squared +% + \compvect{#1}{z}\squared}}} +\newcommand*{\dvect}[1]{\ensuremath{\mathrm{d}\vect{#1}}} +\newcommand*{\Dvect}[1]{\ensuremath{\Delta\vect{#1}}} +\newcommand*{\dirdvect}[1]{\ensuremath{\widehat{\dvect{#1}}}} +\newcommand*{\dirDvect}[1]{\ensuremath{\widehat{\Dvect{#1}}}} +\newcommand*{\ddirvect}[1]{\ensuremath{\mathrm{d}\dirvect{#1}}} +\newcommand*{\ddirection}{\ddirvect} +\newcommand*{\Ddirvect}[1]{\ensuremath{\Delta\dirvect{#1}}} +\newcommand*{\Ddirection}{\Ddirvect} +\ifthenelse{\boolean{@optsingleabsbars}} + {\newcommand*{\magdvect}[1]{\ensuremath{\abs{\dvect{#1}}}} + \newcommand*{\magDvect}[1]{\ensuremath{\abs{\Dvect{#1}}}}} + {\newcommand*{\magdvect}[1]{\ensuremath{\magof{\dvect{#1}}}} + \newcommand*{\magDvect}[1]{\ensuremath{\magof{\Dvect{#1}}}}} +\newcommand*{\compdvect}[2]{\ensuremath{\mathrm{d}\compvect{#1}{#2}}} +\newcommand*{\compDvect}[2]{\ensuremath{\Delta\compvect{#1}{#2}}} +\newcommand*{\scompsdvect}[1]{\ensuremath{\lv% + \compdvect{#1}{x},% + \compdvect{#1}{y},% \compdvect{#1}{z}\rv}} -\newcommand{\scompsDvect}[1]{\ensuremath{\lv - \compDvect{#1}{x}, - \compDvect{#1}{y}, +\newcommand*{\scompsDvect}[1]{\ensuremath{\lv% + \compDvect{#1}{x},% + \compDvect{#1}{y},% \compDvect{#1}{z}\rv}} -\newcommand{\dervect}[2]{\ensuremath{\frac{\dvect{#1}}{\mathrm{d}{#2}}}} -\newcommand{\Dervect}[2]{\ensuremath{\frac{\Dvect{#1}}{\Delta{#2}}}} -\newcommand{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#2}}{#3}}} -\newcommand{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#2}}{#3}}} -\newcommand{\scompsdervect}[2]{\ensuremath{\lv - \compdervect{#1}{x}{#2}, - \compdervect{#1}{y}{#2}, +\newcommand*{\dervect}[2]{\ensuremath{\frac{\dvect{#1}}{\mathrm{d}{#2}}}} +\newcommand*{\Dervect}[2]{\ensuremath{\frac{\Dvect{#1}}{\Delta{#2}}}} +\newcommand*{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#2}}{#3}}} +\newcommand*{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#2}}{#3}}} +\newcommand*{\scompsdervect}[2]{\ensuremath{\lv% + \compdervect{#1}{x}{#2},% + \compdervect{#1}{y}{#2},% \compdervect{#1}{z}{#2}\rv}} -\newcommand{\scompsDervect}[2]{\ensuremath{\lv - \compDervect{#1}{x}{#2}, - \compDervect{#1}{y}{#2}, +\newcommand*{\scompsDervect}[2]{\ensuremath{\lv% + \compDervect{#1}{x}{#2},% + \compDervect{#1}{y}{#2},% \compDervect{#1}{z}{#2}\rv}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\newcommand{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}} - \newcommand{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}} - {\newcommand{\magdervect}[2]{\ensuremath{\abs{\dervect{#1}{#2}}}} - \newcommand{\magDervect}[2]{\ensuremath{\abs{\Dervect{#1}{#2}}}}} -\newcommand{\dermagvect}[2]{\ensuremath{\dbyd{\magvect{#1}}{#2}}} -\newcommand{\Dermagvect}[2]{\ensuremath{\DbyD{\magvect{#1}}{#2}}} -\newcommand{\scompspos}{\mivector{x,y,z}} -\newcommand{\comppos}[1]{\ensuremath{{#1}}} -\newcommand{\scompsdpos}{\mivector{\mathrm{d}x,\mathrm{d}y,\mathrm{d}z}} -\newcommand{\scompsDpos}{\mivector{\Delta x,\Delta y,\Delta z}} -\newcommand{\compdpos}[1]{\ensuremath{\mathrm{d}{#1}}} -\newcommand{\compDpos}[1]{\ensuremath{\Delta{#1}}} -\newcommand{\scompsderpos}[1]{\ensuremath{\lv - \frac{\mathrm{d}x}{\mathrm{d}{#1}},\frac{\mathrm{d}y}{\mathrm{d}{#1}}, - \frac{\mathrm{d}z}{\mathrm{d}{#1}}\rv}} -\newcommand{\scompsDerpos}[1]{\ensuremath{\lv - \frac{\Delta x}{\Delta{#1}},\frac{\Delta y}{\Delta{#1}}, - \frac{\Delta z}{\Delta{#1}}\rv}} -\newcommand{\compderpos}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}} -\newcommand{\compDerpos}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}} -\newcommand{\vectsub}[2]{\ensuremath{\ssub{\vect{#1}}{#2}}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{#1}{\(#2\),#3}}}} - {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\),#3}}}} -\newcommand{\scompsvectsub}[2]{\ensuremath{\lv - \compvectsub{#1}{x}{#2}, - \compvectsub{#1}{y}{#2}, - \compvectsub{#1}{z}{#2}\rv}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\newcommand{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}} - {\newcommand{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}} -\newcommand{\magvectsubscomps}[2]{\ensuremath{\sqrt{ - \msup{\compvectsub{#1}{x}{#2}}{2}+ - \msup{\compvectsub{#1}{y}{#2}}{2}+ - \msup{\compvectsub{#1}{z}{#2}}{2}}}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}} - {\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}} -\newcommand{\dvectsub}[2]{\ensuremath{\mathrm{d}\vectsub{#1}{#2}}} -\newcommand{\Dvectsub}[2]{\ensuremath{\Delta\vectsub{#1}{#2}}} -\newcommand{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}} -\newcommand{\compDvectsub}[3]{\ensuremath{\Delta\compvectsub{#1}{#2}{#3}}} -\newcommand{\scompsdvectsub}[2]{\ensuremath{\lv - \compdvectsub{#1}{x}{#2}, - \compdvectsub{#1}{y}{#2}, - \compdvectsub{#1}{z}{#2}\rv}} -\newcommand{\scompsDvectsub}[2]{\ensuremath{\lv - \compDvectsub{#1}{x}{#2}, - \compDvectsub{#1}{y}{#2}, - \compDvectsub{#1}{z}{#2}\rv}} -\newcommand{\dermagvectsub}[3]{\ensuremath{\dbyd{\magvectsub{#1}{#2}}{#3}}} -\newcommand{\Dermagvectsub}[3]{\ensuremath{\DbyD{\magvectsub{#1}{#2}}{#3}}} -\newcommand{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}} -\newcommand{\Dervectsub}[3]{\ensuremath{\DbyD{\vectsub{#1}{#2}}{#3}}} -\ifthenelse{\boolean{@optdoubleabsbars}} - {\newcommand{\magdervectsub}[3]{\ensuremath{\magof{\dervectsub{#1}{#2}{#3}}}} - \newcommand{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}} - {\newcommand{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}} - \newcommand{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}} -\newcommand{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}} -\newcommand{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#3}}{#4}}} -\newcommand{\scompsdervectsub}[3]{\ensuremath{\lv - \compdervectsub{#1}{x}{#2}{#3}, - \compdervectsub{#1}{y}{#2}{#3}, - \compdervectsub{#1}{z}{#2}{#3}\rv}} -\newcommand{\scompsDervectsub}[3]{\ensuremath{\lv - \compDervectsub{#1}{x}{#2}{#3}, - \compDervectsub{#1}{y}{#2}{#3}, - \compDervectsub{#1}{z}{#2}{#3}\rv}} -\newcommand{\comppossub}[2]{\ensuremath{\ssub{#1}{#2}}} -\newcommand{\scompspossub}[1]{\ensuremath{\lv - \comppossub{x}{#1}, - \comppossub{y}{#1}, - \comppossub{z}{#1}\rv}} -\newcommand{\compdpossub}[2]{\ensuremath{\mathrm{d}\comppossub{#1}{#2}}} -\newcommand{\compDpossub}[2]{\ensuremath{\Delta\comppossub{#1}{#2}}} -\newcommand{\scompsdpossub}[1]{\ensuremath{\lv - \compdpossub{x}{#1}, - \compdpossub{y}{#1}, - \compdpossub{z}{#1}\rv}} -\newcommand{\scompsDpossub}[1]{\ensuremath{\lv - \compDpossub{x}{#1}, - \compDpossub{y}{#1}, - \compDpossub{z}{#1}\rv}} -\newcommand{\compderpossub}[3]{\ensuremath{\dbyd{\comppossub{#1}{#2}}{#3}}} -\newcommand{\compDerpossub}[3]{\ensuremath{\DbyD{\comppossub{#1}{#2}}{#3}}} -\newcommand{\scompsderpossub}[2]{\ensuremath{\lv - \compderpossub{x}{#1}{#2}, - \compderpossub{y}{#1}{#2}, - \compderpossub{z}{#1}{#2}\rv}} -\newcommand{\scompsDerpossub}[2]{\ensuremath{\lv - \compDerpossub{x}{#1}{#2}, - \compDerpossub{y}{#1}{#2}, - \compDerpossub{z}{#1}{#2}\rv}} -\newcommand{\relpos}[1]{\ensuremath{\vectsub{r}{#1}}} -\newcommand{\relvel}[1]{\ensuremath{\vectsub{v}{#1}}} -\newcommand{\relmom}[1]{\ensuremath{\vectsub{p}{#1}}} -\newcommand{\relfor}[1]{\ensuremath{\vectsub{F}{#1}}} -\newcommand{\vectdotvect}[2]{\ensuremath{{#1}\bullet{#2}}} -\newcommand{\vectdotsvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsvect{#2}}} -\newcommand{\vectdotevect}[2]{\ensuremath{ - \compvect{#1}{x}\compvect{#2}{x}+ - \compvect{#1}{y}\compvect{#2}{y}+ +\ifthenelse{\boolean{@optsingleabsbars}} + {\newcommand*{\magdervect}[2]{\ensuremath{\abs{\dervect{#1}{#2}}}} + \newcommand*{\magDervect}[2]{\ensuremath{\abs{\Dervect{#1}{#2}}}}} + {\newcommand*{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}} + \newcommand*{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}} +\newcommand*{\dermagvect}[2]{\ensuremath{\dbyd{\magvect{#1}}{#2}}} +\newcommand*{\Dermagvect}[2]{\ensuremath{\DbyD{\magvect{#1}}{#2}}} +\newcommand*{\derdirvect}[2]{\ensuremath{\dbyd{\dirvect{#1}}{#2}}} +\newcommand*{\derdirection}{\derdirvect} +\newcommand*{\Derdirvect}[2]{\ensuremath{\DbyD{\dirvect{#1}}{#2}}} +\newcommand*{\Derdirection}{\Derdirvect} +\ifthenelse{\boolean{@optboldvectors}} + {\newcommand*{\vectsub}[2]{\ensuremath{\boldsymbol{#1}_{\text{\tiny{}#2}}}}} + {\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\vectsub}[2]{\ensuremath{\vv{\mathrm{#1}}_{\text{\tiny{#2}}}}}} + {\newcommand*{\vectsub}[2]{\ensuremath{\vv{#1}_{\text{\tiny{#2}}}}}}} +\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{#2,\(#3\)}}}} + {\newcommand*{\compvectsub}[3]{\ensuremath{\ssub{#1}{#2,\(#3\)}}}} +\newcommand*{\scompsvectsub}[2]{\ensuremath{\lv% + \compvectsub{#1}{#2}{x},% + \compvectsub{#1}{#2}{y},% + \compvectsub{#1}{#2}{z}\rv}} +\ifthenelse{\boolean{@optsingleabsbars}} + {\newcommand*{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}} + {\newcommand*{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}} +\newcommand*{\magsquaredvectsub}[2]{\ensuremath{\magvectsub{#1}{#2}\squared}} +\newcommand*{\magnvectsub}[3]{\ensuremath{\magvectsub{#1}{#2}^{#3}}} +\newcommand*{\magvectsubscomps}[2]{\ensuremath{\sqrt{% + \compvectsub{#1}{#2}{x}\squared +% + \compvectsub{#1}{#2}{y}\squared +% + \compvectsub{#1}{#2}{z}\squared}}} +\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}} + {\newcommand*{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}} +\newcommand*{\directionsub}{\dirvectsub} +\newcommand*{\dvectsub}[2]{\ensuremath{\mathrm{d}\vectsub{#1}{#2}}} +\newcommand*{\Dvectsub}[2]{\ensuremath{\Delta\vectsub{#1}{#2}}} +\newcommand*{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}} +\newcommand*{\compDvectsub}[3]{\ensuremath{\Delta\compvectsub{#1}{#2}{#3}}} +\newcommand*{\scompsdvectsub}[2]{\ensuremath{\lv% + \compdvectsub{#1}{#2}{x},% + \compdvectsub{#1}{#2}{y},% + \compdvectsub{#1}{#2}{z}\rv}} +\newcommand*{\scompsDvectsub}[2]{\ensuremath{\lv% + \compDvectsub{#1}{#2}{x},% + \compDvectsub{#1}{#2}{y},% + \compDvectsub{#1}{#2}{z}\rv}} +\newcommand*{\dermagvectsub}[3]{\ensuremath{\dbyd{\magvectsub{#1}{#2}}{#3}}} +\newcommand*{\Dermagvectsub}[3]{\ensuremath{\DbyD{\magvectsub{#1}{#2}}{#3}}} +\newcommand*{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}} +\newcommand*{\Dervectsub}[3]{\ensuremath{\DbyD{\vectsub{#1}{#2}}{#3}}} +\ifthenelse{\boolean{@optsingleabsbars}} + {\newcommand*{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}} + \newcommand*{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}} + {\newcommand*{\magdervectsub}[3]{\ensuremath{\magof{\dervectsub{#1}{#2}{#3}}}} + \newcommand*{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}} +\newcommand*{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}} +\newcommand*{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#3}}{#4}}} +\newcommand*{\scompsdervectsub}[3]{\ensuremath{\lv% + \compdervectsub{#1}{#2}{x}{#3},% + \compdervectsub{#1}{#2}{y}{#3},% + \compdervectsub{#1}{#2}{z}{#3}\rv}} +\newcommand*{\scompsDervectsub}[3]{\ensuremath{\lv% + \compDervectsub{#1}{#2}{x}{#3},% + \compDervectsub{#1}{#2}{y}{#3},% + \compDervectsub{#1}{#2}{z}{#3}\rv}} +\newcommand*{\vectdotvect}[2]{\ensuremath{{#1}\bullet{#2}}} +\newcommand*{\vectdotsvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsvect{#2}}} +\newcommand*{\vectdotevect}[2]{\ensuremath{% + \compvect{#1}{x}\compvect{#2}{x}+% + \compvect{#1}{y}\compvect{#2}{y}+% \compvect{#1}{z}\compvect{#2}{z}}} -\newcommand{\vectdotspos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompspos}} -\newcommand{\vectdotepos}[1]{\ensuremath{ - \compvect{#1}{x}\comppos{x}+ - \compvect{#1}{y}\comppos{y}+ - \compvect{#1}{z}\comppos{z}}} -\newcommand{\vectdotsdvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsdvect{#2}}} -\newcommand{\vectdotsDvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsDvect{#2}}} -\newcommand{\vectdotedvect}[2]{\ensuremath{ - \compvect{#1}{x}\compdvect{#2}{x}+ - \compvect{#1}{y}\compdvect{#2}{y}+ +\newcommand*{\vectdotsdvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsdvect{#2}}} +\newcommand*{\vectdotsDvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsDvect{#2}}} +\newcommand*{\vectdotedvect}[2]{\ensuremath{% + \compvect{#1}{x}\compdvect{#2}{x}+% + \compvect{#1}{y}\compdvect{#2}{y}+% \compvect{#1}{z}\compdvect{#2}{z}}} -\newcommand{\vectdoteDvect}[2]{\ensuremath{ - \compvect{#1}{x}\compDvect{#2}{x}+ - \compvect{#1}{y}\compDvect{#2}{y}+ +\newcommand*{\vectdoteDvect}[2]{\ensuremath{% + \compvect{#1}{x}\compDvect{#2}{x}+% + \compvect{#1}{y}\compDvect{#2}{y}+% \compvect{#1}{z}\compDvect{#2}{z}}} -\newcommand{\vectdotsdpos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompsdpos}} -\newcommand{\vectdotsDpos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompsDpos}} -\newcommand{\vectdotedpos}[1]{\ensuremath{ - \compvect{#1}{x}\compdpos{x}+ - \compvect{#1}{y}\compdpos{y}+ - \compvect{#1}{z}\compdpos{z}}} -\newcommand{\vectdoteDpos}[1]{\ensuremath{ - \compvect{#1}{x}\compDpos{x}+ - \compvect{#1}{y}\compDpos{y}+ - \compvect{#1}{z}\compDpos{z}}} -\newcommand{\vectsubdotsvectsub}[4]{\ensuremath{ +\newcommand*{\vectsubdotsvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsvectsub{#3}{#4}}} -\newcommand{\vectsubdotevectsub}[4]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compvectsub{#3}{x}{#4}+ - \compvectsub{#1}{y}{#2}\compvectsub{#3}{y}{#4}+ - \compvectsub{#1}{z}{#2}\compvectsub{#3}{z}{#4}}} -\newcommand{\vectsubdotsdvectsub}[4]{\ensuremath{% +\newcommand*{\vectsubdotevectsub}[4]{\ensuremath{% + \compvectsub{#1}{#2}{x}\compvectsub{#3}{#4}{x}+% + \compvectsub{#1}{#2}{y}\compvectsub{#3}{#4}{y}+% + \compvectsub{#1}{#2}{z}\compvectsub{#3}{#4}{z}}} +\newcommand*{\vectsubdotsdvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsdvectsub{#3}{#4}}} -\newcommand{\vectsubdotsDvectsub}[4]{\ensuremath{% +\newcommand*{\vectsubdotsDvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsDvectsub{#3}{#4}}} -\newcommand{\vectsubdotedvectsub}[4]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compdvectsub{#3}{x}{#4}+ - \compvectsub{#1}{y}{#2}\compdvectsub{#3}{y}{#4}+ - \compvectsub{#1}{z}{#2}\compdvectsub{#3}{z}{#4}}} -\newcommand{\vectsubdoteDvectsub}[4]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compDvectsub{#3}{x}{#4}+ - \compvectsub{#1}{y}{#2}\compDvectsub{#3}{y}{#4}+ - \compvectsub{#1}{z}{#2}\compDvectsub{#3}{z}{#4}}} -\newcommand{\vectsubdotsdvect}[3]{\ensuremath{ +\newcommand*{\vectsubdotedvectsub}[4]{\ensuremath{% + \compvectsub{#1}{#2}{x}\compdvectsub{#3}{#4}{x}+% + \compvectsub{#1}{#2}{y}\compdvectsub{#3}{#4}{y}+% + \compvectsub{#1}{#2}{z}\compdvectsub{#3}{#4}{z}}} +\newcommand*{\vectsubdoteDvectsub}[4]{\ensuremath{% + \compvectsub{#1}{#2}{x}\compDvectsub{#3}{#4}{x}+% + \compvectsub{#1}{#2}{y}\compDvectsub{#3}{#4}{y}+% + \compvectsub{#1}{#2}{z}\compDvectsub{#3}{#4}{z}}} +\newcommand*{\vectsubdotsdvect}[3]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsdvect{#3}}} -\newcommand{\vectsubdotsDvect}[3]{\ensuremath{ +\newcommand*{\vectsubdotsDvect}[3]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsDvect{#3}}} -\newcommand{\vectsubdotedvect}[3]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compdvect{x}{#3}+ - \compvectsub{#1}{y}{#2}\compdvect{y}{#3}+ - \compvectsub{#1}{z}{#2}\compdvect{z}{#3}}} -\newcommand{\vectsubdoteDvect}[3]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compDvect{x}{#3}+ - \compvectsub{#1}{y}{#2}\compDvect{y}{#3}+ - \compvectsub{#1}{z}{#2}\compDvect{z}{#3}}} -\newcommand{\vectsubdotsdpos}[2]{\ensuremath{ - \scompsvectsub{#1}{#2}\bullet\scompsdpos}} -\newcommand{\vectsubdotsDpos}[2]{\ensuremath{ - \scompsvectsub{#1}{#2}\bullet\scompsDpos}} -\newcommand{\vectsubdotedpos}[2]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compdpos{x}+ - \compvectsub{#1}{y}{#2}\compdpos{y}+ - \compvectsub{#1}{z}{#2}\compdpos{z}}} -\newcommand{\vectsubdoteDpos}[2]{\ensuremath{ - \compvectsub{#1}{x}{#2}\compDpos{x}+ - \compvectsub{#1}{y}{#2}\compDpos{y}+ - \compvectsub{#1}{z}{#2}\compDpos{z}}} -\newcommand{\dervectdotsvect}[3]{\ensuremath{ +\newcommand*{\vectsubdotedvect}[3]{\ensuremath{% + \compvectsub{#1}{#2}{x}\compdvect{#3}{x}+% + \compvectsub{#1}{#2}{y}\compdvect{#3}{y}+% + \compvectsub{#1}{#2}{z}\compdvect{#3}{z}}} +\newcommand*{\vectsubdoteDvect}[3]{\ensuremath{% + \compvectsub{#1}{#2}{x}\compDvect{#3}{x}+% + \compvectsub{#1}{#2}{y}\compDvect{#3}{y}+% + \compvectsub{#1}{#2}{z}\compDvect{#3}{z}}} +\newcommand*{\dervectdotsvect}[3]{\ensuremath{% \scompsdervect{#1}{#2}\bullet\scompsvect{#3}}} -\newcommand{\Dervectdotsvect}[3]{\ensuremath{ +\newcommand*{\Dervectdotsvect}[3]{\ensuremath{% \scompsDervect{#1}{#2}\bullet\scompsvect{#3}}} -\newcommand{\dervectdotevect}[3]{\ensuremath{ - \compdervect{#1}{x}{#2}\compvect{x}{#3}+ - \compdervect{#1}{y}{#2}\compvect{y}{#3}+ - \compdervect{#1}{z}{#2}\compvect{z}{#3}}} -\newcommand{\Dervectdotevect}[3]{\ensuremath{ - \compDervect{#1}{x}{#2}\compvect{x}{#3}+ - \compDervect{#1}{y}{#2}\compvect{y}{#3}+ - \compDervect{#1}{z}{#2}\compvect{z}{#3}}} -\newcommand{\vectdotsdervect}[3]{\ensuremath{ +\newcommand*{\dervectdotevect}[3]{\ensuremath{% + \compdervect{#1}{x}{#2}\compvect{#3}{x}+% + \compdervect{#1}{y}{#2}\compvect{#3}{y}+% + \compdervect{#1}{z}{#2}\compvect{#3}{z}}} +\newcommand*{\Dervectdotevect}[3]{\ensuremath{% + \compDervect{#1}{x}{#2}\compvect{#3}{x}+% + \compDervect{#1}{y}{#2}\compvect{#3}{y}+% + \compDervect{#1}{z}{#2}\compvect{#3}{z}}} +\newcommand*{\vectdotsdervect}[3]{\ensuremath{% \scompsvect{#1}\bullet\scompsdervect{#2}{#3}}} -\newcommand{\vectdotsDervect}[3]{\ensuremath{ +\newcommand*{\vectdotsDervect}[3]{\ensuremath{% \scompsvect{#1}\bullet\scompsDervect{#2}{#3}}} -\newcommand{\vectdotedervect}[3]{\ensuremath{ - \compvect{#1}{x}\compdervect{#2}{x}{#3}+ - \compvect{#1}{y}\compdervect{#2}{y}{#3}+ +\newcommand*{\vectdotedervect}[3]{\ensuremath{% + \compvect{#1}{x}\compdervect{#2}{x}{#3}+% + \compvect{#1}{y}\compdervect{#2}{y}{#3}+% \compvect{#1}{z}\compdervect{#2}{z}{#3}}} -\newcommand{\vectdoteDervect}[3]{\ensuremath{ - \compvect{#1}{x}\compDervect{#2}{x}{#3}+ - \compvect{#1}{y}\compDervect{#2}{y}{#3}+ +\newcommand*{\vectdoteDervect}[3]{\ensuremath{% + \compvect{#1}{x}\compDervect{#2}{x}{#3}+% + \compvect{#1}{y}\compDervect{#2}{y}{#3}+% \compvect{#1}{z}\compDervect{#2}{z}{#3}}} -\newcommand{\dervectdotspos}[2]{\ensuremath{ - \scompsdervect{#1}{#2}\bullet\scompspos}} -\newcommand{\Dervectdotspos}[2]{\ensuremath{ - \scompsDervect{#1}{#2}\bullet\scompspos}} -\newcommand{\dervectdotepos}[2]{\ensuremath{ - \compdervect{#1}{x}{#2}\comppos{x}+ - \compdervect{#1}{y}{#2}\comppos{y}+ - \compdervect{#1}{z}{#2}\comppos{z}}} -\newcommand{\Dervectdotepos}[2]{\ensuremath{ - \compDervect{#1}{x}{#2}\comppos{x}+ - \compDervect{#1}{y}{#2}\comppos{y}+ - \compDervect{#1}{z}{#2}\comppos{z}}} -\newcommand{\dervectdotsdvect}[3]{\ensuremath{ +\newcommand*{\dervectdotsdvect}[3]{\ensuremath{% \scompsdervect{#1}{#2}\bullet\scompsdvect{#3}}} -\newcommand{\DervectdotsDvect}[3]{\ensuremath{ +\newcommand*{\DervectdotsDvect}[3]{\ensuremath{% \scompsDervect{#1}{#2}\bullet\scompsDvect{#3}}} -\newcommand{\dervectdotedvect}[3]{\ensuremath{ - \compdervect{#1}{x}{#2}\compdvect{#3}{x}+ - \compdervect{#1}{y}{#2}\compdvect{#3}{y}+ +\newcommand*{\dervectdotedvect}[3]{\ensuremath{% + \compdervect{#1}{x}{#2}\compdvect{#3}{x}+% + \compdervect{#1}{y}{#2}\compdvect{#3}{y}+% \compdervect{#1}{z}{#2}\compdvect{#3}{z}}} -\newcommand{\DervectdoteDvect}[3]{\ensuremath{ - \compDervect{#1}{x}{#2}\compDvect{#3}{x}+ - \compDervect{#1}{y}{#2}\compDvect{#3}{y}+ +\newcommand*{\DervectdoteDvect}[3]{\ensuremath{% + \compDervect{#1}{x}{#2}\compDvect{#3}{x}+% + \compDervect{#1}{y}{#2}\compDvect{#3}{y}+% \compDervect{#1}{z}{#2}\compDvect{#3}{z}}} -\newcommand{\dervectdotsdpos}[2]{\ensuremath{ - \scompsdervect{#1}{#2}\bullet\scompsdpos}} -\newcommand{\DervectdotsDpos}[2]{\ensuremath{ - \scompsDervect{#1}{#2}\bullet\scompsDpos}} -\newcommand{\dervectdotedpos}[2]{\ensuremath{ - \compdervect{#1}{x}{#2}\compdpos{x}+ - \compdervect{#1}{y}{#2}\compdpos{y}+ - \compdervect{#1}{z}{#2}\compdpos{z}}} -\newcommand{\DervectdoteDpos}[2]{\ensuremath{ - \compDervect{#1}{x}{#2}\compDpos{x}+ - \compDervect{#1}{y}{#2}\compDpos{y}+ - \compDervect{#1}{z}{#2}\compDpos{z}}} -\newcommand{\vectcrossvect}[2]{\ensuremath{{#1}\times{#2}}} -\newcommand{\ltriplecross}[3]{\ensuremath{({#1}\times{#2})\times{#3}}} -\newcommand{\rtriplecross}[3]{\ensuremath{{#1}\times({#2}\times{#3})}} -\newcommand{\ltriplescalar}[3]{\ensuremath{{#1}\times{#2}\bullet{#3}}} -\newcommand{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\times{#3}}} -\newcommand{\ezero}{\ensuremath{\msub{\mathbf{e}}{0}}} -\newcommand{\eone}{\ensuremath{\msub{\mathbf{e}}{1}}} -\newcommand{\etwo}{\ensuremath{\msub{\mathbf{e}}{2}}} -\newcommand{\ethree}{\ensuremath{\msub{\mathbf{e}}{3}}} -\newcommand{\efour}{\ensuremath{\msub{\mathbf{e}}{4}}} -\newcommand{\ek}[1]{\ensuremath{\msub{\mathbf{e}}{#1}}} -\newcommand{\e}{\ek} -\newcommand{\uezero}{\ensuremath{\msub{\widehat{\mathbf{e}}}{0}}} -\newcommand{\ueone}{\ensuremath{\msub{\widehat{\mathbf{e}}}{1}}} -\newcommand{\uetwo}{\ensuremath{\msub{\widehat{\mathbf{e}}}{2}}} -\newcommand{\uethree}{\ensuremath{\msub{\widehat{\mathbf{e}}}{3}}} -\newcommand{\uefour}{\ensuremath{\msub{\widehat{\mathbf{e}}}{4}}} -\newcommand{\uek}[1]{\ensuremath{\msub{\widehat{\mathbf{e}}}{#1}}} -\newcommand{\ue}{\uek} -\newcommand{\ezerozero}{\ek{00}} -\newcommand{\ezeroone}{\ek{01}} -\newcommand{\ezerotwo}{\ek{02}} -\newcommand{\ezerothree}{\ek{03}} -\newcommand{\ezerofour}{\ek{04}} -\newcommand{\eoneone}{\ek{11}} -\newcommand{\eonetwo}{\ek{12}} -\newcommand{\eonethree}{\ek{13}} -\newcommand{\eonefour}{\ek{14}} -\newcommand{\etwoone}{\ek{21}} -\newcommand{\etwotwo}{\ek{22}} -\newcommand{\etwothree}{\ek{23}} -\newcommand{\etwofour}{\ek{24}} -\newcommand{\ethreeone}{\ek{31}} -\newcommand{\ethreetwo}{\ek{32}} -\newcommand{\ethreethree}{\ek{33}} -\newcommand{\ethreefour}{\ek{34}} -\newcommand{\efourone}{\ek{41}} -\newcommand{\efourtwo}{\ek{42}} -\newcommand{\efourthree}{\ek{43}} -\newcommand{\efourfour}{\ek{44}} -\newcommand{\euzero}{\ensuremath{\msup{\mathbf{e}}{0}}} -\newcommand{\euone}{\ensuremath{\msup{\mathbf{e}}{1}}} -\newcommand{\eutwo}{\ensuremath{\msup{\mathbf{e}}{2}}} -\newcommand{\euthree}{\ensuremath{\msup{\mathbf{e}}{3}}} -\newcommand{\eufour}{\ensuremath{\msup{\mathbf{e}}{4}}} -\newcommand{\euk}[1]{\ensuremath{\msup{\mathbf{e}}{#1}}} -\newcommand{\eu}{\euk} -\newcommand{\euzerozero}{\euk{00}} -\newcommand{\euzeroone}{\euk{01}} -\newcommand{\euzerotwo}{\euk{02}} -\newcommand{\euzerothree}{\euk{03}} -\newcommand{\euzerofour}{\euk{04}} -\newcommand{\euoneone}{\euk{11}} -\newcommand{\euonetwo}{\euk{12}} -\newcommand{\euonethree}{\euk{13}} -\newcommand{\euonefour}{\euk{14}} -\newcommand{\eutwoone}{\euk{21}} -\newcommand{\eutwotwo}{\euk{22}} -\newcommand{\eutwothree}{\euk{23}} -\newcommand{\eutwofour}{\euk{24}} -\newcommand{\euthreeone}{\euk{31}} -\newcommand{\euthreetwo}{\euk{32}} -\newcommand{\euthreethree}{\euk{33}} -\newcommand{\euthreefour}{\euk{34}} -\newcommand{\eufourone}{\euk{41}} -\newcommand{\eufourtwo}{\euk{42}} -\newcommand{\eufourthree}{\euk{43}} -\newcommand{\eufourfour}{\euk{44}} -\newcommand{\gzero}{\ensuremath{\msub{\mathbf{\gamma}}{0}}} -\newcommand{\gone}{\ensuremath{\msub{\mathbf{\gamma}}{1}}} -\newcommand{\gtwo}{\ensuremath{\msub{\mathbf{\gamma}}{2}}} -\newcommand{\gthree}{\ensuremath{\msub{\mathbf{\gamma}}{3}}} -\newcommand{\gfour}{\ensuremath{\msub{\mathbf{\gamma}}{4}}} -\newcommand{\gk}[1]{\ensuremath{\msub{\mathbf{\gamma}}{#1}}} -\newcommand{\g}{\gk} -\newcommand{\gzerozero}{\gk{00}} -\newcommand{\gzeroone}{\gk{01}} -\newcommand{\gzerotwo}{\gk{02}} -\newcommand{\gzerothree}{\gk{03}} -\newcommand{\gzerofour}{\gk{04}} -\newcommand{\goneone}{\gk{11}} -\newcommand{\gonetwo}{\gk{12}} -\newcommand{\gonethree}{\gk{13}} -\newcommand{\gonefour}{\gk{14}} -\newcommand{\gtwoone}{\gk{21}} -\newcommand{\gtwotwo}{\gk{22}} -\newcommand{\gtwothree}{\gk{23}} -\newcommand{\gtwofour}{\gk{24}} -\newcommand{\gthreeone}{\gk{31}} -\newcommand{\gthreetwo}{\gk{32}} -\newcommand{\gthreethree}{\gk{33}} -\newcommand{\gthreefour}{\gk{34}} -\newcommand{\gfourone}{\gk{41}} -\newcommand{\gfourtwo}{\gk{42}} -\newcommand{\gfourthree}{\gk{43}} -\newcommand{\gfourfour}{\gk{44}} -\newcommand{\guzero}{\ensuremath{\msup{\mathbf{\gamma}}{0}}} -\newcommand{\guone}{\ensuremath{\msup{\mathbf{\gamma}}{1}}} -\newcommand{\gutwo}{\ensuremath{\msup{\mathbf{\gamma}}{2}}} -\newcommand{\guthree}{\ensuremath{\msup{\mathbf{\gamma}}{3}}} -\newcommand{\gufour}{\ensuremath{\msup{\mathbf{\gamma}}{4}}} -\newcommand{\guk}[1]{\ensuremath{\msup{\mathbf{\gamma}}{#1}}} -\newcommand{\gu}{\guk} -\newcommand{\guzerozero}{\guk{00}} -\newcommand{\guzeroone}{\guk{01}} -\newcommand{\guzerotwo}{\guk{02}} -\newcommand{\guzerothree}{\guk{03}} -\newcommand{\guzerofour}{\guk{04}} -\newcommand{\guoneone}{\guk{11}} -\newcommand{\guonetwo}{\guk{12}} -\newcommand{\guonethree}{\guk{13}} -\newcommand{\guonefour}{\guk{14}} -\newcommand{\gutwoone}{\guk{21}} -\newcommand{\gutwotwo}{\guk{22}} -\newcommand{\gutwothree}{\guk{23}} -\newcommand{\gutwofour}{\guk{24}} -\newcommand{\guthreeone}{\guk{31}} -\newcommand{\guthreetwo}{\guk{32}} -\newcommand{\guthreethree}{\guk{33}} -\newcommand{\guthreefour}{\guk{34}} -\newcommand{\gufourone}{\guk{41}} -\newcommand{\gufourtwo}{\guk{42}} -\newcommand{\gufourthree}{\guk{43}} -\newcommand{\gufourfour}{\guk{44}} +\newcommand*{\vectcrossvect}[2]{\ensuremath{{#1}\boldsymbol{\times}{#2}}} +\newcommand*{\ltriplecross}[3]{\ensuremath{({#1}\boldsymbol{\times}{#2})% + \boldsymbol{\times}{#3}}} +\newcommand*{\rtriplecross}[3]{\ensuremath{{#1}\boldsymbol{\times}% + ({#2}\boldsymbol{\times}{#3})}} +\newcommand*{\ltriplescalar}[3]{\ensuremath{{#1}\boldsymbol{\times}{#2}\bullet{#3}}} +\newcommand*{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\boldsymbol{\times}{#3}}} +\newcommand*{\ezero}{\ensuremath{\msub{\boldsymbol{e}}{0}}} +\newcommand*{\eone}{\ensuremath{\msub{\boldsymbol{e}}{1}}} +\newcommand*{\etwo}{\ensuremath{\msub{\boldsymbol{e}}{2}}} +\newcommand*{\ethree}{\ensuremath{\msub{\boldsymbol{e}}{3}}} +\newcommand*{\efour}{\ensuremath{\msub{\boldsymbol{e}}{4}}} +\newcommand*{\ek}[1]{\ensuremath{\msub{\boldsymbol{e}}{#1}}} +\newcommand*{\e}{\ek} +\newcommand*{\uezero}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{0}}} +\newcommand*{\ueone}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{1}}} +\newcommand*{\uetwo}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{2}}} +\newcommand*{\uethree}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{3}}} +\newcommand*{\uefour}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{4}}} +\newcommand*{\uek}[1]{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{#1}}} +\newcommand*{\ue}{\uek} +\newcommand*{\ezerozero}{\ek{00}} +\newcommand*{\ezeroone}{\ek{01}} +\newcommand*{\ezerotwo}{\ek{02}} +\newcommand*{\ezerothree}{\ek{03}} +\newcommand*{\ezerofour}{\ek{04}} +\newcommand*{\eoneone}{\ek{11}} +\newcommand*{\eonetwo}{\ek{12}} +\newcommand*{\eonethree}{\ek{13}} +\newcommand*{\eonefour}{\ek{14}} +\newcommand*{\etwoone}{\ek{21}} +\newcommand*{\etwotwo}{\ek{22}} +\newcommand*{\etwothree}{\ek{23}} +\newcommand*{\etwofour}{\ek{24}} +\newcommand*{\ethreeone}{\ek{31}} +\newcommand*{\ethreetwo}{\ek{32}} +\newcommand*{\ethreethree}{\ek{33}} +\newcommand*{\ethreefour}{\ek{34}} +\newcommand*{\efourone}{\ek{41}} +\newcommand*{\efourtwo}{\ek{42}} +\newcommand*{\efourthree}{\ek{43}} +\newcommand*{\efourfour}{\ek{44}} +\newcommand*{\euzero}{\ensuremath{\boldsymbol{e}^0}} +\newcommand*{\euone}{\ensuremath{\boldsymbol{e}^1}} +\newcommand*{\eutwo}{\ensuremath{\boldsymbol{e}^2}} +\newcommand*{\euthree}{\ensuremath{\boldsymbol{e}^3}} +\newcommand*{\eufour}{\ensuremath{\boldsymbol{e}^4}} +\newcommand*{\euk}[1]{\ensuremath{\boldsymbol{e}^{#1}}} +\newcommand*{\eu}{\euk} +\newcommand*{\euzerozero}{\euk{00}} +\newcommand*{\euzeroone}{\euk{01}} +\newcommand*{\euzerotwo}{\euk{02}} +\newcommand*{\euzerothree}{\euk{03}} +\newcommand*{\euzerofour}{\euk{04}} +\newcommand*{\euoneone}{\euk{11}} +\newcommand*{\euonetwo}{\euk{12}} +\newcommand*{\euonethree}{\euk{13}} +\newcommand*{\euonefour}{\euk{14}} +\newcommand*{\eutwoone}{\euk{21}} +\newcommand*{\eutwotwo}{\euk{22}} +\newcommand*{\eutwothree}{\euk{23}} +\newcommand*{\eutwofour}{\euk{24}} +\newcommand*{\euthreeone}{\euk{31}} +\newcommand*{\euthreetwo}{\euk{32}} +\newcommand*{\euthreethree}{\euk{33}} +\newcommand*{\euthreefour}{\euk{34}} +\newcommand*{\eufourone}{\euk{41}} +\newcommand*{\eufourtwo}{\euk{42}} +\newcommand*{\eufourthree}{\euk{43}} +\newcommand*{\eufourfour}{\euk{44}} +\newcommand*{\gzero}{\ensuremath{\msub{\boldsymbol{\gamma}}{0}}} +\newcommand*{\gone}{\ensuremath{\msub{\boldsymbol{\gamma}}{1}}} +\newcommand*{\gtwo}{\ensuremath{\msub{\boldsymbol{\gamma}}{2}}} +\newcommand*{\gthree}{\ensuremath{\msub{\boldsymbol{\gamma}}{3}}} +\newcommand*{\gfour}{\ensuremath{\msub{\boldsymbol{\gamma}}{4}}} +\newcommand*{\gk}[1]{\ensuremath{\msub{\boldsymbol{\gamma}}{#1}}} +\newcommand*{\g}{\gk} +\newcommand*{\gzerozero}{\gk{00}} +\newcommand*{\gzeroone}{\gk{01}} +\newcommand*{\gzerotwo}{\gk{02}} +\newcommand*{\gzerothree}{\gk{03}} +\newcommand*{\gzerofour}{\gk{04}} +\newcommand*{\goneone}{\gk{11}} +\newcommand*{\gonetwo}{\gk{12}} +\newcommand*{\gonethree}{\gk{13}} +\newcommand*{\gonefour}{\gk{14}} +\newcommand*{\gtwoone}{\gk{21}} +\newcommand*{\gtwotwo}{\gk{22}} +\newcommand*{\gtwothree}{\gk{23}} +\newcommand*{\gtwofour}{\gk{24}} +\newcommand*{\gthreeone}{\gk{31}} +\newcommand*{\gthreetwo}{\gk{32}} +\newcommand*{\gthreethree}{\gk{33}} +\newcommand*{\gthreefour}{\gk{34}} +\newcommand*{\gfourone}{\gk{41}} +\newcommand*{\gfourtwo}{\gk{42}} +\newcommand*{\gfourthree}{\gk{43}} +\newcommand*{\gfourfour}{\gk{44}} +\newcommand*{\guzero}{\ensuremath{\boldsymbol{\gamma}^0}} +\newcommand*{\guone}{\ensuremath{\boldsymbol{\gamma}^1}} +\newcommand*{\gutwo}{\ensuremath{\boldsymbol{\gamma}^2}} +\newcommand*{\guthree}{\ensuremath{\boldsymbol{\gamma}^3}} +\newcommand*{\gufour}{\ensuremath{\boldsymbol{\gamma}^4}} +\newcommand*{\guk}[1]{\ensuremath{\boldsymbol{\gamma}^{#1}}} +\newcommand*{\gu}{\guk} +\newcommand*{\guzerozero}{\guk{00}} +\newcommand*{\guzeroone}{\guk{01}} +\newcommand*{\guzerotwo}{\guk{02}} +\newcommand*{\guzerothree}{\guk{03}} +\newcommand*{\guzerofour}{\guk{04}} +\newcommand*{\guoneone}{\guk{11}} +\newcommand*{\guonetwo}{\guk{12}} +\newcommand*{\guonethree}{\guk{13}} +\newcommand*{\guonefour}{\guk{14}} +\newcommand*{\gutwoone}{\guk{21}} +\newcommand*{\gutwotwo}{\guk{22}} +\newcommand*{\gutwothree}{\guk{23}} +\newcommand*{\gutwofour}{\guk{24}} +\newcommand*{\guthreeone}{\guk{31}} +\newcommand*{\guthreetwo}{\guk{32}} +\newcommand*{\guthreethree}{\guk{33}} +\newcommand*{\guthreefour}{\guk{34}} +\newcommand*{\gufourone}{\guk{41}} +\newcommand*{\gufourtwo}{\guk{42}} +\newcommand*{\gufourthree}{\guk{43}} +\newcommand*{\gufourfour}{\guk{44}} \ExplSyntaxOn % Vectors formated as in M\&I, written in LaTeX3 \NewDocumentCommand{\mivector}{ O{,} m o }% {% @@ -859,261 +849,246 @@ \rowvector[,]{\msub{#2}{0},\msub{#2}{1},\msub{#2}{2},\msub{#2}{3}}% }% }% -\newphysicsconstant{oofpez}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}}}} -{\scin[8.9876]{9}}{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared} -[\m\per\farad][\newton\usk\m\squared\per\coulomb\squared] -\newcommand{\coulombconstant}{\oofpez} -\newphysicsconstant{oofpezcs}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o} -c^2\phantom{_o}}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} +\newphysicsconstant{oofpez}{\ensuremath{\frac{1} +{\phantom{_o}4\pi\epsilon_0}}}{\mi@p{9}{8.9876}\timestento{9}} +{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared}[\m\per\farad] +[\newton\usk\m\squared\per\coulomb\squared] +\newcommand*{\coulombconstant}{\oofpez} +\newphysicsconstant{oofpezcs}{\ensuremath{\frac{1} +{\phantom{_o}4\pi\epsilon_0 c^2\phantom{_o}}}}{\tento{-7}} +{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} [\T\usk\m\squared][\N\usk\s\squared\per\C\squared] -\newcommand{\altcoulombconstant}{\oofpezcs} -\newphysicsconstant{vacuumpermittivity}{\ensuremath{\ssub{\epsilon}{o}}}{\scin[8.8542]{-12}} +\newcommand*{\altcoulombconstant}{\oofpezcs} +\newphysicsconstant{vacuumpermittivity}{\ensuremath{\epsilon_0}} +{\mi@p{9.0}{8.8542}\timestento{-12}} {\m\reciprocalcubed\usk\reciprocal\kg\usk\s\quarted\usk\A\squared}[\F\per\m] [\C\squared\per\N\usk\m\squared] -\newphysicsconstant{mzofp}{\ensuremath{\frac{\phantom{_oo}\ssub{\mu}{o}\phantom{_o}} -{4\pi}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} +\newphysicsconstant{mzofp} +{\ensuremath{\frac{\phantom{_oo}\mu_0\phantom{_o}}{4\pi}}} +{\tento{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} [\henry\per\m][\tesla\usk\m\per\A] -\newcommand{\biotsavartconstant}{\mzofp} -\newphysicsconstant{vacuumpermeability}{\ensuremath{\ssub{\mu}{o}}}{\scin[4\pi]{-7}} -{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m] -[\T\usk\m\per\A] -\newphysicsconstant{boltzmann}{\ensuremath{\ssub{k}{B}}}{\scin[1.3806]{-23}} +\newcommand*{\biotsavartconstant}{\mzofp} +\newphysicsconstant{vacuumpermeability}{\ensuremath{\mu_0}} +{4\pi\timestento{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} +[\henry\per\m][\T\usk\m\per\A] +\newphysicsconstant{boltzmann}{\ensuremath{k_B}} +{\mi@p{1.4}{1.3806}\timestento{-23}} {\m\squared\usk\kg\usk\reciprocalsquare\s\usk\reciprocal\K}[\joule\per\K][\J\per\K] -\newcommand{\boltzmannconstant}{\boltzmann} -\newphysicsconstant{boltzmanninev}{\ensuremath{\ssub{k}{B}}}{\scin[8.6173]{-5}} +\newcommand*{\boltzmannconstant}{\boltzmann} +\newphysicsconstant{boltzmannineV}{\ensuremath{k_B}} +{\mi@p{8.6}{8.6173}\timestento{-5}} {\eV\usk\reciprocal\K}[\eV\per\K][\eV\per\K] -\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}}{\scin[5.6704]{-8}} +\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}} +{\mi@p{5.7}{5.6704}\timestento{-8}} {\kg\usk\s\reciprocalcubed\usk\K\reciprocalquarted}[\W\per\m\squared\usk\K^4] [\W\per\m\squared\usk\K\quarted] -\newcommand{\stefanboltzmannconstant}{\stefanboltzmann} -\newphysicsconstant{planck}{\ensuremath{h}}{\scin[6.6261]{-34}} +\newcommand*{\stefanboltzmannconstant}{\stefanboltzmann} +\newphysicsconstant{planck}{\ensuremath{h}}{\mi@p{6.6}{6.6261}\timestento{-34}} {\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s] -\newcommand{\planckconstant}{\planck} -\newphysicsconstant{planckinev}{\ensuremath{h}}{\scin[4.1357]{-15}} +\newcommand*{\planckconstant}{\planck} +\newphysicsconstant{planckineV}{\ensuremath{h}}{\mi@p{4.1}{4.1357}\timestento{-15}} {\eV\usk\s}[\eV\usk\s][\eV\usk\s] -\newphysicsconstant{planckbar}{\ensuremath{\hbar}}{\scin[1.0546]{-34}} +\newphysicsconstant{planckbar}{\ensuremath{\hslash}}{\mi@p{1.1}{1.0546}\timestento{-34}} {\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s] -\newcommand{\reducedplanckconstant}{\planckbar} -\newphysicsconstant{planckbarinev}{\ensuremath{\hbar}}{\scin[6.5821]{-16}} -{\eV\usk\s}[\eV\usk\s][\eV\usk\s] -\newphysicsconstant{planckc}{\ensuremath{hc}}{\scin[1.9864]{-25}} +\newcommand*{\reducedplanckconstant}{\planckbar} +\newphysicsconstant{planckbarineV}{\ensuremath{\hslash}} +{\mi@p{6.6}{6.5821}\timestento{-16}}{\eV\usk\s}[\eV\usk\s][\eV\usk\s] +\newphysicsconstant{planckc}{\ensuremath{hc}}{\mi@p{2.0}{1.9864}\timestento{-25}} {\m\cubed\usk\kg\usk\reciprocalsquare\s}[\J\usk\m][\J\usk\m] -\newcommand{\planckconstanttimesc}{\planckc} -\newphysicsconstant{planckcinev}{\ensuremath{hc}}{\scin[1.9864]{-25}} -{\eV\usk\ensuremath{\mathrm{n}\m}}[\eV\usk\ensuremath{\mathrm{n}\m}] -[\eV\usk\ensuremath{\mathrm{n}\m}] -\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}}{\scin[1.0974]{7}} -{\reciprocal\m}[\reciprocal\m][\reciprocal\m] -\newcommand{\rydbergconstant}{\rydberg} -\newphysicsconstant{bohrradius}{\ensuremath{\msub{a}{0}}}{\scin[5.2918]{-11}}{\m}[\m][\m] -\newphysicsconstant{finestructure}{\ensuremath{\alpha}}{\scin[7.2974]{-3}}{\relax} -\newcommand{\finestructureconstant}{\finestructure} -\newphysicsconstant{avogadro}{\ensuremath{\ssub{N}{A}}}{\scin[6.0221]{23}} -{\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol] -\newcommand{\avogadroconstant}{\avogadro} -\newphysicsconstant{universalgrav}{\ensuremath{G}}{\scin[6.6738]{-11}} +\newcommand*{\planckconstanttimesc}{\planckc} +\newphysicsconstant{planckcineV}{\ensuremath{hc}} +{\mi@p{2.0}{1.9864}\timestento{-25}}{\eV\usk\text{n}\m}[\eV\usk\text{n}\m] +[\eV\usk\text{n}\m] +\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}} +{\mi@p{1.1}{1.0974}\timestento{7}}{\reciprocal\m}[\reciprocal\m][\reciprocal\m] +\newcommand*{\rydbergconstant}{\rydberg} +\newphysicsconstant{bohrradius}{\ensuremath{a_0}}{\mi@p{5.3}{5.2918}\timestento{-11}} +{\m}[\m][\m] +\newphysicsconstant{finestructure}{\ensuremath{\alpha}} +{\mi@p{\frac{1}{137}}{7.2974\timestento{-3}}}{\relax} +\newcommand*{\finestructureconstant}{\finestructure} +\newphysicsconstant{avogadro}{\ensuremath{N_A}} +{\mi@p{6.0}{6.0221}\timestento{23}}{\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol] +\newcommand*{\avogadroconstant}{\avogadro} +\newphysicsconstant{universalgrav}{\ensuremath{G}}{\mi@p{6.7}{6.6738}\timestento{-11}} {\m\cubed\usk\reciprocal\kg\usk\s\reciprocalsquared}[\J\usk\m\per\kg\squared] [\N\usk\m\squared\per\kg\squared] -\newcommand{\universalgravitationalconstant}{\universalgrav} -\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{9.80}{\m\usk\s\reciprocalsquared} -[\N\per\kg][\m\per\s\squared] -\newcommand{\earthssurfacegravitationalfield}{\surfacegravfield} -\newphysicsconstant{clight}{\ensuremath{c}}{\scin[2.9979]{8}}{\m\usk\reciprocal\s} -[\m\per\s][\m\per\s] -\newcommand{\photonconstant}{\clight} -\newphysicsconstant{clightinfeet}{\ensuremath{c}}{0.9836} -{\ensuremath{\mathrm{ft}\usk\reciprocal\mathrm{n}\s}} -[\ensuremath{\mathrm{ft}\per\mathrm{n}\s}][\ensuremath{\mathrm{ft}\per\mathrm{n}\s}] -\newphysicsconstant{Ratom}{\ensuremath{\ssub{r}{atom}}}{\scin{-10}}{\m}[\m][\m] -\newcommand{\radiusofatom}{\Ratom} -\newphysicsconstant{Mproton}{\ensuremath{\ssub{m}{proton}}}{\scin[1.6726]{-27}} -{\kg}[\kg][\kg] -\newcommand{\massofproton}{\Mproton} -\newphysicsconstant{Mneutron}{\ensuremath{\ssub{m}{neutron}}}{\scin[1.6749]{-27}} -{\kg}[\kg][\kg] -\newcommand{\massofneutron}{\Mneutron} -\newphysicsconstant{Mhydrogen}{\ensuremath{\ssub{m}{hydrogen}}}{\scin[1.6737]{-27}} -{\kg}[\kg][\kg] -\newcommand{\massofhydrogen}{\Mhydrogen} -\newphysicsconstant{Melectron}{\ensuremath{\ssub{m}{electron}}}{\scin[9.1094]{-31}} -{\kg}[\kg][\kg] -\newcommand{\massofelectron}{\Melectron} -\newphysicsconstant{echarge}{\ensuremath{e}}{\scin[1.6022]{-19}}{\A\usk\s}[\C][\C] -\newcommand{\elementarycharge}{\echarge} -\newphysicsconstant{Qelectron}{\ensuremath{\ssub{Q}{electron}}}{-\echargevalue} +\newcommand*{\universalgravitationalconstant}{\universalgrav} +\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{\mi@p{9.8}{9.80}} +{\m\usk\s\reciprocalsquared}[\N\per\kg][\N\per\kg] +\newcommand*{\earthssurfacegravitationalfield}{\surfacegravfield} +\newphysicsconstant{clight}{\ensuremath{c}} +{\mi@p{3}{2.9979}\timestento{8}}{\m\usk\reciprocal\s}[\m\per\s][\m\per\s] +\newcommand*{\photonconstant}{\clight} +\newphysicsconstant{clightinfeet}{\ensuremath{c}}{\mi@p{1}{0.9836}} +{\text{ft}\usk\reciprocal{\text{n}\s}}[\text{ft}\per\text{n}\s] +[\text{ft}\per\mathrm{n}\s] +\newphysicsconstant{Ratom}{\ensuremath{r_{\text{atom}}}}{\tento{-10}}{\m}[\m][\m] +\newphysicsconstant{Mproton}{\ensuremath{m_p}} +{\mi@p{1.7}{1.6726}\timestento{-27}}{\kg}[\kg][\kg] +\newphysicsconstant{Mneutron}{\ensuremath{m_n}} +{\mi@p{1.7}{1.6749}\timestento{-27}}{\kg}[\kg][\kg] +\newphysicsconstant{Mhydrogen}{\ensuremath{m_H}} +{\mi@p{1.7}{1.6737}\timestento{-27}}{\kg}[\kg][\kg] +\newphysicsconstant{Melectron}{\ensuremath{m_e}} +{\mi@p{9.1}{9.1094}\timestento{-31}}{\kg}[\kg][\kg] +\newphysicsconstant{echarge}{\ensuremath{e}} +{\mi@p{1.6}{1.6022}\timestento{-19}}{\A\usk\s}[\C][\C] +\newcommand*{\elementarycharge}{\echarge} +\newphysicsconstant{Qelectron}{\ensuremath{Q_e}}{-\echargevalue} {\A\usk\s}[\C][\C] -\newphysicsconstant{qelectron}{\ensuremath{\ssub{q}{electron}}}{-\echargevalue} +\newphysicsconstant{qelectron}{\ensuremath{q_e}}{-\echargevalue} {\A\usk\s}[\C][\C] -\newcommand{\chargeofelectron}{\Qelectron} -\newphysicsconstant{Qproton}{\ensuremath{\ssub{Q}{proton}}}{+\echargevalue} +\newphysicsconstant{Qproton}{\ensuremath{Q_p}}{+\echargevalue} {\A\usk\s}[\C][\C] -\newphysicsconstant{qproton}{\ensuremath{\ssub{q}{proton}}}{+\echargevalue} +\newphysicsconstant{qproton}{\ensuremath{q_p}}{+\echargevalue} {\A\usk\s}[\C][\C] -\newcommand{\chargeofproton}{\Qproton} -\newphysicsconstant{MEarth}{\ensuremath{\ssub{M}{Earth}}}{\scin[5.9736]{24}}{\kg}[\kg][\kg] -\newcommand{\massofEarth}{\MEarth} -\newphysicsconstant{MMoon}{\ensuremath{\ssub{M}{Moon}}}{\scin[7.3459]{22}}{\kg}[\kg][\kg] -\newcommand{\massofMoon}{\MMoon} -\newphysicsconstant{MSun}{\ensuremath{\ssub{M}{Sun}}}{\scin[1.9891]{30}}{\kg}[\kg][\kg] -\newcommand{\massofSun}{\MSun} -\newphysicsconstant{REarth}{\ensuremath{\ssub{R}{Earth}}}{\scin[6.3675]{6}}{\m}[\m][\m] -\newcommand{\radiusofEarth}{\REarth} -\newphysicsconstant{RMoon}{\ensuremath{\ssub{R}{Moon}}}{\scin[1.7375]{6}}{\m}[\m][\m] -\newcommand{\radiusofMoon}{\RMoon} -\newphysicsconstant{RSun}{\ensuremath{\ssub{R}{Sun}}}{\scin[6.9634]{8}}{\m}[\m][\m] -\newcommand{\radiusofSun}{\RSun} -\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\scin[1.4960]{11}}{\m}[\m][\m] -\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\scin[1.4960]{11}}{\m}[\m][\m] -\newcommand{\EarthSundistance}{\ESdist} -\newcommand{\SunEarthdistance}{\SEdist} -\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}{\scin[3.8440]{8}}{\m}[\m][\m] -\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}{\scin[3.8440]{8}}{\m}[\m][\m] -\newcommand{\EarthMoondistance}{\ESdist} -\newcommand{\MoonEarthdistance}{\SEdist} -\newphysicsconstant{LSun}{\ensuremath{\ssub{L}{Sun}}}{\scin[3.8460]{26}} - {\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s] -\newphysicsconstant{TSun}{\ensuremath{\ssub{T}{Sun}}}{5778}{\K}[\K][\K] -\newphysicsconstant{MagSun}{\ensuremath{\ssub{M}{Sun}}}{+4.83}{}[][] -\newphysicsconstant{magSun}{\ensuremath{\ssub{m}{Sun}}}{-26.74}{}[][] -\newcommand{\Lstar}[1][\(\star\)]{\ensuremath{\ssub{L}{#1}}} -\newcommand{\Lsolar}{\ensuremath{\Lstar[\(\odot\)]}} -\newcommand{\Tstar}[1][\(\star\)]{\ensuremath{\ssub{T}{#1}}} -\newcommand{\Tsolar}{\ensuremath{\Tstar[\(\odot\)]}} -\newcommand{\Rstar}[1][\(\star\)]{\ensuremath{\ssub{R}{#1}}} -\newcommand{\Rsolar}{\ensuremath{\Rstar[\(\odot\)]}} -\newcommand{\Mstar}[1][\(\star\)]{\ensuremath{\ssub{M}{#1}}} -\newcommand{\Msolar}{\ensuremath{\Mstar[\(\odot\)]}} -\newcommand{\Fstar}[1][\(\star\)]{\ensuremath{\ssub{F}{#1}}} -\newcommand{\fstar}[1][\(\star\)]{\ensuremath{\ssub{f}{#1}}} -\newcommand{\Fsolar}{\ensuremath{\Fstar[\(\odot\)]}} -\newcommand{\fsolar}{\ensuremath{\fstar[\(\odot\)]}} -\newcommand{\Magstar}[1][\(\star\)]{\ensuremath{\ssub{M}{#1}}} -\newcommand{\magstar}[1][\(\star\)]{\ensuremath{\ssub{m}{#1}}} -\newcommand{\Magsolar}{\ensuremath{\Magstar[\(\odot\)]}} -\newcommand{\magsolar}{\ensuremath{\magstar[\(\odot\)]}} -\newcommand{\Dstar}[1][\(\star\)]{\ensuremath{\ssub{D}{#1}}} -\newcommand{\dstar}[1][\(\star\)]{\ensuremath{\ssub{d}{#1}}} -\newcommand{\Dsolar}{\ensuremath{\Dstar[\(\odot\)]}} -\newcommand{\dsolar}{\ensuremath{\dstar[\(\odot\)]}} -\newcommand{\onehalf}{\ensuremath{\frac{1}{2}}\xspace} -\newcommand{\onethird}{\ensuremath{\frac{1}{3}}\xspace} -\newcommand{\onefourth}{\ensuremath{\frac{1}{4}}\xspace} -\newcommand{\onefifth}{\ensuremath{\frac{1}{5}}\xspace} -\newcommand{\onesixth}{\ensuremath{\frac{1}{6}}\xspace} -\newcommand{\oneseventh}{\ensuremath{\frac{1}{7}}\xspace} -\newcommand{\oneeighth}{\ensuremath{\frac{1}{8}}\xspace} -\newcommand{\oneninth}{\ensuremath{\frac{1}{9}}\xspace} -\newcommand{\onetenth}{\ensuremath{\frac{1}{10}}\xspace} -\newcommand{\twooneths}{\ensuremath{\frac{2}{1}}\xspace} -\newcommand{\twohalves}{\ensuremath{\frac{2}{2}}\xspace} -\newcommand{\twothirds}{\ensuremath{\frac{2}{3}}\xspace} -\newcommand{\twofourths}{\ensuremath{\frac{2}{4}}\xspace} -\newcommand{\twofifths}{\ensuremath{\frac{2}{5}}\xspace} -\newcommand{\twosixths}{\ensuremath{\frac{2}{6}}\xspace} -\newcommand{\twosevenths}{\ensuremath{\frac{2}{7}}\xspace} -\newcommand{\twoeighths}{\ensuremath{\frac{2}{8}}\xspace} -\newcommand{\twoninths}{\ensuremath{\frac{2}{9}}\xspace} -\newcommand{\twotenths}{\ensuremath{\frac{2}{10}}\xspace} -\newcommand{\threeoneths}{\ensuremath{\frac{3}{1}}\xspace} -\newcommand{\threehalves}{\ensuremath{\frac{3}{2}}\xspace} -\newcommand{\threethirds}{\ensuremath{\frac{3}{3}}\xspace} -\newcommand{\threefourths}{\ensuremath{\frac{3}{4}}\xspace} -\newcommand{\threefifths}{\ensuremath{\frac{3}{5}}\xspace} -\newcommand{\threesixths}{\ensuremath{\frac{3}{6}}\xspace} -\newcommand{\threesevenths}{\ensuremath{\frac{3}{7}}\xspace} -\newcommand{\threeeighths}{\ensuremath{\frac{3}{8}}\xspace} -\newcommand{\threeninths}{\ensuremath{\frac{3}{9}}\xspace} -\newcommand{\threetenths}{\ensuremath{\frac{3}{10}}\xspace} -\newcommand{\fouroneths}{\ensuremath{\frac{4}{1}}\xspace} -\newcommand{\fourhalves}{\ensuremath{\frac{4}{2}}\xspace} -\newcommand{\fourthirds}{\ensuremath{\frac{4}{3}}\xspace} -\newcommand{\fourfourths}{\ensuremath{\frac{4}{4}}\xspace} -\newcommand{\fourfifths}{\ensuremath{\frac{4}{5}}\xspace} -\newcommand{\foursixths}{\ensuremath{\frac{4}{6}}\xspace} -\newcommand{\foursevenths}{\ensuremath{\frac{4}{7}}\xspace} -\newcommand{\foureighths}{\ensuremath{\frac{4}{8}}\xspace} -\newcommand{\fourninths}{\ensuremath{\frac{4}{9}}\xspace} -\newcommand{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace} -\newcommand{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}} -\newcommand{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}} -\@ifpackageloaded{physymb}{% - \typeout{mandi: Package physymb detected. Its commands will be used.} -}{% - \newcommand{\evalat}[2]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}}} -}% -\newcommand{\evaluatedat}[1]{\ensuremath{\Bigg.\Bigg\rvert_{#1}}} -\newcommandx{\integral}[4][1,2,usedefault]{\ensuremath{ +\newphysicsconstant{MEarth}{\ensuremath{M_{\text{Earth}}}} +{\mi@p{6.0}{5.9736}\timestento{24}}{\kg}[\kg][\kg] +\newphysicsconstant{MMoon}{\ensuremath{M_{\text{Moon}}}} +{\mi@p{7.3}{7.3459}\timestento{22}}{\kg}[\kg][\kg] +\newphysicsconstant{MSun}{\ensuremath{M_{\text{Sun}}}} +{\mi@p{2.0}{1.9891}\timestento{30}} +{\kg}[\kg][\kg] +\newphysicsconstant{REarth}{\ensuremath{R_{\text{Earth}}}} +{\mi@p{6.4}{6.3675}\timestento{6}}{\m}[\m][\m] +\newphysicsconstant{RMoon}{\ensuremath{R_{\text{Moon}}}} +{\mi@p{1.7}{1.7375}\timestento{6}}{\m}[\m][\m] +\newphysicsconstant{RSun}{\ensuremath{R_{\text{Sun}}}}{\mi@p{7.0}{6.9634}\timestento{8}} +{\m}[\m][\m] +\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\mi@p{1.5}{1.4960}\timestento{11}}{\m} +[\m][\m] +\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\mi@p{1.5}{1.4960}\timestento{11}}{\m} +[\m][\m] +\newcommand*{\EarthSundistance}{\ESdist} +\newcommand*{\SunEarthdistance}{\SEdist} +\newphysicsconstant{EMdist}{\magvectsub{r}{EM}} +{\mi@p{3.8}{3.8440}\timestento{8}}{\m}[\m][\m] +\newphysicsconstant{MEdist}{\magvectsub{r}{ME}} +{\mi@p{3.8}{3.8440}\timestento{8}}{\m}[\m][\m] +\newcommand*{\EarthMoondistance}{\ESdist} +\newcommand*{\MoonEarthdistance}{\SEdist} +\newphysicsconstant{LSun}{\ensuremath{L_{\text{Sun}}}} +{\mi@p{3.8}{3.8460}\timestento{26}}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W] +[\J\per\s] +\newphysicsconstant{TSun}{\ensuremath{T_{\text{Sun}}}}{\mi@p{5800}{5778}}{\K}[\K][\K] +\newphysicsconstant{MagSun}{\ensuremath{M_{\text{Sun}}}}{+4.83}{}[][] +\newphysicsconstant{magSun}{\ensuremath{m_{\text{Sun}}}}{-26.74}{}[][] +\newcommand*{\Lstar}[1][\(\star\)]{\ensuremath{L_{\text{#1}}}\xspace} +\newcommand*{\Lsolar}{\ensuremath{\Lstar[\(\odot\)]}\xspace} +\newcommand*{\Tstar}[1][\(\star\)]{\ensuremath{T_{\text{#1}}}\xspace} +\newcommand*{\Tsolar}{\ensuremath{\Tstar[\(\odot\)]}\xspace} +\newcommand*{\Rstar}[1][\(\star\)]{\ensuremath{R_{\text{#1}}}\xspace} +\newcommand*{\Rsolar}{\ensuremath{\Rstar[\(\odot\)]}\xspace} +\newcommand*{\Mstar}[1][\(\star\)]{\ensuremath{M_{\text{#1}}}\xspace} +\newcommand*{\Msolar}{\ensuremath{\Mstar[\(\odot\)]}\xspace} +\newcommand*{\Fstar}[1][\(\star\)]{\ensuremath{F_{\text{#1}}}\xspace} +\newcommand*{\fstar}[1][\(\star\)]{\ensuremath{f_{\text{#1}}}\xspace} +\newcommand*{\Fsolar}{\ensuremath{\Fstar[\(\odot\)]}\xspace} +\newcommand*{\fsolar}{\ensuremath{\fstar[\(\odot\)]}\xspace} +\newcommand*{\Magstar}[1][\(\star\)]{\ensuremath{M_{\text{#1}}}\xspace} +\newcommand*{\magstar}[1][\(\star\)]{\ensuremath{m_{\text{#1}}}\xspace} +\newcommand*{\Magsolar}{\ensuremath{\Magstar[\(\odot\)]}\xspace} +\newcommand*{\magsolar}{\ensuremath{\magstar[\(\odot\)]}\xspace} +\newcommand*{\Dstar}[1][\(\star\)]{\ensuremath{D_{\text{#1}}}\xspace} +\newcommand*{\dstar}[1][\(\star\)]{\ensuremath{d_{\text{#1}}}\xspace} +\newcommand*{\Dsolar}{\ensuremath{\Dstar[\(\odot\)]}\xspace} +\newcommand*{\dsolar}{\ensuremath{\dstar[\(\odot\)]}\xspace} +\newcommand*{\onehalf}{\ensuremath{\frac{1}{2}}\xspace} +\newcommand*{\onethird}{\ensuremath{\frac{1}{3}}\xspace} +\newcommand*{\onefourth}{\ensuremath{\frac{1}{4}}\xspace} +\newcommand*{\onefifth}{\ensuremath{\frac{1}{5}}\xspace} +\newcommand*{\onesixth}{\ensuremath{\frac{1}{6}}\xspace} +\newcommand*{\oneseventh}{\ensuremath{\frac{1}{7}}\xspace} +\newcommand*{\oneeighth}{\ensuremath{\frac{1}{8}}\xspace} +\newcommand*{\oneninth}{\ensuremath{\frac{1}{9}}\xspace} +\newcommand*{\onetenth}{\ensuremath{\frac{1}{10}}\xspace} +\newcommand*{\twooneths}{\ensuremath{\frac{2}{1}}\xspace} +\newcommand*{\twohalves}{\ensuremath{\frac{2}{2}}\xspace} +\newcommand*{\twothirds}{\ensuremath{\frac{2}{3}}\xspace} +\newcommand*{\twofourths}{\ensuremath{\frac{2}{4}}\xspace} +\newcommand*{\twofifths}{\ensuremath{\frac{2}{5}}\xspace} +\newcommand*{\twosixths}{\ensuremath{\frac{2}{6}}\xspace} +\newcommand*{\twosevenths}{\ensuremath{\frac{2}{7}}\xspace} +\newcommand*{\twoeighths}{\ensuremath{\frac{2}{8}}\xspace} +\newcommand*{\twoninths}{\ensuremath{\frac{2}{9}}\xspace} +\newcommand*{\twotenths}{\ensuremath{\frac{2}{10}}\xspace} +\newcommand*{\threeoneths}{\ensuremath{\frac{3}{1}}\xspace} +\newcommand*{\threehalves}{\ensuremath{\frac{3}{2}}\xspace} +\newcommand*{\threethirds}{\ensuremath{\frac{3}{3}}\xspace} +\newcommand*{\threefourths}{\ensuremath{\frac{3}{4}}\xspace} +\newcommand*{\threefifths}{\ensuremath{\frac{3}{5}}\xspace} +\newcommand*{\threesixths}{\ensuremath{\frac{3}{6}}\xspace} +\newcommand*{\threesevenths}{\ensuremath{\frac{3}{7}}\xspace} +\newcommand*{\threeeighths}{\ensuremath{\frac{3}{8}}\xspace} +\newcommand*{\threeninths}{\ensuremath{\frac{3}{9}}\xspace} +\newcommand*{\threetenths}{\ensuremath{\frac{3}{10}}\xspace} +\newcommand*{\fouroneths}{\ensuremath{\frac{4}{1}}\xspace} +\newcommand*{\fourhalves}{\ensuremath{\frac{4}{2}}\xspace} +\newcommand*{\fourthirds}{\ensuremath{\frac{4}{3}}\xspace} +\newcommand*{\fourfourths}{\ensuremath{\frac{4}{4}}\xspace} +\newcommand*{\fourfifths}{\ensuremath{\frac{4}{5}}\xspace} +\newcommand*{\foursixths}{\ensuremath{\frac{4}{6}}\xspace} +\newcommand*{\foursevenths}{\ensuremath{\frac{4}{7}}\xspace} +\newcommand*{\foureighths}{\ensuremath{\frac{4}{8}}\xspace} +\newcommand*{\fourninths}{\ensuremath{\frac{4}{9}}\xspace} +\newcommand*{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace} +\newcommand*{\sumoverall}[1]{\ensuremath{\displaystyle\sum_{\substack{\text{\tiny{all }} + \text{\tiny{{#1}}}}}}} +\newcommand*{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}} +\newcommand*{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}} +\newcommand*{\evalat}[2]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}}} +\newcommand*{\evaluatedat}[1]{\ensuremath{\Bigg.\Bigg\rvert_{#1}}} +\newcommandx{\integral}[4][1,2,usedefault]{\ensuremath{% \int_{\ifthenelse{\equal{#1}{}}{}{#4=#1}}^{\ifthenelse{\equal{#2}{}}{}{#4=#2}}} {#3}\dx{#4}} -\newcommandx{\Integral}[4][1,2,usedefault]{\ensuremath{ - \bigint_{\ifthenelse{\equal{#1}{}}{}{#4=#1}}^{\ifthenelse{\equal{#2}{}}{} - {#4=#2}}}{#3}\dx{#4}} -\newcommand{\opensurfintegral}[2]{\ensuremath{ - \int\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}} -\newcommand{\opensurfIntegral}[2]{\ensuremath{ - \bigint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}} - \vectdotvect{\vect{#2}}{\dirvect{n}} - \dx{A}}} -\newcommand{\closedsurfintegral}[2]{\ensuremath{ - \oint\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}} -\newcommand{\closedsurfIntegral}[2]{\ensuremath{ - \bigoint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}}\;\; - \vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}} -\newcommand{\openlineintegral}[2]{\ensuremath{ - \int\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{t}} - \dx{\ell}}} -\newcommand{\openlineIntegral}[2]{\ensuremath{ - \bigint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}} - \vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}} -\newcommand{\closedlineintegral}[2]{\ensuremath{ - \oint\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}} -\newcommand{\closedlineIntegral}[2]{\ensuremath{ - \bigoint\nolimits_{\mskip -25.00mu\displaystyle\mathbf {#1}}\;\; - \vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}} +\newcommand*{\opensurfaceintegral}[2]{\ensuremath{% + \iint\nolimits_{#1}\vectdotvect{#2}{\dirvect{n}}\dx{A}}} +\newcommand*{\closedsurfaceintegral}[2]{\ensuremath{% + \varoiint\nolimits_{#1}\vectdotvect{#2}{\dirvect{n}}\dx{A}}} +\newcommand*{\openlineintegral}[2]{\ensuremath{% + \int\nolimits_{#1}\vectdotvect{#2}{\dirvect{t}}\dx{\ell}}} +\newcommand*{\closedlineintegral}[2]{\ensuremath{% + \oint\nolimits_{#1}\vectdotvect{#2}{\dirvect{t}}\dx{\ell}}} +\newcommand*{\volumeintegral}[2]{\ensuremath{\iiint\nolimits_{#1}{#2}\dx{V}}} \newcommandx{\dbydt}[1][1]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}t}}} \newcommandx{\DbyDt}[1][1]{\ensuremath{\frac{\Delta{#1}}{\Delta t}}} \newcommandx{\ddbydt}[1][1]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}t^{2}}}} \newcommandx{\DDbyDt}[1][1]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta t^{2}}}} \newcommandx{\pbypt}[1][1]{\ensuremath{\frac{\partial{#1}}{\partial t}}} \newcommandx{\ppbypt}[1][1]{\ensuremath{\frac{\partial^{2}{#1}}{\partial t^{2}}}} -\newcommand{\dbyd}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}} -\newcommand{\DbyD}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}} -\newcommand{\ddbyd}[2]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}{#2}^{2}}}} -\newcommand{\DDbyD}[2]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta{#2}^{2}}}} -\newcommand{\pbyp}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}} -\newcommand{\ppbyp}[2]{\ensuremath{\frac{\partial^{2}{#1}}{\partial{#2}^{2}}}} -\newcommand{\seriesfofx}{\ensuremath{% +\newcommand*{\dbyd}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}} +\newcommand*{\DbyD}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}} +\newcommand*{\ddbyd}[2]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}{#2}^{2}}}} +\newcommand*{\DDbyD}[2]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta{#2}^{2}}}} +\newcommand*{\pbyp}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}} +\newcommand*{\ppbyp}[2]{\ensuremath{\frac{\partial^{2}{#1}}{\partial{#2}^{2}}}} +\newcommand*{\seriesfofx}{\ensuremath{% f(x) \approx f(a) + \frac{f^\prime (a)}{1!}(x-a) + \frac{f^{\prime\prime}(a)}{2!}(x-a)^2 + \frac{f^{\prime\prime\prime}(a)}{3!}(x-a)^3 + \ldots}\xspace} -\newcommand{\seriesexpx}{\ensuremath{% +\newcommand*{\seriesexpx}{\ensuremath{% e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots}\xspace} -\newcommand{\seriessinx}{\ensuremath{% +\newcommand*{\seriessinx}{\ensuremath{% \sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots}\xspace} -\newcommand{\seriescosx}{\ensuremath{% +\newcommand*{\seriescosx}{\ensuremath{% \cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots}\xspace} -\newcommand{\seriestanx}{\ensuremath{% +\newcommand*{\seriestanx}{\ensuremath{% \tan x \approx x + \frac{x^3}{3} + \frac{2x^5}{15} + \ldots}\xspace} -\newcommand{\seriesatox}{\ensuremath{% +\newcommand*{\seriesatox}{\ensuremath{% a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ldots} \xspace} -\newcommand{\serieslnoneplusx}{\ensuremath{% -\ln(1 \pm x) \approx \pm\; x - \frac{x^2}{2} \pm \frac{x^3}{3} - \frac{x^4}{4} \pm \ldots} -\xspace} -\newcommand{\binomialseries}{\ensuremath{% +\newcommand*{\serieslnoneplusx}{\ensuremath{% +\ln(1 \pm x) \approx \pm\; x - \frac{x^2}{2} \pm \frac{x^3}{3} - \frac{x^4}{4} \pm +\ldots}\xspace} +\newcommand*{\binomialseries}{\ensuremath{% (1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots}\xspace} -\@ifpackageloaded{physymb}{% - \typeout{mandi: Package physymb detected. Its commands will be used.} -}{% - \newcommand{\gradient}{\ensuremath{\nabla}} - \newcommand{\divergence}{\ensuremath{\nabla\bullet}} - \newcommand{\curl}{\ensuremath{\nabla\times}} - \newcommand{\laplacian}{\ensuremath{\msup{\nabla}{2}}} - \newcommand{\dalembertian}{\ensuremath{\Box}} -}% -\newcommand{\diracdelta}[1]{\ensuremath{\boldsymbol{\delta}\quant{#1}}} -\@ifpackageloaded{physymb}{% - \typeout{mandi: Package physymb detected. Its commands will be used.} -}{% +\newcommand*{\gradient}{\ensuremath{\boldsymbol{\nabla}}} +\newcommand*{\divergence}{\ensuremath{\boldsymbol{\nabla}\bullet}} +\newcommand*{\curl}{\ensuremath{\boldsymbol{\nabla\times}}} +\newcommand*{\laplacian}{\ensuremath{\boldsymbol{\nabla}^2}} +\newcommand*{\dalembertian}{\ensuremath{\boldsymbol{\Box}}} +\newcommand*{\diracdelta}[1]{\ensuremath{\delta}(#1)} +\newcommand*{\orderof}[1]{\ensuremath{\mathcal{O}(#1)}} \DeclareMathOperator{\asin}{\sin^{-1}} \DeclareMathOperator{\acos}{\cos^{-1}} \DeclareMathOperator{\atan}{\tan^{-1}} @@ -1129,179 +1104,311 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \DeclareMathOperator{\acsch}{\csch^{-1}} \DeclareMathOperator{\acoth}{\coth^{-1}} \DeclareMathOperator{\sgn}{sgn} -}% \DeclareMathOperator{\dex}{dex} -\newcommand{\logb}[1][\relax]{\ensuremath{\log_{_{#1}}}} -\ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\cB}{\ensuremath{c\mskip -5.00mu B}}} - {\newcommand{\cB}{\ensuremath{\textsf{c}\mskip -3.00mu\mathrm{B}}}} -\newcommand{\newpi}{\ensuremath{\pi\mskip -7.8mu\pi}} -\newcommand{\scripty}[1]{\ensuremath{\mathcalligra{#1}}} +\newcommand*{\logb}[1][\relax]{\ensuremath{\log_{#1}}} +\ifthenelse{\boolean{@optboldvectors}} + {\newcommand*{\cB}{\ensuremath{\boldsymbol{c\mskip -3.00mu B}}}} + {\ifthenelse{\boolean{@optromanvectors}} + {\newcommand*{\cB}{\ensuremath{\textsf{c}\mskip -3.00mu\mathrm{B}}}} + {\newcommand*{\cB}{\ensuremath{c\mskip -3.00mu B}}}} +\newcommand*{\newpi}{\ensuremath{\pi\mskip -7.8mu\pi}} +\newcommand*{\scripty}[1]{\ensuremath{\mathcalligra{#1}}} \newcommandx{\flux}[1][1]{\ensuremath{\ssub{\Phi}{#1}}} -\@ifpackageloaded{physymb}{% - \typeout{mandi: Package physymb detected. Its commands will be used.} +\@ifpackageloaded{commath}{% + \typeout{mandi: Package commath detected. Its \protect\abs\space command will + be used.} }{% - \newcommand{\abs}[1]{\ensuremath{\left\lvert{#1}\right\rvert}} + \typeout{mandi: Package commath not detected. mandi's \protect\abs\space command + will be used.} + \newcommand*{\abs}[1]{\ensuremath{\left\lvert{#1}\right\rvert}} }% -\newcommand{\magof}[1]{\ensuremath{\left\lVert{#1}\right\rVert}} -\newcommand{\dimsof}[1]{\ensuremath{\left[{#1}\right]}} -\newcommand{\unitsof}[1]{\ensuremath{\left[{#1}\right]_{_{u}}}} -\newcommand{\quant}[1]{\ensuremath{\left({#1}\right)}} -\newcommand{\bquant}[1]{\ensuremath{\left[{#1}\right]}} -\newcommand{\changein}[1]{\ensuremath{\delta{#1}}} -\newcommand{\Changein}[1]{\ensuremath{\Delta{#1}}} +\newcommand*{\magof}[1]{\ensuremath{\left\lVert{#1}\right\rVert}} +\newcommand*{\dimsof}[1]{\ensuremath{\left[{#1}\right]}} +\newcommand*{\unitsof}[1]{\ensuremath{\left[{#1}\right]_u}} +\newcommand*{\changein}[1]{\ensuremath{\delta{#1}}} +\newcommand*{\Changein}[1]{\ensuremath{\Delta{#1}}} \newcommandx{\scin}[3][1,3=\!\!,usedefault]{\ensuremath{% \ifthenelse{\equal{#1}{}} - {\unit{\msup{10}{#2}}{#3}} - {\unit{\msup{{#1}\times 10}{#2}}{#3}}}} -\newcommand{\ee}[2]{\texttt{{#1}e{#2}}} -\newcommand{\EE}[2]{\texttt{{#1}E{#2}}} -\newcommand{\dms}[3]{\ensuremath{\indegrees{#1}\inarcminutes{#2}\inarcseconds{#3}}} -\newcommand{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}} -\newcommand{\clockreading}{\hms} -\newcommand{\latitude}[1]{\ensuremath{\unit{#1}{\degree}}} -\newcommand{\latitudeN}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{N}}}} -\newcommand{\latitudeS}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{S}}}} -\newcommand{\longitude}[1]{\ensuremath{\unit{#1}{\degree}}} -\newcommand{\longitudeE}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{E}}}} -\newcommand{\longitudeW}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{W}}}} -\newcommand{\ssub}[2]{\ensuremath{{#1}_{_{_{\mbox{\tiny{#2}}}}}}} -\newcommand{\ssup}[2]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}}} -\newcommand{\ssud}[3]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}_{_{_{\mbox{\tiny{#3}}}}}}} -\newcommand{\msub}[2]{\ensuremath{#1^{^{\scriptstyle{{}}}}_{_{_{\scriptstyle{#2}}}}}} -\newcommand{\msup}[2]{\ensuremath{#1^{^{\scriptstyle{#2}}}}} -\newcommand{\msud}[3]{\ensuremath{#1^{^{\scriptstyle{#2}}}_{_{_{\scriptstyle{#3}}}}}} -\newcommand{\levicivita}[1]{\ensuremath{\msub{\varepsilon}{#1}}} -\newcommand{\kronecker}[1]{\ensuremath{\msub{\delta}{#1}}} -\newcommand{\xaxis}{\ensuremath{x\mbox{-axis }}} -\newcommand{\yaxis}{\ensuremath{y\mbox{-axis }}} -\newcommand{\zaxis}{\ensuremath{z\mbox{-axis }}} -\newcommand{\naxis}[1]{\ensuremath{{#1}\mbox{-axis}}} -\newcommand{\xyplane}{\ensuremath{xy\mbox{-plane }}} -\newcommand{\yzplane}{\ensuremath{yz\mbox{-plane }}} -\newcommand{\zxplane}{\ensuremath{zx\mbox{-plane }}} -\newcommand{\yxplane}{\ensuremath{yx\mbox{-plane }}} -\newcommand{\zyplane}{\ensuremath{zy\mbox{-plane }}} -\newcommand{\xzplane}{\ensuremath{xz\mbox{-plane }}} -\newcommand{\cuberoot}[1]{\ensuremath{\sqrt[3]{#1}}} -\newcommand{\fourthroot}[1]{\ensuremath{\sqrt[4]{#1}}} -\newcommand{\fifthroot}[1]{\ensuremath{\sqrt[5]{#1}}} -\newcommand{\fsqrt}[1]{\ensuremath{\msup{#1}{\onehalf}}} -\newcommand{\fcuberoot}[1]{\ensuremath{\msup{#1}{\onethird}}} -\newcommand{\ffourthroot}[1]{\ensuremath{\msup{#1}{\onefourth}}} -\newcommand{\ffifthroot}[1]{\ensuremath{\msup{#1}{\onefifth}}} -\newcommand{\relgamma}[1]{\ensuremath{ - \frac{1}{\sqrt{1-\msup{\quant{\frac{#1}{c}}}{2}}}}} -\newcommand{\frelgamma}[1]{\ensuremath{ - \msup{\quant{1-\frac{\msup{{#1}}{2}}{\msup{c}{2}}}}{-\onehalf}}} -\newcommand{\oosqrtomxs}[1]{\ensuremath{\frac{1}{\sqrt{1-\msup{#1}{2}}}}} -\newcommand{\oosqrtomx}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}}}}} -\newcommand{\ooomx}[1]{\ensuremath{\frac{1}{1-{#1}}}} -\newcommand{\ooopx}[1]{\ensuremath{\frac{1}{1+{#1}}}} -\newcommand{\isequals}{\wordoperator{?}{=}\xspace} -\newcommand{\wordoperator}[2]{\ensuremath{% + {\unit{10^{#2}}{#3}} + {\unit{{#1}\times 10^{#2}}{#3}}}} +\newcommandx{\timestento}[2][2=\!\!,usedefault]{\ensuremath{% + \ifthenelse{\equal{#2}{}} + {\unit{\;\times\;10^{#1}}{}} + {\unit{\;\times\;10^{#1}}{#2}}}} +\newcommand*{\xtento}{\timestento} +\newcommandx{\tento}[2][2=\!\!,usedefault]{\ensuremath{% + \ifthenelse{\equal{#2}{}} + {\unit{10^{#1}}{}} + {\unit{10^{#1}}{#2}}}} +\newcommand*{\ee}[2]{\texttt{{#1}e{#2}}} +\newcommand*{\EE}[2]{\texttt{{#1}E{#2}}} +\newcommand*{\dms}[3]{\ensuremath{\indegrees{#1}\inarcminutes{#2}\inarcseconds{#3}}} +\newcommand*{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}} +\newcommand*{\clockreading}{\hms} +\newcommand*{\latitude}[1]{\unit{#1}{\degree}} +\newcommand*{\latitudeN}[1]{\unit{#1}{\degree\;\mathrm{N}}} +\newcommand*{\latitudeS}[1]{\unit{#1}{\degree\;\mathrm{S}}} +\newcommand*{\longitude}[1]{\unit{#1}{\degree}} +\newcommand*{\longitudeE}[1]{\unit{#1}{\degree\;\mathrm{E}}} +\newcommand*{\longitudeW}[1]{\unit{#1}{\degree\;\mathrm{W}}} +\newcommand*{\ssub}[2]{\ensuremath{#1_{\text{#2}}}} +\newcommand*{\ssup}[2]{\ensuremath{#1^{\text{#2}}}} +\newcommand*{\ssud}[3]{\ensuremath{#1^{\text{#2}}_{\text{#3}}}} +\newcommand*{\msub}[2]{\ensuremath{#1_{#2}}} +\newcommand*{\msup}[2]{\ensuremath{#1^{#2}}} +\newcommand*{\msud}[3]{\ensuremath{#1^{#2}_{#3}}} +\newcommand*{\levicivita}[1]{\ensuremath{\varepsilon_{\scriptscriptstyle{#1}}}} +\newcommand*{\kronecker}[1]{\ensuremath{\delta_{\scriptscriptstyle{#1}}}} +\newcommand*{\xaxis}{\ensuremath{x\text{-axis}}\xspace} +\newcommand*{\yaxis}{\ensuremath{y\text{-axis}}\xspace} +\newcommand*{\zaxis}{\ensuremath{z\text{-axis}}\xspace} +\newcommand*{\naxis}[1]{\ensuremath{{#1}\text{-axis}}\xspace} +\newcommand*{\axis}{\ensuremath{\text{-axis}}\xspace} +\newcommand*{\xyplane}{\ensuremath{xy\text{-plane}}\xspace} +\newcommand*{\yzplane}{\ensuremath{yz\text{-plane}}\xspace} +\newcommand*{\zxplane}{\ensuremath{zx\text{-plane}}\xspace} +\newcommand*{\yxplane}{\ensuremath{yx\text{-plane}}\xspace} +\newcommand*{\zyplane}{\ensuremath{zy\text{-plane}}\xspace} +\newcommand*{\xzplane}{\ensuremath{xz\text{-plane}}\xspace} +\newcommand*{\plane}{\ensuremath{\text{-plane}}\xspace} +\newcommand*{\cuberoot}[1]{\ensuremath{\sqrt[3]{#1}}} +\newcommand*{\fourthroot}[1]{\ensuremath{\sqrt[4]{#1}}} +\newcommand*{\fifthroot}[1]{\ensuremath{\sqrt[5]{#1}}} +\newcommand*{\fsqrt}[1]{\ensuremath{{#1}^\onehalf}} +\newcommand*{\fcuberoot}[1]{\ensuremath{{#1}^\onethird}} +\newcommand*{\ffourthroot}[1]{\ensuremath{{#1}^\onefourth}} +\newcommand*{\ffifthroot}[1]{\ensuremath{{#1}^\onefifth}} +\newcommand*{\relgamma}[1]{\ensuremath{% + \frac{1}{\sqrt{1-(\frac{#1}{c})\squared}}}} +\newcommand*{\frelgamma}[1]{\ensuremath{% + (1-\frac{{#1}\squared}{c\squared})^{-\onehalf}}} +\newcommand*{\oosqrtomxs}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}\squared}}}} +\newcommand*{\oosqrtomx}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}}}}} +\newcommand*{\ooomx}[1]{\ensuremath{\frac{1}{1-{#1}}}} +\newcommand*{\ooopx}[1]{\ensuremath{\frac{1}{1+{#1}}}} +\newcommand*{\isequals}{\wordoperator{?}{=}\xspace} +\newcommand*{\wordoperator}[2]{\ensuremath{% \mathrel{\vcenter{\offinterlineskip \halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex} {#1}\cr\noalign{\vskip.5ex}{#2}\cr}}}}} -\newcommand{\definedas}{\wordoperator{defined}{as}\xspace} -\newcommand{\associated}{\wordoperator{associated}{with}\xspace} -\newcommand{\adjustedby}{\wordoperator{adjusted}{by}\xspace} -\newcommand{\earlierthan}{\wordoperator{earlier}{than}\xspace} -\newcommand{\laterthan}{\wordoperator{later}{than}\xspace} -\newcommand{\forevery}{\wordoperator{for}{every}\xspace} -\newcommand{\pwordoperator}[2]{\ensuremath{\left(% - \mathrel{\vcenter{\offinterlineskip - \halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex} +\newcommand*{\definedas}{\wordoperator{defined}{as}\xspace} +\newcommand*{\associated}{\wordoperator{associated}{with}\xspace} +\newcommand*{\adjustedby}{\wordoperator{adjusted}{by}\xspace} +\newcommand*{\earlierthan}{\wordoperator{earlier}{than}\xspace} +\newcommand*{\laterthan}{\wordoperator{later}{than}\xspace} +\newcommand*{\forevery}{\wordoperator{for}{every}\xspace} +\newcommand*{\pwordoperator}[2]{\ensuremath{\left(% + \mathrel{\vcenter{\offinterlineskip% + \halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex}% {#1}\cr\noalign{\vskip.5ex}{#2}\cr}}}\right)}}% -\newcommand{\pdefinedas}{\pwordoperator{defined}{as}\xspace} -\newcommand{\passociated}{\pwordoperator{associated}{with}\xspace} -\newcommand{\padjustedby}{\pwordoperator{adjusted}{by}\xspace} -\newcommand{\pearlierthan}{\pwordoperator{earlier}{than}\xspace} -\newcommand{\platerthan}{\pwordoperator{later}{than}\xspace} -\newcommand{\pforevery}{\pwordoperator{for}{every}\xspace} -\newcommand{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace} -\newcommand{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}}\xspace} -\newcommand{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace} -\newcommand{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace} -\newcommand{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}} -\newcommand{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}} -\newcommand{\brelatedto}[2]{\ensuremath{% +\newcommand*{\pdefinedas}{\pwordoperator{defined}{as}\xspace} +\newcommand*{\passociated}{\pwordoperator{associated}{with}\xspace} +\newcommand*{\padjustedby}{\pwordoperator{adjusted}{by}\xspace} +\newcommand*{\pearlierthan}{\pwordoperator{earlier}{than}\xspace} +\newcommand*{\platerthan}{\pwordoperator{later}{than}\xspace} +\newcommand*{\pforevery}{\pwordoperator{for}{every}\xspace} +\newcommand*{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace} +\newcommand*{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}} + \xspace} +\newcommand*{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace} +\newcommand*{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace} +\newcommand*{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}} +\newcommand*{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}} +\newcommand*{\brelatedto}[2]{\ensuremath{% \xLongleftrightarrow[\text{\tiny{#1}}]{\text{\tiny{#2}}}}} -\newcommand{\momentumprinciple}{\ensuremath{ - \vectsub{p}{sys,f}=\vectsub{p}{sys,i}+\Fnetsys\Delta t}} -\newcommand{\LHSmomentumprinciple}{\ensuremath{% - \vectsub{p}{sys,f}}} -\newcommand{\RHSmomentumprinciple}{\ensuremath{% - \vectsub{p}{sys,i}+\Fnetsys\Delta t}} -\newcommand{\energyprinciple}{\ensuremath{\ssub{E}{sys,f}=\ssub{E}{sys,i}+ - \ssub{W}{ext}+Q}} -\newcommand{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,f}}} -\newcommand{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,i}+\ssub{W}{ext}+Q}} -\newcommand{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}= - \vectsub{L}{sys,A,i}+\Tnetsys\Delta t}} -\newcommand{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}}} -\newcommand{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,i}+ - \Tnetsys\Delta t}} -\newcommand{\gravitationalinteraction}{\ensuremath{% - \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\msup{\magvectsub{r}{12}}{2}} - \quant{-\dirvectsub{r}{12}}}} -\newcommand{\electricinteraction}{\ensuremath{% - \oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\msup{\magvectsub{r}{12}}{2}} +\newcommand*{\momentumprinciple}{\ensuremath{% + \vectsub{p}{sys,final}=\vectsub{p}{sys,initial}+\Fnetsys\Delta t}} +\newcommand*{\LHSmomentumprinciple}{\ensuremath{\vectsub{p}{sys,final}}} +\newcommand*{\RHSmomentumprinciple}{\ensuremath{\vectsub{p}{sys,initial}+\Fnetsys + \Delta t}} +\newcommand*{\momentumprinciplediff}{\ensuremath{\Dvectsub{p}{sys}=\Fnetsys\Delta t}} +\newcommand*{\energyprinciple}{\ensuremath{\ssub{E}{sys,final}=\ssub{E}{sys,initial}+W + +Q}} +\newcommand*{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,final}}} +\newcommand*{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,initial}+W+Q}} +\newcommand*{\energyprinciplediff}{\ensuremath{\Delta\ssub{E}{sys}=W+Q}} +\newcommand*{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,final}= + \vectsub{L}{\(A\),sys,initial}+\Tsub{net}\Delta t}} +\newcommand*{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,final}}} +\newcommand*{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,initial}+ + \Tsub{net}\Delta t}} +\newcommand*{\angularmomentumprinciplediff}{\ensuremath{\Dvectsub{L}{\(A\),sys}= + \Tsub{net}\Delta t}} +\newcommand*{\gravitationalinteraction}{\ensuremath{% + \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\magvectsub{r}{12}\squared} + (-\dirvectsub{r}{12})}} +\newcommand*{\electricinteraction}{\ensuremath{% + \oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\magvectsub{r}{12}\squared} \dirvectsub{r}{12}}} -\newcommand{\Bfieldofparticle}{\ensuremath{% - \mzofpmathsymbol\frac{Q\magvect{v}}{\msup{\magvect{r}}{2}}\dirvect{v}\times\dirvect{r}}} -\newcommand{\Efieldofparticle}{\ensuremath{% - \oofpezmathsymbol\frac{Q}{\msup{\magvect{r}}{2}}\dirvect{r}}} -\newcommand{\Esys}{\ssub{E}{sys}} -\newcommandx{\Us}[1][1]{\ssub{\ssub{U}{s}}{#1}} -\newcommandx{\Ug}[1][1]{\ssub{\ssub{U}{g}}{#1}} -\newcommandx{\Ue}[1][1]{\ssub{\ssub{U}{e}}{#1}} -\newcommandx{\Ktrans}[1][1]{\ssub{\ssub{K}{trans}}{#1}} -\newcommandx{\Krot}[1][1]{\ssub{\ssub{K}{rot}}{#1}} -\newcommandx{\Eparticle}[1][1]{\ssub{\ssub{E}{particle}}{#1}} -\newcommandx{\Einternal}[1][1]{\ssub{\ssub{E}{internal}}{#1}} -\newcommandx{\Erest}[1][1]{\ssub{\ssub{E}{rest}}{#1}} -\newcommandx{\Echem}[1][1]{\ssub{\ssub{E}{chem}}{#1}} -\newcommandx{\Etherm}[1][1]{\ssub{\ssub{E}{therm}}{#1}} -\newcommandx{\Evib}[1][1]{\ssub{\ssub{E}{vib}}{#1}} -\newcommandx{\Ephoton}[1][1]{\ssub{\ssub{E}{photon}}{#1}} -\newcommand{\DEsys}{\Changein\Esys} -\newcommand{\DUs}{\Changein\Us} -\newcommand{\DUg}{\Changein\Ug} -\newcommand{\DUe}{\Changein\Ue} -\newcommand{\DKtrans}{\Changein\Ktrans} -\newcommand{\DKrot}{\Changein\Krot} -\newcommand{\DEparticle}{\Changein\Eparticle} -\newcommand{\DEinternal}{\Changein\Einternal} -\newcommand{\DErest}{\Changein\Erest} -\newcommand{\DEchem}{\Changein\Echem} -\newcommand{\DEtherm}{\Changein\Etherm} -\newcommand{\DEvib}{\Changein\Evib} -\newcommand{\DEphoton}{\Changein\Ephoton} -\newcommand{\Usfinal}{\ssub{\left(\onehalf\ks \msup{s}{2}\right)}{f}} -\newcommand{\Usinitial}{\ssub{\left(\onehalf\ks \msup{s}{2}\right)}{i}} -\newcommand{\Ugfinal}{\ssub{\left(-G\frac{\msub{M}{1}\msub{M}{2}} - {\magvectsub{r}{12}}\right)}{f}} -\newcommand{\Uginitial}{\ssub{\left(-G\frac{\msub{M}{1}\msub{M}{2}} - {\magvectsub{r}{12}}\right)}{i}} -\newcommand{\Uefinal}{\ssub{\left(\oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}} - {\magvectsub{r}{12}}\right)}{f}} -\newcommand{\Ueinitial}{\ssub{\left(\oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}} - {\magvectsub{r}{12}}\right)}{i}} -\newcommand{\ks}{\ssub{k}{s}} -\newcommand{\Fnet}{\ensuremath{\vectsub{F}{net}}} -\newcommand{\Fnetext}{\ensuremath{\vectsub{F}{net,ext}}} -\newcommand{\Fnetsys}{\ensuremath{\vectsub{F}{net,sys}}} -\newcommand{\Fsub}[1]{\ensuremath{\vectsub{F}{#1}}} -\newcommand{\Tnet}{\ensuremath{\vectsub{T}{net}}} -\newcommand{\Tnetext}{\ensuremath{\vectsub{T}{net,ext}}} -\newcommand{\Tnetsys}{\ensuremath{\vectsub{T}{net,sys}}} -\newcommand{\Tsub}[1]{\ensuremath{\vectsub{T}{#1}}} -\newcommand{\vpythonline}{\lstinline[language=Python,numbers=left,numberstyle=\tiny,% - upquote=true,breaklines]} -\lstnewenvironment{vpythonblock}{\lstvpython}{} -\newcommand{\vpythonfile}{\lstinputlisting[language=Python,numbers=left,% - numberstyle=\tiny,upquote=true,breaklines]} +\newcommand*{\springinteraction}{\ensuremath{\ks\magvect{s}(-\dirvect{s})}} +\newcommand*{\Bfieldofparticle}{\ensuremath{% + \mzofpmathsymbol\frac{Q\magvect{v}}{\magvect{r}\squared}\dirvect{v}\times\dirvect{r}}} +\newcommand*{\Efieldofparticle}{\ensuremath{% + \oofpezmathsymbol\frac{Q}{\magvect{r}\squared}\dirvect{r}}} +\newcommandx{\Esys}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{sys}}{\ssub{E}{sys,#1}}} +\newcommandx{\Us}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(s\)}}{\ssub{U}{\(s\),#1}}} +\newcommandx{\Ug}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(g\)}}{\ssub{U}{\(g\),#1}}} +\newcommandx{\Ue}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(e\)}}{\ssub{U}{\(e\),#1}}} +\newcommandx{\Ktrans}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{trans}} + {\ssub{K}{trans,#1}}} +\newcommandx{\Krot}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{rot}}{\ssub{K}{rot,#1}}} +\newcommandx{\Kvib}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{vib}}{\ssub{K}{vib,#1}}} +\newcommandx{\Eparticle}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{particle}} + {\ssub{E}{particle,#1}}} +\newcommandx{\Einternal}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{internal}} + {\ssub{E}{internal,#1}}} +\newcommandx{\Erest}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{rest}}{\ssub{E}{rest,#1}}} +\newcommandx{\Echem}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{chem}}{\ssub{E}{chem,#1}}} +\newcommandx{\Etherm}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{therm}} + {\ssub{E}{therm,#1}}} +\newcommandx{\Evib}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{vib}}{\ssub{E}{vib,#1}}} +\newcommandx{\Ephoton}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{photon}} + {\ssub{E}{photon,#1}}} +\newcommand*{\DEsys}{\Changein\Esys} +\newcommand*{\DUs}{\Changein\Us} +\newcommand*{\DUg}{\Changein\Ug} +\newcommand*{\DUe}{\Changein\Ue} +\newcommand*{\DKtrans}{\Changein\Ktrans} +\newcommand*{\DKrot}{\Changein\Krot} +\newcommand*{\DKvib}{\Changein\Kvib} +\newcommand*{\DEparticle}{\Changein\Eparticle} +\newcommand*{\DEinternal}{\Changein\Einternal} +\newcommand*{\DErest}{\Changein\Erest} +\newcommand*{\DEchem}{\Changein\Echem} +\newcommand*{\DEtherm}{\Changein\Etherm} +\newcommand*{\DEvib}{\Changein\Evib} +\newcommand*{\DEphoton}{\Changein\Ephoton} +\newcommand*{\springpotentialenergy}{\onehalf\ks\magsquaredvect{s}} +\newcommand*{\finalspringpotentialenergy} + {\ssub{\left(\springpotentialenergy\right)}{\!\!final}} +\newcommand*{\initialspringpotentialenergy} + {\ssub{\left(\springpotentialenergy\right)}{\!\!initial}} +\newcommand*{\gravitationalpotentialenergy}{\ensuremath{% + -G\frac{\msub{M}{1}\msub{M}{2}}{\magvectsub{r}{12}}}} +\newcommand*{\finalgravitationalpotentialenergy} + {\ssub{\left(\gravitationalpotentialenergy\right)}{\!\!final}} +\newcommand*{\initialgravitationalpotentialenergy} + {\ssub{\left(\gravitationalpotentialenergy\right)}{\!\!initial}} +\newcommand*{\electricpotentialenergy}{\ensuremath{% + \oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}}{\magvectsub{r}{12}}}} +\newcommand*{\finalelectricpotentialenergy} + {\ssub{\left(\electricpotentialenergy\right)}{\!\!final}} +\newcommand*{\initialelectricpotentialenergy} + {\ssub{\left(\electricpotentialenergy\right)}{\!\!initial}} +\newcommand*{\ks}{\msub{k}{s}} +\newcommand*{\Fnet}{\ensuremath{\vectsub{F}{net}}} +\newcommand*{\Fnetext}{\ensuremath{\vectsub{F}{net,ext}}} +\newcommand*{\Fnetsys}{\ensuremath{\vectsub{F}{net,sys}}} +\newcommand*{\Fsub}[1]{\ensuremath{\vectsub{F}{#1}}} +\newcommand*{\Ltotal}{\ensuremath{\vectsub{L}{\(A\),total}}} +\newcommand*{\Lsys}{\ensuremath{\vectsub{L}{\(A\),sys}}} +\newcommand*{\Lsub}[1]{\ensuremath{\vectsub{L}{\(A\),{#1}}}} +\newcommand*{\Tnet}{\ensuremath{\vectsub{\tau}{\(A\),net}}} +\newcommand*{\Tnetext}{\ensuremath{\vectsub{\tau}{\(A\),net,ext}}} +\newcommand*{\Tnetsys}{\ensuremath{\vectsub{\tau}{\(A\),net,sys}}} +\newcommand*{\Tsub}[1]{\ensuremath{\vectsub{\tau}{\(A\),#1}}} +\newcommand*{\LHSmaxwelliint}[1][\partial V]{\ensuremath{% + \closedsurfaceintegral{#1}{\vect{E}}}} +\newcommand*{\RHSmaxwelliint}{\ensuremath{\frac{\ssub{Q}{\(e\),net}}% + {\vacuumpermittivitymathsymbol}}} +\newcommand*{\RHSmaxwelliinta}[1][V]{\ensuremath{% + \frac{1}{\vacuumpermittivitymathsymbol}\volumeintegral{#1}{\msub{\rho}{e}}}} +\newcommand*{\RHSmaxwelliintfree}{\ensuremath{0}} +\newcommand*{\maxwelliint}[1][\partial V]{\ensuremath{% + \LHSmaxwelliint[#1]=\RHSmaxwelliint}} +\newcommandx*{\maxwelliinta}[2][1={\partial V},2={V},usedefault]{\ensuremath{% + \LHSmaxwelliint[#1]=\RHSmaxwelliinta[#2]}} +\newcommand*{\maxwelliintfree}[1][\partial V]{\ensuremath{% + \LHSmaxwelliint[#1]=\RHSmaxwelliintfree}} +\newcommand*{\LHSmaxwelliiint}[1][\partial V]{\ensuremath{% + \closedsurfaceintegral{#1}{\vect{B}}}} +\newcommand*{\RHSmaxwelliiint}{\ensuremath{0}} +\newcommand*{\RHSmaxwelliiintm}{\ensuremath{% + \vacuumpermeabilitymathsymbol\ssub{Q}{\(m\),net}}} +\newcommand*{\RHSmaxwelliiintma}[1][V]{\ensuremath{% + \vacuumpermeabilitymathsymbol\volumeintegral{#1}{\msub{\rho}{m}}}} +\newcommand*{\RHSmaxwelliiintfree}{\ensuremath{0}} +\newcommand*{\maxwelliiint}[1][\partial V]{\ensuremath{% + \LHSmaxwelliiint[#1]=\RHSmaxwelliiint}} +\newcommand*{\maxwelliiintm}[1][\partial V]{\ensuremath{% + \LHSmaxwelliiint[#1]=\RHSmaxwelliiintm}} +\newcommandx*{\maxwelliiintma}[2][1={\partial V},2={V},usedefault]{\ensuremath{% + \LHSmaxwelliiint[#1]=\RHSmaxwelliiintma[#2]}} +\newcommand*{\maxwelliiintfree}[1][\partial V]{\ensuremath{% + \LHSmaxwelliiint[#1]=\RHSmaxwelliiintfree}} +\newcommand*{\LHSmaxwelliiiint}[1][\partial\Omega]{\ensuremath{% + \closedlineintegral{#1}{\vect{E}}}} +\newcommand*{\RHSmaxwelliiiint}[1][\Omega]{\ensuremath{% + -\dbydt\opensurfaceintegral{#1}{\vect{B}}}} +\newcommand*{\RHSmaxwelliiiintm}[1][\Omega]{\ensuremath{% + -\dbydt\opensurfaceintegral{#1}{\vect{B}}% + -\vacuumpermeabilitymathsymbol\ssub{I}{\(m\),net}}} +\newcommand*{\RHSmaxwelliiiintma}[1][\Omega]{\ensuremath{% + -\dbydt\opensurfaceintegral{#1}{\vect{B}}% + -\vacuumpermeabilitymathsymbol\opensurfaceintegral{#1}{\vectsub{J}{\(m\)}}}} +\newcommand*{\RHSmaxwelliiiintfree}{\RHSmaxwelliiiint} +\newcommandx*{\maxwelliiiint}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiint[#2]}} +\newcommandx*{\maxwelliiiintm}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiintm[#2]}} +\newcommandx*{\maxwelliiiintma}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiintma[#2]}} +\newcommand*{\maxwelliiiintfree}{\maxwelliiiint} +\newcommand*{\LHSmaxwellivint}[1][\partial\Omega]{\ensuremath{% + \closedlineintegral{#1}{\vect{B}}}} +\newcommand*{\RHSmaxwellivint}[1][\Omega]{\ensuremath{% + \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol% + \dbydt\opensurfaceintegral{#1}{\vect{E}}+% + \vacuumpermeabilitymathsymbol\ssub{I}{\(e\),net}}} +\newcommand*{\RHSmaxwellivinta}[1][\Omega]{\ensuremath{% + \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol% + \dbydt\opensurfaceintegral{#1}{\vect{E}}+% + \vacuumpermeabilitymathsymbol\opensurfaceintegral{#1}{\vectsub{J}{\(e\)}}}} +\newcommand*{\RHSmaxwellivintfree}[1][\Omega]{\ensuremath{% + \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol% + \dbydt\opensurfaceintegral{#1}{\vect{E}}}} +\newcommandx*{\maxwellivint}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivint[#2]}} +\newcommandx*{\maxwellivinta}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivinta[#2]}} +\newcommandx*{\maxwellivintfree}[2][1={\partial\Omega},2={\Omega},usedefault]% + {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivintfree[#2]}} +\newcommand*{\LHSmaxwellidif}{\ensuremath{\divergence{\vect{E}}}} +\newcommand*{\RHSmaxwellidif}{\ensuremath{\frac{\msub{\rho}{e}} + {\vacuumpermittivitymathsymbol}}} +\newcommand*{\RHSmaxwellidiffree}{\ensuremath{0}} +\newcommand*{\maxwellidif}{\ensuremath{\LHSmaxwellidif=\RHSmaxwellidif}} +\newcommand*{\maxwellidiffree}{\ensuremath{\LHSmaxwellidif=\RHSmaxwellidiffree}} +\newcommand*{\LHSmaxwelliidif}{\ensuremath{\divergence{\vect{B}}}} +\newcommand*{\RHSmaxwelliidif}{\ensuremath{0}} +\newcommand*{\RHSmaxwelliidifm}{\ensuremath{\vacuumpermeabilitymathsymbol% + \msub{\rho}{m}}} +\newcommand*{\RHSmaxwelliidiffree}{\ensuremath{0}} +\newcommand*{\maxwelliidif}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidif}} +\newcommand*{\maxwelliidifm}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidifm}} +\newcommand*{\maxwelliidiffree}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidiffree}} +\newcommand*{\LHSmaxwelliiidif}{\ensuremath{\curl{\vect{E}}}} +\newcommand*{\RHSmaxwelliiidif}{\ensuremath{-\pbypt[\vect{B}]}} +\newcommand*{\RHSmaxwelliiidifm}{\ensuremath{-\pbypt[\vect{B}]-% + \vacuumpermeabilitymathsymbol\vectsub{J}{\(m\)}}} +\newcommand*{\RHSmaxwelliiidiffree}{\RHSmaxwelliiidif} +\newcommand*{\maxwelliiidif}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidif}} +\newcommand*{\maxwelliiidifm}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidifm}} +\newcommand*{\maxwelliiidiffree}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidif}} +\newcommand*{\LHSmaxwellivdif}{\ensuremath{\curl{\vect{B}}}} +\newcommand*{\RHSmaxwellivdif}{\ensuremath{\vacuumpermeabilitymathsymbol% + \vacuumpermittivitymathsymbol\pbypt[\vect{E}]+% + \vacuumpermeabilitymathsymbol\vectsub{J}{\(e\)}}} +\newcommand*{\RHSmaxwellivdiffree}{\ensuremath{\vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol\pbypt[\vect{E}]}} +\newcommand*{\maxwellivdif}{\ensuremath{\LHSmaxwellivdif=\RHSmaxwellivdif}} +\newcommand*{\maxwellivdiffree}{\ensuremath{\LHSmaxwellivdif=\RHSmaxwellivdiffree}} +\newcommand*{\RHSlorentzforce}{\ensuremath{\msub{q}{e}\left(\vect{E}+% + \vectcrossvect{\vect{v}}{\vect{B}}\right)}} +\newcommand*{\RHSlorentzforcem}{\ensuremath{\RHSlorentzforce+\msub{q}{m}\left(% + \vect{B}-\vectcrossvect{\vect{v}}{\frac{\vect{E}}{c^2}}\right)}} +\newcommand*{\vpythonline}{\lstinline[style=vpython]} +\lstnewenvironment{vpythonblock}{\lstset{style=vpython}}{} +\newcommand*{\vpythonfile}{\lstinputlisting[style=vpython]} \newcommandx{\emptyanswer}[2][1=0.80,2=0.1,usedefault] {\begin{minipage}{#1\textwidth}\hfill\vspace{#2\textheight}\end{minipage}} \newenvironmentx{activityanswer}[5][1=white,2=black,3=black,4=0.90,5=0.10,usedefault]{% @@ -1340,7 +1447,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \vspace{\baselineskip}% \end{center}% }% -\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=,7=0.0,usedefault] +\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=, +7=0.0,usedefault] {\begin{center}% \fcolorbox{#3}{#2}{% \begin{minipage}[c]{#5\textwidth}\color{#4}% @@ -1385,65 +1493,50 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% - \emptyanswer[#5][#6]% - }% + \emptyanswer[#5][#6]}% \vspace{\baselineskip}% - \end{center}% - }% - {\emptybox[#1][#2][#3][#4][#5][#6]% - }% + \end{center}}% + {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \newcommandx{\largeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.25,% usedefault]{% \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% - \emptyanswer[#5][#6]% - }% + \emptyanswer[#5][#6]}% \vspace{\baselineskip}% - \end{center}% - }% - {\emptybox[#1][#2][#3][#4][#5][#6]% - }% + \end{center}}% + {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \newcommandx{\largeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.33,% usedefault]{% \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% - \emptyanswer[#5][#6]% - }% + \emptyanswer[#5][#6]}% \vspace{\baselineskip}% - \end{center}% - }% - {\emptybox[#1][#2][#3][#4][#5][#6]% - }% + \end{center}}% + {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \newcommandx{\hugeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.50,% usedefault]{% \ifthenelse{\equal{#1}{}} {\begin{center}% \fcolorbox{#3}{#2}{% - \emptyanswer[#5][#6]% - }% + \emptyanswer[#5][#6]}% \vspace{\baselineskip}% - \end{center}% - }% - {\emptybox[#1][#2][#3][#4][#5][#6]% - }% + \end{center}}% + {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \newcommandx{\hugeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.75,% usedefault]{% \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% - \emptyanswer[#5][#6]% - }% + \emptyanswer[#5][#6]}% \vspace{\baselineskip}% - \end{center}% - }% - {\emptybox[#1][#2][#3][#4][#5][#6]% - }% + \end{center}}% + {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \newcommandx{\fullpageanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=1.00,% usedefault]{% @@ -1456,12 +1549,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld {\emptybox[#1][#2][#3][#4][#5][#6]}% }% \mdfdefinestyle{miinstructornotestyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, frametitle={INSTRUCTOR NOTE}, - frametitlebackgroundcolor=cyan!60, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=cyan!25, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{miinstructornote}{% \begin{mdframed}[style=miinstructornotestyle] \begin{adjactivityanswer}[cyan!25][cyan!25][black] @@ -1470,12 +1563,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{mdframed} }% \mdfdefinestyle{mistudentnotestyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, frametitle={STUDENT NOTE}, - frametitlebackgroundcolor=cyan!60, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=cyan!25, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{mistudentnote}{% \begin{mdframed}[style=mistudentnotestyle] \begin{adjactivityanswer}[cyan!25][cyan!25][black] @@ -1484,12 +1577,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{mdframed} }% \mdfdefinestyle{miderivationstyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=0pt, rightmargin=0pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=0pt,rightmargin=0pt,linewidth=1,roundcorner=10, frametitle={DERIVATION}, - frametitlebackgroundcolor=orange!60, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=orange!60,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=orange!25, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{miderivation}{% \begin{mdframed}[style=miderivationstyle] \setcounter{equation}{0} @@ -1499,12 +1592,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{mdframed} }% \mdfdefinestyle{bwinstructornotestyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, frametitle={INSTRUCTOR NOTE}, - frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=gray!20, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{bwinstructornote}{% \begin{mdframed}[style=bwinstructornotestyle] \begin{adjactivityanswer}[gray!20][gray!20][black] @@ -1513,12 +1606,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{mdframed} }% \mdfdefinestyle{bwstudentnotestyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, frametitle={STUDENT NOTE}, - frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=gray!20, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{bwstudentnote}{% \begin{mdframed}[style=bwstudentnotestyle] \begin{adjactivityanswer}[gray!20][gray!20][black] @@ -1527,12 +1620,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{mdframed} }% \mdfdefinestyle{bwderivationstyle}{% - hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip, - leftmargin=0pt, rightmargin=0pt, linewidth=1, roundcorner=10, + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=0pt,rightmargin=0pt,linewidth=1,roundcorner=10, frametitle={DERIVATION}, - frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1, + frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1, backgroundcolor=gray!20, - linecolor=black, fontcolor=black, shadow=true} + linecolor=black,fontcolor=black,shadow=true} \NewEnviron{bwderivation}{% \begin{mdframed}[style=bwderivationstyle] \setcounter{equation}{0} @@ -1541,9 +1634,14 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{align*} \end{mdframed} }% -\newcommand{\checkpoint}{% +\NewEnviron{mysolution}{% + \begin{align*} + \BODY + \end{align*} +}% +\newcommand*{\checkpoint}{% \vspace{1cm}\begin{center}|--------- CHECKPOINT ---------|\end{center}}% -\newcommand{\image}[2]{% +\newcommand*{\image}[2]{% \begin{figure}[h!] \begin{center}% \includegraphics[scale=1]{#1}% @@ -1551,19 +1649,19 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \label{#1}% \end{center}% \end{figure}} -\newcommand{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}} -\newcommand{\chkquantity}[1]{% +\newcommand*{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}} +\newcommand*{\chkquantity}[1]{% \begin{center} - \begin{tabular}{C{3cm} C{3cm} C{3cm} C{3cm}} + \begin{tabular}{C{4.5cm} C{4cm} C{4cm} C{4cm}} name & baseunit & drvdunit & tradunit \tabularnewline \cs{#1} & \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname & \csname #1onlytradunit\endcsname \end{tabular} \end{center} }% -\newcommand{\chkconstant}[1]{% +\newcommand*{\chkconstant}[1]{% \begin{center} - \begin{tabular}{C{3cm} C{1cm} C{2cm} C{3cm} C{3cm} C{3cm}} + \begin{tabular}{C{4cm} C{2cm} C{3cm} C{3cm} C{3cm} C{3cm}} name & symbol & value & baseunit & drvdunit & tradunit \tabularnewline \cs{#1} & \csname #1mathsymbol\endcsname & \csname #1value\endcsname & \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname & @@ -1571,26 +1669,6 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{tabular} \end{center} }% -\newcommandx{\vecto}[2][2,usedefault]{\ensuremath{% - \ifthenelse{\equal{#2}{}}% - {\vec{#1}}% - {\ssub{\vec{#1}}{#2}}}}% -\newcommandx{\compvecto}[3][3,usedefault]{\ensuremath{% - \ifthenelse{\equal{#3}{}}% - {\ssub{#1}{\(#2\)}}% - {\ssub{#1}{\(#2\),#3}}}}% -\newcommandx{\scompsvecto}[2][2,usedefault]{\ensuremath{% - \ifthenelse{\equal{#2}{}}% - {\lv\compvecto{#1}{x},\compvecto{#1}{y},\compvecto{#1}{z}\rv}% - {\lv\compvecto{#1}{x}[#2],\compvecto{#1}{y}[#2],\compvecto{#1}{z}[#2]\rv}}}% -\newcommandx{\compposo}[2][2,usedefault]{\ensuremath{% - \ifthenelse{\equal{#1}{}}% - {#1}% - {\ssub{#1}{#2}}}}% -\newcommandx{\scompsposo}[1][1,usedefault]{\ensuremath{% - \ifthenelse{\equal{#1}{}}% - {\lv\compposo{x},\compposo{y},\compposo{z}\rv}% - {\lv\compposo{x}[#1],\compposo{y}[#1],\compposo{z}[#1]\rv}}}% \endinput %% %% End of file `mandi.sty'. |