summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2014-12-30 22:59:31 +0000
committerKarl Berry <karl@freefriends.org>2014-12-30 22:59:31 +0000
commit290049375b418246b47914c316746543a0a7e11f (patch)
tree28a186c754e91182e5be95f35a2784a1779e83c3
parent52342328d697c341a49231053d155a030eb05b56 (diff)
mandi (30dec14)
git-svn-id: svn://tug.org/texlive/trunk@35931 c570f23f-e606-0410-a88d-b1316a301751
-rw-r--r--Master/texmf-dist/doc/latex/mandi/mandi.pdfbin1023509 -> 1122965 bytes
-rw-r--r--Master/texmf-dist/doc/latex/mandi/vdemo.py17
-rw-r--r--Master/texmf-dist/source/latex/mandi/mandi.dtx5273
-rw-r--r--Master/texmf-dist/source/latex/mandi/mandi.ins7
-rw-r--r--Master/texmf-dist/tex/latex/mandi/mandi.sty2220
5 files changed, 4322 insertions, 3195 deletions
diff --git a/Master/texmf-dist/doc/latex/mandi/mandi.pdf b/Master/texmf-dist/doc/latex/mandi/mandi.pdf
index 276aff2d811..4d1097fa6d3 100644
--- a/Master/texmf-dist/doc/latex/mandi/mandi.pdf
+++ b/Master/texmf-dist/doc/latex/mandi/mandi.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/mandi/vdemo.py b/Master/texmf-dist/doc/latex/mandi/vdemo.py
index b50f0c35eea..6af517625a1 100644
--- a/Master/texmf-dist/doc/latex/mandi/vdemo.py
+++ b/Master/texmf-dist/doc/latex/mandi/vdemo.py
@@ -1,22 +1,25 @@
-from __future__ import print_function, division
+from __future__ import division,print_function
from visual import *
-giant = sphere(pos=vector(-1e11,0,0),radius=2e10,mass=2e30,color=color.red)
-giant.p = vector(0, 0, -1e4) * giant.mass
+G = 6.7e-11
+# create objects
+giant = sphere(pos=vector(-1e11,0,0),radius=2e10,mass=2e30,color=color.red)
+giant.p = vector(0,0,-1e4) * giant.mass
dwarf = sphere(pos=vector(1.5e11,0,0),radius=1e10,mass=1e30,color=color.yellow)
dwarf.p = -giant.p
-for a in [giant, dwarf]:
- a.orbit = curve(color=a.color, radius=2e9)
+for a in [giant,dwarf]:
+ a.orbit = curve(color=a.color,radius=2e9)
dt = 86400
while 1:
rate(100)
dist = dwarf.pos - giant.pos
- force = 6.7e-11 * giant.mass * dwarf.mass * dist / mag(dist)**3
+ force = G * giant.mass * dwarf.mass * dist / mag(dist)**3
giant.p = giant.p + force*dt
dwarf.p = dwarf.p - force*dt
- for a in [giant, dwarf]:
+ for a in [giant,dwarf]:
a.pos = a.pos + a.p/a.mass * dt
a.orbit.append(pos=a.pos)
+
diff --git a/Master/texmf-dist/source/latex/mandi/mandi.dtx b/Master/texmf-dist/source/latex/mandi/mandi.dtx
index d0ed7d89330..c4a1e12b587 100644
--- a/Master/texmf-dist/source/latex/mandi/mandi.dtx
+++ b/Master/texmf-dist/source/latex/mandi/mandi.dtx
@@ -1,7 +1,7 @@
% \iffalse meta-comment
% !TEX TS-program = dtxmk
%
-% Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com>
+% Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com>
% ---------------------------------------------------------------------------
% This work may be distributed and/or modified under the conditions of the
% LaTeX Project Public License, either version 1.3 of this license or (at
@@ -32,31 +32,33 @@
%</internal>
%
%<*package>
-\ProvidesPackage{mandi}[2013/06/14 2.2.0 Macros for physics and astronomy]
+\ProvidesPackage{mandi}[2014/12/29 2.4.0 Macros for physics and astronomy]
\NeedsTeXFormat{LaTeX2e}[1999/12/01]
%</package>
%
%<*vdemo>
-from __future__ import print_function, division
+from __future__ import division,print_function
from visual import *
-giant = sphere(pos=vector(-1e11,0,0),radius=2e10,mass=2e30,color=color.red)
-giant.p = vector(0, 0, -1e4) * giant.mass
+G = 6.7e-11
+# create objects
+giant = sphere(pos=vector(-1e11,0,0),radius=2e10,mass=2e30,color=color.red)
+giant.p = vector(0,0,-1e4) * giant.mass
dwarf = sphere(pos=vector(1.5e11,0,0),radius=1e10,mass=1e30,color=color.yellow)
dwarf.p = -giant.p
-for a in [giant, dwarf]:
- a.orbit = curve(color=a.color, radius=2e9)
+for a in [giant,dwarf]:
+ a.orbit = curve(color=a.color,radius=2e9)
dt = 86400
while 1:
rate(100)
dist = dwarf.pos - giant.pos
- force = 6.7e-11 * giant.mass * dwarf.mass * dist / mag(dist)**3
+ force = G * giant.mass * dwarf.mass * dist / mag(dist)**3
giant.p = giant.p + force*dt
dwarf.p = dwarf.p - force*dt
- for a in [giant, dwarf]:
+ for a in [giant,dwarf]:
a.pos = a.pos + a.p/a.mass * dt
a.orbit.append(pos=a.pos)
%</vdemo>
@@ -76,7 +78,7 @@ while 1:
\usedir{tex/latex/mandi}
\preamble
-Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com>
+Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com>
---------------------------------------------------------------------------
This work may be distributed and/or modified under the conditions of the
LaTeX Project Public License, either version 1.3 of this license or (at
@@ -103,7 +105,7 @@ and includes the derived files mandi.ins
\generate{\file{\jobname.sty}{\from{\jobname.dtx}{package}}}
\generate{\file{\jobname.ins}{\from{\jobname.dtx}{install}}}
\generate{\usepreamble\empty\usepostamble\empty
- \file{vdemo.py}{\from{\jobname.dtx}{vdemo}}}
+ \file{README.txt}{\from{\jobname.dtx}{readme}}}
\obeyspaces
\Msg{*************************************************************}
@@ -124,7 +126,7 @@ and includes the derived files mandi.ins
\usedir{tex/latex/mandi}
\generate{\file{\jobname.ins}{\from{\jobname.dtx}{install}}}
\generate{\usepreamble\empty\usepostamble\empty
- \file{vdemo.py}{\from{\jobname.dtx}{vdemo}}}
+ \file{README.txt}{\from{\jobname.dtx}{readme}}}
\ifx\fmtname\nameofplainTeX
\expandafter\endbatchfile
\else
@@ -139,7 +141,8 @@ and includes the derived files mandi.ins
%<*driver>
\documentclass[10pt]{ltxdoc}
\setlength{\marginparwidth}{0.50in} % placement of todonotes
-\usepackage[italicvectors]{\jobname} % load mandi
+\usepackage{\jobname} % load mandi
+\usepackage{parskip} % no indents, space between paragraphs
\usepackage[textwidth=1.0cm]{todonotes} % allow for todonotes
\usepackage[left=0.75in,right=1.00in]{geometry} % main documentation
\usepackage{array,rotating,microtype} % accessory packages
@@ -168,21 +171,21 @@ and includes the derived files mandi.ins
%</driver>
% \fi
%
-% \newcommand{\pkgname}[1]{\texttt{#1}}
-% \newcommand{\mandi}{\pkgname{mandi}}
-% \newcommand{\mi}{\textit{Matter \& Interactions}}
+% \newcommand*{\pkgname}[1]{\texttt{#1}}
+% \newcommand*{\mandi}{\pkgname{mandi}}
+% \newcommand*{\mi}{\textit{Matter \& Interactions}}
% \hyphenation{Matter Interactions}
-% \newcommand{\opt}[1]{\textsf{\textbf{#1}}}
-% \newcommand{\baseunits}{\textit{baseunits}}
-% \newcommand{\drvdunits}{\textit{drvdunits}}
-% \newcommand{\tradunits}{\textit{tradunits}}
+% \newcommand*{\opt}[1]{\textsf{\textbf{#1}}}
+% \newcommand*{\baseunits}{\textit{baseunits}}
+% \newcommand*{\drvdunits}{\textit{drvdunits}}
+% \newcommand*{\tradunits}{\textit{tradunits}}
%
% \IndexPrologue{\section{Index}Page numbers refer to page where the
% corresponding entry is described. Not every command defined in the
% package is indexed. There may be commands similar to indexed commands
% described in relevant parts of the documentation.}
%
-% \CheckSum{5396}
+% \CheckSum{5689}
%
% \CharacterTable
% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
@@ -214,20 +217,6 @@ and includes the derived files mandi.ins
%
% ^^A \centerline{\textbf{PLEASE DO NOT DISTRIBUTE THIS VERSION.}}
%
-% \changes{v2.0.0}{\today}{First public release}
-% \changes{v2.1.0}{\today}{No longer needs \pkgname{SIunits}. It's deprecated}
-% \changes{v2.1.0}{\today}{Coexists with \pkgname{siunitx}.}
-% \changes{v2.1.0}{\today}{Coexists with \pkgname{physymb}.
-% Load \pkgname{physymb} before \pkgname{mandi}.}
-% \changes{v2.1.0}{\today}{Added more predefined quantities.}
-% \changes{v2.1.0}{\today}{Improved vector operators.}
-% \changes{v2.2.0}{\today}{Completely reformatted documentation.}
-% \changes{v2.2.0}{\today}{Many new physical quantities and constants.}
-% \changes{v2.2.0}{\today}{Physical constants are given to three or four
-% decimal places.}
-% \changes{v2.2.0}{\today}{New commands, some deprecated in favor of
-% \pkgname{mivector}.}
-%
% \newgeometry{left=1.0in,right=1.0in,top=1.0in,bottom=1.0in}
% \tableofcontents
% \newpage
@@ -255,8 +244,8 @@ and includes the derived files mandi.ins
% can be typeset with just a single command. Great thought has been given to command
% names and I hope users find the conventions logical and easy to remember.
%
-% There are other underlying philosophies and goals embedded within \mandi, all of
-% which are summarized here. They are
+% There are other underlying philosophies and goals embedded within \mandi,
+% all of which are summarized here. These philosophies are
% \begin{itemize}
% \item to employ a \textit{type what you think} model for remembering commands
% \item to relieve the user of having to explicitly worry about typesetting SI units
@@ -269,8 +258,8 @@ and includes the derived files mandi.ins
% \item to enforce consistent notation, especially for vector quantities
% \end{itemize}
%
-% I hope that using \mandi\ will cause users to form good habits that benefit
-% physics students.
+% I hope that using \mandi\ will cause users to form good habits that
+% benefit physics students.
%
% \section{Building From Source}
% I am assuming the user will use pdf\LaTeX, which creates PDF files as output, to
@@ -284,13 +273,24 @@ and includes the derived files mandi.ins
% |\usepackage|\textbf{[}\opt{options}\textbf{]}|{mandi}| in your document's preamble.
% There are five available options, with one option being based on the absence of
% two of the others. The options are described below.
+% \changes{v2.4.0}{2014/12/16}{Made option names consistent with default behavior.}
+% \changes{v2.4.0}{2014/12/16}{Added option for boldface vector kernels.}
+% \changes{v2.4.0}{2014/12/16}{Added option for approximate values of constants.}
%
% \begin{itemize}
-% \item \opt{italicvectors} gives italic letters for the kernels of vector
-% names. Otherwise, the letters are in Roman.
-% \item \opt{doubleabsbars} gives double bars in symbols for vector magnitudes.
-% Otherwise, single bars are used. Double bars may be more familiar to
-% students from their calculus courses.
+% \item \opt{boldvectors} gives bold letters for the kernels of vector names. No
+% arrows are used above the kernel.
+% \item \opt{romanvectors} gives Roman letters for the kernels of vectors names. An
+% arrow appears over the kernel.
+% \item If neither \opt{boldvectors} nor \opt{romanvectors} is specified (the
+% default), vectors are displayed with italic letters for the kernels of vector
+% names and an arrow appears over the kernel.
+% \item \opt{singleabsbars} gives single bars in symbols for vector magnitudes.
+% Double bars may be more familiar to students from their calculus courses.
+% Double bars is the default.
+% \item \opt{approxconsts} gives approximate values of constants to one or two
+% significant figures, depending on how they appear in \mi. Otherwise, the most
+% precise currently available values are used. Precise constants is the default.
% \item \opt{baseunits} causes all units to be displayed in \baseunits\ form, with
% SI base units. No solidi (slashes) are used. Positive and negative exponents
% are used to denote powers of various base units.
@@ -312,19 +312,31 @@ and includes the derived files mandi.ins
% temporarily or permanently.
% \end{itemize}
%
+% \changes{v2.4.0}{2014/12/17}{Now coexists with the \pkgname{commath} package.}
% \mandi\ coexists with the \pkgname{siunitx} package. While there is some
% functional overlap between the two packages, \mandi\ is completely independent of
-% \pkgname{siunitx}.
-%
-% \mandi\ coexists with the \pkgname{physymb} package, with which there are also
-% functional overlaps and a few conflicts with identically named commands. If you
-% wish to use \pkgname{physymb} and \mandi\ in the same document, be certain to load
-% \pkgname{physymb} first. \mandi\ will detect its presence and behave accordingly.
+% \pkgname{siunitx}. The two are designed for different purposes and probably also
+% for different audiences, but can be used together if desired. \mandi\ coexists with
+% the \pkgname{commath} package. If \mandi\ detects that \pkgname{commath} has been
+% loaded, \pkgname{commath}'s |\abs| command will be used rather than \mandi's.
+% \mandi\ no longer checks for the presence of the \pkgname{physymb} package. That
+% package now incorporates \mandi\ dependencies, and the two are completely compatible.
+% \changes{v2.4.0}{2014/12/19}{Removed compatibility check for the \pkgname{physymb}
+% package.}
%
% \section{Usage}
-% So what does \mandi\ allow you to do? Suppose you want to typeset a calculation of
-% a particle's kinetic energy (assume the magnitude of the particle's velocity is much
-% less than the magnitude of light's velocity). You could use
+% So what does \mandi\ allow you to do? There are two main design goals. The first
+% is typeset numerical values of scalar and vector physical quantities and their
+% SI units. The idea is to simply type a command corresponding to the quantity's
+% name, specifying as an argument a single scalar value or the numerical components
+% of a traditional Cartesian 3-vector, and let \mandi\ take care of the units.
+%
+% In introductory physics courses, students typically have trouble remembering
+% which units go with which quantities and, more importantly, remembering to include
+% units in numerical calculations. \mandi\ is designed to help with these problems.
+% Suppose you want to typeset a calculation of a particle's kinetic energy (assume
+% the magnitude of the particle's velocity is much less than the magnitude of light's
+% velocity). You could use
%
%\iffalse
%<*example>
@@ -336,24 +348,34 @@ and includes the derived files mandi.ins
%</example>
%\fi
%
-% but \mandi\ lets you do something more logical and more readable, like this
+% which is nearly incomprehensible for people new to \LaTeX\ and that (probably)
+% includes introductory physics students, but \mandi\ lets you do something more
+% logical and more readable, like this
%
%\iffalse
%<*example>
%\fi
\begin{dispExample}
-\[ K \approx \onehalf (\mass{2})(\velocity{2})^2 \]
+\[ K \approx \onehalf (\mass{2})(\velocity{2})\squared \]
\end{dispExample}
%\iffalse
%</example>
%\fi
%
-% which produces the same output. In the second example, note that the units are abstracted
-% so the user need not remember them.
+% which produces the same output. In the second example, note that the units
+% are abstracted so the user need not remember them. This doesn't mean that students
+% don't need to know what the various units are, but it does mean that now there is
+% no way for units to be left out of a calculation. Note also that the commands
+% correspond to the actual names of the quantities needed for the calculation. All
+% the student needs to do is remember what quantities are needed and then construct
+% the appropriate \LaTeX\ expression in a way that is very similar to writing
+% program code in a language like Python, with which many students will have had
+% previous experience. This may make \LaTeX\ easier for beginners to learn, and
+% the second way is more readable if you come back to the source document, perhaps
+% having not looked at it for a while.
%
-% The second way is more readable if you come back to the source document, perhaps having
-% not looked at it for a while. Suppose you want to use vectors quantities. That's no problem
-% because \mandi\ handles vector quantities.
+% Suppose you want to use vectors quantities. That's no problem because \mandi\
+% handles vector quantities.
%
%\iffalse
%<*example>
@@ -372,22 +394,41 @@ Calculate the magnitude of \momentum{\mivector{3,2,5}}.
% \mandi\ knows about them and in doing so, you give the new quantities the same
% names they would normally have.
%
-% If you want to save time in writing out the energy principle, just use
+% The second main design goal provides a similar approach to typesetting the most
+% frequently used symbolic expressions in introductory physics. If you want to save
+% time in writing out the expression for the electric field of a particle, just use
%
%\iffalse
%<*example>
%\fi
\begin{dispExample}
-\energyprinciple
+\Efieldofparticle
\end{dispExample}
%\iffalse
%</example>
%\fi
%
-% which, as you can see, takes fewer keystrokes and it's easier to remember.
+% which, as you can see, takes fewer keystrokes and it's easier to remember. Correct
+% vector notation is automatically enforced, leading students to get used to seeing
+% it and, hopefully, using it in their own calculations. Yes, this is a bit of an
+% agenda on my part, but my experience has been that students don't recognize or
+% appreciate the utility of vector notation and thus their physical reasoning may
+% suffer as a result. So by using \mandi\ they use simple commands that mirror what
+% they're thinking, or what they're supposed to be thinking (yes, another agenda),
+% and in the process see the correct typeset output.
+%
+% There is another persistent problem with introductory physics textbooks, and that
+% is that many authors do not use consistent notation. Many authors define the
+% notation for a vector's magnitude to be either \magvect{a} or \abs{\vect{a}} in an
+% early chapter, but then completely ignore that notation and simply use \(a\)
+% later in the book. I have never understood the (lack of) logic behind this practice
+% and find it more than annoying. Textbooks authors should know better, and should
+% set a better example for introductory students. I propose that using \mandi\
+% would eliminate all last vestiges of all excuses for not setting this one good
+% example for introductory students.
%
% This barely scratches the surface in describing \mandi\ so continue reading this
-% document to see everything this package can do.
+% document to see everything it can do.
%
% \section{Features and Commands}
% \subsection{Autosized Parentheses}
@@ -416,7 +457,7 @@ Calculate the magnitude of \momentum{\mivector{3,2,5}}.
%</example>
%\fi
%
-% \subsection{SI Base Units}
+% \subsection{SI Base Units and Dimensions}
% This is not a tutorial on SI units and the user is assumed to be familiar with SI
% rules and usage. Begin by defining shortcuts for the units for the seven SI base
% quantities:
@@ -515,14 +556,109 @@ Command for candela, the SI unit of luminous intensity.
% not Newton. Again, using these select nicknames for certain combinations of base units
% is what we mean by \drvdunits\ form.
%
+% \subsection{SI Dimensions}
+% For each SI unit, there is a corresponding dimension. Every physical quantity is some
+% multiplicative product of each of the seven basic SI dimensions raised to a power.
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{dimddisplacement}{}
+Command for the symbol for the dimension of displacement.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+displacement has dimension of \dimdisplacement
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{dimmass}{}
+Command for the symbol for the dimension of mass.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+mass has dimension of \dimmass
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{dimduration}{}
+Command for the symbol for the dimension of duration.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+duration has dimension of \dimduration
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{dimcurrent}{}
+Command for the symbol for the dimension of current.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+current has dimension of \dimcurrent
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{dimtemperature}{}
+Command for the symbol for the dimension of temperature.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+temperature has dimension of \dimtemperature
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{dimamount}{}
+Command for the symbol for the dimension of amount.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+amount has dimension of \dimamount
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{dimluminous}{}
+Command for the symbol for the dimension of luminous intensity.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+luminous has dimension of \dimluminous
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
% \subsection{Defining Physics Quantities}
%
%\iffalse
%<*example>
%\fi
\begin{docCommand}{newphysicsquantity}
- {\marg{newname}\marg{\baseunits}\oarg{\drvdunits}\oarg{\tradunits}}
- Defines a new physics quantity and its associated commands.
+{\marg{newname}\marg{\baseunits}\oarg{\drvdunits}\oarg{\tradunits}}
+Defines a new physics quantity and its associated commands.
\end{docCommand}
%\iffalse
%</example>
@@ -538,9 +674,11 @@ Command for candela, the SI unit of luminous intensity.
% typeset according to the options given when \mandi\ was loaded. Note that if the
% \drvdunits\ and \tradunits\ forms are not specified, they will be
% populated with the \baseunits\ form.
-% \item A command \colDef{\cs{newnamebaseunit}}\marg{magnitude} is created that expresses
+% \item A command \colDef{\cs{newnamebaseunit}}\marg{magnitude} is created that
+% expresses
% the quantity and its units in \baseunits\ form.
-% \item A command \colDef{\cs{newnamedrvdunit}}\marg{magnitude} is created that expresses
+% \item A command \colDef{\cs{newnamedrvdunit}}\marg{magnitude} is created that
+% expresses
% the quantity and its units in \drvdunits\ form. This command is created whether
% or not the first optional argument is provided.
% \item A command \colDef{\cs{newnametradunit}}\marg{magnitude} is created that
@@ -556,21 +694,50 @@ Command for candela, the SI unit of luminous intensity.
% \textbf{only} the quantity's numerical value.
% \end{itemize}
%
+% As an example, consider momentum. The following commands are defined:
+%
+% \begin{quotation}
+% \begin{tabular}{l l l}
+% |\momentum{3}| &\momentum{3} & unit determined by global options \\
+% |\momentumbaseunit{3}| &\momentumbaseunit{3} & quantity with base unit \\
+% |\momentumdrvdunit{3}| &\momentumdrvdunit{3} & quantity with derived unit \\
+% |\momentumtradunit{3}| &\momentumtradunit{3} & quantity with traditional unit \\
+% |\momentumvalue{3}| &\momentumvalue{3} & selects numerical value of quantity \\
+% |\momentumonlybaseunit|&\momentumonlybaseunit & selects only base unit \\
+% |\momentumonlydrvdunit|&\momentumonlydrvdunit & selects only derived unit \\
+% |\momentumonlytradunit|&\momentumonlytradunit & selects only traditional unit
+% \end{tabular}
+% \end{quotation}
+%
+% Momentum is a vector quantity, so obviously this command really refers to the
+% magnitude of a momentum vector. There is an interesting, and as far as I can tell
+% unwritten, convention in physics that we use the same name for a vector and its
+% magnitude with one exception, and that is for velocity, the magnitude of which we
+% sometimes call speed. Conceptually, however, velocity and speed are different
+% entities. Therefore, \mandi\ has different commands for them. Actually, the
+% \cs{speed} command is just an alias for \cs{velocity} and should only be used for
+% scalars and never for vectors. This convention means that the same name is used
+% for vector quantities and the corresponding magnitudes.
+%
% \subsubsection{Defining Vector Quantities}
%
-% Nothing special is necessary for defining vector quantities, but a formatted
-% vector is used when invoking the value of that quantity.
+% All physical quantities are defined as in the momentum example above regardless
+% of whether the quantity is a scalar or a vector. To typeset a vector quantity,
+% specify an argument consisting of a vector with components as a comma separated
+% list in a \cs{mivector} command. So specifying a momentum vector is as simple as
%
%\iffalse
%<*example>
%\fi
\begin{dispExample}
-\displacement{\mivector{3,2,-1}}
+\momentum{\mivector{3,2,-1}}
\end{dispExample}
%\iffalse
%</example>
%\fi
%
+% where the notation corresponds to that used in \mi.
+%
% \subsection{First Semester Physics}
% The first semester of \mi\, and indeed most traditional introductory calculus-based
% physics course, focuses on mechanics, dynamics, and statistical mechanics.
@@ -782,8 +949,47 @@ an energy of \ineV{10.2}
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{ineVocs}{\marg{magnitude}}
+Command for mass in \(\mathrm{eV}\per c^2\).
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+a mass of \ineVocs{1.1}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{ineVoc}{\marg{magnitude}}
+Command for momentum in \(\mathrm{eV}\per c\).
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+a momentum of \ineVoc{3.6}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{inMeV}{\marg{magnitude}}
+Command for energy in millions of electron volts.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+an energy of \inMeV{2.2}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{inMeVocs}{\marg{magnitude}}
-Command for mass in \(\mathrm{MeV}\per\msup{c}{2}\).
+Command for mass in \(\mathrm{MeV}\per c^2\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
a mass of \inMeVocs{0.511}
@@ -808,6 +1014,58 @@ a momentum of \inMeVoc{3.6}
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{inGeV}{\marg{magnitude}}
+Command for energy in millions of electron volts.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+an energy of \inGeV{2.2}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{inGeVocs}{\marg{magnitude}}
+Command for mass in \(\mathrm{GeV}\per c^2\).
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+a mass of \inGeVocs{0.511}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{inGeVoc}{\marg{magnitude}}
+Command for momentum in \(\mathrm{GeV}\per c\).
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+a momentum of \inGeVoc{3.6}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{inamu}{\marg{magnitude}}
+Command for mass in atomic mass units.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+an atomic mass of \inamu{4.002602}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{inAU}{\marg{magnitude}}
Command for displacement in astronomical units.
\end{docCommand}
@@ -978,7 +1236,7 @@ a distance of \insolarD{2}
%<*example>
%\fi
\begin{docCommand}{insolard}{\marg{magnitude}}
-Identical to \cs{insular} but uses \(d\).
+Identical to \cs{insolarD} but uses \(d\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
a distance of \insolard{2}
@@ -987,25 +1245,28 @@ a distance of \insolard{2}
%</example>
%\fi
%
-% Angles are confusing in introductory physics because sometimes we write the unit
-% and sometimes we do not. Some concepts, such as flux, are simplified by
-% introducing solid angle.
+% Angles are confusing in introductory physics because sometimes we write
+% the unit and sometimes we do not. Some concepts, such as flux, are simplified
+% by introducing solid angle.
%
-% Now let us move on into first semester physics, defining quantities in the approximate
-% order in which they appear in \mi. Use |\scin[]{}| to get
-% scientific notation, with the mantissa as the optional first argument and the exponent
-% as the required second argument. |\scin| has an optional third argument that specifies
-% a unit, but that is not needed or used in the following examples.
+% Now let us move on into first semester physics, defining quantities in the
+% approximate order in which they appear in \mi. Use |M\timestento{P}[U]| to get
+% scientific notation, with the mantissa immediately preceding the command and the
+% exponent as the required argument. |\timestento| has an optional second argument
+% that specifies a unit, but that is not needed or used in the following examples.
%
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{velocityc}{\marg{magnitude}}
-Command for magnitude of velocity as a fraction of \(c\).
+\begin{docCommand}{velocityc}{\marg{magnitude or vector}}
+Command for velocity as a fraction of \(c\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
a velocity of \velocityc{0.9987} \\
-a velocity of \velocityc{\mivector{0,0.9987,0}}
+a velocity of \velocityc{\mivector{0,0.9987,0}} \\
+a velocity of \mivector{\velocityc{\frac{1}{\sqrt{3}}},\\
+\velocityc{\frac{1}{\sqrt{3}}},\\
+\velocityc{\frac{1}{\sqrt{3}}}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1014,8 +1275,8 @@ a velocity of \velocityc{\mivector{0,0.9987,0}}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{velocity}{\marg{magnitude}}
-Command for magnitude of velocity.
+\begin{docCommand}{velocity}{\marg{magnitude or vector}}
+Command for velocity.
\end{docCommand}
\begin{dispExample*}{sidebyside}
a velocity of \velocity{2.34} \\
@@ -1028,8 +1289,29 @@ a velocity of \velocity{\mivector{3,2,-1}}
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{speed}{\marg{magnitude}}
+Command for speed. Technically, velocity is defined as the quotient of displacement
+and duration while speed is defined as the quotient of distance traveled and
+duration. They have the same dimension and unit, but are slightly conceptually
+different so separate commands are provided. I've never seen speed used as anything
+other than a scalar, but of course you can specify a vector if you wish.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+a speed of \velocity{8.25}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+
+
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{lorentz}{\marg{magnitude}}
-Command for relativistic Lorentz factor.
+Command for relativistic Lorentz factor. Obviously this command doesn't do anything
+visually, but is included for thinking about calculations where this quantity is
+needed.
\end{docCommand}
\begin{dispExample*}{sidebyside}
a Lorentz factor of \lorentz{2.34}
@@ -1041,7 +1323,7 @@ a Lorentz factor of \lorentz{2.34}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{momentum}{\marg{magnitude}}
+\begin{docCommand}{momentum}{\marg{magnitude or vector}}
Command for momentum.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -1055,7 +1337,7 @@ a momentum of \momentum{\mivector{3,2,-1}}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{acceleration}{\marg{magnitude}}
+\begin{docCommand}{acceleration}{\marg{magnitude or vector}}
Command for acceleration.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -1069,8 +1351,36 @@ an acceleration of \acceleration{\mivector{3,2,-1}}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{impulse}{\marg{magnitude}}
-Command for impulse.
+\begin{docCommand}{gravitationalfield}{\marg{magnitude or vector}}
+Command for gravitational field.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+a gravitational field of \gravitationalfield{2.34} \\
+a gravitational field of \gravitationalfield{\mivector{3,2,-1}}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{gravitationalpotential}{\marg{magnitude}}
+Command for gravitational potential.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+a gravitational potential of \gravitationalpotential{2.34}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{impulse}{\marg{magnitude or vector}}
+Command for impulse. Impulse and change in momentum are conceptually different
+and a case can be made for expressing the in different, but equivalent, units.
\end{docCommand}
\begin{dispExample*}{sidebyside}
an impulse of \impulse{2.34} \\
@@ -1083,7 +1393,7 @@ an impulse of \impulse{\mivector{3,2,-1}}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{force}{\marg{magnitude}}
+\begin{docCommand}{force}{\marg{magnitude or vector}}
Command for force.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -1192,7 +1502,7 @@ a volume mass density of \volumemassdensity{2.34}
Command for Young's modulus.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a Young's modulus of \youngsmodulus{\scin[2.34]{9}}
+a Young's modulus of \youngsmodulus{2.34\timestento{9}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1202,7 +1512,8 @@ a Young's modulus of \youngsmodulus{\scin[2.34]{9}}
%<*example>
%\fi
\begin{docCommand}{work}{\marg{magnitude}}
-Command for work.
+Command for work. Energy and work are conceptually different and a case can
+be made for expressing them in different, but equivalent, units.
\end{docCommand}
\begin{dispExample*}{sidebyside}
an amount of work \work{2.34}
@@ -1215,7 +1526,8 @@ an amount of work \work{2.34}
%<*example>
%\fi
\begin{docCommand}{energy}{\marg{magnitude}}
-Command for energy. Work and energy have the same unit, but are conceptually different.
+Command for energy. Work and energy are conceptually different and a case can
+be made for expressing them in different, but equivalent, units.
\end{docCommand}
\begin{dispExample*}{sidebyside}
an amount of energy \energy{2.34}
@@ -1240,7 +1552,20 @@ an amount of power \power{2.34}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{angularvelocity}{\marg{magnitude}}
+\begin{docCommand}{specificheatcapacity}{\marg{magnitude}}
+Command for specific heat capacity.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+a specific heat capacity of \specificheatcapacity{4.18\xtento{3}}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{angularvelocity}{\marg{magnitude or vector}}
Command for angular velocity.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -1252,7 +1577,7 @@ an angular velocity of \angularvelocity{2.34}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{angularacceleration}{\marg{magnitude}}
+\begin{docCommand}{angularacceleration}{\marg{magnitude or vector}}
Command for angular acceleration.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -1264,7 +1589,7 @@ an angular acceleration of \angularacceleration{2.34}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{angularmomentum}{\marg{magnitude}}
+\begin{docCommand}{angularmomentum}{\marg{magnitude or vector}}
Command for angular momentum.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -1290,7 +1615,7 @@ a moment of inertia of \momentofinertia{2.34}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{torque}{\marg{magnitude}}
+\begin{docCommand}{torque}{\marg{magnitude or vector}}
Command for torque.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -1320,7 +1645,7 @@ an entropy of \entropy{2.34}
Command for wavelength.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a wavelength of \wavelength{\scin[4.00]{-7}}
+a wavelength of \wavelength{4.00\timestento{-7}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1333,7 +1658,7 @@ a wavelength of \wavelength{\scin[4.00]{-7}}
Command for wavenumber.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a wavenumber of \wavenumber{\scin[2.50]{6}}
+a wavenumber of \wavenumber{2.50\timestento{6}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1346,7 +1671,7 @@ a wavenumber of \wavenumber{\scin[2.50]{6}}
Command for frequency.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a frequency of \frequency{\scin[7.50]{14}}
+a frequency of \frequency{7.50\timestento{14}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1359,7 +1684,7 @@ a frequency of \frequency{\scin[7.50]{14}}
Command for angularfrequency.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-an angular frequency of \angularfrequency{\scin[4.70]{15}}
+an angular frequency of \angularfrequency{4.70\timestento{15}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1386,7 +1711,7 @@ an angular frequency of \angularfrequency{\scin[4.70]{15}}
Command for electric charge.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a charge of \charge{\scin[2]{-9}}
+a charge of \charge{2\timestento{-9}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1399,7 +1724,7 @@ a charge of \charge{\scin[2]{-9}}
Command for permittivity.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a permittivity of \permittivity{\scin[9]{-12}}
+a permittivity of \permittivity{9\timestento{-12}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1408,11 +1733,11 @@ a permittivity of \permittivity{\scin[9]{-12}}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{electricdipolemoment}{\marg{magnitude}}
+\begin{docCommand}{electricdipolemoment}{\marg{magnitude or vector}}
Command for electric dipole moment.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-an electric dipole moment of \electricdipolemoment{\scin[2]{5}}
+an electric dipole moment of \electricdipolemoment{2\timestento{5}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1425,7 +1750,7 @@ an electric dipole moment of \electricdipolemoment{\scin[2]{5}}
Command for permeability.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a permeability of \permeability{\scin[4\pi]{-7}}
+a permeability of \permeability{4\pi\timestento{-7}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1434,7 +1759,7 @@ a permeability of \permeability{\scin[4\pi]{-7}}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{magneticfield}{\marg{magnitude}}
+\begin{docCommand}{magneticfield}{\marg{magnitude or vector}}
Command for magnetic field (also called magnetic induction).
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -1447,9 +1772,9 @@ a magnetic field of \magneticfield{1.25}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{cmagneticfield}{\marg{magnitude}}
-Command for product of \(\mathrm{c}\) and magnetic field. This quantity is convenient
-for symmetry.
+\begin{docCommand}{cmagneticfield}{\marg{magnitude or vector}}
+Command for product of \(\mathrm{c}\) and magnetic field. This quantity is
+convenient for symmetry.
\end{docCommand}
\begin{dispExample*}{sidebyside}
a magnetic field of \cmagneticfield{1.25}
@@ -1465,7 +1790,7 @@ a magnetic field of \cmagneticfield{1.25}
Command for linear charge density.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a linear charge density of \linearchargedensity{\scin[4.5]{-3}}
+a linear charge density of \linearchargedensity{4.5\timestento{-3}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1504,7 +1829,7 @@ a volume charge density of \volumechargedensity{1.25}
Command for electron mobility.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a mobility of \areachargedensity{\scin[4.5]{-3}}
+a mobility of \areachargedensity{4.5\timestento{-3}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1517,7 +1842,7 @@ a mobility of \areachargedensity{\scin[4.5]{-3}}
Command for electron number density.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a number density of \numberdensity{\scin[2]{18}}
+a number density of \numberdensity{2\timestento{18}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1530,7 +1855,7 @@ a number density of \numberdensity{\scin[2]{18}}
Command for polarizability.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a polarizability of \polarizability{\scin[1.96]{-40}}
+a polarizability of \polarizability{1.96\timestento{-40}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1543,7 +1868,7 @@ a polarizability of \polarizability{\scin[1.96]{-40}}
Command for electric potential.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-an electric potential of \polarizability{1.5}
+an electric potential of \electricpotential{1.5}
\end{dispExample*}
%\iffalse
%</example>
@@ -1630,11 +1955,24 @@ an energy density of \energydensity{1.25}
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{energyflux}{\marg{magnitude}}
+Command for energy flux.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+an energy flux of \energyflux{4\timestento{26}}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{electroncurrent}{\marg{magnitude}}
Command for electron current.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-an electron current of \electroncurrent{\scin[2]{18}}
+an electron current of \electroncurrent{2\timestento{18}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1656,7 +1994,7 @@ a conventional current of \conventionalcurrent{0.003}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{magneticdipolemoment}{\marg{magnitude}}
+\begin{docCommand}{magneticdipolemoment}{\marg{magnitude or vector}}
Command for magnetic dipole moment.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -1669,7 +2007,7 @@ a magnetic dipole moment of \magneticdipolemoment{1.25}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{currentdensity}{\marg{magnitude}}
+\begin{docCommand}{currentdensity}{\marg{magnitude or vector}}
Command for current density.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -1764,7 +2102,7 @@ a resistivity of \resistivity{1.25}
Command for resistance.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a resistance of \resistance{\scin[1]{6}}
+a resistance of \resistance{1\timestento{6}}
\end{dispExample*}
%\iffalse
%</example>
@@ -1777,12 +2115,13 @@ a resistance of \resistance{\scin[1]{6}}
Command for conductance.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-a conductance of \conductance{\scin[1]{6}}
+a conductance of \conductance{1\timestento{6}}
\end{dispExample*}
%\iffalse
%</example>
%\fi
%
+%\changes{v2.4.0}{2014/12/16}{Added magnetic charge.}
%\iffalse
%<*example>
%\fi
@@ -1796,37 +2135,7 @@ a magnetic charge of \magneticcharge{1.25}
%</example>
%\fi
%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{energyflux}{\marg{magnitude}}
-Command for energy flux.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-an energy flux of \energyflux{\scin[4]{26}}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
% \subsection{Further Words on Units}
-% As you recall, when a new scalar or vector is defined, a host of other commands
-% is also automatically defined. Consider momentum. The following commands are
-% defined:
-%
-% \begin{quotation}
-% \begin{tabular}{l l l}
-% |\momentum{3}| & \momentum{3} & unit determined by global options \\
-% |\momentumbaseunit{3}| & \momentumbaseunit{3} & quantity with base unit \\
-% |\momentumdrvdunit{3}| & \momentumdrvdunit{3} & quantity with derived unit \\
-% |\momentumtradunit{3}| & \momentumtradunit{3} & quantity with traditional unit \\
-% |\momentumvalue{3}| & \momentumvalue{3} & selects numerical value of quantity \\
-% |\momentumonlybaseunit| & \momentumonlybaseunit & selects only base unit \\
-% |\momentumonlydrvdunit| & \momentumonlydrvdunit & selects only derived unit \\
-% |\momentumonlytradunit| & \momentumonlytradunit & selects only traditional unit
-% \end{tabular}
-% \end{quotation}
-%
% The form of a quantity's unit can be changed on the fly regardless of the global
% format determined by \opt{baseunits} and \opt{drvdunits}. One way, as illustrated
% in the table above, is to append |baseunit|, |drvdunit|, |tradunit| to the
@@ -1939,7 +2248,7 @@ Command for perpetually using base units.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{perpusedrvdunit}{\marg{magnitude}}
+\begin{docCommand}{perpusedrvdunit}{}
Command for perpetually using derived units..
\end{docCommand}
%\iffalse
@@ -1949,13 +2258,98 @@ Command for perpetually using derived units..
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{perpusetradunit}{\marg{magnitude}}
+\begin{docCommand}{perpusetradunit}{}
Command for perpetually using traditional units..
\end{docCommand}
%\iffalse
%</example>
%\fi
%
+%\newpage
+%\changes{v2.4.0}{2014/12/16}{Added table of all predefined quantities with their
+% units.}
+%\newgeometry{textwidth=8.5in}
+%\begin{center}
+% Here are all the predefined quantities and their units.
+%\end{center}
+%
+%\chkquantity{displacement}
+%\chkquantity{mass}
+%\chkquantity{duration}
+%\chkquantity{current}
+%\chkquantity{temperature}
+%\chkquantity{amount}
+%\chkquantity{luminous}
+%\chkquantity{planeangle}
+%\chkquantity{solidangle}
+%\chkquantity{velocity}
+%\chkquantity{acceleration}
+%\chkquantity{gravitationalfield}
+%\chkquantity{gravitationalpotential}
+%\chkquantity{momentum}
+%\chkquantity{impulse}
+%\chkquantity{force}
+%\chkquantity{springstiffness}
+%\chkquantity{springstretch}
+%\chkquantity{area}
+%\chkquantity{volume}
+%\chkquantity{linearmassdensity}
+%\chkquantity{areamassdensity}
+%\chkquantity{volumemassdensity}
+%\chkquantity{youngsmodulus}
+%\chkquantity{stress}
+%\chkquantity{pressure}
+%\chkquantity{strain}
+%\chkquantity{work}
+%\chkquantity{energy}
+%\chkquantity{power}
+%\chkquantity{specificheatcapacity}
+%\chkquantity{angularvelocity}
+%\chkquantity{angularacceleration}
+%\chkquantity{angularmomentum}
+%\chkquantity{momentofinertia}
+%\chkquantity{torque}
+%\chkquantity{entropy}
+%\chkquantity{wavelength}
+%\chkquantity{wavenumber}
+%\chkquantity{frequency}
+%\chkquantity{angularfrequency}
+%\chkquantity{charge}
+%\chkquantity{permittivity}
+%\chkquantity{permeability}
+%\chkquantity{electricfield}
+%\chkquantity{electricdipolemoment}
+%\chkquantity{electricflux}
+%\chkquantity{magneticfield}
+%\chkquantity{magneticflux}
+%\chkquantity{cmagneticfield}
+%\chkquantity{linearchargedensity}
+%\chkquantity{areachargedensity}
+%\chkquantity{volumechargedensity}
+%\chkquantity{mobility}
+%\chkquantity{numberdensity}
+%\chkquantity{polarizability}
+%\chkquantity{electricpotential}
+%\chkquantity{emf}
+%\chkquantity{dielectricconstant}
+%\chkquantity{indexofrefraction}
+%\chkquantity{relativepermittivity}
+%\chkquantity{relativepermeability}
+%\chkquantity{energydensity}
+%\chkquantity{energyflux}
+%\chkquantity{electroncurrent}
+%\chkquantity{conventionalcurrent}
+%\chkquantity{magneticdipolemoment}
+%\chkquantity{currentdensity}
+%\chkquantity{capacitance}
+%\chkquantity{inductance}
+%\chkquantity{conductivity}
+%\chkquantity{resistivity}
+%\chkquantity{resistance}
+%\chkquantity{conductance}
+%\chkquantity{magneticcharge}
+%\restoregeometry
+%
% \subsection{Symbolic Expressions with Vectors}
% \subsubsection{Basic Vectors}
%
@@ -1988,11 +2382,11 @@ Symbol for magnitude of a vector quantity.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{dirvect}{\marg{kernel}}
-Symbol for direction of a vector quantity.
+\begin{docCommand}{magsquaredvect}{\marg{kernel}}
+Symbol for squared magnitude of a vector quantity.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\dirvect{p}
+\magsquaredvect{p}
\end{dispExample*}
%\iffalse
%</example>
@@ -2001,16 +2395,11 @@ Symbol for direction of a vector quantity.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{mivector}
- {\oarg{printeddelimiter}\marg{commadelimitedlistofcomps}\oarg{unit}}
-Generic workhorse command for vectors formatted as in \mi.
+\begin{docCommand}{magnvect}{\marg{kernel}\marg{exponent}}
+Symbol for magnitude of a vector quantity to arbitrary power.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\begin{align*}
-\msub{u}{\mu} &= \mivector{\ezero,\eone,\etwo,\ethree} \\
-\vect{v} &= \mivector{1,3,5}[\velocityonlytradunit] \\
-\vect{E} &= \mivector{\oofpezmathsymbol \frac{Q}{\msup{x}{2}},0,0}
-\end{align*}
+\magnvect{r}{5}
\end{dispExample*}
%\iffalse
%</example>
@@ -2019,11 +2408,11 @@ Generic workhorse command for vectors formatted as in \mi.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{ncompszerovect}{}
-Symbol for the zero vector expressed in components. Deprecated. Use \cs{mivector} instead.
+\begin{docCommand}{dirvect}{\marg{kernel}}
+Symbol for direction of a vector quantity. Use \cs{direction} as an alias.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\ncompszerovect
+\dirvect{p} or \direction{p}
\end{dispExample*}
%\iffalse
%</example>
@@ -2032,12 +2421,16 @@ Symbol for the zero vector expressed in components. Deprecated. Use \cs{mivector
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{symvect}{\marg{listofcomps}}
-Command for a vector with symbolic components. Deprecated. Use \cs{mivector} instead.
+\begin{docCommand}{mivector}
+ {\oarg{printeddelimiter}\marg{commadelimitedlistofcomps}\oarg{unit}}
+Generic workhorse command for vectors formatted as in \mi.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\symvect{\magvect{E}\cos\theta,
- \magvect{E}\sin\theta,0}
+\begin{align*}
+\msub{u}{\mu} &= \mivector{\ezero,\eone,\etwo,\ethree} \\
+\vect{v} &= \mivector{1,3,5}[\velocityonlytradunit] \\
+\vect{E} &= \mivector{\oofpezmathsymbol \frac{Q}{x^2},0,0}
+\end{align*}
\end{dispExample*}
%\iffalse
%</example>
@@ -2046,12 +2439,12 @@ Command for a vector with symbolic components. Deprecated. Use \cs{mivector} ins
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{ncompsvect}{\marg{listofcomps}\oarg{unit}}
-Command for a vector with numerical components and an optional unit. Deprecated.
-Use \cs{mivector} instead.
+\begin{docCommand}{ncompszerovect}{}
+Symbol for the zero vector expressed in components. Deprecated. Use \cs{mivector}
+instead.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\ncompsvect{3,4,6}[\velocityonlytradunit]
+\ncompszerovect
\end{dispExample*}
%\iffalse
%</example>
@@ -2061,10 +2454,16 @@ Use \cs{mivector} instead.
%<*example>
%\fi
\begin{docCommand}{magvectncomps}{\marg{listofcomps}\oarg{unit}}
-Expression for a vector's magnitude with numerical components and an optional unit.
+Expression for a vector's magnitude with numerical components and an optional unit. The
+first example is the preferred and recommended way to handle units when they are needed.
+The second example requires explicitly picking out the desired unit form. The third
+example demonstrates components of a unit vector. It is probably best for students to
+include components' units inside the radical than to write them outside the radical.
\end{docCommand}
\begin{dispExample}
-\magvectncomps{3.12,4.04,6.73}[\velocityonlytradunit]
+\magvectncomps{\velocity{3.12},\velocity{4.04},\velocity{6.73}} \\
+\magvectncomps{3.12,4.04,6.73}[\velocityonlytradunit] \\
+\magvectncomps{\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}}
\end{dispExample}
%\iffalse
%</example>
@@ -2109,34 +2508,6 @@ Expression for a vector's magnitude in terms of its symbolic components.
%</example>
%\fi
%
-% \subsubsection{Position Vectors}
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{scompspos}{}
-Expression for a position vector's traditional symbolic components.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\scompspos
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{comppos}{\marg{component}}
-Isolates one symbolic component of a position vector.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\comppos{z}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
% \subsubsection{Differentials and Derivatives of Vectors}
%
%\iffalse
@@ -2195,10 +2566,10 @@ the direction \dirDvect{E} of the change
%<*example>
%\fi
\begin{docCommand}{ddirvect}{\marg{kernel}}
-Symbol for the differential of a vector's direction.
+Symbol for the differential of a vector's direction. Use \cs{ddirection} as an alias.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the change \ddirvect{E} in the direction
+the change \ddirvect{E} or \ddirection{E} in the direction of \vect{E}
\end{dispExample*}
%\iffalse
%</example>
@@ -2208,10 +2579,10 @@ the change \ddirvect{E} in the direction
%<*example>
%\fi
\begin{docCommand}{Ddirvect}{\marg{kernel}}
-Identical to \cs{ddirvect} but uses \(\Delta\).
+Identical to \cs{ddirvect} but uses \(\Delta\). Use \cs{Ddirection} as an alias.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the direction \Ddirvect{E} of the change
+the direction \Ddirvect{E} or \Ddirection{E} of the change
\end{dispExample*}
%\iffalse
%</example>
@@ -2324,37 +2695,11 @@ the \compDvect{E}{y} component of the change
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{scompsdpos}{}
-Symbolic components of a position vector.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the change in position \scompsdpos
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{scompsDpos}{}
-Identical to \cs{scompsdpos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the change in position \scompsDpos
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{compdpos}{\marg{component}}
-Isolates one component of a position vector's differential.
+\begin{docCommand}{dervect}{\marg{kernel}\marg{indvar}}
+Symbol for a vector's derivative with respect to an independent variable.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the component \compdpos{z} of the change
+the derivative \dervect{E}{t}
\end{dispExample*}
%\iffalse
%</example>
@@ -2363,11 +2708,11 @@ the component \compdpos{z} of the change
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{compDpos}{\marg{component}}
-Identical to \cs{compdpos} but uses \(\Delta\).
+\begin{docCommand}{Dervect}{\marg{kernel}\marg{indvar}}
+Identical to \cs{dervect} but uses \(\Delta\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the component \compDpos{z} of the change
+the derivative \Dervect{E}{t}
\end{dispExample*}
%\iffalse
%</example>
@@ -2376,11 +2721,12 @@ the component \compDpos{z} of the change
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{dervect}{\marg{kernel}\marg{indvar}}
-Symbol for a vector's derivative with respect to an independent variable.
+\begin{docCommand}{dermagvect}{\marg{kernel}\marg{indvar}}
+Symbol for the derivative of a vector's magnitude with respect to an independent
+variable.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the derivative \dervect{E}{t}
+the derivative \dermagvect{E}{t}
\end{dispExample*}
%\iffalse
%</example>
@@ -2389,11 +2735,11 @@ the derivative \dervect{E}{t}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Dervect}{\marg{kernel}\marg{indvar}}
-Identical to \cs{dervect} but uses \(\Delta\).
+\begin{docCommand}{Dermagvect}{\marg{kernel}\marg{indvar}}
+Identical to \cs{dermagvect} but uses \(\Delta\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the derivative \Dervect{E}{t}
+the derivative \Dermagvect{E}{t}
\end{dispExample*}
%\iffalse
%</example>
@@ -2402,11 +2748,12 @@ the derivative \Dervect{E}{t}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{dermagvect}{\marg{kernel}\marg{indvar}}
-Symbol for the derivative of a vector's magnitude with respect to an independent variable.
+\begin{docCommand}{derdirvect}{\marg{kernel}\marg{indvar}}
+Symbol for the derivative of a vector's direction with respect to an independent
+variable. Use \cs{derdiraction} as an alias.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the derivative \dermagvect{E}{t}
+the derivative \derdirvect{E}{t} or \derdirection{E}{t}
\end{dispExample*}
%\iffalse
%</example>
@@ -2415,11 +2762,11 @@ the derivative \dermagvect{E}{t}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Dermagvect}{\marg{kernel}\marg{indvar}}
-Identical to \cs{dermagvect} but uses \(\Delta\).
+\begin{docCommand}{Derdirvect}{\marg{kernel}\marg{indvar}}
+Identical to \cs{derdirvect} but uses \(\Delta\). Use \cs{Derdirection} as an alias.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the derivative \Dermagvect{E}{t}
+the derivative \Derdirvect{E}{t} or \Derdirection{E}{t}
\end{dispExample*}
%\iffalse
%</example>
@@ -2481,7 +2828,8 @@ the derivative \compDervect{E}{y}{t}
%<*example>
%\fi
\begin{docCommand}{magdervect}{\marg{kernel}\marg{indvar}}
-Symbol for the magnitude of a vector's derivative with respect to an independent variable.
+Symbol for the magnitude of a vector's derivative with respect to an independent
+variable.
\end{docCommand}
\begin{dispExample*}{sidebyside}
the derivative \magdervect{E}{t}
@@ -2503,58 +2851,6 @@ the derivative \magDervect{E}{t}
%</example>
%\fi
%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{scompsderpos}{\marg{indvar}}
-Symbolic components of a position vector's derivative with respect to an independent variable.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the derivative \scompsderpos{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{scompsDerpos}{\marg{indvar}}
-Identical to \cs{scompsderpos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the derivative \scompsDerpos{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{compderpos}{\marg{component}\marg{indvar}}
-Isolates one component of a vector's derivative with respect to an independent variable.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the derivative \compderpos{z}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{compDerpos}{\marg{component}\marg{indvar}}
-Identical to \cs{compderpos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the derivative \compDerpos{z}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
% \subsubsection{Naming Conventions You Have Seen}
% By now you probably understand that commands are named as closely as possible
% to the way you would say or write what you want. Every time you see |comp|
@@ -2564,12 +2860,17 @@ the derivative \compDerpos{z}{t}
% tried to make the names simple both logically and lexically.
%
% \subsubsection{Subscripted or Indexed Vectors}
-% Now we have commands for vectors that carry subscripts or indices, usually to identify an
-% object or something similar. Basically, |vect| becomes |vectsub| and |pos|
-% becomes |possub|. Ideally, a subscript should not contain mathematical
-% symbols. However, if you wish to do so, just wrap the symbol with
-% |\(|\(\ldots \)|\)| as you normally would. All of the commands for non-subscripted
-% vectors are available for subscripted vectors.
+% Now we have commands for vectors that carry subscripts or indices, usually to
+% identify an object or something similar. Basically, |vect| becomes |vectsub|.
+% Ideally, a subscript should not contain mathematical symbols. However, if you wish
+% to do so, just wrap the symbol with |\(|\(\ldots \)|\)| as you normally would. All
+% of the commands for non-subscripted vectors are available for subscripted vectors.
+%
+% As a matter of convention, when the initial and final values of a quantity are
+% referenced, they should be labeled with subscripts |i| and |f| respectively using
+% the commands in this section and similarly named commands in other sections. If
+% the quantity also refers to a particular entity (e.g.\ a ball), specify the |i|
+% or |f| with a comma after the label (e.g.\ |\vectsub{r}{ball,f}|).
%
%\iffalse
%<*example>
@@ -2588,10 +2889,10 @@ the vector \vectsub{p}{ball}
%<*example>
%\fi
\begin{docCommand}{magvectsub}{\marg{kernel}\marg{sub}}
-Symbol for a subscripted vector's direction.
+Symbol for a subscripted vector's magnitude.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the direction \dirvectsub{p}{ball}
+\magvectsub{p}{ball}
\end{dispExample*}
%\iffalse
%</example>
@@ -2600,11 +2901,11 @@ the direction \dirvectsub{p}{ball}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{dirvectsub}{\marg{kernel}\marg{sub}}
-Symbol for a subscripted vector's magnitude.
+\begin{docCommand}{magsquaredvectsub}{\marg{kernel}\marg{sub}}
+Symbol for a subscripted vector's squared magnitude.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the magnitude \magvectsub{p}{ball}
+\magsquaredvectsub{p}{ball}
\end{dispExample*}
%\iffalse
%</example>
@@ -2613,11 +2914,11 @@ the magnitude \magvectsub{p}{ball}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{scompsvectsub}{\marg{kernel}\marg{sub}}
-Symbolic components of a subscripted vector.
+\begin{docCommand}{magnvectsub}{\marg{kernel}\marg{sub}\marg{exponent}}
+Symbol for a subscripted vector's magnitude to an arbitrary power.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the vector \scompsvectsub{p}{ball}
+\magnvectsub{r}{dipole}{5}
\end{dispExample*}
%\iffalse
%</example>
@@ -2626,11 +2927,11 @@ the vector \scompsvectsub{p}{ball}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{compvectsub}{\marg{kernel}\marg{component}\marg{sub}}
-Isolates one component of a subscripted vector.
+\begin{docCommand}{dirvectsub}{\marg{kernel}\marg{sub}}
+Symbol for a subscripted vector's direction. Use \cs{directionsub} as an alias.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the component \compvectsub{p}{z}{ball}
+\dirvectsub{p}{ball} or \directionsub{p}{ball}
\end{dispExample*}
%\iffalse
%</example>
@@ -2639,24 +2940,24 @@ the component \compvectsub{p}{z}{ball}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{magvectsubscomps}{\marg{kernel}\marg{sub}}
-Expression for a subscripted vector's magnitude in terms of symbolic components.
+\begin{docCommand}{scompsvectsub}{\marg{kernel}\marg{sub}}
+Symbolic components of a subscripted vector.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the magnitude \magvectsubscomps{p}{ball}
+the vector \scompsvectsub{p}{ball}
\end{dispExample*}
%\iffalse
%</example>
%\fi
-%
+%
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{scompspossub}{\marg{sub}}
-Symbolic components of a subscripted position vector.
+\begin{docCommand}{compvectsub}{\marg{kernel}\marg{sub}\marg{component}}
+Isolates one component of a subscripted vector.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the vector \scompspossub{ball}
+the component \compvectsub{p}{ball}{z}
\end{dispExample*}
%\iffalse
%</example>
@@ -2665,16 +2966,16 @@ the vector \scompspossub{ball}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{comppossub}{\marg{component}\marg{sub}}
-Isolates one component of a subscripted position vector.
+\begin{docCommand}{magvectsubscomps}{\marg{kernel}\marg{sub}}
+Expression for a subscripted vector's magnitude in terms of symbolic components.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the component \comppossub{x}{ball}
+the magnitude \magvectsubscomps{p}{ball}
\end{dispExample*}
%\iffalse
%</example>
%\fi
-%
+%
%\iffalse
%<*example>
%\fi
@@ -2730,11 +3031,11 @@ the vector \scompsDvectsub{p}{ball}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{compdvectsub}{\marg{kernel}\marg{component}\marg{sub}}
+\begin{docCommand}{compdvectsub}{\marg{kernel}\marg{sub}\marg{component}}
Isolates one component of a subscripted vector's differential.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the component \compdvectsub{p}{y}{ball}
+the component \compdvectsub{p}{ball}{y}
\end{dispExample*}
%\iffalse
%</example>
@@ -2743,63 +3044,11 @@ the component \compdvectsub{p}{y}{ball}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{compDvectsub}{\marg{kernel}\marg{component}\marg{sub}}
+\begin{docCommand}{compDvectsub}{\marg{kernel}\marg{sub}\marg{component}}
Identical to \cs{compdvectsub} but uses \(\Delta\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the component \compDvectsub{p}{y}{ball}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{scompsdpossub}{\marg{sub}}
-Symbolic components of a subscripted position vector's differential.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the vector \scompsdpossub{ball}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{scompsDpossub}{\marg{sub}}
-Identical to \cs{scopmsdpossub} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the vector \scompsDpossub{ball}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{compdpossub}{\marg{component}\marg{sub}}
-Isolates one component of a subscripted position vector's differential.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the component \compdpossub{x}{ball}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{compDpossub}{\marg{component}\marg{sub}}
-Identical to \cs{compdpossub} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the component \compDpossub{x}{ball}
+the component \compDvectsub{p}{ball}{y}
\end{dispExample*}
%\iffalse
%</example>
@@ -2835,8 +3084,8 @@ the derivative \Dervectsub{p}{ball}{t}
%<*example>
%\fi
\begin{docCommand}{dermagvectsub}{\marg{kernel}\marg{sub}\marg{indvar}}
-Symbol for the derivative of a subscripted vector's magnitude with respect to an independent
-variable.
+Symbol for the derivative of a subscripted vector's magnitude with respect to
+an independent variable.
\end{docCommand}
\begin{dispExample*}{sidebyside}
the derivative \dermagvectsub{E}{ball}{t}
@@ -2862,8 +3111,8 @@ the derivative \Dermagvectsub{E}{ball}{t}
%<*example>
%\fi
\begin{docCommand}{scompsdervectsub}{\marg{kernel}\marg{sub}\marg{indvar}}
-Symbolic components of a subscripted vector's derivative with respect to an independent
-variable.
+Symbolic components of a subscripted vector's derivative with respect to
+an independent variable.
\end{docCommand}
\begin{dispExample*}{sidebyside}
the vector \scompsdervectsub{p}{ball}{t}
@@ -2888,12 +3137,12 @@ the vector \scompsDervectsub{p}{ball}{t}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{compdervectsub}{\marg{kernel}\marg{component}\marg{sub}\marg{indvar}}
-Isolates one component of a subscripted vector's derivative with respect to an independent
-variable.
+\begin{docCommand}{compdervectsub}{\marg{kernel}\marg{sub}\marg{component}\marg{indvar}}
+Isolates one component of a subscripted vector's derivative with respect to
+an independent variable.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the component \compdervectsub{p}{y}{ball}{t}
+the component \compdervectsub{p}{ball}{y}{t}
\end{dispExample*}
%\iffalse
%</example>
@@ -2902,11 +3151,11 @@ the component \compdervectsub{p}{y}{ball}{t}
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{compDervectsub}{\marg{kernel}\marg{component}\marg{sub}\marg{indvar}}
+\begin{docCommand}{compDervectsub}{\marg{kernel}\marg{sub}\marg{component}\marg{indvar}}
Identical to \cs{compdervectsub} but uses \(\Delta\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
-the component \compDervectsub{p}{y}{ball}{t}
+the component \compDervectsub{p}{ball}{y}{t}
\end{dispExample*}
%\iffalse
%</example>
@@ -2916,8 +3165,8 @@ the component \compDervectsub{p}{y}{ball}{t}
%<*example>
%\fi
\begin{docCommand}{magdervectsub}{\marg{kernel}\marg{sub}\marg{indvar}}
-Symbol for magnitude of a subscripted vector's derivative with respect to an independent
-variable.
+Symbol for magnitude of a subscripted vector's derivative with respect to
+an independent variable.
\end{docCommand}
\begin{dispExample*}{sidebyside}
the derivative \magdervectsub{p}{ball}{t}
@@ -2939,116 +3188,6 @@ the derivative \magDervectsub{p}{ball}{t}
%</example>
%\fi
%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{scompsderpossub}{\marg{sub}\marg{indvar}}
-Symbolic components of a subscripted position vector's derivative with respect to an
-independent variable.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the vector \scompsderpossub{ball}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{scompsDerpossub}{\marg{sub}\marg{indvar}}
-Identical to \cs{scompsderpossub} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the vector \scompsDerpossub{ball}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{compderpossub}{\marg{component}\marg{sub}\marg{indvar}}
-Isolates one component of a subscripted position vector's derivative with respect to an
-independent variable.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the component \compderpossub{y}{ball}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{compDerpossub}{\marg{component}\marg{sub}\marg{indvar}}
-Identical to \cs{compderpossub} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the component \compDerpossub{y}{ball}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-% \subsubsection{Relative Vectors}
-% Sometimes it's convenient to think of the position, velocity, momentum, or force of/on
-% one thing relative to/due to another thing.
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{relpos}{\marg{sub}}
-Symbol for relative position.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the vector \relpos{12}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{relvel}{\marg{sub}}
-Symbol for relative velocity.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the vector \relvel{12}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{relmom}{\marg{sub}}
-Symbol for relative momentum.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the vector \relmom{12}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{relfor}{\marg{sub}}
-Symbol for relative force.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-the vector \relfor{12}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
% \subsubsection{Expressions Containing Dots}
% Now we get to commands that will save you many, many keystrokes. All of the
% naming conventions documented in earlier commands still apply. There are some
@@ -3100,32 +3239,6 @@ Symbol for dot of two vectors as an expanded sum.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{vectdotspos}{\marg{kernel}}
-Dot of a vector and a position vector with symbolic components.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\vectdotspos{F}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{vectdotepos}{\marg{kernel}}
-Dot of a vector and a position vector as an expanded sum.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\vectdotepos{F}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
\begin{docCommand}{vectdotsdvect}{\marg{kernel1}\marg{kernel2}}
Dot of a vector a vector's differential with symbolic components.
\end{docCommand}
@@ -3178,59 +3291,8 @@ Identical to \cs{vectdotedvect} but uses \(\Delta\).
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{vectdotsdpos}{\marg{kernel}}
-Dot of a vector and a position vector's differential with symbolic components.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\vectdotsdpos{F}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{vectdotsDpos}{\marg{kernel}}
-Identical to \cs{vectdotsdpos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\vectdotsDpos{F}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{vectdotedpos}{\marg{kernel}}
-Dot of a vector and a position vector's differential as an expanded sum.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\vectdotedpos{F}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{vectdoteDpos}{\marg{kernel}}
-Identical to \cs{vectdotedpos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\vectdoteDpos{F}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{vectsubdotsvectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
+\begin{docCommand}{vectsubdotsvectsub}
+{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
Dot of two subscripted vectors with symbolic components.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -3243,7 +3305,8 @@ Dot of two subscripted vectors with symbolic components.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{vectsubdotevectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
+\begin{docCommand}{vectsubdotevectsub}
+{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
Dot of two subscripted vectors as an expanded sum.
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -3256,8 +3319,10 @@ Dot of two subscripted vectors as an expanded sum.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{vectsubdotsdvectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
-Dot of a subscripted vector and a subscripted vector's differential with symbolic components.
+\begin{docCommand}{vectsubdotsdvectsub}
+{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
+Dot of a subscripted vector and a subscripted vector's differential with
+symbolic components.
\end{docCommand}
\begin{dispExample*}{sidebyside}
\vectsubdotsdvectsub{A}{ball}{B}{car}
@@ -3269,7 +3334,8 @@ Dot of a subscripted vector and a subscripted vector's differential with symboli
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{vectsubdotsDvectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
+\begin{docCommand}{vectsubdotsDvectsub}
+{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
Identical to \cs{vectsubdotsdvectsub} but uses \(\Delta\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -3282,8 +3348,10 @@ Identical to \cs{vectsubdotsdvectsub} but uses \(\Delta\).
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{vectsubdotedvectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
-Dot of a subscripted vector and a subscripted vector's differential as an expanded sum.
+\begin{docCommand}{vectsubdotedvectsub}
+{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
+Dot of a subscripted vector and a subscripted vector's differential
+as an expanded sum.
\end{docCommand}
\begin{dispExample*}{sidebyside}
\vectsubdotedvectsub{A}{ball}{B}{car}
@@ -3295,7 +3363,8 @@ Dot of a subscripted vector and a subscripted vector's differential as an expand
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{vectsubdoteDvectsub}{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
+\begin{docCommand}{vectsubdoteDvectsub}
+{\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}}
Identical to \cs{vectsubdotedvectsub} but uses \(\Delta\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
@@ -3360,58 +3429,6 @@ Identical to \cs{vectsubdotedvect} but uses \(\Delta\).
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{vectsubdotsdpos}{\marg{kernel}\marg{sub}}
-Dot of a subscripted vector and a position vector's differential with symbolic components.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\vectsubdotsdpos{A}{ball}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{vectsubdotsDpos}{\marg{kernel}\marg{sub}}
-Identical to \cs{vectsubdotsdpos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\vectsubdotsDpos{A}{ball}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{vectsubdotedpos}{\marg{kernel}\marg{sub}}
-Dot of a subscripted vector and a position vector's differential as an expanded sum.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\vectsubdotedpos{A}{ball}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{vectsubdoteDpos}{\marg{kernel}\marg{sub}}
-Identical to \cs{vectsubdotedpos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\vectsubdoteDpos{A}{ball}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
\begin{docCommand}{dervectdotsvect}{\marg{kernel1}\marg{indvar}\marg{kernel2}}
Dot of a vector's derivative and a vector with symbolic components.
\end{docCommand}
@@ -3516,58 +3533,6 @@ Identical to \cs{vectdotedervect} but uses \(\Delta\).
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{dervectdotspos}{\marg{kernel}\marg{indvar}}
-Dot of a vector's derivative and a position vector with symbolic components.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\dervectdotspos{A}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{Dervectdotspos}{\marg{kernel}\marg{indvar}}
-Identical to \cs{dervectdotspos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\Dervectdotspos{A}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{dervectdotepos}{\marg{kernel}\marg{indvar}}
-Dot of a vector's derivative and a position vector as an expanded sum.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\dervectdotepos{A}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{Dervectdotepos}{\marg{kernel}\marg{indvar}}
-Identical to \cs{dervectdotepos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\Dervectdotepos{A}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
\begin{docCommand}{dervectdotsdvect}{\marg{kernel1}\marg{indvar}\marg{kernel2}}
Dot of a vector's derivative and a vector's differential with symbolic components.
\end{docCommand}
@@ -3617,58 +3582,6 @@ Identical to \cs{dervectdotedvect} but uses \(\Delta\).
%</example>
%\fi
%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{dervectdotsdpos}{\marg{kernel}\marg{indvar}}
-Dot of a vector's derivative and a position vector's differential with symbolic components.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\dervectdotsdpos{A}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{DervectdotsDpos}{\marg{kernel}\marg{indvar}}
-Identical to \cs{dervectdotsdpos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\DervectdotsDpos{A}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{dervectdotedpos}{\marg{kernel}\marg{indvar}}
-Dot of a vector's derivative and a position vector's differential as an expanded sum.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\dervectdotedpos{A}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{DervectdoteDpos}{\marg{kernel}\marg{indvar}}
-Identical to \cs{dervectdotedpos} but uses \(\Delta\).
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\DervectdoteDpos{A}{t}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
% \subsubsection{Expressions Containing Crosses}
% All of the naming conventions documented in earlier commands still apply.
%
@@ -3749,7 +3662,7 @@ Symbol for right associated triple scalar product.
Symbols for basis vectors with lower indices up to 4.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\ezero \eone \etwo \ethree \efour
+\ezero, \eone, \etwo, \ethree, \efour
\end{dispExample*}
%\iffalse
%</example>
@@ -3762,7 +3675,7 @@ Symbols for basis vectors with lower indices up to 4.
Symbols for normalized basis vectors with lower indices up to 4.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\uezero \ueone \uetwo \uethree \uefour
+\uezero, \ueone, \uetwo, \uethree, \uefour
\end{dispExample*}
%\iffalse
%</example>
@@ -3775,7 +3688,7 @@ Symbols for normalized basis vectors with lower indices up to 4.
Symbols for basis bivectors with lower indices up to 4.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\ezerozero \ezeroone \ezerotwo \ezerothree \ezerofour up to \efourfour
+\ezerozero, \ezeroone, \ezerotwo, \ezerothree, \ezerofour, up to \efourfour
\end{dispExample*}
%\iffalse
%</example>
@@ -3788,7 +3701,7 @@ Symbols for basis bivectors with lower indices up to 4.
Symbols for basis vectors with upper indices up to 4.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\euzero \euone \eutwo \euthree \eufour
+\euzero, \euone, \eutwo, \euthree, \eufour
\end{dispExample*}
%\iffalse
%</example>
@@ -3801,7 +3714,7 @@ Symbols for basis vectors with upper indices up to 4.
Symbols for basis bivectors with upper indices up to 4.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\euzerozero \euzeroone \euzerotwo \euzerothree \euzerofour up to \eufourfour
+\euzerozero, \euzeroone, \euzerotwo, \euzerothree, \euzerofour, up to \eufourfour
\end{dispExample*}
%\iffalse
%</example>
@@ -3814,7 +3727,7 @@ Symbols for basis bivectors with upper indices up to 4.
Symbols for basis vectors, with \(\gamma\) as the kernel, with lower indices up to 4.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\gzero \gone \gtwo \gthree \gfour
+\gzero, \gone, \gtwo, \gthree, \gfour
\end{dispExample*}
%\iffalse
%</example>
@@ -3827,7 +3740,7 @@ Symbols for basis vectors, with \(\gamma\) as the kernel, with lower indices up
Symbols for basis vectors, with \(\gamma\) as the kernel, with upper indices up to 4.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\guzero \guone \gutwo \guthree \gufour
+\guzero, \guone, \gutwo, \guthree, \gufour
\end{dispExample*}
%\iffalse
%</example>
@@ -3840,7 +3753,7 @@ Symbols for basis vectors, with \(\gamma\) as the kernel, with upper indices up
Symbols for basis bivectors, with \(\gamma\) as the kernel, with lower indices up to 4.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\gzerozero \gzeroone \gzerotwo \gzerothree \gzerofour up to \gfourfour
+\gzerozero, \gzeroone, \gzerotwo, \gzerothree, \gzerofour, up to \gfourfour
\end{dispExample*}
%\iffalse
%</example>
@@ -3853,7 +3766,7 @@ Symbols for basis bivectors, with \(\gamma\) as the kernel, with lower indices u
Symbols for basis bivectors, with \(\gamma\) as the kernel, with upper indices up to 4.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\guzerozero \guzeroone \guzerotwo \guzerothree \guzerofour up to \gufourfour
+\guzerozero, \guzeroone, \guzerotwo, \guzerothree, \guzerofour, up to \gufourfour
\end{dispExample*}
%\iffalse
%</example>
@@ -3866,8 +3779,7 @@ Symbols for basis bivectors, with \(\gamma\) as the kernel, with upper indices u
Typesets column vectors.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\colvector{\msup{x}{0},\msup{x}{1},\msup{x}{2},
-\msup{x}{3}}
+\colvector{x^0,x^1,x^2,x^3}
\end{dispExample*}
%\iffalse
%</example>
@@ -3880,8 +3792,7 @@ Typesets column vectors.
Typesets row vectors.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\rowvector{\msup{x}{0},\msup{x}{1},\msup{x}{2},
-\msup{x}{3}}
+\rowvector{x^0,x^1,x^2,x^3}
\end{dispExample*}
%\iffalse
%</example>
@@ -3928,14 +3839,15 @@ Typesets row vectors.
%<*example>
%\fi
\begin{docCommand}{newphysicsconstant}
- {\marg{newname}\marg{symbol}\marg{value}\marg{\baseunits}\oarg{\drvdunits}\oarg{\tradunits}}
+ {\marg{newname}\marg{symbol}\marg{value}\marg{\baseunits}\oarg{\drvdunits}
+ \oarg{\tradunits}}
Defines a new physical constant.
\end{docCommand}
\begin{dispListing}
Here is how \oofpez (the Coulomb constant) is defined internally.
\newphysicsconstant{oofpez}
{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}}}}
-{\scin[9]{9}}
+{9\timestento{9}}
{\ensuremath{\m\cubed\usk\kg\usk\s^{-4}\usk\A\rpsquared}}
[\m\per\farad]
[\newton\usk\m\squared\per\coulomb\squared]
@@ -4050,11 +3962,11 @@ Boltzmann constant.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{boltzmanninev}{}
+\begin{docCommand}{boltzmannineV}{}
Alternate form of Boltlzmann constant.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\(\boltzmanninevmathsymbol \approx \boltzmanninev\)
+\(\boltzmannineVmathsymbol \approx \boltzmannineV\)
\end{dispExample*}
%\iffalse
%</example>
@@ -4089,11 +4001,11 @@ Planck constant.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{planckinev}{}
+\begin{docCommand}{planckineV}{}
Alternate form of Planck constant.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\(\planckmathsymbol \approx \planckinev\)
+\(\planckmathsymbol \approx \planckineV\)
\end{dispExample*}
%\iffalse
%</example>
@@ -4115,11 +4027,11 @@ Reduced Planck constant (Dirac constant).
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{planckbarinev}{}
+\begin{docCommand}{planckbarineV}{}
Alternate form of reduced Planck constant (Dirac constant).
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\(\planckbarmathsymbol \approx \planckbarinev\)
+\(\planckbarmathsymbol \approx \planckbarineV\)
\end{dispExample*}
%\iffalse
%</example>
@@ -4141,11 +4053,11 @@ Planck constant times light speed.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{planckcinev}{}
+\begin{docCommand}{planckcineV}{}
Alternate form of Planck constant times light speed.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\(\planckcinevmathsymbol \approx \planckcinev\)
+\(\planckcineVmathsymbol \approx \planckcineV\)
\end{dispExample*}
%\iffalse
%</example>
@@ -4564,7 +4476,7 @@ Sun's apparent magnitude.
Symbol for stellar luminosity.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Lstar \Lstar[Sirius]
+\Lstar or \Lstar[Sirius]
\end{dispExample*}
%\iffalse
%</example>
@@ -4589,7 +4501,7 @@ Symbol for solar luminosity as a unit. Really just an alias for |\Lstar[\(\odot\
Symbol for stellar temperature.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Tstar \Tstar[Sirius]
+\Tstar or \Tstar[Sirius]
\end{dispExample*}
%\iffalse
%</example>
@@ -4615,7 +4527,7 @@ Symbol for solar temperature as a unit. Really just an alias for |\Tstar[\(\odot
Symbol for stellar radius.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Rstar \Rstar[Sirius]
+\Rstar or \Rstar[Sirius]
\end{dispExample*}
%\iffalse
%</example>
@@ -4641,7 +4553,7 @@ Symbol for solar radius as a unit. Really just an alias for |\Rstar[\(\odot\)]|.
Symbol for stellar mass.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Mstar \Mstar[Sirius]
+\Mstar or \Mstar[Sirius]
\end{dispExample*}
%\iffalse
%</example>
@@ -4667,7 +4579,7 @@ Symbol for solar mass as a unit. Really just an alias for |\Mstar[\(\odot\)]|.
Symbol for stellar flux.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Fstar \Fstar[Sirius]
+\Fstar or \Fstar[Sirius]
\end{dispExample*}
%\iffalse
%</example>
@@ -4713,7 +4625,7 @@ Alias for \cs{fsolar}.
Symbol for stellar absolute magnitude.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Magstar \Magstar[Sirius]
+\Magstar or \Magstar[Sirius]
\end{dispExample*}
%\iffalse
%</example>
@@ -4723,7 +4635,8 @@ Symbol for stellar absolute magnitude.
%<*example>
%\fi
\begin{docCommand}{Magsolar}{}
-Symbol for solar absolute magnitude as a unit. Really just an alias for |\Magstar[\(\odot\)]|.
+Symbol for solar absolute magnitude as a unit. Really just an alias for
+|\Magstar[\(\odot\)]|.
\end{docCommand}
\begin{dispExample*}{sidebyside}
\Magsolar
@@ -4739,7 +4652,7 @@ Symbol for solar absolute magnitude as a unit. Really just an alias for |\Magsta
Symbol for stellar apparent magnitude.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\magstar \magstar[Sirius]
+\magstar or \magstar[Sirius]
\end{dispExample*}
%\iffalse
%</example>
@@ -4749,7 +4662,8 @@ Symbol for stellar apparent magnitude.
%<*example>
%\fi
\begin{docCommand}{magsolar}{}
-Symbol for solar apparent magnitude as a unit. Really just an alias for |\magstar[\(\odot\)]|.
+Symbol for solar apparent magnitude as a unit. Really just an alias for
+|\magstar[\(\odot\)]|.
\end{docCommand}
\begin{dispExample*}{sidebyside}
\magsolar
@@ -4765,7 +4679,7 @@ Symbol for solar apparent magnitude as a unit. Really just an alias for |\magsta
Symbol for stellar distance.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Dstar \Dstar[Sirius]
+\Dstar or \Dstar[Sirius]
\end{dispExample*}
%\iffalse
%</example>
@@ -4804,6 +4718,60 @@ Alias for \cs{Dsolar} that uses a lower case d.
%</example>
%\fi
%
+%\newpage
+%\changes{v2.4.0}{2014/12/16}{Added table of all predefined constants with their
+% symbols and units.}
+%\newgeometry{textwidth=8.5in}
+%\begin{center}
+% Here are all the predefined constants and their units.
+%\end{center}
+%
+%\chkconstant{oofpez}
+%\chkconstant{oofpezcs}
+%\chkconstant{vacuumpermittivity}
+%\chkconstant{mzofp}
+%\chkconstant{vacuumpermeability}
+%\chkconstant{boltzmann}
+%\chkconstant{boltzmannineV}
+%\chkconstant{stefanboltzmann}
+%\chkconstant{planck}
+%\chkconstant{planckineV}
+%\chkconstant{planckbar}
+%\chkconstant{planckbarineV}
+%\chkconstant{planckc}
+%\chkconstant{planckcineV}
+%\chkconstant{rydberg}
+%\chkconstant{bohrradius}
+%\chkconstant{finestructure}
+%\chkconstant{avogadro}
+%\chkconstant{universalgrav}
+%\chkconstant{surfacegravfield}
+%\chkconstant{clight}
+%\chkconstant{clightinfeet}
+%\chkconstant{Ratom}
+%\chkconstant{Mproton}
+%\chkconstant{Mneutron}
+%\chkconstant{Mhydrogen}
+%\chkconstant{Melectron}
+%\chkconstant{echarge}
+%\chkconstant{Qelectron}
+%\chkconstant{qelectron}
+%\chkconstant{Qproton}
+%\chkconstant{qproton}
+%\chkconstant{MEarth}
+%\chkconstant{MMoon}
+%\chkconstant{MSun}
+%\chkconstant{REarth}
+%\chkconstant{RMoon}
+%\chkconstant{RSun}
+%\chkconstant{ESdist}
+%\chkconstant{EMdist}
+%\chkconstant{LSun}
+%\chkconstant{TSun}
+%\chkconstant{MagSun}
+%\chkconstant{magSun}
+%\restoregeometry
+%
% \subsection{Frequently Used Fractions}
%
%\iffalse
@@ -4863,6 +4831,19 @@ Small fractions with numerator 4 and denominators up to 10.
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{sumoverall}{\marg{variable}}
+Properly typesets summation over all of some user specified entities.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\( \sumoverall{particles} \)
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{dx}{\marg{variable}}
Properly typesets variables of integration (the d should not be in italics and should
be properly spaced relative to the integrand).
@@ -4905,10 +4886,11 @@ Properly typesets quantities evaluated at a particular point or value.
%<*example>
%\fi
\begin{docCommand}{evaluatedat}{\marg{evaluationpoint}}
-Properly indicates evaluation at a particular point or value without specifying the quantity.
+Properly indicates evaluation at a particular point or value without specifying the
+quantity.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\( \mbox{LMST}\evaluatedat{\longitude{0}} \)
+\( \text{LMST}\evaluatedat{\longitude{0}} \)
\end{dispExample*}
%\iffalse
%</example>
@@ -4931,51 +4913,11 @@ Typesets indefinite and definite integrals.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Integral}{\oarg{lower}\oarg{upper}\marg{integrand}\marg{var}}
-Typesets indefinite and definite integrals.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\[ \Integral{y^2}{y} \]
-\[ \Integral[0][3]{y^2}{y} \]
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{opensurfintegral}{\marg{surfacename}\marg{vectorname}}
+\begin{docCommand}{opensurfaceintegral}{\marg{surfacename}\marg{vectorname}}
Integral over an open surface of the normal component of a vector field.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\[ \opensurfintegral{S}{E} \]
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{opensurfIntegral}{\marg{surfacename}\marg{vectorname}}
-Integral over an open surface of the normal component of a vector field.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\[ \opensurfIntegral{S}{E} \]
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{closedsurfintegral}{\marg{surfacename}\marg{vectorname}}
-Integral over a closed surface of the normal component of a vector field.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\[ \closedsurfintegral{S}{E} \]
+\[ \opensurfaceintegral{S}{\vect{E}} \]
\end{dispExample*}
%\iffalse
%</example>
@@ -4984,11 +4926,11 @@ Integral over a closed surface of the normal component of a vector field.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{closedsurfIntegral}{\marg{surfacename}\marg{vectorname}}
+\begin{docCommand}{closedsurfaceintegral}{\marg{surfacename}\marg{vectorname}}
Integral over a closed surface of the normal component of a vector field.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\[ \closedsurfIntegral{S}{E} \]
+\[ \closedsurfaceintegral{S}{\vect{E}} \]
\end{dispExample*}
%\iffalse
%</example>
@@ -5001,20 +4943,7 @@ Integral over a closed surface of the normal component of a vector field.
Integral over an open path of the tangential component of a vector field.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\[ \openlineintegral{C}{E} \]
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
-\begin{docCommand}{openlineIntegral}{\marg{pathname}\marg{vectorname}}
-Integral over an open path of the tangential component of a vector field.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\[ \openlineIntegral{C}{E} \]
+\[ \openlineintegral{C}{\vect{E}} \]
\end{dispExample*}
%\iffalse
%</example>
@@ -5027,31 +4956,31 @@ Integral over an open path of the tangential component of a vector field.
Integral over a closed path of the tangential component of a vector field.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\[ \closedlineintegral{C}{E} \]
+\[ \closedlineintegral{C}{\vect{E}} \]
\end{dispExample*}
%\iffalse
%</example>
%\fi
%
+% For line integrals, I have not employed the common \dx{\vect{\ell}} symbol.
+% Instead, I use \(\hat{t}\dx{\ell}\) for two main reason. The first is that
+% line integrals require the component of a vector that is tangent to a curve,
+% and I use \(\hat{t}\) to denote a unit tangent. The second is that the new
+% notation looks more like that for surface integrals.
+%
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{closedlineIntegral}{\marg{pathname}\marg{vectorname}}
-Integral over a closed path of the tangential component of a vector field.
+\begin{docCommand}{volumeintegral}{\marg{volumename}\marg{integrand}}
+Integral over a volume.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\[ \closedlineIntegral{C}{E} \]
+\[ \volumeintegral{V}{\rho} \]
\end{dispExample*}
%\iffalse
%</example>
%\fi
%
-% For line integrals, I have not employed the common \dx{\vect{\ell}} symbol.
-% Instead, I use \(\hat{t}\dx{\ell}\) for two main reason. The first is that
-% line integrals require the component of a vector that is tangent to a curve,
-% and I use \(\hat{t}\) to denote a unit tangent. The second is that the new
-% notation looks more like that for surface integrals.
-%
%\iffalse
%<*example>
%\fi
@@ -5238,7 +5167,7 @@ Series expansion of \(f(x)\) around \(x=a\).
%<*example>
%\fi
\begin{docCommand}{seriesexpx}{}
-Series expansion of \msup{e}{x}.
+Series expansion of \(e^x\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
\seriesexpx
@@ -5290,7 +5219,7 @@ Series expansion of \(\tan x\).
%<*example>
%\fi
\begin{docCommand}{seriesatox}{}
-Series expansion of \msup{a}{x}.
+Series expansion of \(a^x\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
\seriesatox
@@ -5303,7 +5232,7 @@ Series expansion of \msup{a}{x}.
%<*example>
%\fi
\begin{docCommand}{serieslnoneplusx}{}
-Series expansion of \(\ln\quant{1+x}\).
+Series expansion of \(\ln(1+x)\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
\serieslnoneplusx
@@ -5316,7 +5245,7 @@ Series expansion of \(\ln\quant{1+x}\).
%<*example>
%\fi
\begin{docCommand}{binomialseries}{}
-Series expansion of \msup{\quant{1+x}}{n}.
+Series expansion of \((1+x)^n\).
\end{docCommand}
\begin{dispExample*}{sidebyside}
\binomialseries
@@ -5338,6 +5267,19 @@ Dirac delta function.
%</example>
%\fi
%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{orderof}{\marg{arg}}
+Order of indicator.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\orderof{x^2}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
% \subsection{Other Useful Commands}
%
%\iffalse
@@ -5347,7 +5289,7 @@ Dirac delta function.
Symbol for inverse sine and other inverse circular trig functions.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\( \asin \acos \atan \asec \acsc \acot \)
+\( \asin, \acos, \atan, \asec, \acsc, \acot \)
\end{dispExample*}
%\iffalse
%</example>
@@ -5360,7 +5302,7 @@ Symbol for inverse sine and other inverse circular trig functions.
Hyperbolic and inverse hyperbolic functions not defined in \LaTeX.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\( \sech \csch \asinh \acosh \atanh \asech \acsch \acoth \)
+\( \sech, \csch, \asinh, \acosh, \atanh, \asech, \acsch, \acoth \)
\end{dispExample*}
%\iffalse
%</example>
@@ -5399,7 +5341,7 @@ Decimal exponentiation function (used in astrophysics).
Logarithm to an arbitrary base.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\logb 8 \logb[2] 8
+\logb 8, \logb[2] 8
\end{dispExample*}
%\iffalse
%</example>
@@ -5412,7 +5354,7 @@ Logarithm to an arbitrary base.
Alternate symbol for magnetic field inspired by Tom Moore.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\cB \vect{\cB}
+\cB, \vect{\cB}
\end{dispExample*}
%\iffalse
%</example>
@@ -5451,7 +5393,7 @@ Command to get fonts in Griffith's electrodynamics textbook.
Symbol for flux of a vector field.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\flux \flux[E]
+\flux, \flux[E]
\end{dispExample*}
%\iffalse
%</example>
@@ -5474,8 +5416,8 @@ Absolute value function.
%<*example>
%\fi
\begin{docCommand}{magof}{\marg{arg}}
-Magnitude of a quantity (lets you selectively use double bars without setting the
-\opt{doubleabsbars} option).
+Magnitude of a quantity (lets you selectively use double bars even when the
+\opt{singleabsbars} option is use when loading the package).
\end{docCommand}
\begin{dispExample*}{sidebyside}
\magof{\vect{E}}
@@ -5501,8 +5443,9 @@ Notation for showing the dimensions of a quantity.
%<*example>
%\fi
\begin{docCommand}{unitsof}{\marg{arg}}
-Notation for showing the units of a quantity. I propose this notation and hope to propagate
-it because I could not find any standard notation for this same idea in other sources.
+Notation for showing the units of a quantity. I propose this notation and hope
+to propagate it because I could not find any standard notation for this same
+idea in other sources.
\end{docCommand}
\begin{dispExample*}{sidebyside}
\unitsof{\vect{v}} = \velocityonlytradunit
@@ -5514,11 +5457,11 @@ it because I could not find any standard notation for this same idea in other so
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{quant}{\marg{arg}}
-Surrounds the argument with variable sized parentheses. Use \cs{bquant} to get square brackets.
+\begin{docCommand}{Changein}{\marg{arg}}
+Notation for \textit{the change in a quantity}.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\quant{\oofpez}
+\Changein{\vect{E}}
\end{dispExample*}
%\iffalse
%</example>
@@ -5527,11 +5470,12 @@ Surrounds the argument with variable sized parentheses. Use \cs{bquant} to get s
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Changein}{\marg{arg}}
-Nnotation for \textit{the change in a quantity}.
+\begin{docCommand}{scin}{\oarg{mantissa}\marg{exponent}\oarg{unit}}
+Command for scientific notation with an optional unit. Deprecated. Use \cs{timestento}
+or \cs{xtento} instead.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Changein{\vect{E}}
+2.99\timestento{8}[\velocityonlytradunit]
\end{dispExample*}
%\iffalse
%</example>
@@ -5540,11 +5484,11 @@ Nnotation for \textit{the change in a quantity}.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{scin}{\oarg{mantissa}\marg{exponent}\oarg{unit}}
-Command for scientific notation with an optional unit.
+\begin{docCommand}{xtento}{\marg{exponent}\oarg{unit}}
+Command for scientific notation with an optional unit. Alias for \cs{timestento}.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\scin[2.99]{8}[\velocityonlytradunit]
+2.99\xtento{8}[\velocityonlytradunit]
\end{dispExample*}
%\iffalse
%</example>
@@ -5567,8 +5511,8 @@ Command for scientific notation for computer code. Use \cs{EE} for |EE|.
%<*example>
%\fi
\begin{docCommand}{dms}{\marg{deg}\marg{min}\marg{sec}}
-Command for formatting angles and time. Use \cs{hms} for time. Note that other packages
-may do this better.
+Command for formatting angles and time. Use \cs{hms} for time. Note that other
+packages may do this better.
\end{docCommand}
\begin{dispExample*}{sidebyside}
\dms{23}{34}{10.27} \\
@@ -5583,7 +5527,8 @@ may do this better.
%\fi
\begin{docCommand}{clockreading}{\marg{hrs}\marg{min}\marg{sec}}
Command for formatting a clock reading. Really an alias for \cs{hms}, but conceptually
-a very different idea that introductory textbooks don't do a good enough job at articulating.
+a very different idea that introductory textbooks don't do a good enough job at
+articulating.
\end{docCommand}
\begin{dispExample*}{sidebyside}
\clockreading{23}{34}{10.27}
@@ -5596,11 +5541,11 @@ a very different idea that introductory textbooks don't do a good enough job at
%<*example>
%\fi
\begin{docCommand}{latitude}{\marg{arg}}
-Command for formatting latitude, useful in astronomy. Use \cs{latitudeN} or \cs{latitudeS}
-to include a letter.
+Command for formatting latitude, useful in astronomy. Use \cs{latitudeN} or
+\cs{latitudeS} to include a letter.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\latitude{+35} \latitudeN{35} \latitudeS{35}
+\latitude{+35}, \latitudeN{35}, \latitudeS{35}
\end{dispExample*}
%\iffalse
%</example>
@@ -5614,7 +5559,7 @@ Command for formatting longitude, useful in astronomy. Use \cs{longitudeE} or
\cs{longitudeW} to include a letter.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\longitude{-81} \longitudeE{81} \longitudeW{81}
+\longitude{-81}, \longitudeE{81}, \longitudeW{81}
\end{dispExample*}
%\iffalse
%</example>
@@ -5662,19 +5607,6 @@ Command for typesetting text superscripts and subscripts.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{msup}{\marg{kernel}\marg{sup}}
-Command for typesetting mathematical superscripts.
-\end{docCommand}
-\begin{dispExample*}{sidebyside}
-\msup{R}{\gamma}
-\end{dispExample*}
-%\iffalse
-%</example>
-%\fi
-%
-%\iffalse
-%<*example>
-%\fi
\begin{docCommand}{msub}{\marg{kernel}\marg{sub}}
Command for typesetting mathematical subscripts.
\end{docCommand}
@@ -5731,7 +5663,7 @@ Command for Kronecker delta symbol.
Command for coordinate axes.
\end{docCommand}
\begin{dispExample*}{sidebyside}
- \xaxis \yaxis \zaxis
+ \xaxis, \yaxis, \zaxis
\end{dispExample*}
%\iffalse
%</example>
@@ -5753,11 +5685,25 @@ Command for custom naming a coordinate axis.
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{axis}{}
+Suffix command for custom naming a coordinate axis. You are responsible for
+using math mode if necessary for the thing to which you apply the suffix.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\(t\axis\)
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{xyplane}{}
Commands for naming coordinate planes. All combinations are defined.
\end{docCommand}
\begin{dispExample}
-\xyplane \yzplane \zxplane \yxplane \zyplane \xzplane
+\xyplane, \yzplane, \zxplane, \yxplane, \zyplane, \xzplane
\end{dispExample}
%\iffalse
%</example>
@@ -5766,6 +5712,20 @@ Commands for naming coordinate planes. All combinations are defined.
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{plane}{}
+Suffix command for custom naming a coordinate plane. You are responsible for
+using math mode if necessary for the thing to which you apply the suffix.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\(xt\)\plane
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{fsqrt}{\marg{arg}}
Command for square root as a fractional exponent.
\end{docCommand}
@@ -5783,7 +5743,7 @@ Command for square root as a fractional exponent.
Command for cube root of an argument. Use \cs{fcuberoot} to get fractional exponent.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\cuberoot{x} \fcuberoot{x}
+\cuberoot{x}, \fcuberoot{x}
\end{dispExample*}
%\iffalse
%</example>
@@ -5796,7 +5756,7 @@ Command for cube root of an argument. Use \cs{fcuberoot} to get fractional expon
Command for fourth root of an argument. Use \cs{ffourthroot} to get fractional exponent.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\fourthroot{x} \ffourthroot{x}
+\fourthroot{x}, \ffourthroot{x}
\end{dispExample*}
%\iffalse
%</example>
@@ -5809,7 +5769,7 @@ Command for fourth root of an argument. Use \cs{ffourthroot} to get fractional e
Command for fifth root of an argument. Use \cs{ffifthroot} to get fractional exponent.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\fifthroot{x} \ffifthroot{x}
+\fifthroot{x}, \ffifthroot{x}
\end{dispExample*}
%\iffalse
%</example>
@@ -5841,9 +5801,9 @@ Commands for expressions convenient in numerically evaluating Lorentz factors. S
expression out loud and you'll see where the command names come from.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\oosqrtomxs{0.22}
-\oosqrtomx{0.22}
-\ooomx{0.22}
+\oosqrtomxs{0.22},
+\oosqrtomx{0.22},
+\ooomx{0.22},
\ooopx{0.11}
\end{dispExample*}
%\iffalse
@@ -5851,7 +5811,7 @@ expression out loud and you'll see where the command names come from.
%\fi
%
% \subsection{Custom Operators}
-% The \(=\) operator is frequently misused, and we need other operators for other situations.
+% The \(=\) operator is frequently misused. We need other operators for other cases.
%\iffalse
%<*example>
%\fi
@@ -5884,8 +5844,8 @@ symbols. Use \cs{pwordoperator} to get parentheses around the operator.
%<*example>
%\fi
\begin{docCommand}{definedas}{}
-Commands for frequently used word operators. Prepend |p| to each to get parentheses around
-the operator.
+Commands for frequently used word operators. Prepend |p| to each to get parentheses
+around the operator.
\end{docCommand}
\begin{dispExample*}{sidebyside}
\definedas and \associated and \adjustedby \\
@@ -5914,8 +5874,9 @@ Command for \textit{defines} or \textit{defined by} operator.
%<*example>
%\fi
\begin{docCommand}{inframe}{\oarg{frame}}
-Command for operator indicating the coordinate representation of a vector in a particular
-reference frame denoted by a capital letter.\ntodo[Suggestion]{Make the arrow's length fixed.}
+Command for operator indicating the coordinate representation of a vector in a
+particular reference frame denoted by a capital letter.
+\ntodo[Suggestion]{Make the arrow's length fixed.}
\end{docCommand}
\begin{dispExample*}{sidebyside}
\vect{p} \inframe[S] \momentum{\mivector{1,2,3}} \\
@@ -6010,9 +5971,23 @@ hand side and \cs{RHS} to get just the right hand side.
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{momentumprinciplediff}{}
+Expression for the momentum principle in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\momentumprinciplediff
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{energyprinciple}{}
Expression for the energy principle. Prepend \cs{LHS} to get just the left
-hand side and \cs{RHS} to get just the right hand side.
+hand side and \cs{RHS} to get just the right hand side. Processes other than work
+and thermal energy transfer (e.g.\ radiation) are neglected.
\end{docCommand}
\begin{dispExample*}{sidebyside}
\energyprinciple
@@ -6024,6 +5999,19 @@ hand side and \cs{RHS} to get just the right hand side.
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{energyprinciplediff}{}
+Expression for the energy principle in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\energyprinciplediff
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{angularmomentumprinciple}{}
Expression for the angular momentum principle. Prepend \cs{LHS} to get just
the left hand side and \cs{RHS} to get just the right hand side.
@@ -6038,6 +6026,19 @@ the left hand side and \cs{RHS} to get just the right hand side.
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{angularmomentumprinciplediff}{}
+Expression for the angular momentum principle in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\angularmomentumprinciplediff
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{gravitationalinteraction}{}
Expression for gravitational interaction.
\end{docCommand}
@@ -6064,6 +6065,19 @@ Expression for electric interaction.
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{springinteraction}{}
+Expression for spring interaction.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\springinteraction
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{Efieldofparticle}{}
Expression for a particle's electric field.
\end{docCommand}
@@ -6087,14 +6101,17 @@ Expression for a particle's magnetic field.
%</example>
%\fi
%
+% In the commands that take an optional label, note how to specify initial and final
+% values of quantities.
+%
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Esys}{}
+\begin{docCommand}{Esys}{\oarg{label}}
Symbol for system energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Esys
+\Esys, \Esys[final], \Esys[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6103,11 +6120,11 @@ Symbol for system energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Us}{}
+\begin{docCommand}{Us}{\oarg{label}}
Symbol for spring potential energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Us
+\Us, \Us[final], \Us[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6116,11 +6133,11 @@ Symbol for spring potential energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Ug}{}
+\begin{docCommand}{Ug}{\oarg{label}}
Symbol for gravitational potential energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Ug
+\Ug, \Ug[final], \Ug[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6129,11 +6146,11 @@ Symbol for gravitational potential energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Ue}{}
+\begin{docCommand}{Ue}{\oarg{label}}
Symbol for electric potential energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Ue
+\Ue, \Ue[final], \Ue[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6142,11 +6159,11 @@ Symbol for electric potential energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Ktrans}{}
+\begin{docCommand}{Ktrans}{\oarg{label}}
Symbol for translational kinetic energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Ktrans
+\Ktrans, \Ktrans[final], \Ktrans[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6155,11 +6172,24 @@ Symbol for translational kinetic energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Krot}{}
+\begin{docCommand}{Krot}{\oarg{label}}
Symbol for rotational kinetic energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Krot
+\Krot, \Krot[final], \Krot[initial]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{Kvib}{\oarg{label}}
+Symbol for vibrational kinetic energy.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\Kvib, \Evib[final], \Evib[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6168,11 +6198,11 @@ Symbol for rotational kinetic energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Eparticle}{}
+\begin{docCommand}{Eparticle}{\oarg{label}}
Symbol for particle energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Eparticle
+\Eparticle, \Eparticle[final], \Eparticle[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6181,11 +6211,11 @@ Symbol for particle energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Einternal}{}
+\begin{docCommand}{Einternal}{\oarg{label}}
Symbol for internal energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Einternal
+\Einternal, \Einternal[final], \Einternal[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6194,11 +6224,11 @@ Symbol for internal energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Erest}{}
+\begin{docCommand}{Erest}{\oarg{label}}
Symbol for rest energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Erest
+\Erest, \Erest[final], \Erest[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6207,11 +6237,11 @@ Symbol for rest energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Echem}{}
+\begin{docCommand}{Echem}{\oarg{label}}
Symbol for chemical energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Echem
+\Echem, \Echem[final], \Echem[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6220,11 +6250,11 @@ Symbol for chemical energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Etherm}{}
+\begin{docCommand}{Etherm}{\oarg{label}}
Symbol for thermal energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Etherm
+\Etherm, \Etherm[final], \Etherm[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6233,11 +6263,11 @@ Symbol for thermal energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Evib}{}
+\begin{docCommand}{Evib}{\oarg{label}}
Symbol for vibrational energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Evib
+\Evib, \Evib[final], \Evib[initial]
\end{dispExample*}
%\iffalse
%</example>
@@ -6246,11 +6276,24 @@ Symbol for vibrational energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Ephoton}{}
+\begin{docCommand}{Ephoton}{\oarg{label}}
Symbol for photon energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Ephoton
+\Ephoton, \Ephoton[final], \Ephoton[initial]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{DEsys}{}
+Symbol for change in system energy.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\DEsys
\end{dispExample*}
%\iffalse
%</example>
@@ -6324,6 +6367,19 @@ Symbol for change in rotational kinetic energy.
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{DKvib}{}
+Symbol for change in vibrational kinetic energy.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\DKvib
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{DEparticle}{}
Symbol for change in particle energy.
\end{docCommand}
@@ -6415,11 +6471,24 @@ Symbol for change in photon energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Usfinal}{}
+\begin{docCommand}{springpotentialenergy}{}
+Expression for spring potential energy.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\springpotentialenergy
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{finalspringpotentnialenergy}{}
Expression for final spring potential energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Usfinal
+\finalspringpotentialenergy
\end{dispExample*}
%\iffalse
%</example>
@@ -6428,11 +6497,11 @@ Expression for final spring potential energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Usinitial}{}
+\begin{docCommand}{initialspringpotentialenergy}{}
Expression for initial spring potential energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Usinitial
+\initialspringpotentialenergy
\end{dispExample*}
%\iffalse
%</example>
@@ -6441,11 +6510,24 @@ Expression for initial spring potential energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Uefinal}{}
+\begin{docCommand}{electricpotentialenergy}{}
+Expression for electric potential energy.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\electricpotentialenergy
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{finalelectricpotentialenergy}{}
Expression for final electric potential energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Uefinal
+\finalelectricpotentialenergy
\end{dispExample*}
%\iffalse
%</example>
@@ -6454,11 +6536,24 @@ Expression for final electric potential energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Ueinitial}{}
+\begin{docCommand}{initialelectricpotentialenergy}{}
Expression for initial electric potential energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Ueinitial
+\initialelectricpotentialenergy
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{gravitationalpotentialenergy}{}
+Expression for gravitational potential energy.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\gravitationalpotentialenergy
\end{dispExample*}
%\iffalse
%</example>
@@ -6467,11 +6562,11 @@ Expression for initial electric potential energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Ugfinal}{}
+\begin{docCommand}{finalgravitationalpotentialenergy}{}
Expression for final gravitational potential energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Ugfinal
+\finalgravitationalpotentialenergy
\end{dispExample*}
%\iffalse
%</example>
@@ -6480,11 +6575,11 @@ Expression for final gravitational potential energy.
%\iffalse
%<*example>
%\fi
-\begin{docCommand}{Uginitial}{}
+\begin{docCommand}{initialgravitationalpotentialenergy}{}
Expression for initial gravitational potential energy.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Uginitial
+\initialgravitationalpotentialenergy
\end{dispExample*}
%\iffalse
%</example>
@@ -6510,7 +6605,7 @@ Symbol for spring stiffness.
Various symbols for net force.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Fnet \Fnetext \Fnetsys \Fsub{ball,bat}
+\Fnet, \Fnetext, \Fnetsys, \Fsub{ball,bat}
\end{dispExample*}
%\iffalse
%</example>
@@ -6523,7 +6618,39 @@ Various symbols for net force.
Various symbols for net torque.
\end{docCommand}
\begin{dispExample*}{sidebyside}
-\Tnet \Tnetext \Tnetsys \Tsub{ball,bat}
+\Tnet, \Tnetext, \Tnetsys, \Tsub{ball}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{Ltotal}{}
+Various symbols for total angular momentum.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\Ltotal, \Lsys, \Lsub{ball}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\changes{v2.4.0}{2014/12/16}{Added Maxwell's equations in both integral and
+% differential forms, both with and without magnetic monopoles.}
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{LHSmaxwelliint}{\oarg{surfacename}}
+Left hand side of Maxwell's first equation in integral form. Note the default
+value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\LHSmaxwelliint \\
+ &\LHSmaxwelliint[S]
+\end{align*}
\end{dispExample*}
%\iffalse
%</example>
@@ -6532,6 +6659,856 @@ Various symbols for net torque.
%\iffalse
%<*example>
%\fi
+\begin{docCommand}{RHSmaxwelliint}{}
+Right hand side of Maxwell's first equation in integral form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliint \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliinta}{\oarg{volumename}}
+Alternate form of right hand side of Maxwell's first equation in integral form.
+Note the default value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\RHSmaxwelliinta \\
+ &\RHSmaxwelliinta[\upsilon]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliintfree}{}
+Right hand side of Maxwell's first equation in integral form in free space.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliintfree \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliint}{\oarg{surfacename}}
+Maxwell's first equation in integral form. Note the default value of the optional
+argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliint \\
+ &\maxwelliint[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliinta}{\oarg{surfacename}\oarg{volumename}}
+Alternate form of Maxwell's first equation in integral form. Note the default values
+of the optional arguments.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliinta \\
+ &\maxwelliinta[S][\upsilon]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliintfree}{\oarg{surfacename}}
+Maxwell's first equation in integral form in free space. Note the default value
+of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliintfree \\
+ &\maxwelliintfree[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{LHSmaxwelliiint}{\oarg{surfacename}}
+Left hand side of Maxwell's second equation in integral form. Note the default
+value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\LHSmaxwelliiint \\
+ &\LHSmaxwelliiint[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiint}{}
+Right hand side of Maxwell's second equation in integral form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliiint \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiintm}{}
+Right hand side of Maxwell's second equation in integral form with magnetic monopoles.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliiintm \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiintma}{\oarg{volumename}}
+Alternate form of right hand side of Maxwell's second equation in integral form with
+magnetic monopoles. Note the default value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\RHSmaxwelliiintma \\
+ &\RHSmaxwelliiintma[\upsilon]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiintfree}{}
+Right hand side of Maxwell's second equation in integral form in free space.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliiintfree \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiint}{\oarg{surfacename}}
+Maxwell's second equation in integral form. Note the default value of the optional
+argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliiint \\
+ &\maxwelliiint[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiintm}{\oarg{surfacename}}
+Maxwell's second equation in integral form with magnetic monopoles. Note the default
+value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliiintm \\
+ &\maxwelliiintm[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiintma}{\oarg{surfacename}\oarg{volumename}}
+Alternate form of Maxwell's second equation in integral form with magnetic monopoles.
+Note the default values of the optional arguments.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliiintma \\
+ &\maxwelliiintma[S][\upsilon]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiintfree}{\oarg{surfacename}}
+Maxwell's second equation in integral form in free space. Note the default value
+of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliiintfree \\
+ &\maxwelliiintfree[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{LHSmaxwelliiiint}{\oarg{boundaryname}}
+Left hand side of Maxwell's third equation in integral form. Note the default value
+of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\LHSmaxwelliiiint \\
+ &\LHSmaxwelliiiint[C]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiiint}{\oarg{surfacename}}
+Right hand side of Maxwell's third equation in integral form. Note the default value
+of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\RHSmaxwelliiiint \\
+ &\RHSmaxwelliiiint[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiiintm}{\oarg{surfacename}}
+Right hand side of Maxwell's third equation in integral form with magnetic monopoles.
+Note the default value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\RHSmaxwelliiiintm \\
+ &\RHSmaxwelliiiintm[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiiintma}{\oarg{surfacename}}
+Alternate form of right hand side of Maxwell's third equation in integral form with
+magnetic monopoles. Note the default value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\RHSmaxwelliiiintma \\
+ &\RHSmaxwelliiiintma[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiiintfree}{\oarg{surfacename}}
+Right hand side of Maxwell's third equation in integral form in free space.
+Note the default value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\RHSmaxwelliiiintfree \\
+ &\RHSmaxwelliiiintfree[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiiint}{\oarg{boundaryname}\oarg{surfacename}}
+Maxwell's third equation in integral form. Note the default values of the optional
+arguments.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliiiint \\
+ &\maxwelliiiint[C][S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiiintm}{\oarg{boundaryname}\oarg{surfacename}}
+Maxwell's third equation in integral form with magnetic monopoles. Note the default
+values of the optional arguments.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliiiintm \\
+ &\maxwelliiiintm[C][S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiiintma}{\oarg{boundaryname}\oarg{surfacename}}
+Alternate form of Maxwell's third equation in integral form with magnetic monopoles.
+Note the default values of the optional arguments.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliiiintma \\
+ &\maxwelliiiintma[C][S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiiintfree}{\oarg{boundaryname}\oarg{surfacename}}
+Maxwell's third equation in integral form in free space. Note the default values
+of the optional arguments.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwelliiiintfree \\
+ &\maxwelliiiintfree[C][S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{LHSmaxwellivint}{\oarg{boundaryname}}
+Left hand side of Maxwell's fourth equation in integral form. Note the default
+value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\LHSmaxwellivint \\
+ &\LHSmaxwellivint[C]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwellivint}{\oarg{surfacename}}
+Right hand side of Maxwell's fourth equation in integral form. Note the default
+value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\RHSmaxwellivint \\
+ &\RHSmaxwellivint[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwellivinta}{\oarg{surfacename}}
+Alternate form of right hand side of Maxwell's fourth equation in integral form.
+Note the default value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\RHSmaxwellivinta \\
+ &\RHSmaxwellivinta[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwellivintfree}{\oarg{surfacename}}
+Right hand side of Maxwell's fourth equation in integral form in free space.
+Note the default value of the optional argument.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\RHSmaxwellivintfree \\
+ &\RHSmaxwellivintfree[S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwellivint}{\oarg{boundaryname}\oarg{surfacename}}
+Maxwell's fourth equation in integral form. Note the default values of the
+optional arguments.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwellivint \\
+ &\maxwellivint[C][S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwellivinta}{\oarg{boundaryname}\oarg{surfacename}}
+Alternate form of Maxwell's fourth equation in integral form. Note the default
+values of the optional arguments.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwellivinta \\
+ &\maxwellivinta[C][S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwellivintfree}{\oarg{boundaryname}\oarg{surfacename}}
+Maxwell's fourth equation in integral form in free space. Note the default values
+of the optional arguments.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\begin{align*}
+ &\maxwellivintfree \\
+ &\maxwellivintfree[C][S]
+\end{align*}
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{LHSmaxwellidif}{}
+Left hand side of Maxwell's first equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \LHSmaxwellidif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwellidif}{}
+Right hand side of Maxwell's first equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwellidif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwellidiffree}{}
+Right hand side of Maxwell's first equation in differential form in free space.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwellidiffree \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwellidif}{}
+Maxwell's first equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \maxwellidif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwellidiffree}{}
+Maxwell's first equation in differential form in free space.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \maxwellidiffree \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{LHSmaxwelliidif}{}
+Left hand side of Maxwell's second equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \LHSmaxwelliidif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliidif}{}
+Right hand side of Maxwell's second equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliidif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliidifm}{}
+Right hand side of Maxwell's second equation in differential form with magnetic
+monopoles.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliidifm \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliidiffree}{}
+Right hand side of Maxwell's second equation in differential form in free space.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliidiffree \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliidif}{}
+Maxwell's second equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \maxwelliidif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliidifm}{}
+Maxwell's second equation in differential form with magnetic monopoles.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \maxwelliidifm \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwellidiiffree}{}
+Maxwell's second equation in differential form in free space.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \maxwelliidiffree \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{LHSmaxwelliiidif}{}
+Left hand side of Maxwell's third equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \LHSmaxwelliiidif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiidif}{}
+Right hand side of Maxwell's third equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliiidif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiidifm}{}
+Right hand side of Maxwell's third equation in differential form with magnetic
+monopoles.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliiidifm \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwelliiidiffree}{}
+Right hand side of Maxwell's third equation in differential form in free space.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwelliiidiffree \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiidif}{}
+Maxwell's third equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \maxwelliiidif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiidifm}{}
+Maxwell's third equation in differential form with magnetic monopoles.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \maxwelliiidifm \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwelliiidiffree}{}
+Maxwell's third equation in differential form in free space.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \maxwelliiidiffree \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{LHSmaxwellivdif}{}
+Left hand side of Maxwell's fourth equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \LHSmaxwellivdif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwellivdif}{}
+Right hand side of Maxwell's fourth equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwellivdif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSmaxwellivdiffree}{}
+Right hand side of Maxwell's fourth equation in differential form in free space.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSmaxwellivdiffree \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwellivdif}{}
+Maxwell's fourth equation in differential form.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \maxwellivdif \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{maxwellivdiffree}{}
+Maxwell's fourth equation in differential form in free space.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \maxwellivdiffree \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\changes{v2.4.0}{2014/12/16}{Added Lorentz force, with and without magnetic
+% monopoles.}
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSlorentzforce}{}
+Right hand side of Lorentz force.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSlorentzforce \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\iffalse
+%<*example>
+%\fi
+\begin{docCommand}{RHSlorentzforcem}{}
+Right hand side of Lorentz force with magnetic monopoles.
+\end{docCommand}
+\begin{dispExample*}{sidebyside}
+\[ \RHSlorentzforcem \]
+\end{dispExample*}
+%\iffalse
+%</example>
+%\fi
+%
+%\changes{v2.4.0}{2014/12/16}{\pkgname{vpythonline} now uses a uniform style.}
+%\iffalse
+%<*example>
+%\fi
\begin{docCommand}{vpythonline}{\marg{vpythoncode}}
Command for a single line of VPython code used inline.
\end{docCommand}
@@ -6542,6 +7519,7 @@ Command for a single line of VPython code used inline.
%</example>
%\fi
%
+%\changes{v2.4.0}{2014/12/16}{\pkgname{vpythonblock} now uses a uniform style.}
%\iffalse
%<*example>
%\fi
@@ -6550,9 +7528,11 @@ Environment for a block of VPython code.
\end{docEnvironment}
\begin{dispExample}
\begin{vpythonblock}
+ from __future__ import division,print_function
from visual import *
- sphere(center=pos(1,2,3),color=color.green)
- MyArrow=arrow(pos=earth.pos, axis=fscale*Fnet, color=color.green)
+ sphere(pos=vector(1,2,3),color=color.green)
+ # create a named arrow
+ MyArrow=arrow(pos=earth.pos,axis=fscale*Fnet,color=color.green)
print ("arrow.pos = "), arrow.pos
\end{vpythonblock}
\end{dispExample}
@@ -6560,6 +7540,7 @@ Environment for a block of VPython code.
%</example>
%\fi
%
+%\changes{v2.4.0}{2014/12/16}{\pkgname{vpythonfile} now uses a uniform style.}
%\iffalse
%<*example>
%\fi
@@ -6700,8 +7681,8 @@ neque, id pulvinar odio lorem non turpis. Nullam sit amet enim.]
%<*example>
%\fi
\begin{docCommand}{smallanswerbox}{\oarg{txt}\oarg{bgclr}}
-Answer box with height 0.10 that of current \cs{textheight} and width 0.90 that of current
-\cs{linewidth}.
+Answer box with height 0.10 that of current \cs{textheight} and width 0.90 that of
+current \cs{linewidth}.
\end{docCommand}
\begin{dispExample}
\smallanswerbox[][red]
@@ -6714,8 +7695,8 @@ Answer box with height 0.10 that of current \cs{textheight} and width 0.90 that
%<*example>
%\fi
\begin{docCommand}{mediumanswerbox}{\oarg{txt}\oarg{bgclr}}
-Answer box with height 0.20 that of current \cs{textheight} and width 0.90 that of current
-\cs{linewidth}.
+Answer box with height 0.20 that of current \cs{textheight} and width 0.90 that of
+current \cs{linewidth}.
\end{docCommand}
\begin{dispExample}
\mediumanswerbox[][lightgray]
@@ -6728,8 +7709,8 @@ Answer box with height 0.20 that of current \cs{textheight} and width 0.90 that
%<*example>
%\fi
\begin{docCommand}{largeanswerbox}{\oarg{txt}\oarg{bgclr}}
-Answer box with height 0.25 that of current \cs{textheight} and width 0.90 that of current
-\cs{linewidth} (too large to show here).
+Answer box with height 0.25 that of current \cs{textheight} and width 0.90 that of
+current \cs{linewidth} (too large to show here).
\end{docCommand}
\begin{dispListing}
\largeanswerbox[][lightgray]
@@ -6742,8 +7723,8 @@ Answer box with height 0.25 that of current \cs{textheight} and width 0.90 that
%<*example>
%\fi
\begin{docCommand}{largeranswerbox}{\oarg{txt}\oarg{bgclr}}
-Answer box with height 0.33 that of current \cs{textheight} and width 0.90 that of current
-\cs{linewidth} (too large to show here).
+Answer box with height 0.33 that of current \cs{textheight} and width 0.90 that of
+current \cs{linewidth} (too large to show here).
\end{docCommand}
\begin{dispListing}
\largeranswerbox[][lightgray]
@@ -6756,8 +7737,8 @@ Answer box with height 0.33 that of current \cs{textheight} and width 0.90 that
%<*example>
%\fi
\begin{docCommand}{hugeanswerbox}{\oarg{txt}\oarg{bgclr}}
-Answer box with height 0.50 that of current \cs{textheight} and width 0.90 that of current
-\cs{linewidth} (too large to show here).
+Answer box with height 0.50 that of current \cs{textheight} and width 0.90 that of
+current \cs{linewidth} (too large to show here).
\end{docCommand}
\begin{dispListing}
\hugeanswerbox[][lightgray]
@@ -6770,8 +7751,8 @@ Answer box with height 0.50 that of current \cs{textheight} and width 0.90 that
%<*example>
%\fi
\begin{docCommand}{hugeranswerbox}{\oarg{txt}\oarg{bgclr}}
-Answer box with height 0.75 that of current \cs{textheight} and width 0.90 that of current
-\cs{linewidth} (too large to show here).
+Answer box with height 0.75 that of current \cs{textheight} and width 0.90 that of
+current \cs{linewidth} (too large to show here).
\end{docCommand}
\begin{dispListing}
\hugeranswerbox[][lightgray]
@@ -6784,8 +7765,8 @@ Answer box with height 0.75 that of current \cs{textheight} and width 0.90 that
%<*example>
%\fi
\begin{docCommand}{fullpageanswerbox}{\oarg{txt}\oarg{bgclr}}
-Answer box with height 1.00 that of current \cs{textheight} and width 0.90 that of current
-\cs{linewidth} (too large to show here).
+Answer box with height 1.00 that of current \cs{textheight} and width 0.90 that of
+current \cs{linewidth} (too large to show here).
\end{docCommand}
\begin{dispListing}
\fullpageanswerbox[][lightgray]
@@ -6850,13 +7831,13 @@ Environment for mathematical derivations based on the |align| environment.
\begin{miderivation}
\gamma &= \relgamma{\magvect{v}}
&& \text{given} \\
- \msup{\gamma}{2}&= \ooomx{\msup{(\frac{\magvect{v}}{c})}{2}}
+ \gamma\squared &= \ooomx{(\frac{\magvect{v}}{c})\squared}
&&\text{square both sides}\\
- \frac{1}{\msup{\gamma}{2}}&=1-\msup{(\frac{\magvect{v}}{c})}{2}
+ \frac{1}{\gamma\squared} &= 1-(\frac{\magvect{v}}{c})\squared
&&\text{reciprocal of both sides} \\
- \msup{(\frac{\magvect{v}}{c})}{2}&=1-\frac{1}{\msup{\gamma}{2}}
+ (\frac{\magvect{v}}{c})\squared &= 1-\frac{1}{\gamma\squared}
&&\text{rearrange} \\
- \frac{\magvect{v}}{c}&=\sqrt{1-\frac{1}{\msup{\gamma}{2}}}
+ \frac{\magvect{v}}{c} &= \sqrt{1-\frac{1}{\gamma\squared}}
&&\text{square root of both sides}
\end{miderivation}
\end{dispExample}
@@ -6920,13 +7901,13 @@ Environment for mathematical derivations based on the |align| environment.
\begin{bwderivation}
\gamma &= \relgamma{\magvect{v}}
&& \text{given} \\
- \msup{\gamma}{2}&= \ooomx{\msup{(\frac{\magvect{v}}{c})}{2}}
+ \gamma\squared &= \ooomx{(\frac{\magvect{v}}{c})\squared}
&&\text{square both sides}\\
- \frac{1}{\msup{\gamma}{2}}&=1-\msup{(\frac{\magvect{v}}{c})}{2}
+ \frac{1}{\gamma\squared} &= 1-(\frac{\magvect{v}}{c})\squared
&&\text{reciprocal of both sides} \\
- \msup{(\frac{\magvect{v}}{c})}{2}&=1-\frac{1}{\msup{\gamma}{2}}
+ (\frac{\magvect{v}}{c})\squared &= 1-\frac{1}{\gamma\squared}
&&\text{rearrange} \\
- \frac{\magvect{v}}{c}&=\sqrt{1-\frac{1}{\msup{\gamma}{2}}}
+ \frac{\magvect{v}}{c}&=\sqrt{1-\frac{1}{\gamma\squared}}
&&\text{square root of both sides}
\end{bwderivation}
\end{dispExample}
@@ -6934,6 +7915,31 @@ Environment for mathematical derivations based on the |align| environment.
%</example>
%\fi
%
+%\iffalse
+%<*example>
+%\fi
+\begin{docEnvironment}{mysolution}{}
+Alias for simple environment for mathematical derivations based on the |align|
+environment.
+\end{docEnvironment}
+\begin{dispExample}
+\begin{mysolution}
+ \gamma &= \relgamma{\magvect{v}}
+ && \text{given} \\
+ \gamma\squared &= \ooomx{(\frac{\magvect{v}}{c})\squared}
+ &&\text{square both sides}\\
+ \frac{1}{\gamma\squared} &= 1-(\frac{\magvect{v}}{c})\squared
+ &&\text{reciprocal of both sides} \\
+ (\frac{\magvect{v}}{c})\squared &= 1-\frac{1}{\gamma\squared}
+ &&\text{rearrange} \\
+ \frac{\magvect{v}}{c} &= \sqrt{1-\frac{1}{\gamma\squared}}
+ &&\text{square root of both sides}
+\end{mysolution}
+\end{dispExample}
+%\iffalse
+%</example>
+%\fi
+%
% \subsection{Miscellaneous Commands}
%
%\iffalse
@@ -6975,28 +7981,6 @@ Sshows factors dividing to a sneaky one.
%</example>
%\fi
%
-% \subsection{Experimental Commands}
-% Commands defined in this section are not guaranteed to work consistently and are
-% included for experimental uses only. They may or may not exist in future releases.
-% Most are an attempt to simplify existing commands for subscripted vectors.
-%
-%\begin{center}
-%\begin{tabular}{lcl}
-% \multicolumn{2}{l}{Experimental Syntax} & Existing Syntax \\
-% \hline \\
-% \verb|\vecto{E}| & \vecto{E} & \verb|\vect{E}|\\
-% \verb|\vecto{E}[ball]| & \vecto{E}[ball] & \verb|\vectsub{E}{ball}|\\
-% \verb|\compvecto{E}{y}| & \compvecto{E}{y} & \verb|\compvect{E}{y}|\\
-% \verb|\compvecto{E}{x}[ball]|& \compvecto{E}{x}[ball]& \verb|\compvectsub{E}{x}{ball}|\\
-% \verb|\scompsvecto{E}| & \scompsvecto{E} & \verb|\scompsvect{E}|\\
-% \verb|\scompsvecto{E}[ball]| & \scompsvecto{E}[ball] & \verb|\scompsvectsub{E}{ball}|\\
-% \verb|\compposo{y}| & \compposo{y} & \verb|\comppos{y}|\\
-% \verb|\compposo{y}[ball]| & \compposo{y}[ball] & \verb|\comppossub{y}{ball}|\\
-% \verb|\scompsposo| & \scompsposo & \verb|\scompspos|\\
-% \verb|\scompsposo[ball]| & \scompsposo[ball] & \verb|\scompspossub{ball}|
-%\end{tabular}
-%\end{center}
-%
% \StopEventually{}
%
% \newpage
@@ -7010,10 +7994,11 @@ Sshows factors dividing to a sneaky one.
\RequirePackage{amsmath}
\RequirePackage{amssymb}
\RequirePackage{array}
-\RequirePackage{bigints}
\RequirePackage{cancel}
\RequirePackage[dvipsnames]{xcolor}
\RequirePackage{environ}
+\RequirePackage{esint}
+\RequirePackage[g]{esvect}
\RequirePackage{etoolbox}
\RequirePackage{filehook}
\RequirePackage{extarrows}
@@ -7030,172 +8015,206 @@ Sshows factors dividing to a sneaky one.
\RequirePackage{xspace}
\RequirePackage{ifthen}
\RequirePackage{calligra}
+\RequirePackage{hyperref}
\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}
\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}
\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `basename #1 .tif`.png}
\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it}
\usetikzlibrary{shadows}
-\definecolor{vpythoncolor}{rgb}{0.95,0.95,0.95}
-\newcommand{\lstvpython}{\lstset{language=Python,numbers=left,numberstyle=\tiny,
- backgroundcolor=\color{vpythoncolor},upquote=true,breaklines}}
+%\changes{v2.4.0}{2014/12/16}{Introduced a uniform style for VPython code.}
+\definecolor{vbgcolor}{rgb}{1,1,1}
+\definecolor{vshadowcolor}{rgb}{0.5,0.5,0.5}
+\lstdefinestyle{vpython}{% % style for VPython code
+ language=Python,% % select language
+ morekeywords={visual,arrow,box,cone,% % VPython specific keywords
+ convex,curve,cylinder,ellipsoid,extrusion,faces,helix,label,points,pyramid,ring,%
+ sphere,text,frame,graphs,vector,pos,axis,radius,color,opacity,material,up,%
+ make_trail,trail_type,trail_object,scene,mag,mag2,norm,dot,cross,proj,comp,%
+ diff_angle,rotate,astuple,radians,shaftwidth,headwidth,headlength,height,width,%
+ size,degrees,interval,retain,__future__,division,print_function,rate},%
+ frame=shadowbox,% % shadowbox around listing
+ rulesepcolor=\color{vshadowcolor},% % shadow color
+ basicstyle=\footnotesize,% % basic font for code listings
+ commentstyle=\bfseries\color{red}, % font for comments
+ keywordstyle=\bfseries\color{blue},% % font for keywords
+ showstringspaces=true,% % show spaces in strings
+ numbers=left,% % where to put line numbers
+ numberstyle=\tiny,% % set to 'none' for no line numbers
+ xleftmargin=20pt,% % extra left margin
+ backgroundcolor=\color{vbgcolor},% % some people find this annoying
+ upquote=true,% % how to typeset quotes
+ breaklines=true}% % break long lines
\newcolumntype{C}[1]{>{\centering}m{#1}}
-\newboolean{@optitalicvectors}
-\newboolean{@optdoubleabsbars}
+\newboolean{@optromanvectors}
+\newboolean{@optboldvectors}
+\newboolean{@optsingleabsbars}
\newboolean{@optbaseunits}
\newboolean{@optdrvdunits}
-\setboolean{@optitalicvectors}{false}
-\setboolean{@optdoubleabsbars}{false}
-\setboolean{@optbaseunits}{false}
-\setboolean{@optdrvdunits}{false}
-\DeclareOption{italicvectors}{\setboolean{@optitalicvectors}{true}}
-\DeclareOption{doubleabsbars}{\setboolean{@optdoubleabsbars}{true}}
+\newboolean{@optapproxconsts}
+\setboolean{@optromanvectors}{false} % this is where you set the default option
+\setboolean{@optboldvectors}{false} % this is where you set the default option
+\setboolean{@optsingleabsbars}{false} % this is where you set the default option
+\setboolean{@optbaseunits}{false} % this is where you set the default option
+\setboolean{@optdrvdunits}{false} % this is where you set the default option
+\setboolean{@optapproxconsts}{false} % this is where you set the default option
+\DeclareOption{romanvectors}{\setboolean{@optromanvectors}{true}}
+\DeclareOption{boldvectors}{\setboolean{@optboldvectors}{true}}
+\DeclareOption{singleabsbars}{\setboolean{@optsingleabsbars}{true}}
\DeclareOption{baseunits}{\setboolean{@optbaseunits}{true}}
\DeclareOption{drvdunits}{\setboolean{@optdrvdunits}{true}}
+\DeclareOption{approxconsts}{\setboolean{@optapproxconsts}{true}}
\ProcessOptions\relax
% \end{macrocode}
%
-% \newpage
% \noindent This block of code fixes a conflict with the amssymb package.
% \begin{macrocode}
\@ifpackageloaded{amssymb}{%
\csundef{square}
- \typeout{mandi: Package amssymb detected. Its \protect\square\space has been redefined.}
+ \typeout{mandi: Package amssymb detected. Its \protect\square\space has been
+ redefined.}
}{%
\typeout{mandi: Package amssymb not detected.}
}%
% \end{macrocode}
%
+% \begin{macrocode}
+\newcommand*{\mandiversion}{2.4.0}
+\typeout{mandi: You're using mandi version \mandiversion.}
+% \end{macrocode}
+%
% \noindent This block of code defines unit names and symbols.
% \begin{macrocode}
-\newcommand{\per}{\ensuremath{/}}
-\newcommand{\usk}{\ensuremath{\cdot}}
-\newcommand{\unit}[2]{\ensuremath{{#1}\,{#2}}}
-\newcommand{\ampere}{\ensuremath{\mathrm{A}}}
-\newcommand{\arcminute}{\ensuremath{'}}
-\newcommand{\arcsecond}{\ensuremath{''}}
-\newcommand{\atomicmassunit}{\ensuremath{\mathrm{u}}}
-\newcommand{\candela}{\ensuremath{\mathrm{cd}}}
-\newcommand{\coulomb}{\ensuremath{\mathrm{C}}}
-\newcommand{\degree}{\ensuremath{^{\circ}}}
-\newcommand{\electronvolt}{\ensuremath{\mathrm{eV}}}
-\newcommand{\eV}{\electronvolt}
-\newcommand{\farad}{\ensuremath{\mathrm{F}}}
-\newcommand{\henry}{\ensuremath{\mathrm{H}}}
-\newcommand{\hertz}{\ensuremath{\mathrm{Hz}}}
-\newcommand{\hour}{\ensuremath{\mathrm{h}}}
-\newcommand{\joule}{\ensuremath{\mathrm{J}}}
-\newcommand{\kelvin}{\ensuremath{\mathrm{K}}}
-\newcommand{\kilogram}{\ensuremath{\mathrm{kg}}}
-\newcommand{\metre}{\ensuremath{\mathrm{m}}}
-\newcommand{\minute}{\ensuremath{\mathrm{min}}}
-\newcommand{\mole}{\ensuremath{\mathrm{mol}}}
-\newcommand{\newton}{\ensuremath{\mathrm{N}}}
-\newcommand{\ohm}{\ensuremath{\Omega}}
-\newcommand{\pascal}{\ensuremath{\mathrm{Pa}}}
-\newcommand{\radian}{\ensuremath{\mathrm{rad}}}
-\newcommand{\second}{\ensuremath{\mathrm{s}}}
-\newcommand{\siemens}{\ensuremath{\mathrm{S}}}
-\newcommand{\steradian}{\ensuremath{\mathrm{sr}}}
-\newcommand{\tesla}{\ensuremath{\mathrm{T}}}
-\newcommand{\volt}{\ensuremath{\mathrm{V}}}
-\newcommand{\watt}{\ensuremath{\mathrm{W}}}
-\newcommand{\weber}{\ensuremath{\mathrm{Wb}}}
-\newcommand{\C}{\coulomb}
-\newcommand{\F}{\farad}
+\newcommand*{\per}{\ensuremath{/}}
+\newcommand*{\usk}{\ensuremath{\cdot}}
+\newcommand*{\unit}[2]{\ensuremath{{#1}\,{#2}}}
+\newcommand*{\ampere}{\ensuremath{\mathrm{A}}}
+\newcommand*{\arcminute}{\ensuremath{'}}
+\newcommand*{\arcsecond}{\ensuremath{''}}
+\newcommand*{\atomicmassunit}{\ensuremath{\mathrm{u}}}
+\newcommand*{\candela}{\ensuremath{\mathrm{cd}}}
+\newcommand*{\coulomb}{\ensuremath{\mathrm{C}}}
+\newcommand*{\degree}{\ensuremath{^{\circ}}}
+\newcommand*{\electronvolt}{\ensuremath{\mathrm{eV}}}
+\newcommand*{\eV}{\electronvolt}
+\newcommand*{\farad}{\ensuremath{\mathrm{F}}}
+\newcommand*{\henry}{\ensuremath{\mathrm{H}}}
+\newcommand*{\hertz}{\ensuremath{\mathrm{Hz}}}
+\newcommand*{\hour}{\ensuremath{\mathrm{h}}}
+\newcommand*{\joule}{\ensuremath{\mathrm{J}}}
+\newcommand*{\kelvin}{\ensuremath{\mathrm{K}}}
+\newcommand*{\kilogram}{\ensuremath{\mathrm{kg}}}
+\newcommand*{\metre}{\ensuremath{\mathrm{m}}}
+\newcommand*{\minute}{\ensuremath{\mathrm{min}}}
+\newcommand*{\mole}{\ensuremath{\mathrm{mol}}}
+\newcommand*{\newton}{\ensuremath{\mathrm{N}}}
+\newcommand*{\ohm}{\ensuremath{\Omega}}
+\newcommand*{\pascal}{\ensuremath{\mathrm{Pa}}}
+\newcommand*{\radian}{\ensuremath{\mathrm{rad}}}
+\newcommand*{\second}{\ensuremath{\mathrm{s}}}
+\newcommand*{\siemens}{\ensuremath{\mathrm{S}}}
+\newcommand*{\steradian}{\ensuremath{\mathrm{sr}}}
+\newcommand*{\tesla}{\ensuremath{\mathrm{T}}}
+\newcommand*{\volt}{\ensuremath{\mathrm{V}}}
+\newcommand*{\watt}{\ensuremath{\mathrm{W}}}
+\newcommand*{\weber}{\ensuremath{\mathrm{Wb}}}
+\newcommand*{\C}{\coulomb}
+\newcommand*{\F}{\farad}
%\H is already defined as a LaTeX accent
-\newcommand{\J}{\joule}
-\newcommand{\N}{\newton}
-\newcommand{\Pa}{\pascal}
-\newcommand{\rad}{\radian}
-\newcommand{\sr}{\steradian}
+\newcommand*{\J}{\joule}
+\newcommand*{\N}{\newton}
+\newcommand*{\Pa}{\pascal}
+\newcommand*{\rad}{\radian}
+\newcommand*{\sr}{\steradian}
%\S is already defined as a LaTeX symbol
-\newcommand{\T}{\tesla}
-\newcommand{\V}{\volt}
-\newcommand{\W}{\watt}
-\newcommand{\Wb}{\weber}
-\newcommand{\square}[1]{\ensuremath{\mathrm{#1}^{2}}} % prefix 2
-\newcommand*{\cubic}[1]{\ensuremath{\mathrm{#1}^{3}}} % prefix 3
-\newcommand*{\quartic}[1]{\ensuremath{\mathrm{#1}^{4}}} % prefix 4
-\newcommand*{\reciprocal}[1]{\ensuremath{\mathrm{#1}^{-1}}} % prefix -1
-\newcommand*{\reciprocalsquare}[1]{\ensuremath{\mathrm{#1}^{-2}}} % prefix -2
-\newcommand*{\reciprocalcubic}[1]{\ensuremath{\mathrm{#1}^{-3}}} % prefix -3
-\newcommand*{\reciprocalquartic}[1]{\ensuremath{\mathrm{#1}^{-4}}} % prefix -4
-\newcommand*{\squared}{\ensuremath{^{\mathrm{2}}}} % postfix 2
-\newcommand*{\cubed}{\ensuremath{^{\mathrm{3}}}} % postfix 3
-\newcommand*{\quarted}{\ensuremath{^{\mathrm{4}}}} % postfix 4
-\newcommand*{\reciprocaled}{\ensuremath{^{\mathrm{-1}}}} % postfix -1
-\newcommand*{\reciprocalsquared}{\ensuremath{^{\mathrm{-2}}}} % postfix -2
-\newcommand*{\reciprocalcubed}{\ensuremath{^{\mathrm{-3}}}} % postfix -3
-\newcommand*{\reciprocalquarted}{\ensuremath{^{\mathrm{-4}}}} % postfix -4
+\newcommand*{\T}{\tesla}
+\newcommand*{\V}{\volt}
+\newcommand*{\W}{\watt}
+\newcommand*{\Wb}{\weber}
+\newcommand*{\square}[1]{\ensuremath{{#1}^2}} % prefix 2
+\newcommand*{\cubic}[1]{\ensuremath{{#1}^3}} % prefix 3
+\newcommand*{\quartic}[1]{\ensuremath{{#1}^4}} % prefix 4
+\newcommand*{\reciprocal}[1]{\ensuremath{{#1}^{-1}}} % prefix -1
+\newcommand*{\reciprocalsquare}[1]{\ensuremath{{#1}^{-2}}} % prefix -2
+\newcommand*{\reciprocalcubic}[1]{\ensuremath{{#1}^{-3}}} % prefix -3
+\newcommand*{\reciprocalquartic}[1]{\ensuremath{{#1}^{-4}}} % prefix -4
+\newcommand*{\squared}{\ensuremath{^2}} % postfix 2
+\newcommand*{\cubed}{\ensuremath{^3}} % postfix 3
+\newcommand*{\quarted}{\ensuremath{^4}} % postfix 4
+\newcommand*{\reciprocaled}{\ensuremath{^{-1}}} % postfix -1
+\newcommand*{\reciprocalsquared}{\ensuremath{^{-2}}} % postfix -2
+\newcommand*{\reciprocalcubed}{\ensuremath{^{-3}}} % postfix -3
+\newcommand*{\reciprocalquarted}{\ensuremath{^{-4}}} % postfix -4
% \end{macrocode}
%
% \noindent Define a new named physics quantity or physical constant and
% commands for selecting units. My thanks to Ulrich Diez for contributing
% this code.
% \begin{macrocode}
-\newcommand\mi@exchangeargs[2]{#2#1}%
-\newcommand\mi@name{}%
+\newcommand*\mi@exchangeargs[2]{#2#1}%
+\newcommand*\mi@name{}%
\long\def\mi@name#1#{\romannumeral0\mi@innername{#1}}%
-\newcommand\mi@innername[2]{%
+\newcommand*\mi@innername[2]{%
\expandafter\mi@exchangeargs\expandafter{\csname#2\endcsname}{#1}}%
\begingroup
\@firstofone{%
\endgroup
- \newcommand\mi@forkifnull[3]{%
- \romannumeral\iffalse{\fi\expandafter\@secondoftwo\expandafter
+ \newcommand*\mi@forkifnull[3]{%
+ \romannumeral\iffalse{\fi\expandafter\@secondoftwo\expandafter%
{\expandafter{\string#1}\expandafter\@secondoftwo\string}%
\expandafter\@firstoftwo\expandafter{\iffalse}\fi0 #3}{0 #2}}}%
-\newcommand\selectbaseunit[3]{#1}
-\newcommand\selectdrvdunit[3]{#2}
-\newcommand\selecttradunit[3]{#3}
-\newcommand\selectunit{}
-\newcommand\perpusebaseunit{\let\selectunit=\selectbaseunit}
-\newcommand\perpusedrvdunit{\let\selectunit=\selectdrvdunit}
-\newcommand\perpusetradunit{\let\selectunit=\selecttradunit}
-\newcommand\hereusebaseunit[1]{%
+\newcommand*\selectbaseunit[3]{#1}
+\newcommand*\selectdrvdunit[3]{#2}
+\newcommand*\selecttradunit[3]{#3}
+\newcommand*\selectunit{}
+\newcommand*\perpusebaseunit{\let\selectunit=\selectbaseunit}
+\newcommand*\perpusedrvdunit{\let\selectunit=\selectdrvdunit}
+\newcommand*\perpusetradunit{\let\selectunit=\selecttradunit}
+\newcommand*\hereusebaseunit[1]{%
\begingroup\perpusebaseunit#1\endgroup}%
-\newcommand\hereusedrvdunit[1]{%
+\newcommand*\hereusedrvdunit[1]{%
\begingroup\perpusedrvdunit#1\endgroup}%
-\newcommand\hereusetradunit[1]{%
+\newcommand*\hereusetradunit[1]{%
\begingroup\perpusetradunit#1\endgroup}%
\newenvironment{usebaseunit}{\perpusebaseunit}{}%
\newenvironment{usedrvdunit}{\perpusedrvdunit}{}%
\newenvironment{usetradunit}{\perpusetradunit}{}%
\newcommand*\newphysicsquantity{\definephysicsquantity{\newcommand}}
\newcommand*\redefinephysicsquantity{\definephysicsquantity{\renewcommand}}
-\newcommandx\definephysicsquantity[5][4=,5=]{%
+\newcommandx*\definephysicsquantity[5][4=,5=]{%
\innerdefinewhatsoeverquantityfork{#3}{#4}{#5}{#1}{#2}{}{[1]}{##1}}%
\newcommand*\newphysicsconstant{\definephysicsconstant{\newcommand}}
\newcommand*\redefinephysicsconstant{\definephysicsconstant{\renewcommand}}
-\newcommandx\definephysicsconstant[7][6=,7=]{%
+\newcommandx*\definephysicsconstant[7][6=,7=]{%
\innerdefinewhatsoeverquantityfork{#5}{#6}{#7}{#1}{#2}{#3}{}{#4}}%
-\newcommand\innerdefinewhatsoeverquantityfork[3]{%
+\newcommand*\innerdefinewhatsoeverquantityfork[3]{%
\expandafter\innerdefinewhatsoeverquantity\romannumeral0%
\mi@forkifnull{#3}{\mi@forkifnull{#2}{{#1}}{{#2}}{#1}}%
{\mi@forkifnull{#2}{{#1}}{{#2}}{#3}}{#1}}%
-\newcommand\innerdefinewhatsoeverquantity[8]{%
- \mi@name#4{#5}#7{\ensuremath{\unit{#8}{\selectunit{#3}{#1}{#2}}}}%
- \mi@name#4{#5baseunit}#7{\ensuremath{\unit{#8}{#3}}}%
- \mi@name#4{#5drvdunit}#7{\ensuremath{\unit{#8}{#1}}}%
- \mi@name#4{#5tradunit}#7{\ensuremath{\unit{#8}{#2}}}%
- \mi@name#4{#5onlyunit}{\ensuremath{\selectunit{#3}{#1}{#2}}}%
+\newcommand*\innerdefinewhatsoeverquantity[8]{%
+ \mi@name#4{#5}#7{\unit{#8}{\selectunit{#3}{#1}{#2}}}%
+ \mi@name#4{#5baseunit}#7{\unit{#8}{#3}}%
+ \mi@name#4{#5drvdunit}#7{\unit{#8}{#1}}%
+ \mi@name#4{#5tradunit}#7{\unit{#8}{#2}}%
+ \mi@name#4{#5onlyunit}{\selectunit{#3}{#1}{#2}}%
\mi@name#4{#5onlybaseunit}{\ensuremath{#3}}%
\mi@name#4{#5onlydrvdunit}{\ensuremath{#1}}%
\mi@name#4{#5onlytradunit}{\ensuremath{#2}}%
\mi@name#4{#5value}#7{\ensuremath{#8}}%
\mi@forkifnull{#7}{%
\ifx#4\renewcommand\mi@name\let{#5mathsymbol}=\relax\fi
- \mi@name\newcommand{#5mathsymbol}{\ensuremath{#6}}}{}}%
+ \mi@name\newcommand*{#5mathsymbol}{\ensuremath{#6}}}{}}%
% \end{macrocode}
%
% \noindent This block of code processes the options.
% \begin{macrocode}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\typeout{mandi: You'll get italic vector kernels.}}
- {\typeout{mandi: You'll get Roman vector kernels.}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\typeout{mandi: You'll get double absolute value bars.}}
+\ifthenelse{\boolean{@optboldvectors}}
+ {\typeout{mandi: You'll get bold vectors.}}
+ {\ifthenelse{\boolean{@optromanvectors}}
+ {\typeout{mandi: You'll get Roman vectors.}}
+ {\typeout{mandi: You'll get italic vectors.}}}
+\ifthenelse{\boolean{@optsingleabsbars}}
{\typeout{mandi: You'll get single absolute value bars.}}
+ {\typeout{mandi: You'll get double absolute value bars.}}
\ifthenelse{\boolean{@optbaseunits}}
{\perpusebaseunit %
\typeout{mandi: You'll get base units.}}
@@ -7204,6 +8223,16 @@ Sshows factors dividing to a sneaky one.
\typeout{mandi: You'll get derived units.}}
{\perpusetradunit %
\typeout{mandi: You'll get traditional units.}}}
+\ifthenelse{\boolean{@optapproxconsts}}
+ {\typeout{mandi: You'll get approximate constants.}}
+ {\typeout{mandi: You'll get precise constants.}}
+% \end{macrocode}
+%
+% \noindent This is a utility command for picking constants.
+% \begin{macrocode}
+\ifthenelse{\boolean{@optapproxconsts}}
+ {\newcommand*{\mi@p}[2]{#1}} % approximate value
+ {\newcommand*{\mi@p}[2]{#2}} % precise value
% \end{macrocode}
%
% \noindent This block of code makes parentheses adjustable.
@@ -7219,58 +8248,52 @@ Sshows factors dividing to a sneaky one.
\catcode`)\active \xdef){\right\string)}
\endgroup
\mathcode`(="8000 \mathcode`)="8000
-\typeout{mandi: parentheses made adjustable in math mode.}
-% \end{macrocode}
-%
-% \noindent This block of code fixes square root symbol.
-% \begin{macrocode}
-\let\oldr@@t\r@@t
-\def\r@@t#1#2{%
-\setbox0=\hbox{\(\oldr@@t#1{#2\,}\)}\dimen0=\ht0
-\advance\dimen0-0.2\ht0
-\setbox2=\hbox{\vrule height\ht0 depth -\dimen0}%
-{\box0\lower0.4pt\box2}}
-\LetLtxMacro{\oldsqrt}{\sqrt}
-\renewcommand*{\sqrt}[2][\relax]{\oldsqrt[#1]{#2}}
-\typeout{mandi: square root symbol fixed.}
+\typeout{mandi: Parentheses have been made adjustable in math mode.}
% \end{macrocode}
%
% \noindent SI base unit of length or spatial displacement
% \begin{macrocode}
-\newcommand{\m}{\metre}
+\newcommand*{\m}{\metre}
% \end{macrocode}
%
% \noindent SI base unit of mass
% \begin{macrocode}
-\newcommand{\kg}{\kilogram}
+\newcommand*{\kg}{\kilogram}
% \end{macrocode}
%
% \noindent SI base unit of time or temporal displacement
% \begin{macrocode}
-\newcommand{\s}{\second}
+\newcommand*{\s}{\second}
% \end{macrocode}
%
% \noindent SI base unit of electric current
% \begin{macrocode}
-\newcommand{\A}{\ampere}
+\newcommand*{\A}{\ampere}
% \end{macrocode}
%
% \noindent SI base unit of thermodynamic temperature
% \begin{macrocode}
-\newcommand{\K}{\kelvin}
+\newcommand*{\K}{\kelvin}
% \end{macrocode}
%
% \noindent SI base unit of amount
% \begin{macrocode}
-\newcommand{\mol}{\mole}
+\newcommand*{\mol}{\mole}
% \end{macrocode}
%
% \noindent SI base unit of luminous intensity
% \begin{macrocode}
-\newcommand{\cd}{\candela}
+\newcommand*{\cd}{\candela}
% \end{macrocode}
%
% \begin{macrocode}
+\newcommand*{\dimdisplacement}{\ensuremath{\mathrm{L}}}
+\newcommand*{\dimmass}{\ensuremath{\mathrm{M}}}
+\newcommand*{\dimduration}{\ensuremath{\mathrm{T}}}
+\newcommand*{\dimcurrent}{\ensuremath{\mathrm{I}}}
+\newcommand*{\dimtemperature}{\ensuremath{\mathrm{\Theta}}}
+\newcommand*{\dimamount}{\ensuremath{\mathrm{N}}}
+\newcommand*{\dimluminous}{\ensuremath{\mathrm{J}}}
\newphysicsquantity{displacement}{\m}[\m][\m]
\newphysicsquantity{mass}{\kg}[\kg][\kg]
\newphysicsquantity{duration}{\s}[\s][\s]
@@ -7278,132 +8301,156 @@ Sshows factors dividing to a sneaky one.
\newphysicsquantity{temperature}{\K}[\K][\K]
\newphysicsquantity{amount}{\mol}[\mol][\mol]
\newphysicsquantity{luminous}{\cd}[\cd][\cd]
-\newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\rad]
-\newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\sr]
-\newcommand{\indegrees}[1]{\ensuremath{\unit{#1}{\degree}}}
-\newcommand{\inFarenheit}[1]{\ensuremath{\unit{#1}{\degree\mathrm{F}}}}
-\newcommand{\inCelsius}[1]{\ensuremath{\unit{#1}{\degree\mathrm{C}}}}
-\newcommand{\inarcminutes}[1]{\ensuremath{\unit{#1}{\arcminute}}}
-\newcommand{\inarcseconds}[1]{\ensuremath{\unit{#1}{\arcsecond}}}
-\newcommand{\ineV}[1]{\ensuremath{\unit{#1}{\electronvolt}}}
-\newcommand{\inMeVocs}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per\msup{c}{2}}}}
-\newcommand{\inMeVoc}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per c}}}
-\newcommand{\inAU}[1]{\ensuremath{\unit{#1}{\mathrm{AU}}}}
-\newcommand{\inly}[1]{\ensuremath{\unit{#1}{\mathrm{ly}}}}
-\newcommand{\incyr}[1]{\ensuremath{\unit{#1}{c\usk\mathrm{year}}}}
-\newcommand{\inpc}[1]{\ensuremath{\unit{#1}{\mathrm{pc}}}}
-\newcommand{\insolarL}[1]{\ensuremath{\unit{#1}{\Lsolar}}}
-\newcommand{\insolarT}[1]{\ensuremath{\unit{#1}{\Tsolar}}}
-\newcommand{\insolarR}[1]{\ensuremath{\unit{#1}{\Rsolar}}}
-\newcommand{\insolarM}[1]{\ensuremath{\unit{#1}{\Msolar}}}
-\newcommand{\insolarF}[1]{\ensuremath{\unit{#1}{\Fsolar}}}
-\newcommand{\insolarf}[1]{\ensuremath{\unit{#1}{\fsolar}}}
-\newcommand{\insolarMag}[1]{\ensuremath{\unit{#1}{\Magsolar}}}
-\newcommand{\insolarmag}[1]{\ensuremath{\unit{#1}{\magsolar}}}
-\newcommand{\insolarD}[1]{\ensuremath{\unit{#1}{\Dsolar}}}
-\newcommand{\insolard}[1]{\ensuremath{\unit{#1}{\dsolar}}}
-\newcommand{\velocityc}[1]{\ensuremath{#1c}}
+\newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\relax]
+\newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\relax]
+\newcommand*{\indegrees}[1]{\unit{#1}{\degree}}
+\newcommand*{\inFarenheit}[1]{\unit{#1}{\degree\mathrm{F}}}
+\newcommand*{\inCelsius}[1]{\unit{#1}{\degree\mathrm{C}}}
+\newcommand*{\inarcminutes}[1]{\unit{#1}{\arcminute}}
+\newcommand*{\inarcseconds}[1]{\unit{#1}{\arcsecond}}
+\newcommand*{\ineV}[1]{\unit{#1}{\electronvolt}}
+\newcommand*{\ineVocs}[1]{\unit{#1}{\mathrm{eV}\per c^2}}
+\newcommand*{\ineVoc}[1]{\unit{#1}{\mathrm{eV}\per c}}
+\newcommand*{\inMeV}[1]{\unit{#1}{\mathrm{MeV}}}
+\newcommand*{\inMeVocs}[1]{\unit{#1}{\mathrm{MeV}\per c^2}}
+\newcommand*{\inMeVoc}[1]{\unit{#1}{\mathrm{MeV}\per c}}
+\newcommand*{\inGeV}[1]{\unit{#1}{\mathrm{GeV}}}
+\newcommand*{\inGeVocs}[1]{\unit{#1}{\mathrm{GeV}\per c^2}}
+\newcommand*{\inGeVoc}[1]{\unit{#1}{\mathrm{GeV}\per c}}
+\newcommand*{\inamu}[1]{\unit{#1}{\mathrm{u}}}
+\newcommand*{\ingram}[1]{\unit{#1}{\mathrm{g}}}
+\newcommand*{\ingrampercubiccm}[1]{\unit{#1}{\mathrm{g}\per\cubic\mathrm{cm}}}
+\newcommand*{\inAU}[1]{\unit{#1}{\mathrm{AU}}}
+\newcommand*{\inly}[1]{\unit{#1}{\mathrm{ly}}}
+\newcommand*{\incyr}[1]{\unit{#1}{c\usk\mathrm{year}}}
+\newcommand*{\inpc}[1]{\unit{#1}{\mathrm{pc}}}
+\newcommand*{\insolarL}[1]{\unit{#1}{\Lsolar}}
+\newcommand*{\insolarT}[1]{\unit{#1}{\Tsolar}}
+\newcommand*{\insolarR}[1]{\unit{#1}{\Rsolar}}
+\newcommand*{\insolarM}[1]{\unit{#1}{\Msolar}}
+\newcommand*{\insolarF}[1]{\unit{#1}{\Fsolar}}
+\newcommand*{\insolarf}[1]{\unit{#1}{\fsolar}}
+\newcommand*{\insolarMag}[1]{\unit{#1}{\Magsolar}}
+\newcommand*{\insolarmag}[1]{\unit{#1}{\magsolar}}
+\newcommand*{\insolarD}[1]{\unit{#1}{\Dsolar}}
+\newcommand*{\insolard}[1]{\unit{#1}{\dsolar}}
+\newcommand*{\velocityc}[1]{\ensuremath{#1c}}
\newphysicsquantity{velocity}{\m\usk\reciprocal\s}[\m\usk\reciprocal\s][\m\per\s]
-\newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg][\m\per\s\squared]
-\newcommand{\lorentz}[1]{\ensuremath{#1}}
+\newcommand*{\speed}{\velocity}
+\newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg]%
+ [\m\per\s\squared]
+\newphysicsquantity{gravitationalfield}{\m\usk\s\reciprocalsquared}[\N\per\kg]%
+ [\N\per\kg]
+\newphysicsquantity{gravitationalpotential}{\square\m\usk\reciprocalsquare\s}%
+ [\J\per\kg][\J\per\kg]
+\newcommand*{\lorentz}[1]{\ensuremath{#1}}
\newphysicsquantity{momentum}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s]
-\newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s]
+\newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\N\usk\s]
\newphysicsquantity{force}{\m\usk\kg\usk\s\reciprocalsquared}[\N][\N]
\newphysicsquantity{springstiffness}{\kg\usk\s\reciprocalsquared}[\N\per\m][\N\per\m]
\newphysicsquantity{springstretch}{\m}
\newphysicsquantity{area}{\m\squared}
\newphysicsquantity{volume}{\cubic\m}
\newphysicsquantity{linearmassdensity}{\reciprocal\m\usk\kg}[\kg\per\m][\kg\per\m]
-\newphysicsquantity{areamassdensity}{\m\reciprocalsquared\usk\kg}[\kg\per\m\squared]
-[\kg\per\m\squared]
-\newphysicsquantity{volumemassdensity}{\m\reciprocalcubed\usk\kg}[\kg\per\m\cubed]
-[\kg\per\m\cubed]
-\newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}
-[\N\per\m\squared][\Pa]
+\newphysicsquantity{areamassdensity}{\m\reciprocalsquared\usk\kg}[\kg\per\m\squared]%
+ [\kg\per\m\squared]
+\newphysicsquantity{volumemassdensity}{\m\reciprocalcubed\usk\kg}[\kg\per\m\cubed]%
+ [\kg\per\m\cubed]
+\newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
+ [\N\per\m\squared][\Pa]
+\newphysicsquantity{stress}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
+ [\N\per\m\squared][\Pa]
+\newphysicsquantity{pressure}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
+ [\N\per\m\squared][\Pa]
+\newphysicsquantity{strain}{\relax}[\relax][\relax]
\newphysicsquantity{work}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m]
-\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m]
-\newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s]
+\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\N\usk\m][\J]
+\newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\J\per\s][\W]
+\newphysicsquantity{specificheatcapacity}{\J\per\K\usk\kg}[\J\per\K\usk\kg]%
+ [\J\per\K\usk\kg]
\newphysicsquantity{angularvelocity}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s]
-\newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}[\rad\per\s\squared]
-[\rad\per\s\squared]
-\newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s]
-[\kg\usk\m\squared\per\s]
-\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared][\kg\usk\m\squared]
-\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad][\N\usk\m]
+\newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}%
+ [\rad\per\s\squared][\rad\per\s\squared]
+\newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s]%
+ [\kg\usk\m\squared\per\s]
+\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared]%
+ [\kg\usk\m\squared]
+\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad]%
+ [\N\usk\m]
\newphysicsquantity{entropy}{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\K}
-[\J\per\K][\J\per\K]
+ [\J\per\K][\J\per\K]
\newphysicsquantity{wavelength}{\m}[\m][\m]
\newphysicsquantity{wavenumber}{\reciprocal\m}[\per\m][\per\m]
\newphysicsquantity{frequency}{\reciprocal\s}[\hertz][\hertz]
\newphysicsquantity{angularfrequency}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s]
\newphysicsquantity{charge}{\A\usk\s}[\C][\C]
\newphysicsquantity{permittivity}
-{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared}
-[\F\per\m][\C\squared\per\N\usk\m\squared]
-\newphysicsquantity{permeability}
-{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m][\T\usk\m\per\A]
-\newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}
-[\V\per\m][\N\per\C]
+{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared}%
+ [\F\per\m][\C\squared\per\N\usk\m\squared]
+\newphysicsquantity{permeability}%
+ {\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m]%
+ [\T\usk\m\per\A]
+\newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
+ [\V\per\m][\N\per\C]
\newphysicsquantity{electricdipolemoment}{\m\usk\s\usk\A}[\C\usk\m][\C\usk\m]
-\newphysicsquantity{electricflux}{\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}
-[\V\usk\m][\N\usk\m\squared\per\C]
-\newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T]
-[\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared
-\newphysicsquantity{magneticflux}
-{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s]
-[\T\usk\m\squared] % also \Wb and \J\per\A
-\newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}
-[\V\per\m][\N\per\C]
+\newphysicsquantity{electricflux}%
+ {\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
+ [\V\usk\m][\N\usk\m\squared\per\C]
+\newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T]%
+ [\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared
+\newphysicsquantity{magneticflux}%
+ {\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s]%
+ [\T\usk\m\squared] % also \Wb and \J\per\A
+\newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
+ [\V\per\m][\N\per\C]
\newphysicsquantity{linearchargedensity}{\reciprocal\m\usk\s\usk\A}[\C\per\m][\C\per\m]
-\newphysicsquantity{areachargedensity}{\reciprocalsquare\m\usk\s\usk\A}
-[\C\per\square\m][\C\per\square\m]
-\newphysicsquantity{volumechargedensity}{\reciprocalcubic\m\usk\s\usk\A}
-[\C\per\cubic\m][\C\per\cubic\m]
-\newphysicsquantity{mobility}
-{\m\squared\usk\kg\usk\s\reciprocalquarted\usk\reciprocal\A}[\m\squared\per\volt\usk\s]
-[(\m\per\s)\per(\N\per\C)]
+\newphysicsquantity{areachargedensity}{\reciprocalsquare\m\usk\s\usk\A}%
+ [\C\per\square\m][\C\per\square\m]
+\newphysicsquantity{volumechargedensity}{\reciprocalcubic\m\usk\s\usk\A}%
+ [\C\per\cubic\m][\C\per\cubic\m]
+\newphysicsquantity{mobility}%
+ {\m\squared\usk\kg\usk\s\reciprocalquarted\usk\reciprocal\A}[\m\squared\per\volt\usk\s]
+ [(\m\per\s)\per(\N\per\C)]
\newphysicsquantity{numberdensity}{\reciprocalcubic\m}[\per\cubic\m][\per\cubic\m]
-\newphysicsquantity{polarizability}{\reciprocal\kg\usk\s\quarted\usk\square\A}
-[\C\usk\square\m\per\V][\C\usk\m\per(\N\per\C)]
-\newphysicsquantity{electricpotential}
-{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}[\J\per\C][\V]
-\newphysicsquantity{emf}{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}
-[\J\per\C][\V]
+\newphysicsquantity{polarizability}{\reciprocal\kg\usk\s\quarted\usk\square\A}%
+ [\C\usk\square\m\per\V][\C\usk\m\per(\N\per\C)]
+\newphysicsquantity{electricpotential}%
+ {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}[\J\per\C][\V]
+\newphysicsquantity{emf}{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}%
+ [\J\per\C][\V]
\newphysicsquantity{dielectricconstant}{}[][]
\newphysicsquantity{indexofrefraction}{}[][]
\newphysicsquantity{relativepermittivity}{}[][]
\newphysicsquantity{relativepermeability}{}[][]
-\newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s}
-[\J\per\cubic\m][\J\per\cubic\m]
-\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed}
-[\W\per\m\squared][\W\per\m\squared]
-\newphysicsquantity{electroncurrent}{\reciprocal\s}
-[\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s]
+\newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s}%
+ [\J\per\cubic\m][\J\per\cubic\m]
+\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed}%
+ [\W\per\m\squared][\W\per\m\squared]
+\newphysicsquantity{electroncurrent}{\reciprocal\s}%
+ [\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s]
\newphysicsquantity{conventionalcurrent}{\A}[\C\per\s][\A]
\newphysicsquantity{magneticdipolemoment}{\square\m\usk\A}[\J\per\T][\A\usk\square\m]
-\newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m]
-[\A\per\square\m]
-\newphysicsquantity{capacitance}
-{\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V]
-% also \C\squared\per\N\usk\m, \s\per\ohm
-\newphysicsquantity{inductance}
-{\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry]
-[\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A
-\newphysicsquantity{conductivity}
-{\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m]
-[(\A\per\square\m)\per(\V\per\m)]
-\newphysicsquantity{resistivity}
-{\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m]
-[(\V\per\m)\per(\A\per\square\m)]
-\newphysicsquantity{resistance}
-{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm]
-\newphysicsquantity{conductance}
-{\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens]
+\newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m]%
+ [\A\per\square\m]
+\newphysicsquantity{capacitance}%
+ {\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V]
+ % also \C\squared\per\N\usk\m, \s\per\ohm
+\newphysicsquantity{inductance}%
+ {\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry]%
+ [\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A
+\newphysicsquantity{conductivity}%
+ {\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m]%
+ [(\A\per\square\m)\per(\V\per\m)]
+\newphysicsquantity{resistivity}%
+ {\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m]%
+ [(\V\per\m)\per(\A\per\square\m)]
+\newphysicsquantity{resistance}%
+ {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm]
+\newphysicsquantity{conductance}%
+ {\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens]
\newphysicsquantity{magneticcharge}{\m\usk\A}[\m\usk\A][\m\usk\A]
-\newcommand{\lv}{\ensuremath{\left\langle}}
-\newcommand{\rv}{\ensuremath{\right\rangle}}
-\newcommand{\symvect}{\mivector}
-\newcommand{\ncompsvect}{\mivector}
+\newcommand*{\lv}{\ensuremath{\left\langle}}
+\newcommand*{\rv}{\ensuremath{\right\rangle}}
\ExplSyntaxOn % Written in LaTeX3
\NewDocumentCommand{\magvectncomps}{ m O{} }
{%
@@ -7428,419 +8475,347 @@ Sshows factors dividing to a sneaky one.
}%
\ExplSyntaxOff
%
-\newcommand{\zerovect}{\vect{0}}
-\newcommand{\ncompszerovect}{\mivector{0,0,0}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\vect}[1]{\ensuremath{\vec{#1}}}}
- {\newcommand{\vect}[1]{\ensuremath{\vec{\mathrm{#1}}}}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\newcommand{\magvect}[1]{\ensuremath{\magof{\vect{#1}}}}}
- {\newcommand{\magvect}[1]{\ensuremath{\abs{\vect{#1}}}}}
-\newcommand{\dmagvect}[1]{\ensuremath{\dx{\magvect{#1}}}}
-\newcommand{\Dmagvect}[1]{\ensuremath{\Delta\!\magvect{#1}}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\dirvect}[1]{\ensuremath{\widehat{{#1}}}}}
- {\newcommand{\dirvect}[1]{\ensuremath{\widehat{\mathrm{#1}}}}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\compvect}[2]{\ensuremath{\ssub{#1}{\(#2\)}}}}
- {\newcommand{\compvect}[2]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\)}}}}
-\newcommand{\scompsvect}[1]{\ensuremath{\lv
- \compvect{#1}{x},
- \compvect{#1}{y},
+\newcommand*{\zerovect}{\vect{0}}
+\newcommand*{\ncompszerovect}{\mivector{0,0,0}}
+\ifthenelse{\boolean{@optboldvectors}}
+ {\newcommand*{\vect}[1]{\ensuremath{\boldsymbol{#1}}}}
+ {\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\vect}[1]{\ensuremath{\vv{\mathrm{#1}}}}}
+ {\newcommand*{\vect}[1]{\ensuremath{\vv{#1}}}}}
+\ifthenelse{\boolean{@optsingleabsbars}}
+ {\newcommand*{\magvect}[1]{\ensuremath{\abs{\vect{#1}}}}}
+ {\newcommand*{\magvect}[1]{\ensuremath{\magof{\vect{#1}}}}}
+\newcommand*{\magsquaredvect}[1]{\ensuremath{\magvect{#1}\squared}}
+\newcommand*{\magnvect}[2]{\ensuremath{\magvect{#1}^{#2}}}
+\newcommand*{\dmagvect}[1]{\ensuremath{\dx{\magvect{#1}}}}
+\newcommand*{\Dmagvect}[1]{\ensuremath{\Delta\!\magvect{#1}}}
+\ifthenelse{\boolean{@optboldvectors}}
+ {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{\boldsymbol{#1}}}}}
+ {\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{\mathrm{#1}}}}}
+ {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{#1}}}}}
+\newcommand*{\direction}{\dirvect}
+\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\compvect}[2]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\)}}}}
+ {\newcommand*{\compvect}[2]{\ensuremath{\ssub{#1}{\(#2\)}}}}
+\newcommand*{\scompsvect}[1]{\ensuremath{\lv%
+ \compvect{#1}{x},%
+ \compvect{#1}{y},%
\compvect{#1}{z}\rv}}
-\newcommand{\magvectscomps}[1]{\ensuremath{\sqrt{
- \msup{\compvect{#1}{x}}{2}+
- \msup{\compvect{#1}{y}}{2}+
- \msup{\compvect{#1}{z}}{2}}}}
-\newcommand{\dvect}[1]{\ensuremath{\mathrm{d}\vect{#1}}}
-\newcommand{\Dvect}[1]{\ensuremath{\Delta\vect{#1}}}
-\newcommand{\dirdvect}[1]{\ensuremath{\widehat{\dvect{#1}}}}
-\newcommand{\dirDvect}[1]{\ensuremath{\widehat{\Dvect{#1}}}}
-\newcommand{\ddirvect}[1]{\ensuremath{\mathrm{d}\dirvect{E}}}
-\newcommand{\Ddirvect}[1]{\ensuremath{\Delta\dirvect{E}}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\newcommand{\magdvect}[1]{\ensuremath{\magof{\dvect{#1}}}}
- \newcommand{\magDvect}[1]{\ensuremath{\magof{\Dvect{#1}}}}}
- {\newcommand{\magdvect}[1]{\ensuremath{\abs{\dvect{#1}}}}
- \newcommand{\magDvect}[1]{\ensuremath{\abs{\Dvect{#1}}}}}
-\newcommand{\compdvect}[2]{\ensuremath{\mathrm{d}\compvect{#1}{#2}}}
-\newcommand{\compDvect}[2]{\ensuremath{\Delta\compvect{#1}{#2}}}
-\newcommand{\scompsdvect}[1]{\ensuremath{\lv
- \compdvect{#1}{x},
- \compdvect{#1}{y},
+\newcommand*{\magvectscomps}[1]{\ensuremath{\sqrt{%
+ \compvect{#1}{x}\squared +%
+ \compvect{#1}{y}\squared +%
+ \compvect{#1}{z}\squared}}}
+\newcommand*{\dvect}[1]{\ensuremath{\mathrm{d}\vect{#1}}}
+\newcommand*{\Dvect}[1]{\ensuremath{\Delta\vect{#1}}}
+\newcommand*{\dirdvect}[1]{\ensuremath{\widehat{\dvect{#1}}}}
+\newcommand*{\dirDvect}[1]{\ensuremath{\widehat{\Dvect{#1}}}}
+\newcommand*{\ddirvect}[1]{\ensuremath{\mathrm{d}\dirvect{#1}}}
+\newcommand*{\ddirection}{\ddirvect}
+\newcommand*{\Ddirvect}[1]{\ensuremath{\Delta\dirvect{#1}}}
+\newcommand*{\Ddirection}{\Ddirvect}
+\ifthenelse{\boolean{@optsingleabsbars}}
+ {\newcommand*{\magdvect}[1]{\ensuremath{\abs{\dvect{#1}}}}
+ \newcommand*{\magDvect}[1]{\ensuremath{\abs{\Dvect{#1}}}}}
+ {\newcommand*{\magdvect}[1]{\ensuremath{\magof{\dvect{#1}}}}
+ \newcommand*{\magDvect}[1]{\ensuremath{\magof{\Dvect{#1}}}}}
+\newcommand*{\compdvect}[2]{\ensuremath{\mathrm{d}\compvect{#1}{#2}}}
+\newcommand*{\compDvect}[2]{\ensuremath{\Delta\compvect{#1}{#2}}}
+\newcommand*{\scompsdvect}[1]{\ensuremath{\lv%
+ \compdvect{#1}{x},%
+ \compdvect{#1}{y},%
\compdvect{#1}{z}\rv}}
-\newcommand{\scompsDvect}[1]{\ensuremath{\lv
- \compDvect{#1}{x},
- \compDvect{#1}{y},
+\newcommand*{\scompsDvect}[1]{\ensuremath{\lv%
+ \compDvect{#1}{x},%
+ \compDvect{#1}{y},%
\compDvect{#1}{z}\rv}}
-\newcommand{\dervect}[2]{\ensuremath{\frac{\dvect{#1}}{\mathrm{d}{#2}}}}
-\newcommand{\Dervect}[2]{\ensuremath{\frac{\Dvect{#1}}{\Delta{#2}}}}
-\newcommand{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#2}}{#3}}}
-\newcommand{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#2}}{#3}}}
-\newcommand{\scompsdervect}[2]{\ensuremath{\lv
- \compdervect{#1}{x}{#2},
- \compdervect{#1}{y}{#2},
+\newcommand*{\dervect}[2]{\ensuremath{\frac{\dvect{#1}}{\mathrm{d}{#2}}}}
+\newcommand*{\Dervect}[2]{\ensuremath{\frac{\Dvect{#1}}{\Delta{#2}}}}
+\newcommand*{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#2}}{#3}}}
+\newcommand*{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#2}}{#3}}}
+\newcommand*{\scompsdervect}[2]{\ensuremath{\lv%
+ \compdervect{#1}{x}{#2},%
+ \compdervect{#1}{y}{#2},%
\compdervect{#1}{z}{#2}\rv}}
-\newcommand{\scompsDervect}[2]{\ensuremath{\lv
- \compDervect{#1}{x}{#2},
- \compDervect{#1}{y}{#2},
+\newcommand*{\scompsDervect}[2]{\ensuremath{\lv%
+ \compDervect{#1}{x}{#2},%
+ \compDervect{#1}{y}{#2},%
\compDervect{#1}{z}{#2}\rv}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\newcommand{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}}
- \newcommand{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}}
- {\newcommand{\magdervect}[2]{\ensuremath{\abs{\dervect{#1}{#2}}}}
- \newcommand{\magDervect}[2]{\ensuremath{\abs{\Dervect{#1}{#2}}}}}
-\newcommand{\dermagvect}[2]{\ensuremath{\dbyd{\magvect{#1}}{#2}}}
-\newcommand{\Dermagvect}[2]{\ensuremath{\DbyD{\magvect{#1}}{#2}}}
-\newcommand{\scompspos}{\mivector{x,y,z}}
-\newcommand{\comppos}[1]{\ensuremath{{#1}}}
-\newcommand{\scompsdpos}{\mivector{\mathrm{d}x,\mathrm{d}y,\mathrm{d}z}}
-\newcommand{\scompsDpos}{\mivector{\Delta x,\Delta y,\Delta z}}
-\newcommand{\compdpos}[1]{\ensuremath{\mathrm{d}{#1}}}
-\newcommand{\compDpos}[1]{\ensuremath{\Delta{#1}}}
-\newcommand{\scompsderpos}[1]{\ensuremath{\lv
- \frac{\mathrm{d}x}{\mathrm{d}{#1}},\frac{\mathrm{d}y}{\mathrm{d}{#1}},
- \frac{\mathrm{d}z}{\mathrm{d}{#1}}\rv}}
-\newcommand{\scompsDerpos}[1]{\ensuremath{\lv
- \frac{\Delta x}{\Delta{#1}},\frac{\Delta y}{\Delta{#1}},
- \frac{\Delta z}{\Delta{#1}}\rv}}
-\newcommand{\compderpos}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}}
-\newcommand{\compDerpos}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}}
-\newcommand{\vectsub}[2]{\ensuremath{\ssub{\vect{#1}}{#2}}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{#1}{\(#2\),#3}}}}
- {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\),#3}}}}
-\newcommand{\scompsvectsub}[2]{\ensuremath{\lv
- \compvectsub{#1}{x}{#2},
- \compvectsub{#1}{y}{#2},
- \compvectsub{#1}{z}{#2}\rv}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\newcommand{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}}
- {\newcommand{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}}
-\newcommand{\magvectsubscomps}[2]{\ensuremath{\sqrt{
- \msup{\compvectsub{#1}{x}{#2}}{2}+
- \msup{\compvectsub{#1}{y}{#2}}{2}+
- \msup{\compvectsub{#1}{z}{#2}}{2}}}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}}
- {\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}}
-\newcommand{\dvectsub}[2]{\ensuremath{\mathrm{d}\vectsub{#1}{#2}}}
-\newcommand{\Dvectsub}[2]{\ensuremath{\Delta\vectsub{#1}{#2}}}
-\newcommand{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}}
-\newcommand{\compDvectsub}[3]{\ensuremath{\Delta\compvectsub{#1}{#2}{#3}}}
-\newcommand{\scompsdvectsub}[2]{\ensuremath{\lv
- \compdvectsub{#1}{x}{#2},
- \compdvectsub{#1}{y}{#2},
- \compdvectsub{#1}{z}{#2}\rv}}
-\newcommand{\scompsDvectsub}[2]{\ensuremath{\lv
- \compDvectsub{#1}{x}{#2},
- \compDvectsub{#1}{y}{#2},
- \compDvectsub{#1}{z}{#2}\rv}}
-\newcommand{\dermagvectsub}[3]{\ensuremath{\dbyd{\magvectsub{#1}{#2}}{#3}}}
-\newcommand{\Dermagvectsub}[3]{\ensuremath{\DbyD{\magvectsub{#1}{#2}}{#3}}}
-\newcommand{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}}
-\newcommand{\Dervectsub}[3]{\ensuremath{\DbyD{\vectsub{#1}{#2}}{#3}}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\newcommand{\magdervectsub}[3]{\ensuremath{\magof{\dervectsub{#1}{#2}{#3}}}}
- \newcommand{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}}
- {\newcommand{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}}
- \newcommand{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}}
-\newcommand{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}}
-\newcommand{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#3}}{#4}}}
-\newcommand{\scompsdervectsub}[3]{\ensuremath{\lv
- \compdervectsub{#1}{x}{#2}{#3},
- \compdervectsub{#1}{y}{#2}{#3},
- \compdervectsub{#1}{z}{#2}{#3}\rv}}
-\newcommand{\scompsDervectsub}[3]{\ensuremath{\lv
- \compDervectsub{#1}{x}{#2}{#3},
- \compDervectsub{#1}{y}{#2}{#3},
- \compDervectsub{#1}{z}{#2}{#3}\rv}}
-\newcommand{\comppossub}[2]{\ensuremath{\ssub{#1}{#2}}}
-\newcommand{\scompspossub}[1]{\ensuremath{\lv
- \comppossub{x}{#1},
- \comppossub{y}{#1},
- \comppossub{z}{#1}\rv}}
-\newcommand{\compdpossub}[2]{\ensuremath{\mathrm{d}\comppossub{#1}{#2}}}
-\newcommand{\compDpossub}[2]{\ensuremath{\Delta\comppossub{#1}{#2}}}
-\newcommand{\scompsdpossub}[1]{\ensuremath{\lv
- \compdpossub{x}{#1},
- \compdpossub{y}{#1},
- \compdpossub{z}{#1}\rv}}
-\newcommand{\scompsDpossub}[1]{\ensuremath{\lv
- \compDpossub{x}{#1},
- \compDpossub{y}{#1},
- \compDpossub{z}{#1}\rv}}
-\newcommand{\compderpossub}[3]{\ensuremath{\dbyd{\comppossub{#1}{#2}}{#3}}}
-\newcommand{\compDerpossub}[3]{\ensuremath{\DbyD{\comppossub{#1}{#2}}{#3}}}
-\newcommand{\scompsderpossub}[2]{\ensuremath{\lv
- \compderpossub{x}{#1}{#2},
- \compderpossub{y}{#1}{#2},
- \compderpossub{z}{#1}{#2}\rv}}
-\newcommand{\scompsDerpossub}[2]{\ensuremath{\lv
- \compDerpossub{x}{#1}{#2},
- \compDerpossub{y}{#1}{#2},
- \compDerpossub{z}{#1}{#2}\rv}}
-\newcommand{\relpos}[1]{\ensuremath{\vectsub{r}{#1}}}
-\newcommand{\relvel}[1]{\ensuremath{\vectsub{v}{#1}}}
-\newcommand{\relmom}[1]{\ensuremath{\vectsub{p}{#1}}}
-\newcommand{\relfor}[1]{\ensuremath{\vectsub{F}{#1}}}
-\newcommand{\vectdotvect}[2]{\ensuremath{{#1}\bullet{#2}}}
-\newcommand{\vectdotsvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsvect{#2}}}
-\newcommand{\vectdotevect}[2]{\ensuremath{
- \compvect{#1}{x}\compvect{#2}{x}+
- \compvect{#1}{y}\compvect{#2}{y}+
+\ifthenelse{\boolean{@optsingleabsbars}}
+ {\newcommand*{\magdervect}[2]{\ensuremath{\abs{\dervect{#1}{#2}}}}
+ \newcommand*{\magDervect}[2]{\ensuremath{\abs{\Dervect{#1}{#2}}}}}
+ {\newcommand*{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}}
+ \newcommand*{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}}
+\newcommand*{\dermagvect}[2]{\ensuremath{\dbyd{\magvect{#1}}{#2}}}
+\newcommand*{\Dermagvect}[2]{\ensuremath{\DbyD{\magvect{#1}}{#2}}}
+\newcommand*{\derdirvect}[2]{\ensuremath{\dbyd{\dirvect{#1}}{#2}}}
+\newcommand*{\derdirection}{\derdirvect}
+\newcommand*{\Derdirvect}[2]{\ensuremath{\DbyD{\dirvect{#1}}{#2}}}
+\newcommand*{\Derdirection}{\Derdirvect}
+\ifthenelse{\boolean{@optboldvectors}}
+ {\newcommand*{\vectsub}[2]{\ensuremath{\boldsymbol{#1}_{\text{\tiny{}#2}}}}}
+ {\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\vectsub}[2]{\ensuremath{\vv{\mathrm{#1}}_{\text{\tiny{#2}}}}}}
+ {\newcommand*{\vectsub}[2]{\ensuremath{\vv{#1}_{\text{\tiny{#2}}}}}}}
+\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{#2,\(#3\)}}}}
+ {\newcommand*{\compvectsub}[3]{\ensuremath{\ssub{#1}{#2,\(#3\)}}}}
+\newcommand*{\scompsvectsub}[2]{\ensuremath{\lv%
+ \compvectsub{#1}{#2}{x},%
+ \compvectsub{#1}{#2}{y},%
+ \compvectsub{#1}{#2}{z}\rv}}
+\ifthenelse{\boolean{@optsingleabsbars}}
+ {\newcommand*{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}}
+ {\newcommand*{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}}
+\newcommand*{\magsquaredvectsub}[2]{\ensuremath{\magvectsub{#1}{#2}\squared}}
+\newcommand*{\magnvectsub}[3]{\ensuremath{\magvectsub{#1}{#2}^{#3}}}
+\newcommand*{\magvectsubscomps}[2]{\ensuremath{\sqrt{%
+ \compvectsub{#1}{#2}{x}\squared +%
+ \compvectsub{#1}{#2}{y}\squared +%
+ \compvectsub{#1}{#2}{z}\squared}}}
+\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}}
+ {\newcommand*{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}}
+\newcommand*{\directionsub}{\dirvectsub}
+\newcommand*{\dvectsub}[2]{\ensuremath{\mathrm{d}\vectsub{#1}{#2}}}
+\newcommand*{\Dvectsub}[2]{\ensuremath{\Delta\vectsub{#1}{#2}}}
+\newcommand*{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}}
+\newcommand*{\compDvectsub}[3]{\ensuremath{\Delta\compvectsub{#1}{#2}{#3}}}
+\newcommand*{\scompsdvectsub}[2]{\ensuremath{\lv%
+ \compdvectsub{#1}{#2}{x},%
+ \compdvectsub{#1}{#2}{y},%
+ \compdvectsub{#1}{#2}{z}\rv}}
+\newcommand*{\scompsDvectsub}[2]{\ensuremath{\lv%
+ \compDvectsub{#1}{#2}{x},%
+ \compDvectsub{#1}{#2}{y},%
+ \compDvectsub{#1}{#2}{z}\rv}}
+\newcommand*{\dermagvectsub}[3]{\ensuremath{\dbyd{\magvectsub{#1}{#2}}{#3}}}
+\newcommand*{\Dermagvectsub}[3]{\ensuremath{\DbyD{\magvectsub{#1}{#2}}{#3}}}
+\newcommand*{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}}
+\newcommand*{\Dervectsub}[3]{\ensuremath{\DbyD{\vectsub{#1}{#2}}{#3}}}
+\ifthenelse{\boolean{@optsingleabsbars}}
+ {\newcommand*{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}}
+ \newcommand*{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}}
+ {\newcommand*{\magdervectsub}[3]{\ensuremath{\magof{\dervectsub{#1}{#2}{#3}}}}
+ \newcommand*{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}}
+\newcommand*{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}}
+\newcommand*{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#3}}{#4}}}
+\newcommand*{\scompsdervectsub}[3]{\ensuremath{\lv%
+ \compdervectsub{#1}{#2}{x}{#3},%
+ \compdervectsub{#1}{#2}{y}{#3},%
+ \compdervectsub{#1}{#2}{z}{#3}\rv}}
+\newcommand*{\scompsDervectsub}[3]{\ensuremath{\lv%
+ \compDervectsub{#1}{#2}{x}{#3},%
+ \compDervectsub{#1}{#2}{y}{#3},%
+ \compDervectsub{#1}{#2}{z}{#3}\rv}}
+\newcommand*{\vectdotvect}[2]{\ensuremath{{#1}\bullet{#2}}}
+\newcommand*{\vectdotsvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsvect{#2}}}
+\newcommand*{\vectdotevect}[2]{\ensuremath{%
+ \compvect{#1}{x}\compvect{#2}{x}+%
+ \compvect{#1}{y}\compvect{#2}{y}+%
\compvect{#1}{z}\compvect{#2}{z}}}
-\newcommand{\vectdotspos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompspos}}
-\newcommand{\vectdotepos}[1]{\ensuremath{
- \compvect{#1}{x}\comppos{x}+
- \compvect{#1}{y}\comppos{y}+
- \compvect{#1}{z}\comppos{z}}}
-\newcommand{\vectdotsdvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsdvect{#2}}}
-\newcommand{\vectdotsDvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsDvect{#2}}}
-\newcommand{\vectdotedvect}[2]{\ensuremath{
- \compvect{#1}{x}\compdvect{#2}{x}+
- \compvect{#1}{y}\compdvect{#2}{y}+
+\newcommand*{\vectdotsdvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsdvect{#2}}}
+\newcommand*{\vectdotsDvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsDvect{#2}}}
+\newcommand*{\vectdotedvect}[2]{\ensuremath{%
+ \compvect{#1}{x}\compdvect{#2}{x}+%
+ \compvect{#1}{y}\compdvect{#2}{y}+%
\compvect{#1}{z}\compdvect{#2}{z}}}
-\newcommand{\vectdoteDvect}[2]{\ensuremath{
- \compvect{#1}{x}\compDvect{#2}{x}+
- \compvect{#1}{y}\compDvect{#2}{y}+
+\newcommand*{\vectdoteDvect}[2]{\ensuremath{%
+ \compvect{#1}{x}\compDvect{#2}{x}+%
+ \compvect{#1}{y}\compDvect{#2}{y}+%
\compvect{#1}{z}\compDvect{#2}{z}}}
-\newcommand{\vectdotsdpos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompsdpos}}
-\newcommand{\vectdotsDpos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompsDpos}}
-\newcommand{\vectdotedpos}[1]{\ensuremath{
- \compvect{#1}{x}\compdpos{x}+
- \compvect{#1}{y}\compdpos{y}+
- \compvect{#1}{z}\compdpos{z}}}
-\newcommand{\vectdoteDpos}[1]{\ensuremath{
- \compvect{#1}{x}\compDpos{x}+
- \compvect{#1}{y}\compDpos{y}+
- \compvect{#1}{z}\compDpos{z}}}
-\newcommand{\vectsubdotsvectsub}[4]{\ensuremath{
+\newcommand*{\vectsubdotsvectsub}[4]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsvectsub{#3}{#4}}}
-\newcommand{\vectsubdotevectsub}[4]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compvectsub{#3}{x}{#4}+
- \compvectsub{#1}{y}{#2}\compvectsub{#3}{y}{#4}+
- \compvectsub{#1}{z}{#2}\compvectsub{#3}{z}{#4}}}
-\newcommand{\vectsubdotsdvectsub}[4]{\ensuremath{%
+\newcommand*{\vectsubdotevectsub}[4]{\ensuremath{%
+ \compvectsub{#1}{#2}{x}\compvectsub{#3}{#4}{x}+%
+ \compvectsub{#1}{#2}{y}\compvectsub{#3}{#4}{y}+%
+ \compvectsub{#1}{#2}{z}\compvectsub{#3}{#4}{z}}}
+\newcommand*{\vectsubdotsdvectsub}[4]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsdvectsub{#3}{#4}}}
-\newcommand{\vectsubdotsDvectsub}[4]{\ensuremath{%
+\newcommand*{\vectsubdotsDvectsub}[4]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsDvectsub{#3}{#4}}}
-\newcommand{\vectsubdotedvectsub}[4]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compdvectsub{#3}{x}{#4}+
- \compvectsub{#1}{y}{#2}\compdvectsub{#3}{y}{#4}+
- \compvectsub{#1}{z}{#2}\compdvectsub{#3}{z}{#4}}}
-\newcommand{\vectsubdoteDvectsub}[4]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compDvectsub{#3}{x}{#4}+
- \compvectsub{#1}{y}{#2}\compDvectsub{#3}{y}{#4}+
- \compvectsub{#1}{z}{#2}\compDvectsub{#3}{z}{#4}}}
-\newcommand{\vectsubdotsdvect}[3]{\ensuremath{
+\newcommand*{\vectsubdotedvectsub}[4]{\ensuremath{%
+ \compvectsub{#1}{#2}{x}\compdvectsub{#3}{#4}{x}+%
+ \compvectsub{#1}{#2}{y}\compdvectsub{#3}{#4}{y}+%
+ \compvectsub{#1}{#2}{z}\compdvectsub{#3}{#4}{z}}}
+\newcommand*{\vectsubdoteDvectsub}[4]{\ensuremath{%
+ \compvectsub{#1}{#2}{x}\compDvectsub{#3}{#4}{x}+%
+ \compvectsub{#1}{#2}{y}\compDvectsub{#3}{#4}{y}+%
+ \compvectsub{#1}{#2}{z}\compDvectsub{#3}{#4}{z}}}
+\newcommand*{\vectsubdotsdvect}[3]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsdvect{#3}}}
-\newcommand{\vectsubdotsDvect}[3]{\ensuremath{
+\newcommand*{\vectsubdotsDvect}[3]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsDvect{#3}}}
-\newcommand{\vectsubdotedvect}[3]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compdvect{x}{#3}+
- \compvectsub{#1}{y}{#2}\compdvect{y}{#3}+
- \compvectsub{#1}{z}{#2}\compdvect{z}{#3}}}
-\newcommand{\vectsubdoteDvect}[3]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compDvect{x}{#3}+
- \compvectsub{#1}{y}{#2}\compDvect{y}{#3}+
- \compvectsub{#1}{z}{#2}\compDvect{z}{#3}}}
-\newcommand{\vectsubdotsdpos}[2]{\ensuremath{
- \scompsvectsub{#1}{#2}\bullet\scompsdpos}}
-\newcommand{\vectsubdotsDpos}[2]{\ensuremath{
- \scompsvectsub{#1}{#2}\bullet\scompsDpos}}
-\newcommand{\vectsubdotedpos}[2]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compdpos{x}+
- \compvectsub{#1}{y}{#2}\compdpos{y}+
- \compvectsub{#1}{z}{#2}\compdpos{z}}}
-\newcommand{\vectsubdoteDpos}[2]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compDpos{x}+
- \compvectsub{#1}{y}{#2}\compDpos{y}+
- \compvectsub{#1}{z}{#2}\compDpos{z}}}
-\newcommand{\dervectdotsvect}[3]{\ensuremath{
+\newcommand*{\vectsubdotedvect}[3]{\ensuremath{%
+ \compvectsub{#1}{#2}{x}\compdvect{#3}{x}+%
+ \compvectsub{#1}{#2}{y}\compdvect{#3}{y}+%
+ \compvectsub{#1}{#2}{z}\compdvect{#3}{z}}}
+\newcommand*{\vectsubdoteDvect}[3]{\ensuremath{%
+ \compvectsub{#1}{#2}{x}\compDvect{#3}{x}+%
+ \compvectsub{#1}{#2}{y}\compDvect{#3}{y}+%
+ \compvectsub{#1}{#2}{z}\compDvect{#3}{z}}}
+\newcommand*{\dervectdotsvect}[3]{\ensuremath{%
\scompsdervect{#1}{#2}\bullet\scompsvect{#3}}}
-\newcommand{\Dervectdotsvect}[3]{\ensuremath{
+\newcommand*{\Dervectdotsvect}[3]{\ensuremath{%
\scompsDervect{#1}{#2}\bullet\scompsvect{#3}}}
-\newcommand{\dervectdotevect}[3]{\ensuremath{
- \compdervect{#1}{x}{#2}\compvect{x}{#3}+
- \compdervect{#1}{y}{#2}\compvect{y}{#3}+
- \compdervect{#1}{z}{#2}\compvect{z}{#3}}}
-\newcommand{\Dervectdotevect}[3]{\ensuremath{
- \compDervect{#1}{x}{#2}\compvect{x}{#3}+
- \compDervect{#1}{y}{#2}\compvect{y}{#3}+
- \compDervect{#1}{z}{#2}\compvect{z}{#3}}}
-\newcommand{\vectdotsdervect}[3]{\ensuremath{
+\newcommand*{\dervectdotevect}[3]{\ensuremath{%
+ \compdervect{#1}{x}{#2}\compvect{#3}{x}+%
+ \compdervect{#1}{y}{#2}\compvect{#3}{y}+%
+ \compdervect{#1}{z}{#2}\compvect{#3}{z}}}
+\newcommand*{\Dervectdotevect}[3]{\ensuremath{%
+ \compDervect{#1}{x}{#2}\compvect{#3}{x}+%
+ \compDervect{#1}{y}{#2}\compvect{#3}{y}+%
+ \compDervect{#1}{z}{#2}\compvect{#3}{z}}}
+\newcommand*{\vectdotsdervect}[3]{\ensuremath{%
\scompsvect{#1}\bullet\scompsdervect{#2}{#3}}}
-\newcommand{\vectdotsDervect}[3]{\ensuremath{
+\newcommand*{\vectdotsDervect}[3]{\ensuremath{%
\scompsvect{#1}\bullet\scompsDervect{#2}{#3}}}
-\newcommand{\vectdotedervect}[3]{\ensuremath{
- \compvect{#1}{x}\compdervect{#2}{x}{#3}+
- \compvect{#1}{y}\compdervect{#2}{y}{#3}+
+\newcommand*{\vectdotedervect}[3]{\ensuremath{%
+ \compvect{#1}{x}\compdervect{#2}{x}{#3}+%
+ \compvect{#1}{y}\compdervect{#2}{y}{#3}+%
\compvect{#1}{z}\compdervect{#2}{z}{#3}}}
-\newcommand{\vectdoteDervect}[3]{\ensuremath{
- \compvect{#1}{x}\compDervect{#2}{x}{#3}+
- \compvect{#1}{y}\compDervect{#2}{y}{#3}+
+\newcommand*{\vectdoteDervect}[3]{\ensuremath{%
+ \compvect{#1}{x}\compDervect{#2}{x}{#3}+%
+ \compvect{#1}{y}\compDervect{#2}{y}{#3}+%
\compvect{#1}{z}\compDervect{#2}{z}{#3}}}
-\newcommand{\dervectdotspos}[2]{\ensuremath{
- \scompsdervect{#1}{#2}\bullet\scompspos}}
-\newcommand{\Dervectdotspos}[2]{\ensuremath{
- \scompsDervect{#1}{#2}\bullet\scompspos}}
-\newcommand{\dervectdotepos}[2]{\ensuremath{
- \compdervect{#1}{x}{#2}\comppos{x}+
- \compdervect{#1}{y}{#2}\comppos{y}+
- \compdervect{#1}{z}{#2}\comppos{z}}}
-\newcommand{\Dervectdotepos}[2]{\ensuremath{
- \compDervect{#1}{x}{#2}\comppos{x}+
- \compDervect{#1}{y}{#2}\comppos{y}+
- \compDervect{#1}{z}{#2}\comppos{z}}}
-\newcommand{\dervectdotsdvect}[3]{\ensuremath{
+\newcommand*{\dervectdotsdvect}[3]{\ensuremath{%
\scompsdervect{#1}{#2}\bullet\scompsdvect{#3}}}
-\newcommand{\DervectdotsDvect}[3]{\ensuremath{
+\newcommand*{\DervectdotsDvect}[3]{\ensuremath{%
\scompsDervect{#1}{#2}\bullet\scompsDvect{#3}}}
-\newcommand{\dervectdotedvect}[3]{\ensuremath{
- \compdervect{#1}{x}{#2}\compdvect{#3}{x}+
- \compdervect{#1}{y}{#2}\compdvect{#3}{y}+
+\newcommand*{\dervectdotedvect}[3]{\ensuremath{%
+ \compdervect{#1}{x}{#2}\compdvect{#3}{x}+%
+ \compdervect{#1}{y}{#2}\compdvect{#3}{y}+%
\compdervect{#1}{z}{#2}\compdvect{#3}{z}}}
-\newcommand{\DervectdoteDvect}[3]{\ensuremath{
- \compDervect{#1}{x}{#2}\compDvect{#3}{x}+
- \compDervect{#1}{y}{#2}\compDvect{#3}{y}+
+\newcommand*{\DervectdoteDvect}[3]{\ensuremath{%
+ \compDervect{#1}{x}{#2}\compDvect{#3}{x}+%
+ \compDervect{#1}{y}{#2}\compDvect{#3}{y}+%
\compDervect{#1}{z}{#2}\compDvect{#3}{z}}}
-\newcommand{\dervectdotsdpos}[2]{\ensuremath{
- \scompsdervect{#1}{#2}\bullet\scompsdpos}}
-\newcommand{\DervectdotsDpos}[2]{\ensuremath{
- \scompsDervect{#1}{#2}\bullet\scompsDpos}}
-\newcommand{\dervectdotedpos}[2]{\ensuremath{
- \compdervect{#1}{x}{#2}\compdpos{x}+
- \compdervect{#1}{y}{#2}\compdpos{y}+
- \compdervect{#1}{z}{#2}\compdpos{z}}}
-\newcommand{\DervectdoteDpos}[2]{\ensuremath{
- \compDervect{#1}{x}{#2}\compDpos{x}+
- \compDervect{#1}{y}{#2}\compDpos{y}+
- \compDervect{#1}{z}{#2}\compDpos{z}}}
-\newcommand{\vectcrossvect}[2]{\ensuremath{{#1}\times{#2}}}
-\newcommand{\ltriplecross}[3]{\ensuremath{({#1}\times{#2})\times{#3}}}
-\newcommand{\rtriplecross}[3]{\ensuremath{{#1}\times({#2}\times{#3})}}
-\newcommand{\ltriplescalar}[3]{\ensuremath{{#1}\times{#2}\bullet{#3}}}
-\newcommand{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\times{#3}}}
-\newcommand{\ezero}{\ensuremath{\msub{\mathbf{e}}{0}}}
-\newcommand{\eone}{\ensuremath{\msub{\mathbf{e}}{1}}}
-\newcommand{\etwo}{\ensuremath{\msub{\mathbf{e}}{2}}}
-\newcommand{\ethree}{\ensuremath{\msub{\mathbf{e}}{3}}}
-\newcommand{\efour}{\ensuremath{\msub{\mathbf{e}}{4}}}
-\newcommand{\ek}[1]{\ensuremath{\msub{\mathbf{e}}{#1}}}
-\newcommand{\e}{\ek}
-\newcommand{\uezero}{\ensuremath{\msub{\widehat{\mathbf{e}}}{0}}}
-\newcommand{\ueone}{\ensuremath{\msub{\widehat{\mathbf{e}}}{1}}}
-\newcommand{\uetwo}{\ensuremath{\msub{\widehat{\mathbf{e}}}{2}}}
-\newcommand{\uethree}{\ensuremath{\msub{\widehat{\mathbf{e}}}{3}}}
-\newcommand{\uefour}{\ensuremath{\msub{\widehat{\mathbf{e}}}{4}}}
-\newcommand{\uek}[1]{\ensuremath{\msub{\widehat{\mathbf{e}}}{#1}}}
-\newcommand{\ue}{\uek}
-\newcommand{\ezerozero}{\ek{00}}
-\newcommand{\ezeroone}{\ek{01}}
-\newcommand{\ezerotwo}{\ek{02}}
-\newcommand{\ezerothree}{\ek{03}}
-\newcommand{\ezerofour}{\ek{04}}
-\newcommand{\eoneone}{\ek{11}}
-\newcommand{\eonetwo}{\ek{12}}
-\newcommand{\eonethree}{\ek{13}}
-\newcommand{\eonefour}{\ek{14}}
-\newcommand{\etwoone}{\ek{21}}
-\newcommand{\etwotwo}{\ek{22}}
-\newcommand{\etwothree}{\ek{23}}
-\newcommand{\etwofour}{\ek{24}}
-\newcommand{\ethreeone}{\ek{31}}
-\newcommand{\ethreetwo}{\ek{32}}
-\newcommand{\ethreethree}{\ek{33}}
-\newcommand{\ethreefour}{\ek{34}}
-\newcommand{\efourone}{\ek{41}}
-\newcommand{\efourtwo}{\ek{42}}
-\newcommand{\efourthree}{\ek{43}}
-\newcommand{\efourfour}{\ek{44}}
-\newcommand{\euzero}{\ensuremath{\msup{\mathbf{e}}{0}}}
-\newcommand{\euone}{\ensuremath{\msup{\mathbf{e}}{1}}}
-\newcommand{\eutwo}{\ensuremath{\msup{\mathbf{e}}{2}}}
-\newcommand{\euthree}{\ensuremath{\msup{\mathbf{e}}{3}}}
-\newcommand{\eufour}{\ensuremath{\msup{\mathbf{e}}{4}}}
-\newcommand{\euk}[1]{\ensuremath{\msup{\mathbf{e}}{#1}}}
-\newcommand{\eu}{\euk}
-\newcommand{\euzerozero}{\euk{00}}
-\newcommand{\euzeroone}{\euk{01}}
-\newcommand{\euzerotwo}{\euk{02}}
-\newcommand{\euzerothree}{\euk{03}}
-\newcommand{\euzerofour}{\euk{04}}
-\newcommand{\euoneone}{\euk{11}}
-\newcommand{\euonetwo}{\euk{12}}
-\newcommand{\euonethree}{\euk{13}}
-\newcommand{\euonefour}{\euk{14}}
-\newcommand{\eutwoone}{\euk{21}}
-\newcommand{\eutwotwo}{\euk{22}}
-\newcommand{\eutwothree}{\euk{23}}
-\newcommand{\eutwofour}{\euk{24}}
-\newcommand{\euthreeone}{\euk{31}}
-\newcommand{\euthreetwo}{\euk{32}}
-\newcommand{\euthreethree}{\euk{33}}
-\newcommand{\euthreefour}{\euk{34}}
-\newcommand{\eufourone}{\euk{41}}
-\newcommand{\eufourtwo}{\euk{42}}
-\newcommand{\eufourthree}{\euk{43}}
-\newcommand{\eufourfour}{\euk{44}}
-\newcommand{\gzero}{\ensuremath{\msub{\mathbf{\gamma}}{0}}}
-\newcommand{\gone}{\ensuremath{\msub{\mathbf{\gamma}}{1}}}
-\newcommand{\gtwo}{\ensuremath{\msub{\mathbf{\gamma}}{2}}}
-\newcommand{\gthree}{\ensuremath{\msub{\mathbf{\gamma}}{3}}}
-\newcommand{\gfour}{\ensuremath{\msub{\mathbf{\gamma}}{4}}}
-\newcommand{\gk}[1]{\ensuremath{\msub{\mathbf{\gamma}}{#1}}}
-\newcommand{\g}{\gk}
-\newcommand{\gzerozero}{\gk{00}}
-\newcommand{\gzeroone}{\gk{01}}
-\newcommand{\gzerotwo}{\gk{02}}
-\newcommand{\gzerothree}{\gk{03}}
-\newcommand{\gzerofour}{\gk{04}}
-\newcommand{\goneone}{\gk{11}}
-\newcommand{\gonetwo}{\gk{12}}
-\newcommand{\gonethree}{\gk{13}}
-\newcommand{\gonefour}{\gk{14}}
-\newcommand{\gtwoone}{\gk{21}}
-\newcommand{\gtwotwo}{\gk{22}}
-\newcommand{\gtwothree}{\gk{23}}
-\newcommand{\gtwofour}{\gk{24}}
-\newcommand{\gthreeone}{\gk{31}}
-\newcommand{\gthreetwo}{\gk{32}}
-\newcommand{\gthreethree}{\gk{33}}
-\newcommand{\gthreefour}{\gk{34}}
-\newcommand{\gfourone}{\gk{41}}
-\newcommand{\gfourtwo}{\gk{42}}
-\newcommand{\gfourthree}{\gk{43}}
-\newcommand{\gfourfour}{\gk{44}}
-\newcommand{\guzero}{\ensuremath{\msup{\mathbf{\gamma}}{0}}}
-\newcommand{\guone}{\ensuremath{\msup{\mathbf{\gamma}}{1}}}
-\newcommand{\gutwo}{\ensuremath{\msup{\mathbf{\gamma}}{2}}}
-\newcommand{\guthree}{\ensuremath{\msup{\mathbf{\gamma}}{3}}}
-\newcommand{\gufour}{\ensuremath{\msup{\mathbf{\gamma}}{4}}}
-\newcommand{\guk}[1]{\ensuremath{\msup{\mathbf{\gamma}}{#1}}}
-\newcommand{\gu}{\guk}
-\newcommand{\guzerozero}{\guk{00}}
-\newcommand{\guzeroone}{\guk{01}}
-\newcommand{\guzerotwo}{\guk{02}}
-\newcommand{\guzerothree}{\guk{03}}
-\newcommand{\guzerofour}{\guk{04}}
-\newcommand{\guoneone}{\guk{11}}
-\newcommand{\guonetwo}{\guk{12}}
-\newcommand{\guonethree}{\guk{13}}
-\newcommand{\guonefour}{\guk{14}}
-\newcommand{\gutwoone}{\guk{21}}
-\newcommand{\gutwotwo}{\guk{22}}
-\newcommand{\gutwothree}{\guk{23}}
-\newcommand{\gutwofour}{\guk{24}}
-\newcommand{\guthreeone}{\guk{31}}
-\newcommand{\guthreetwo}{\guk{32}}
-\newcommand{\guthreethree}{\guk{33}}
-\newcommand{\guthreefour}{\guk{34}}
-\newcommand{\gufourone}{\guk{41}}
-\newcommand{\gufourtwo}{\guk{42}}
-\newcommand{\gufourthree}{\guk{43}}
-\newcommand{\gufourfour}{\guk{44}}
+\newcommand*{\vectcrossvect}[2]{\ensuremath{{#1}\boldsymbol{\times}{#2}}}
+\newcommand*{\ltriplecross}[3]{\ensuremath{({#1}\boldsymbol{\times}{#2})%
+ \boldsymbol{\times}{#3}}}
+\newcommand*{\rtriplecross}[3]{\ensuremath{{#1}\boldsymbol{\times}%
+ ({#2}\boldsymbol{\times}{#3})}}
+\newcommand*{\ltriplescalar}[3]{\ensuremath{{#1}\boldsymbol{\times}{#2}\bullet{#3}}}
+\newcommand*{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\boldsymbol{\times}{#3}}}
+\newcommand*{\ezero}{\ensuremath{\msub{\boldsymbol{e}}{0}}}
+\newcommand*{\eone}{\ensuremath{\msub{\boldsymbol{e}}{1}}}
+\newcommand*{\etwo}{\ensuremath{\msub{\boldsymbol{e}}{2}}}
+\newcommand*{\ethree}{\ensuremath{\msub{\boldsymbol{e}}{3}}}
+\newcommand*{\efour}{\ensuremath{\msub{\boldsymbol{e}}{4}}}
+\newcommand*{\ek}[1]{\ensuremath{\msub{\boldsymbol{e}}{#1}}}
+\newcommand*{\e}{\ek}
+\newcommand*{\uezero}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{0}}}
+\newcommand*{\ueone}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{1}}}
+\newcommand*{\uetwo}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{2}}}
+\newcommand*{\uethree}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{3}}}
+\newcommand*{\uefour}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{4}}}
+\newcommand*{\uek}[1]{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{#1}}}
+\newcommand*{\ue}{\uek}
+\newcommand*{\ezerozero}{\ek{00}}
+\newcommand*{\ezeroone}{\ek{01}}
+\newcommand*{\ezerotwo}{\ek{02}}
+\newcommand*{\ezerothree}{\ek{03}}
+\newcommand*{\ezerofour}{\ek{04}}
+\newcommand*{\eoneone}{\ek{11}}
+\newcommand*{\eonetwo}{\ek{12}}
+\newcommand*{\eonethree}{\ek{13}}
+\newcommand*{\eonefour}{\ek{14}}
+\newcommand*{\etwoone}{\ek{21}}
+\newcommand*{\etwotwo}{\ek{22}}
+\newcommand*{\etwothree}{\ek{23}}
+\newcommand*{\etwofour}{\ek{24}}
+\newcommand*{\ethreeone}{\ek{31}}
+\newcommand*{\ethreetwo}{\ek{32}}
+\newcommand*{\ethreethree}{\ek{33}}
+\newcommand*{\ethreefour}{\ek{34}}
+\newcommand*{\efourone}{\ek{41}}
+\newcommand*{\efourtwo}{\ek{42}}
+\newcommand*{\efourthree}{\ek{43}}
+\newcommand*{\efourfour}{\ek{44}}
+\newcommand*{\euzero}{\ensuremath{\boldsymbol{e}^0}}
+\newcommand*{\euone}{\ensuremath{\boldsymbol{e}^1}}
+\newcommand*{\eutwo}{\ensuremath{\boldsymbol{e}^2}}
+\newcommand*{\euthree}{\ensuremath{\boldsymbol{e}^3}}
+\newcommand*{\eufour}{\ensuremath{\boldsymbol{e}^4}}
+\newcommand*{\euk}[1]{\ensuremath{\boldsymbol{e}^{#1}}}
+\newcommand*{\eu}{\euk}
+\newcommand*{\euzerozero}{\euk{00}}
+\newcommand*{\euzeroone}{\euk{01}}
+\newcommand*{\euzerotwo}{\euk{02}}
+\newcommand*{\euzerothree}{\euk{03}}
+\newcommand*{\euzerofour}{\euk{04}}
+\newcommand*{\euoneone}{\euk{11}}
+\newcommand*{\euonetwo}{\euk{12}}
+\newcommand*{\euonethree}{\euk{13}}
+\newcommand*{\euonefour}{\euk{14}}
+\newcommand*{\eutwoone}{\euk{21}}
+\newcommand*{\eutwotwo}{\euk{22}}
+\newcommand*{\eutwothree}{\euk{23}}
+\newcommand*{\eutwofour}{\euk{24}}
+\newcommand*{\euthreeone}{\euk{31}}
+\newcommand*{\euthreetwo}{\euk{32}}
+\newcommand*{\euthreethree}{\euk{33}}
+\newcommand*{\euthreefour}{\euk{34}}
+\newcommand*{\eufourone}{\euk{41}}
+\newcommand*{\eufourtwo}{\euk{42}}
+\newcommand*{\eufourthree}{\euk{43}}
+\newcommand*{\eufourfour}{\euk{44}}
+\newcommand*{\gzero}{\ensuremath{\msub{\boldsymbol{\gamma}}{0}}}
+\newcommand*{\gone}{\ensuremath{\msub{\boldsymbol{\gamma}}{1}}}
+\newcommand*{\gtwo}{\ensuremath{\msub{\boldsymbol{\gamma}}{2}}}
+\newcommand*{\gthree}{\ensuremath{\msub{\boldsymbol{\gamma}}{3}}}
+\newcommand*{\gfour}{\ensuremath{\msub{\boldsymbol{\gamma}}{4}}}
+\newcommand*{\gk}[1]{\ensuremath{\msub{\boldsymbol{\gamma}}{#1}}}
+\newcommand*{\g}{\gk}
+\newcommand*{\gzerozero}{\gk{00}}
+\newcommand*{\gzeroone}{\gk{01}}
+\newcommand*{\gzerotwo}{\gk{02}}
+\newcommand*{\gzerothree}{\gk{03}}
+\newcommand*{\gzerofour}{\gk{04}}
+\newcommand*{\goneone}{\gk{11}}
+\newcommand*{\gonetwo}{\gk{12}}
+\newcommand*{\gonethree}{\gk{13}}
+\newcommand*{\gonefour}{\gk{14}}
+\newcommand*{\gtwoone}{\gk{21}}
+\newcommand*{\gtwotwo}{\gk{22}}
+\newcommand*{\gtwothree}{\gk{23}}
+\newcommand*{\gtwofour}{\gk{24}}
+\newcommand*{\gthreeone}{\gk{31}}
+\newcommand*{\gthreetwo}{\gk{32}}
+\newcommand*{\gthreethree}{\gk{33}}
+\newcommand*{\gthreefour}{\gk{34}}
+\newcommand*{\gfourone}{\gk{41}}
+\newcommand*{\gfourtwo}{\gk{42}}
+\newcommand*{\gfourthree}{\gk{43}}
+\newcommand*{\gfourfour}{\gk{44}}
+\newcommand*{\guzero}{\ensuremath{\boldsymbol{\gamma}^0}}
+\newcommand*{\guone}{\ensuremath{\boldsymbol{\gamma}^1}}
+\newcommand*{\gutwo}{\ensuremath{\boldsymbol{\gamma}^2}}
+\newcommand*{\guthree}{\ensuremath{\boldsymbol{\gamma}^3}}
+\newcommand*{\gufour}{\ensuremath{\boldsymbol{\gamma}^4}}
+\newcommand*{\guk}[1]{\ensuremath{\boldsymbol{\gamma}^{#1}}}
+\newcommand*{\gu}{\guk}
+\newcommand*{\guzerozero}{\guk{00}}
+\newcommand*{\guzeroone}{\guk{01}}
+\newcommand*{\guzerotwo}{\guk{02}}
+\newcommand*{\guzerothree}{\guk{03}}
+\newcommand*{\guzerofour}{\guk{04}}
+\newcommand*{\guoneone}{\guk{11}}
+\newcommand*{\guonetwo}{\guk{12}}
+\newcommand*{\guonethree}{\guk{13}}
+\newcommand*{\guonefour}{\guk{14}}
+\newcommand*{\gutwoone}{\guk{21}}
+\newcommand*{\gutwotwo}{\guk{22}}
+\newcommand*{\gutwothree}{\guk{23}}
+\newcommand*{\gutwofour}{\guk{24}}
+\newcommand*{\guthreeone}{\guk{31}}
+\newcommand*{\guthreetwo}{\guk{32}}
+\newcommand*{\guthreethree}{\guk{33}}
+\newcommand*{\guthreefour}{\guk{34}}
+\newcommand*{\gufourone}{\guk{41}}
+\newcommand*{\gufourtwo}{\guk{42}}
+\newcommand*{\gufourthree}{\guk{43}}
+\newcommand*{\gufourfour}{\guk{44}}
\ExplSyntaxOn % Vectors formated as in M\&I, written in LaTeX3
\NewDocumentCommand{\mivector}{ O{,} m o }%
{%
@@ -7898,458 +8873,567 @@ Sshows factors dividing to a sneaky one.
\rowvector[,]{\msub{#2}{0},\msub{#2}{1},\msub{#2}{2},\msub{#2}{3}}%
}%
}%
-\newphysicsconstant{oofpez}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}}}}
-{\scin[8.9876]{9}}{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared}
-[\m\per\farad][\newton\usk\m\squared\per\coulomb\squared]
-\newcommand{\coulombconstant}{\oofpez}
-\newphysicsconstant{oofpezcs}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}
-c^2\phantom{_o}}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
+\newphysicsconstant{oofpez}{\ensuremath{\frac{1}
+{\phantom{_o}4\pi\epsilon_0}}}{\mi@p{9}{8.9876}\timestento{9}}
+{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared}[\m\per\farad]
+[\newton\usk\m\squared\per\coulomb\squared]
+\newcommand*{\coulombconstant}{\oofpez}
+\newphysicsconstant{oofpezcs}{\ensuremath{\frac{1}
+{\phantom{_o}4\pi\epsilon_0 c^2\phantom{_o}}}}{\tento{-7}}
+{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
[\T\usk\m\squared][\N\usk\s\squared\per\C\squared]
-\newcommand{\altcoulombconstant}{\oofpezcs}
-\newphysicsconstant{vacuumpermittivity}{\ensuremath{\ssub{\epsilon}{o}}}{\scin[8.8542]{-12}}
+\newcommand*{\altcoulombconstant}{\oofpezcs}
+\newphysicsconstant{vacuumpermittivity}{\ensuremath{\epsilon_0}}
+{\mi@p{9.0}{8.8542}\timestento{-12}}
{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\quarted\usk\A\squared}[\F\per\m]
[\C\squared\per\N\usk\m\squared]
-\newphysicsconstant{mzofp}{\ensuremath{\frac{\phantom{_oo}\ssub{\mu}{o}\phantom{_o}}
-{4\pi}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
+\newphysicsconstant{mzofp}
+{\ensuremath{\frac{\phantom{_oo}\mu_0\phantom{_o}}{4\pi}}}
+{\tento{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
[\henry\per\m][\tesla\usk\m\per\A]
-\newcommand{\biotsavartconstant}{\mzofp}
-\newphysicsconstant{vacuumpermeability}{\ensuremath{\ssub{\mu}{o}}}{\scin[4\pi]{-7}}
-{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m]
-[\T\usk\m\per\A]
-\newphysicsconstant{boltzmann}{\ensuremath{\ssub{k}{B}}}{\scin[1.3806]{-23}}
+\newcommand*{\biotsavartconstant}{\mzofp}
+\newphysicsconstant{vacuumpermeability}{\ensuremath{\mu_0}}
+{4\pi\timestento{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
+[\henry\per\m][\T\usk\m\per\A]
+\newphysicsconstant{boltzmann}{\ensuremath{k_B}}
+{\mi@p{1.4}{1.3806}\timestento{-23}}
{\m\squared\usk\kg\usk\reciprocalsquare\s\usk\reciprocal\K}[\joule\per\K][\J\per\K]
-\newcommand{\boltzmannconstant}{\boltzmann}
-\newphysicsconstant{boltzmanninev}{\ensuremath{\ssub{k}{B}}}{\scin[8.6173]{-5}}
+\newcommand*{\boltzmannconstant}{\boltzmann}
+\newphysicsconstant{boltzmannineV}{\ensuremath{k_B}}
+{\mi@p{8.6}{8.6173}\timestento{-5}}
{\eV\usk\reciprocal\K}[\eV\per\K][\eV\per\K]
-\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}}{\scin[5.6704]{-8}}
+\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}}
+{\mi@p{5.7}{5.6704}\timestento{-8}}
{\kg\usk\s\reciprocalcubed\usk\K\reciprocalquarted}[\W\per\m\squared\usk\K^4]
[\W\per\m\squared\usk\K\quarted]
-\newcommand{\stefanboltzmannconstant}{\stefanboltzmann}
-\newphysicsconstant{planck}{\ensuremath{h}}{\scin[6.6261]{-34}}
+\newcommand*{\stefanboltzmannconstant}{\stefanboltzmann}
+\newphysicsconstant{planck}{\ensuremath{h}}{\mi@p{6.6}{6.6261}\timestento{-34}}
{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s]
-\newcommand{\planckconstant}{\planck}
-\newphysicsconstant{planckinev}{\ensuremath{h}}{\scin[4.1357]{-15}}
+\newcommand*{\planckconstant}{\planck}
+\newphysicsconstant{planckineV}{\ensuremath{h}}{\mi@p{4.1}{4.1357}\timestento{-15}}
{\eV\usk\s}[\eV\usk\s][\eV\usk\s]
-\newphysicsconstant{planckbar}{\ensuremath{\hbar}}{\scin[1.0546]{-34}}
+\newphysicsconstant{planckbar}{\ensuremath{\hslash}}{\mi@p{1.1}{1.0546}\timestento{-34}}
{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s]
-\newcommand{\reducedplanckconstant}{\planckbar}
-\newphysicsconstant{planckbarinev}{\ensuremath{\hbar}}{\scin[6.5821]{-16}}
-{\eV\usk\s}[\eV\usk\s][\eV\usk\s]
-\newphysicsconstant{planckc}{\ensuremath{hc}}{\scin[1.9864]{-25}}
+\newcommand*{\reducedplanckconstant}{\planckbar}
+\newphysicsconstant{planckbarineV}{\ensuremath{\hslash}}
+{\mi@p{6.6}{6.5821}\timestento{-16}}{\eV\usk\s}[\eV\usk\s][\eV\usk\s]
+\newphysicsconstant{planckc}{\ensuremath{hc}}{\mi@p{2.0}{1.9864}\timestento{-25}}
{\m\cubed\usk\kg\usk\reciprocalsquare\s}[\J\usk\m][\J\usk\m]
-\newcommand{\planckconstanttimesc}{\planckc}
-\newphysicsconstant{planckcinev}{\ensuremath{hc}}{\scin[1.9864]{-25}}
-{\eV\usk\ensuremath{\mathrm{n}\m}}[\eV\usk\ensuremath{\mathrm{n}\m}]
-[\eV\usk\ensuremath{\mathrm{n}\m}]
-\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}}{\scin[1.0974]{7}}
-{\reciprocal\m}[\reciprocal\m][\reciprocal\m]
-\newcommand{\rydbergconstant}{\rydberg}
-\newphysicsconstant{bohrradius}{\ensuremath{\msub{a}{0}}}{\scin[5.2918]{-11}}{\m}[\m][\m]
-\newphysicsconstant{finestructure}{\ensuremath{\alpha}}{\scin[7.2974]{-3}}{\relax}
-\newcommand{\finestructureconstant}{\finestructure}
-\newphysicsconstant{avogadro}{\ensuremath{\ssub{N}{A}}}{\scin[6.0221]{23}}
-{\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol]
-\newcommand{\avogadroconstant}{\avogadro}
-\newphysicsconstant{universalgrav}{\ensuremath{G}}{\scin[6.6738]{-11}}
+\newcommand*{\planckconstanttimesc}{\planckc}
+\newphysicsconstant{planckcineV}{\ensuremath{hc}}
+{\mi@p{2.0}{1.9864}\timestento{-25}}{\eV\usk\text{n}\m}[\eV\usk\text{n}\m]
+[\eV\usk\text{n}\m]
+\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}}
+{\mi@p{1.1}{1.0974}\timestento{7}}{\reciprocal\m}[\reciprocal\m][\reciprocal\m]
+\newcommand*{\rydbergconstant}{\rydberg}
+\newphysicsconstant{bohrradius}{\ensuremath{a_0}}{\mi@p{5.3}{5.2918}\timestento{-11}}
+{\m}[\m][\m]
+\newphysicsconstant{finestructure}{\ensuremath{\alpha}}
+{\mi@p{\frac{1}{137}}{7.2974\timestento{-3}}}{\relax}
+\newcommand*{\finestructureconstant}{\finestructure}
+\newphysicsconstant{avogadro}{\ensuremath{N_A}}
+{\mi@p{6.0}{6.0221}\timestento{23}}{\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol]
+\newcommand*{\avogadroconstant}{\avogadro}
+\newphysicsconstant{universalgrav}{\ensuremath{G}}{\mi@p{6.7}{6.6738}\timestento{-11}}
{\m\cubed\usk\reciprocal\kg\usk\s\reciprocalsquared}[\J\usk\m\per\kg\squared]
[\N\usk\m\squared\per\kg\squared]
-\newcommand{\universalgravitationalconstant}{\universalgrav}
-\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{9.80}{\m\usk\s\reciprocalsquared}
-[\N\per\kg][\m\per\s\squared]
-\newcommand{\earthssurfacegravitationalfield}{\surfacegravfield}
-\newphysicsconstant{clight}{\ensuremath{c}}{\scin[2.9979]{8}}{\m\usk\reciprocal\s}
-[\m\per\s][\m\per\s]
-\newcommand{\photonconstant}{\clight}
-\newphysicsconstant{clightinfeet}{\ensuremath{c}}{0.9836}
-{\ensuremath{\mathrm{ft}\usk\reciprocal\mathrm{n}\s}}
-[\ensuremath{\mathrm{ft}\per\mathrm{n}\s}][\ensuremath{\mathrm{ft}\per\mathrm{n}\s}]
-\newphysicsconstant{Ratom}{\ensuremath{\ssub{r}{atom}}}{\scin{-10}}{\m}[\m][\m]
-\newcommand{\radiusofatom}{\Ratom}
-\newphysicsconstant{Mproton}{\ensuremath{\ssub{m}{proton}}}{\scin[1.6726]{-27}}
-{\kg}[\kg][\kg]
-\newcommand{\massofproton}{\Mproton}
-\newphysicsconstant{Mneutron}{\ensuremath{\ssub{m}{neutron}}}{\scin[1.6749]{-27}}
-{\kg}[\kg][\kg]
-\newcommand{\massofneutron}{\Mneutron}
-\newphysicsconstant{Mhydrogen}{\ensuremath{\ssub{m}{hydrogen}}}{\scin[1.6737]{-27}}
-{\kg}[\kg][\kg]
-\newcommand{\massofhydrogen}{\Mhydrogen}
-\newphysicsconstant{Melectron}{\ensuremath{\ssub{m}{electron}}}{\scin[9.1094]{-31}}
-{\kg}[\kg][\kg]
-\newcommand{\massofelectron}{\Melectron}
-\newphysicsconstant{echarge}{\ensuremath{e}}{\scin[1.6022]{-19}}{\A\usk\s}[\C][\C]
-\newcommand{\elementarycharge}{\echarge}
-\newphysicsconstant{Qelectron}{\ensuremath{\ssub{Q}{electron}}}{-\echargevalue}
+\newcommand*{\universalgravitationalconstant}{\universalgrav}
+\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{\mi@p{9.8}{9.80}}
+{\m\usk\s\reciprocalsquared}[\N\per\kg][\N\per\kg]
+\newcommand*{\earthssurfacegravitationalfield}{\surfacegravfield}
+\newphysicsconstant{clight}{\ensuremath{c}}
+{\mi@p{3}{2.9979}\timestento{8}}{\m\usk\reciprocal\s}[\m\per\s][\m\per\s]
+\newcommand*{\photonconstant}{\clight}
+\newphysicsconstant{clightinfeet}{\ensuremath{c}}{\mi@p{1}{0.9836}}
+{\text{ft}\usk\reciprocal{\text{n}\s}}[\text{ft}\per\text{n}\s]
+[\text{ft}\per\mathrm{n}\s]
+\newphysicsconstant{Ratom}{\ensuremath{r_{\text{atom}}}}{\tento{-10}}{\m}[\m][\m]
+\newphysicsconstant{Mproton}{\ensuremath{m_p}}
+{\mi@p{1.7}{1.6726}\timestento{-27}}{\kg}[\kg][\kg]
+\newphysicsconstant{Mneutron}{\ensuremath{m_n}}
+{\mi@p{1.7}{1.6749}\timestento{-27}}{\kg}[\kg][\kg]
+\newphysicsconstant{Mhydrogen}{\ensuremath{m_H}}
+{\mi@p{1.7}{1.6737}\timestento{-27}}{\kg}[\kg][\kg]
+\newphysicsconstant{Melectron}{\ensuremath{m_e}}
+{\mi@p{9.1}{9.1094}\timestento{-31}}{\kg}[\kg][\kg]
+\newphysicsconstant{echarge}{\ensuremath{e}}
+{\mi@p{1.6}{1.6022}\timestento{-19}}{\A\usk\s}[\C][\C]
+\newcommand*{\elementarycharge}{\echarge}
+\newphysicsconstant{Qelectron}{\ensuremath{Q_e}}{-\echargevalue}
{\A\usk\s}[\C][\C]
-\newphysicsconstant{qelectron}{\ensuremath{\ssub{q}{electron}}}{-\echargevalue}
+\newphysicsconstant{qelectron}{\ensuremath{q_e}}{-\echargevalue}
{\A\usk\s}[\C][\C]
-\newcommand{\chargeofelectron}{\Qelectron}
-\newphysicsconstant{Qproton}{\ensuremath{\ssub{Q}{proton}}}{+\echargevalue}
+\newphysicsconstant{Qproton}{\ensuremath{Q_p}}{+\echargevalue}
{\A\usk\s}[\C][\C]
-\newphysicsconstant{qproton}{\ensuremath{\ssub{q}{proton}}}{+\echargevalue}
+\newphysicsconstant{qproton}{\ensuremath{q_p}}{+\echargevalue}
{\A\usk\s}[\C][\C]
-\newcommand{\chargeofproton}{\Qproton}
-\newphysicsconstant{MEarth}{\ensuremath{\ssub{M}{Earth}}}{\scin[5.9736]{24}}{\kg}[\kg][\kg]
-\newcommand{\massofEarth}{\MEarth}
-\newphysicsconstant{MMoon}{\ensuremath{\ssub{M}{Moon}}}{\scin[7.3459]{22}}{\kg}[\kg][\kg]
-\newcommand{\massofMoon}{\MMoon}
-\newphysicsconstant{MSun}{\ensuremath{\ssub{M}{Sun}}}{\scin[1.9891]{30}}{\kg}[\kg][\kg]
-\newcommand{\massofSun}{\MSun}
-\newphysicsconstant{REarth}{\ensuremath{\ssub{R}{Earth}}}{\scin[6.3675]{6}}{\m}[\m][\m]
-\newcommand{\radiusofEarth}{\REarth}
-\newphysicsconstant{RMoon}{\ensuremath{\ssub{R}{Moon}}}{\scin[1.7375]{6}}{\m}[\m][\m]
-\newcommand{\radiusofMoon}{\RMoon}
-\newphysicsconstant{RSun}{\ensuremath{\ssub{R}{Sun}}}{\scin[6.9634]{8}}{\m}[\m][\m]
-\newcommand{\radiusofSun}{\RSun}
-\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\scin[1.4960]{11}}{\m}[\m][\m]
-\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\scin[1.4960]{11}}{\m}[\m][\m]
-\newcommand{\EarthSundistance}{\ESdist}
-\newcommand{\SunEarthdistance}{\SEdist}
-\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}{\scin[3.8440]{8}}{\m}[\m][\m]
-\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}{\scin[3.8440]{8}}{\m}[\m][\m]
-\newcommand{\EarthMoondistance}{\ESdist}
-\newcommand{\MoonEarthdistance}{\SEdist}
-\newphysicsconstant{LSun}{\ensuremath{\ssub{L}{Sun}}}{\scin[3.8460]{26}}
- {\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s]
-\newphysicsconstant{TSun}{\ensuremath{\ssub{T}{Sun}}}{5778}{\K}[\K][\K]
-\newphysicsconstant{MagSun}{\ensuremath{\ssub{M}{Sun}}}{+4.83}{}[][]
-\newphysicsconstant{magSun}{\ensuremath{\ssub{m}{Sun}}}{-26.74}{}[][]
-\newcommand{\Lstar}[1][\(\star\)]{\ensuremath{\ssub{L}{#1}}}
-\newcommand{\Lsolar}{\ensuremath{\Lstar[\(\odot\)]}}
-\newcommand{\Tstar}[1][\(\star\)]{\ensuremath{\ssub{T}{#1}}}
-\newcommand{\Tsolar}{\ensuremath{\Tstar[\(\odot\)]}}
-\newcommand{\Rstar}[1][\(\star\)]{\ensuremath{\ssub{R}{#1}}}
-\newcommand{\Rsolar}{\ensuremath{\Rstar[\(\odot\)]}}
-\newcommand{\Mstar}[1][\(\star\)]{\ensuremath{\ssub{M}{#1}}}
-\newcommand{\Msolar}{\ensuremath{\Mstar[\(\odot\)]}}
-\newcommand{\Fstar}[1][\(\star\)]{\ensuremath{\ssub{F}{#1}}}
-\newcommand{\fstar}[1][\(\star\)]{\ensuremath{\ssub{f}{#1}}}
-\newcommand{\Fsolar}{\ensuremath{\Fstar[\(\odot\)]}}
-\newcommand{\fsolar}{\ensuremath{\fstar[\(\odot\)]}}
-\newcommand{\Magstar}[1][\(\star\)]{\ensuremath{\ssub{M}{#1}}}
-\newcommand{\magstar}[1][\(\star\)]{\ensuremath{\ssub{m}{#1}}}
-\newcommand{\Magsolar}{\ensuremath{\Magstar[\(\odot\)]}}
-\newcommand{\magsolar}{\ensuremath{\magstar[\(\odot\)]}}
-\newcommand{\Dstar}[1][\(\star\)]{\ensuremath{\ssub{D}{#1}}}
-\newcommand{\dstar}[1][\(\star\)]{\ensuremath{\ssub{d}{#1}}}
-\newcommand{\Dsolar}{\ensuremath{\Dstar[\(\odot\)]}}
-\newcommand{\dsolar}{\ensuremath{\dstar[\(\odot\)]}}
-\newcommand{\onehalf}{\ensuremath{\frac{1}{2}}\xspace}
-\newcommand{\onethird}{\ensuremath{\frac{1}{3}}\xspace}
-\newcommand{\onefourth}{\ensuremath{\frac{1}{4}}\xspace}
-\newcommand{\onefifth}{\ensuremath{\frac{1}{5}}\xspace}
-\newcommand{\onesixth}{\ensuremath{\frac{1}{6}}\xspace}
-\newcommand{\oneseventh}{\ensuremath{\frac{1}{7}}\xspace}
-\newcommand{\oneeighth}{\ensuremath{\frac{1}{8}}\xspace}
-\newcommand{\oneninth}{\ensuremath{\frac{1}{9}}\xspace}
-\newcommand{\onetenth}{\ensuremath{\frac{1}{10}}\xspace}
-\newcommand{\twooneths}{\ensuremath{\frac{2}{1}}\xspace}
-\newcommand{\twohalves}{\ensuremath{\frac{2}{2}}\xspace}
-\newcommand{\twothirds}{\ensuremath{\frac{2}{3}}\xspace}
-\newcommand{\twofourths}{\ensuremath{\frac{2}{4}}\xspace}
-\newcommand{\twofifths}{\ensuremath{\frac{2}{5}}\xspace}
-\newcommand{\twosixths}{\ensuremath{\frac{2}{6}}\xspace}
-\newcommand{\twosevenths}{\ensuremath{\frac{2}{7}}\xspace}
-\newcommand{\twoeighths}{\ensuremath{\frac{2}{8}}\xspace}
-\newcommand{\twoninths}{\ensuremath{\frac{2}{9}}\xspace}
-\newcommand{\twotenths}{\ensuremath{\frac{2}{10}}\xspace}
-\newcommand{\threeoneths}{\ensuremath{\frac{3}{1}}\xspace}
-\newcommand{\threehalves}{\ensuremath{\frac{3}{2}}\xspace}
-\newcommand{\threethirds}{\ensuremath{\frac{3}{3}}\xspace}
-\newcommand{\threefourths}{\ensuremath{\frac{3}{4}}\xspace}
-\newcommand{\threefifths}{\ensuremath{\frac{3}{5}}\xspace}
-\newcommand{\threesixths}{\ensuremath{\frac{3}{6}}\xspace}
-\newcommand{\threesevenths}{\ensuremath{\frac{3}{7}}\xspace}
-\newcommand{\threeeighths}{\ensuremath{\frac{3}{8}}\xspace}
-\newcommand{\threeninths}{\ensuremath{\frac{3}{9}}\xspace}
-\newcommand{\threetenths}{\ensuremath{\frac{3}{10}}\xspace}
-\newcommand{\fouroneths}{\ensuremath{\frac{4}{1}}\xspace}
-\newcommand{\fourhalves}{\ensuremath{\frac{4}{2}}\xspace}
-\newcommand{\fourthirds}{\ensuremath{\frac{4}{3}}\xspace}
-\newcommand{\fourfourths}{\ensuremath{\frac{4}{4}}\xspace}
-\newcommand{\fourfifths}{\ensuremath{\frac{4}{5}}\xspace}
-\newcommand{\foursixths}{\ensuremath{\frac{4}{6}}\xspace}
-\newcommand{\foursevenths}{\ensuremath{\frac{4}{7}}\xspace}
-\newcommand{\foureighths}{\ensuremath{\frac{4}{8}}\xspace}
-\newcommand{\fourninths}{\ensuremath{\frac{4}{9}}\xspace}
-\newcommand{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace}
-\newcommand{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}}
-\newcommand{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}}
-\@ifpackageloaded{physymb}{%
- \typeout{mandi: Package physymb detected. Its commands will be used.}
-}{%
- \newcommand{\evalat}[2]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}}}
-}%
-\newcommand{\evaluatedat}[1]{\ensuremath{\Bigg.\Bigg\rvert_{#1}}}
-\newcommandx{\integral}[4][1,2,usedefault]{\ensuremath{
+\newphysicsconstant{MEarth}{\ensuremath{M_{\text{Earth}}}}
+{\mi@p{6.0}{5.9736}\timestento{24}}{\kg}[\kg][\kg]
+\newphysicsconstant{MMoon}{\ensuremath{M_{\text{Moon}}}}
+{\mi@p{7.3}{7.3459}\timestento{22}}{\kg}[\kg][\kg]
+\newphysicsconstant{MSun}{\ensuremath{M_{\text{Sun}}}}
+{\mi@p{2.0}{1.9891}\timestento{30}}
+{\kg}[\kg][\kg]
+\newphysicsconstant{REarth}{\ensuremath{R_{\text{Earth}}}}
+{\mi@p{6.4}{6.3675}\timestento{6}}{\m}[\m][\m]
+\newphysicsconstant{RMoon}{\ensuremath{R_{\text{Moon}}}}
+{\mi@p{1.7}{1.7375}\timestento{6}}{\m}[\m][\m]
+\newphysicsconstant{RSun}{\ensuremath{R_{\text{Sun}}}}{\mi@p{7.0}{6.9634}\timestento{8}}
+{\m}[\m][\m]
+\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\mi@p{1.5}{1.4960}\timestento{11}}{\m}
+[\m][\m]
+\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\mi@p{1.5}{1.4960}\timestento{11}}{\m}
+[\m][\m]
+\newcommand*{\EarthSundistance}{\ESdist}
+\newcommand*{\SunEarthdistance}{\SEdist}
+\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}
+{\mi@p{3.8}{3.8440}\timestento{8}}{\m}[\m][\m]
+\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}
+{\mi@p{3.8}{3.8440}\timestento{8}}{\m}[\m][\m]
+\newcommand*{\EarthMoondistance}{\ESdist}
+\newcommand*{\MoonEarthdistance}{\SEdist}
+\newphysicsconstant{LSun}{\ensuremath{L_{\text{Sun}}}}
+{\mi@p{3.8}{3.8460}\timestento{26}}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W]
+[\J\per\s]
+\newphysicsconstant{TSun}{\ensuremath{T_{\text{Sun}}}}{\mi@p{5800}{5778}}{\K}[\K][\K]
+\newphysicsconstant{MagSun}{\ensuremath{M_{\text{Sun}}}}{+4.83}{}[][]
+\newphysicsconstant{magSun}{\ensuremath{m_{\text{Sun}}}}{-26.74}{}[][]
+\newcommand*{\Lstar}[1][\(\star\)]{\ensuremath{L_{\text{#1}}}\xspace}
+\newcommand*{\Lsolar}{\ensuremath{\Lstar[\(\odot\)]}\xspace}
+\newcommand*{\Tstar}[1][\(\star\)]{\ensuremath{T_{\text{#1}}}\xspace}
+\newcommand*{\Tsolar}{\ensuremath{\Tstar[\(\odot\)]}\xspace}
+\newcommand*{\Rstar}[1][\(\star\)]{\ensuremath{R_{\text{#1}}}\xspace}
+\newcommand*{\Rsolar}{\ensuremath{\Rstar[\(\odot\)]}\xspace}
+\newcommand*{\Mstar}[1][\(\star\)]{\ensuremath{M_{\text{#1}}}\xspace}
+\newcommand*{\Msolar}{\ensuremath{\Mstar[\(\odot\)]}\xspace}
+\newcommand*{\Fstar}[1][\(\star\)]{\ensuremath{F_{\text{#1}}}\xspace}
+\newcommand*{\fstar}[1][\(\star\)]{\ensuremath{f_{\text{#1}}}\xspace}
+\newcommand*{\Fsolar}{\ensuremath{\Fstar[\(\odot\)]}\xspace}
+\newcommand*{\fsolar}{\ensuremath{\fstar[\(\odot\)]}\xspace}
+\newcommand*{\Magstar}[1][\(\star\)]{\ensuremath{M_{\text{#1}}}\xspace}
+\newcommand*{\magstar}[1][\(\star\)]{\ensuremath{m_{\text{#1}}}\xspace}
+\newcommand*{\Magsolar}{\ensuremath{\Magstar[\(\odot\)]}\xspace}
+\newcommand*{\magsolar}{\ensuremath{\magstar[\(\odot\)]}\xspace}
+\newcommand*{\Dstar}[1][\(\star\)]{\ensuremath{D_{\text{#1}}}\xspace}
+\newcommand*{\dstar}[1][\(\star\)]{\ensuremath{d_{\text{#1}}}\xspace}
+\newcommand*{\Dsolar}{\ensuremath{\Dstar[\(\odot\)]}\xspace}
+\newcommand*{\dsolar}{\ensuremath{\dstar[\(\odot\)]}\xspace}
+\newcommand*{\onehalf}{\ensuremath{\frac{1}{2}}\xspace}
+\newcommand*{\onethird}{\ensuremath{\frac{1}{3}}\xspace}
+\newcommand*{\onefourth}{\ensuremath{\frac{1}{4}}\xspace}
+\newcommand*{\onefifth}{\ensuremath{\frac{1}{5}}\xspace}
+\newcommand*{\onesixth}{\ensuremath{\frac{1}{6}}\xspace}
+\newcommand*{\oneseventh}{\ensuremath{\frac{1}{7}}\xspace}
+\newcommand*{\oneeighth}{\ensuremath{\frac{1}{8}}\xspace}
+\newcommand*{\oneninth}{\ensuremath{\frac{1}{9}}\xspace}
+\newcommand*{\onetenth}{\ensuremath{\frac{1}{10}}\xspace}
+\newcommand*{\twooneths}{\ensuremath{\frac{2}{1}}\xspace}
+\newcommand*{\twohalves}{\ensuremath{\frac{2}{2}}\xspace}
+\newcommand*{\twothirds}{\ensuremath{\frac{2}{3}}\xspace}
+\newcommand*{\twofourths}{\ensuremath{\frac{2}{4}}\xspace}
+\newcommand*{\twofifths}{\ensuremath{\frac{2}{5}}\xspace}
+\newcommand*{\twosixths}{\ensuremath{\frac{2}{6}}\xspace}
+\newcommand*{\twosevenths}{\ensuremath{\frac{2}{7}}\xspace}
+\newcommand*{\twoeighths}{\ensuremath{\frac{2}{8}}\xspace}
+\newcommand*{\twoninths}{\ensuremath{\frac{2}{9}}\xspace}
+\newcommand*{\twotenths}{\ensuremath{\frac{2}{10}}\xspace}
+\newcommand*{\threeoneths}{\ensuremath{\frac{3}{1}}\xspace}
+\newcommand*{\threehalves}{\ensuremath{\frac{3}{2}}\xspace}
+\newcommand*{\threethirds}{\ensuremath{\frac{3}{3}}\xspace}
+\newcommand*{\threefourths}{\ensuremath{\frac{3}{4}}\xspace}
+\newcommand*{\threefifths}{\ensuremath{\frac{3}{5}}\xspace}
+\newcommand*{\threesixths}{\ensuremath{\frac{3}{6}}\xspace}
+\newcommand*{\threesevenths}{\ensuremath{\frac{3}{7}}\xspace}
+\newcommand*{\threeeighths}{\ensuremath{\frac{3}{8}}\xspace}
+\newcommand*{\threeninths}{\ensuremath{\frac{3}{9}}\xspace}
+\newcommand*{\threetenths}{\ensuremath{\frac{3}{10}}\xspace}
+\newcommand*{\fouroneths}{\ensuremath{\frac{4}{1}}\xspace}
+\newcommand*{\fourhalves}{\ensuremath{\frac{4}{2}}\xspace}
+\newcommand*{\fourthirds}{\ensuremath{\frac{4}{3}}\xspace}
+\newcommand*{\fourfourths}{\ensuremath{\frac{4}{4}}\xspace}
+\newcommand*{\fourfifths}{\ensuremath{\frac{4}{5}}\xspace}
+\newcommand*{\foursixths}{\ensuremath{\frac{4}{6}}\xspace}
+\newcommand*{\foursevenths}{\ensuremath{\frac{4}{7}}\xspace}
+\newcommand*{\foureighths}{\ensuremath{\frac{4}{8}}\xspace}
+\newcommand*{\fourninths}{\ensuremath{\frac{4}{9}}\xspace}
+\newcommand*{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace}
+\newcommand*{\sumoverall}[1]{\ensuremath{\displaystyle\sum_{\substack{\text{\tiny{all }}
+ \text{\tiny{{#1}}}}}}}
+\newcommand*{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}}
+\newcommand*{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}}
+\newcommand*{\evalat}[2]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}}}
+\newcommand*{\evaluatedat}[1]{\ensuremath{\Bigg.\Bigg\rvert_{#1}}}
+\newcommandx{\integral}[4][1,2,usedefault]{\ensuremath{%
\int_{\ifthenelse{\equal{#1}{}}{}{#4=#1}}^{\ifthenelse{\equal{#2}{}}{}{#4=#2}}}
{#3}\dx{#4}}
-\newcommandx{\Integral}[4][1,2,usedefault]{\ensuremath{
- \bigint_{\ifthenelse{\equal{#1}{}}{}{#4=#1}}^{\ifthenelse{\equal{#2}{}}{}
- {#4=#2}}}{#3}\dx{#4}}
-\newcommand{\opensurfintegral}[2]{\ensuremath{
- \int\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}}
-\newcommand{\opensurfIntegral}[2]{\ensuremath{
- \bigint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}}
- \vectdotvect{\vect{#2}}{\dirvect{n}}
- \dx{A}}}
-\newcommand{\closedsurfintegral}[2]{\ensuremath{
- \oint\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}}
-\newcommand{\closedsurfIntegral}[2]{\ensuremath{
- \bigoint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}}\;\;
- \vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}}
-\newcommand{\openlineintegral}[2]{\ensuremath{
- \int\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{t}}
- \dx{\ell}}}
-\newcommand{\openlineIntegral}[2]{\ensuremath{
- \bigint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}}
- \vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}}
-\newcommand{\closedlineintegral}[2]{\ensuremath{
- \oint\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}}
-\newcommand{\closedlineIntegral}[2]{\ensuremath{
- \bigoint\nolimits_{\mskip -25.00mu\displaystyle\mathbf {#1}}\;\;
- \vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}}
+\newcommand*{\opensurfaceintegral}[2]{\ensuremath{%
+ \iint\nolimits_{#1}\vectdotvect{#2}{\dirvect{n}}\dx{A}}}
+\newcommand*{\closedsurfaceintegral}[2]{\ensuremath{%
+ \varoiint\nolimits_{#1}\vectdotvect{#2}{\dirvect{n}}\dx{A}}}
+\newcommand*{\openlineintegral}[2]{\ensuremath{%
+ \int\nolimits_{#1}\vectdotvect{#2}{\dirvect{t}}\dx{\ell}}}
+\newcommand*{\closedlineintegral}[2]{\ensuremath{%
+ \oint\nolimits_{#1}\vectdotvect{#2}{\dirvect{t}}\dx{\ell}}}
+\newcommand*{\volumeintegral}[2]{\ensuremath{\iiint\nolimits_{#1}{#2}\dx{V}}}
\newcommandx{\dbydt}[1][1]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}t}}}
\newcommandx{\DbyDt}[1][1]{\ensuremath{\frac{\Delta{#1}}{\Delta t}}}
\newcommandx{\ddbydt}[1][1]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}t^{2}}}}
\newcommandx{\DDbyDt}[1][1]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta t^{2}}}}
\newcommandx{\pbypt}[1][1]{\ensuremath{\frac{\partial{#1}}{\partial t}}}
\newcommandx{\ppbypt}[1][1]{\ensuremath{\frac{\partial^{2}{#1}}{\partial t^{2}}}}
-\newcommand{\dbyd}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}}
-\newcommand{\DbyD}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}}
-\newcommand{\ddbyd}[2]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}{#2}^{2}}}}
-\newcommand{\DDbyD}[2]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta{#2}^{2}}}}
-\newcommand{\pbyp}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}}
-\newcommand{\ppbyp}[2]{\ensuremath{\frac{\partial^{2}{#1}}{\partial{#2}^{2}}}}
-\newcommand{\seriesfofx}{\ensuremath{%
+\newcommand*{\dbyd}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}}
+\newcommand*{\DbyD}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}}
+\newcommand*{\ddbyd}[2]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}{#2}^{2}}}}
+\newcommand*{\DDbyD}[2]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta{#2}^{2}}}}
+\newcommand*{\pbyp}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}}
+\newcommand*{\ppbyp}[2]{\ensuremath{\frac{\partial^{2}{#1}}{\partial{#2}^{2}}}}
+\newcommand*{\seriesfofx}{\ensuremath{%
f(x) \approx f(a) + \frac{f^\prime (a)}{1!}(x-a) + \frac{f^{\prime\prime}(a)}{2!}(x-a)^2
+ \frac{f^{\prime\prime\prime}(a)}{3!}(x-a)^3 + \ldots}\xspace}
-\newcommand{\seriesexpx}{\ensuremath{%
+\newcommand*{\seriesexpx}{\ensuremath{%
e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots}\xspace}
-\newcommand{\seriessinx}{\ensuremath{%
+\newcommand*{\seriessinx}{\ensuremath{%
\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots}\xspace}
-\newcommand{\seriescosx}{\ensuremath{%
+\newcommand*{\seriescosx}{\ensuremath{%
\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots}\xspace}
-\newcommand{\seriestanx}{\ensuremath{%
+\newcommand*{\seriestanx}{\ensuremath{%
\tan x \approx x + \frac{x^3}{3} + \frac{2x^5}{15} + \ldots}\xspace}
-\newcommand{\seriesatox}{\ensuremath{%
+\newcommand*{\seriesatox}{\ensuremath{%
a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ldots}
\xspace}
-\newcommand{\serieslnoneplusx}{\ensuremath{%
-\ln(1 \pm x) \approx \pm\; x - \frac{x^2}{2} \pm \frac{x^3}{3} - \frac{x^4}{4} \pm \ldots}
-\xspace}
-\newcommand{\binomialseries}{\ensuremath{%
+\newcommand*{\serieslnoneplusx}{\ensuremath{%
+\ln(1 \pm x) \approx \pm\; x - \frac{x^2}{2} \pm \frac{x^3}{3} - \frac{x^4}{4} \pm
+\ldots}\xspace}
+\newcommand*{\binomialseries}{\ensuremath{%
(1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots}\xspace}
-\@ifpackageloaded{physymb}{%
- \typeout{mandi: Package physymb detected. Its commands will be used.}
-}{%
- \newcommand{\gradient}{\ensuremath{\nabla}}
- \newcommand{\divergence}{\ensuremath{\nabla\bullet}}
- \newcommand{\curl}{\ensuremath{\nabla\times}}
- \newcommand{\laplacian}{\ensuremath{\msup{\nabla}{2}}}
- \newcommand{\dalembertian}{\ensuremath{\Box}}
-}%
-\newcommand{\diracdelta}[1]{\ensuremath{\boldsymbol{\delta}\quant{#1}}}
-\@ifpackageloaded{physymb}{%
- \typeout{mandi: Package physymb detected. Its commands will be used.}
-}{%
- \DeclareMathOperator{\asin}{\sin^{-1}}
- \DeclareMathOperator{\acos}{\cos^{-1}}
- \DeclareMathOperator{\atan}{\tan^{-1}}
- \DeclareMathOperator{\asec}{\sec^{-1}}
- \DeclareMathOperator{\acsc}{\csc^{-1}}
- \DeclareMathOperator{\acot}{\cot^{-1}}
- \DeclareMathOperator{\sech}{sech}
- \DeclareMathOperator{\csch}{csch}
- \DeclareMathOperator{\asinh}{\sinh^{-1}}
- \DeclareMathOperator{\acosh}{\cosh^{-1}}
- \DeclareMathOperator{\atanh}{\tanh^{-1}}
- \DeclareMathOperator{\asech}{\sech^{-1}}
- \DeclareMathOperator{\acsch}{\csch^{-1}}
- \DeclareMathOperator{\acoth}{\coth^{-1}}
- \DeclareMathOperator{\sgn}{sgn}
-}%
+\newcommand*{\gradient}{\ensuremath{\boldsymbol{\nabla}}}
+\newcommand*{\divergence}{\ensuremath{\boldsymbol{\nabla}\bullet}}
+\newcommand*{\curl}{\ensuremath{\boldsymbol{\nabla\times}}}
+\newcommand*{\laplacian}{\ensuremath{\boldsymbol{\nabla}^2}}
+\newcommand*{\dalembertian}{\ensuremath{\boldsymbol{\Box}}}
+\newcommand*{\diracdelta}[1]{\ensuremath{\delta}(#1)}
+\newcommand*{\orderof}[1]{\ensuremath{\mathcal{O}(#1)}}
+\DeclareMathOperator{\asin}{\sin^{-1}}
+\DeclareMathOperator{\acos}{\cos^{-1}}
+\DeclareMathOperator{\atan}{\tan^{-1}}
+\DeclareMathOperator{\asec}{\sec^{-1}}
+\DeclareMathOperator{\acsc}{\csc^{-1}}
+\DeclareMathOperator{\acot}{\cot^{-1}}
+\DeclareMathOperator{\sech}{sech}
+\DeclareMathOperator{\csch}{csch}
+\DeclareMathOperator{\asinh}{\sinh^{-1}}
+\DeclareMathOperator{\acosh}{\cosh^{-1}}
+\DeclareMathOperator{\atanh}{\tanh^{-1}}
+\DeclareMathOperator{\asech}{\sech^{-1}}
+\DeclareMathOperator{\acsch}{\csch^{-1}}
+\DeclareMathOperator{\acoth}{\coth^{-1}}
+\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\dex}{dex}
-\newcommand{\logb}[1][\relax]{\ensuremath{\log_{_{#1}}}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\cB}{\ensuremath{c\mskip -5.00mu B}}}
- {\newcommand{\cB}{\ensuremath{\textsf{c}\mskip -3.00mu\mathrm{B}}}}
-\newcommand{\newpi}{\ensuremath{\pi\mskip -7.8mu\pi}}
-\newcommand{\scripty}[1]{\ensuremath{\mathcalligra{#1}}}
+\newcommand*{\logb}[1][\relax]{\ensuremath{\log_{#1}}}
+\ifthenelse{\boolean{@optboldvectors}}
+ {\newcommand*{\cB}{\ensuremath{\boldsymbol{c\mskip -3.00mu B}}}}
+ {\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\cB}{\ensuremath{\textsf{c}\mskip -3.00mu\mathrm{B}}}}
+ {\newcommand*{\cB}{\ensuremath{c\mskip -3.00mu B}}}}
+\newcommand*{\newpi}{\ensuremath{\pi\mskip -7.8mu\pi}}
+\newcommand*{\scripty}[1]{\ensuremath{\mathcalligra{#1}}}
\newcommandx{\flux}[1][1]{\ensuremath{\ssub{\Phi}{#1}}}
-\@ifpackageloaded{physymb}{%
- \typeout{mandi: Package physymb detected. Its commands will be used.}
+\@ifpackageloaded{commath}{%
+ \typeout{mandi: Package commath detected. Its \protect\abs\space command will
+ be used.}
}{%
- \newcommand{\abs}[1]{\ensuremath{\left\lvert{#1}\right\rvert}}
+ \typeout{mandi: Package commath not detected. mandi's \protect\abs\space command
+ will be used.}
+ \newcommand*{\abs}[1]{\ensuremath{\left\lvert{#1}\right\rvert}}
}%
-\newcommand{\magof}[1]{\ensuremath{\left\lVert{#1}\right\rVert}}
-\newcommand{\dimsof}[1]{\ensuremath{\left[{#1}\right]}}
-\newcommand{\unitsof}[1]{\ensuremath{\left[{#1}\right]_{_{u}}}}
-\newcommand{\quant}[1]{\ensuremath{\left({#1}\right)}}
-\newcommand{\bquant}[1]{\ensuremath{\left[{#1}\right]}}
-\newcommand{\changein}[1]{\ensuremath{\delta{#1}}}
-\newcommand{\Changein}[1]{\ensuremath{\Delta{#1}}}
+\newcommand*{\magof}[1]{\ensuremath{\left\lVert{#1}\right\rVert}}
+\newcommand*{\dimsof}[1]{\ensuremath{\left[{#1}\right]}}
+\newcommand*{\unitsof}[1]{\ensuremath{\left[{#1}\right]_u}}
+\newcommand*{\changein}[1]{\ensuremath{\delta{#1}}}
+\newcommand*{\Changein}[1]{\ensuremath{\Delta{#1}}}
\newcommandx{\scin}[3][1,3=\!\!,usedefault]{\ensuremath{%
\ifthenelse{\equal{#1}{}}
- {\unit{\msup{10}{#2}}{#3}}
- {\unit{\msup{{#1}\times 10}{#2}}{#3}}}}
-\newcommand{\ee}[2]{\texttt{{#1}e{#2}}}
-\newcommand{\EE}[2]{\texttt{{#1}E{#2}}}
-\newcommand{\dms}[3]{\ensuremath{\indegrees{#1}\inarcminutes{#2}\inarcseconds{#3}}}
-\newcommand{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}}
-\newcommand{\clockreading}{\hms}
-\newcommand{\latitude}[1]{\ensuremath{\unit{#1}{\degree}}}
-\newcommand{\latitudeN}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{N}}}}
-\newcommand{\latitudeS}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{S}}}}
-\newcommand{\longitude}[1]{\ensuremath{\unit{#1}{\degree}}}
-\newcommand{\longitudeE}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{E}}}}
-\newcommand{\longitudeW}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{W}}}}
-% I have never liked \LaTeX's default subscript positioning, so I have this
-% command instead. There may be a better way of doing this.
-\newcommand{\ssub}[2]{\ensuremath{{#1}_{_{_{\mbox{\tiny{#2}}}}}}}
-% I have never liked \LaTeX's default superscript positioning, so I have this
-% command instead. There may be a better way of doing this.
-\newcommand{\ssup}[2]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}}}
-\newcommand{\ssud}[3]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}_{_{_{\mbox{\tiny{#3}}}}}}}
-% I have never liked \LaTeX's default subscript positioning, so I have this
-% command instead. There may be a better way of doing this.
-\newcommand{\msub}[2]{\ensuremath{#1^{^{\scriptstyle{{}}}}_{_{_{\scriptstyle{#2}}}}}}
-% I have never liked \LaTeX's default superscript positioning, so I have this
-% command instead. There may be a better way of doing this.
-\newcommand{\msup}[2]{\ensuremath{#1^{^{\scriptstyle{#2}}}}}
-\newcommand{\msud}[3]{\ensuremath{#1^{^{\scriptstyle{#2}}}_{_{_{\scriptstyle{#3}}}}}}
-\newcommand{\levicivita}[1]{\ensuremath{\msub{\varepsilon}{#1}}}
-\newcommand{\kronecker}[1]{\ensuremath{\msub{\delta}{#1}}}
-\newcommand{\xaxis}{\ensuremath{x\mbox{-axis }}}
-\newcommand{\yaxis}{\ensuremath{y\mbox{-axis }}}
-\newcommand{\zaxis}{\ensuremath{z\mbox{-axis }}}
-\newcommand{\naxis}[1]{\ensuremath{{#1}\mbox{-axis}}}
-\newcommand{\xyplane}{\ensuremath{xy\mbox{-plane }}}
-\newcommand{\yzplane}{\ensuremath{yz\mbox{-plane }}}
-\newcommand{\zxplane}{\ensuremath{zx\mbox{-plane }}}
-\newcommand{\yxplane}{\ensuremath{yx\mbox{-plane }}}
-\newcommand{\zyplane}{\ensuremath{zy\mbox{-plane }}}
-\newcommand{\xzplane}{\ensuremath{xz\mbox{-plane }}}
+ {\unit{10^{#2}}{#3}}
+ {\unit{{#1}\times 10^{#2}}{#3}}}}
+\newcommandx{\timestento}[2][2=\!\!,usedefault]{\ensuremath{%
+ \ifthenelse{\equal{#2}{}}
+ {\unit{\;\times\;10^{#1}}{}}
+ {\unit{\;\times\;10^{#1}}{#2}}}}
+\newcommand*{\xtento}{\timestento}
+\newcommandx{\tento}[2][2=\!\!,usedefault]{\ensuremath{%
+ \ifthenelse{\equal{#2}{}}
+ {\unit{10^{#1}}{}}
+ {\unit{10^{#1}}{#2}}}}
+\newcommand*{\ee}[2]{\texttt{{#1}e{#2}}}
+\newcommand*{\EE}[2]{\texttt{{#1}E{#2}}}
+\newcommand*{\dms}[3]{\ensuremath{\indegrees{#1}\inarcminutes{#2}\inarcseconds{#3}}}
+\newcommand*{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}}
+\newcommand*{\clockreading}{\hms}
+\newcommand*{\latitude}[1]{\unit{#1}{\degree}}
+\newcommand*{\latitudeN}[1]{\unit{#1}{\degree\;\mathrm{N}}}
+\newcommand*{\latitudeS}[1]{\unit{#1}{\degree\;\mathrm{S}}}
+\newcommand*{\longitude}[1]{\unit{#1}{\degree}}
+\newcommand*{\longitudeE}[1]{\unit{#1}{\degree\;\mathrm{E}}}
+\newcommand*{\longitudeW}[1]{\unit{#1}{\degree\;\mathrm{W}}}
+\newcommand*{\ssub}[2]{\ensuremath{#1_{\text{#2}}}}
+\newcommand*{\ssup}[2]{\ensuremath{#1^{\text{#2}}}}
+\newcommand*{\ssud}[3]{\ensuremath{#1^{\text{#2}}_{\text{#3}}}}
+\newcommand*{\msub}[2]{\ensuremath{#1_{#2}}}
+\newcommand*{\msup}[2]{\ensuremath{#1^{#2}}}
+\newcommand*{\msud}[3]{\ensuremath{#1^{#2}_{#3}}}
+\newcommand*{\levicivita}[1]{\ensuremath{\varepsilon_{\scriptscriptstyle{#1}}}}
+\newcommand*{\kronecker}[1]{\ensuremath{\delta_{\scriptscriptstyle{#1}}}}
+\newcommand*{\xaxis}{\ensuremath{x\text{-axis}}\xspace}
+\newcommand*{\yaxis}{\ensuremath{y\text{-axis}}\xspace}
+\newcommand*{\zaxis}{\ensuremath{z\text{-axis}}\xspace}
+\newcommand*{\naxis}[1]{\ensuremath{{#1}\text{-axis}}\xspace}
+\newcommand*{\axis}{\ensuremath{\text{-axis}}\xspace}
+\newcommand*{\xyplane}{\ensuremath{xy\text{-plane}}\xspace}
+\newcommand*{\yzplane}{\ensuremath{yz\text{-plane}}\xspace}
+\newcommand*{\zxplane}{\ensuremath{zx\text{-plane}}\xspace}
+\newcommand*{\yxplane}{\ensuremath{yx\text{-plane}}\xspace}
+\newcommand*{\zyplane}{\ensuremath{zy\text{-plane}}\xspace}
+\newcommand*{\xzplane}{\ensuremath{xz\text{-plane}}\xspace}
+\newcommand*{\plane}{\ensuremath{\text{-plane}}\xspace}
% Frequently used roots. Prepend |f| for fractional exponents.
-\newcommand{\cuberoot}[1]{\ensuremath{\sqrt[3]{#1}}}
-\newcommand{\fourthroot}[1]{\ensuremath{\sqrt[4]{#1}}}
-\newcommand{\fifthroot}[1]{\ensuremath{\sqrt[5]{#1}}}
-\newcommand{\fsqrt}[1]{\ensuremath{\msup{#1}{\onehalf}}}
-\newcommand{\fcuberoot}[1]{\ensuremath{\msup{#1}{\onethird}}}
-\newcommand{\ffourthroot}[1]{\ensuremath{\msup{#1}{\onefourth}}}
-\newcommand{\ffifthroot}[1]{\ensuremath{\msup{#1}{\onefifth}}}
-\newcommand{\relgamma}[1]{\ensuremath{
- \frac{1}{\sqrt{1-\msup{\quant{\frac{#1}{c}}}{2}}}}}
-\newcommand{\frelgamma}[1]{\ensuremath{
- \msup{\quant{1-\frac{\msup{{#1}}{2}}{\msup{c}{2}}}}{-\onehalf}}}
-\newcommand{\oosqrtomxs}[1]{\ensuremath{\frac{1}{\sqrt{1-\msup{#1}{2}}}}}
-\newcommand{\oosqrtomx}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}}}}}
-\newcommand{\ooomx}[1]{\ensuremath{\frac{1}{1-{#1}}}}
-\newcommand{\ooopx}[1]{\ensuremath{\frac{1}{1+{#1}}}}
-\newcommand{\isequals}{\wordoperator{?}{=}\xspace}
-\newcommand{\wordoperator}[2]{\ensuremath{%
+\newcommand*{\cuberoot}[1]{\ensuremath{\sqrt[3]{#1}}}
+\newcommand*{\fourthroot}[1]{\ensuremath{\sqrt[4]{#1}}}
+\newcommand*{\fifthroot}[1]{\ensuremath{\sqrt[5]{#1}}}
+\newcommand*{\fsqrt}[1]{\ensuremath{{#1}^\onehalf}}
+\newcommand*{\fcuberoot}[1]{\ensuremath{{#1}^\onethird}}
+\newcommand*{\ffourthroot}[1]{\ensuremath{{#1}^\onefourth}}
+\newcommand*{\ffifthroot}[1]{\ensuremath{{#1}^\onefifth}}
+\newcommand*{\relgamma}[1]{\ensuremath{%
+ \frac{1}{\sqrt{1-(\frac{#1}{c})\squared}}}}
+\newcommand*{\frelgamma}[1]{\ensuremath{%
+ (1-\frac{{#1}\squared}{c\squared})^{-\onehalf}}}
+\newcommand*{\oosqrtomxs}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}\squared}}}}
+\newcommand*{\oosqrtomx}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}}}}}
+\newcommand*{\ooomx}[1]{\ensuremath{\frac{1}{1-{#1}}}}
+\newcommand*{\ooopx}[1]{\ensuremath{\frac{1}{1+{#1}}}}
+\newcommand*{\isequals}{\wordoperator{?}{=}\xspace}
+\newcommand*{\wordoperator}[2]{\ensuremath{%
\mathrel{\vcenter{\offinterlineskip
\halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex}
{#1}\cr\noalign{\vskip.5ex}{#2}\cr}}}}}
-\newcommand{\definedas}{\wordoperator{defined}{as}\xspace}
-\newcommand{\associated}{\wordoperator{associated}{with}\xspace}
-\newcommand{\adjustedby}{\wordoperator{adjusted}{by}\xspace}
-\newcommand{\earlierthan}{\wordoperator{earlier}{than}\xspace}
-\newcommand{\laterthan}{\wordoperator{later}{than}\xspace}
-\newcommand{\forevery}{\wordoperator{for}{every}\xspace}
-\newcommand{\pwordoperator}[2]{\ensuremath{\left(%
- \mathrel{\vcenter{\offinterlineskip
- \halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex}
+\newcommand*{\definedas}{\wordoperator{defined}{as}\xspace}
+\newcommand*{\associated}{\wordoperator{associated}{with}\xspace}
+\newcommand*{\adjustedby}{\wordoperator{adjusted}{by}\xspace}
+\newcommand*{\earlierthan}{\wordoperator{earlier}{than}\xspace}
+\newcommand*{\laterthan}{\wordoperator{later}{than}\xspace}
+\newcommand*{\forevery}{\wordoperator{for}{every}\xspace}
+\newcommand*{\pwordoperator}[2]{\ensuremath{\left(%
+ \mathrel{\vcenter{\offinterlineskip%
+ \halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex}%
{#1}\cr\noalign{\vskip.5ex}{#2}\cr}}}\right)}}%
-\newcommand{\pdefinedas}{\pwordoperator{defined}{as}\xspace}
-\newcommand{\passociated}{\pwordoperator{associated}{with}\xspace}
-\newcommand{\padjustedby}{\pwordoperator{adjusted}{by}\xspace}
-\newcommand{\pearlierthan}{\pwordoperator{earlier}{than}\xspace}
-\newcommand{\platerthan}{\pwordoperator{later}{than}\xspace}
-\newcommand{\pforevery}{\pwordoperator{for}{every}\xspace}
-\newcommand{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace}
-\newcommand{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}}\xspace}
-\newcommand{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace}
-\newcommand{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace}
-\newcommand{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}}
-\newcommand{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}}
-\newcommand{\brelatedto}[2]{\ensuremath{%
+\newcommand*{\pdefinedas}{\pwordoperator{defined}{as}\xspace}
+\newcommand*{\passociated}{\pwordoperator{associated}{with}\xspace}
+\newcommand*{\padjustedby}{\pwordoperator{adjusted}{by}\xspace}
+\newcommand*{\pearlierthan}{\pwordoperator{earlier}{than}\xspace}
+\newcommand*{\platerthan}{\pwordoperator{later}{than}\xspace}
+\newcommand*{\pforevery}{\pwordoperator{for}{every}\xspace}
+\newcommand*{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace}
+\newcommand*{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}}
+ \xspace}
+\newcommand*{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace}
+\newcommand*{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace}
+\newcommand*{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}}
+\newcommand*{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}}
+\newcommand*{\brelatedto}[2]{\ensuremath{%
\xLongleftrightarrow[\text{\tiny{#1}}]{\text{\tiny{#2}}}}}
-\newcommand{\momentumprinciple}{\ensuremath{
- \vectsub{p}{sys,f}=\vectsub{p}{sys,i}+\Fnetsys\Delta t}}
-\newcommand{\LHSmomentumprinciple}{\ensuremath{%
- \vectsub{p}{sys,f}}}
-\newcommand{\RHSmomentumprinciple}{\ensuremath{%
- \vectsub{p}{sys,i}+\Fnetsys\Delta t}}
-\newcommand{\energyprinciple}{\ensuremath{\ssub{E}{sys,f}=\ssub{E}{sys,i}+
- \ssub{W}{ext}+Q}}
-\newcommand{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,f}}}
-\newcommand{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,i}+\ssub{W}{ext}+Q}}
-\newcommand{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}=
- \vectsub{L}{sys,A,i}+\Tnetsys\Delta t}}
-\newcommand{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}}}
-\newcommand{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,i}+
- \Tnetsys\Delta t}}
-\newcommand{\gravitationalinteraction}{\ensuremath{%
- \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\msup{\magvectsub{r}{12}}{2}}
- \quant{-\dirvectsub{r}{12}}}}
-\newcommand{\electricinteraction}{\ensuremath{%
- \oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\msup{\magvectsub{r}{12}}{2}}
+\newcommand*{\momentumprinciple}{\ensuremath{%
+ \vectsub{p}{sys,final}=\vectsub{p}{sys,initial}+\Fnetsys\Delta t}}
+\newcommand*{\LHSmomentumprinciple}{\ensuremath{\vectsub{p}{sys,final}}}
+\newcommand*{\RHSmomentumprinciple}{\ensuremath{\vectsub{p}{sys,initial}+\Fnetsys
+ \Delta t}}
+\newcommand*{\momentumprinciplediff}{\ensuremath{\Dvectsub{p}{sys}=\Fnetsys\Delta t}}
+\newcommand*{\energyprinciple}{\ensuremath{\ssub{E}{sys,final}=\ssub{E}{sys,initial}+W
+ +Q}}
+\newcommand*{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,final}}}
+\newcommand*{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,initial}+W+Q}}
+\newcommand*{\energyprinciplediff}{\ensuremath{\Delta\ssub{E}{sys}=W+Q}}
+\newcommand*{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,final}=
+ \vectsub{L}{\(A\),sys,initial}+\Tsub{net}\Delta t}}
+\newcommand*{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,final}}}
+\newcommand*{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,initial}+
+ \Tsub{net}\Delta t}}
+\newcommand*{\angularmomentumprinciplediff}{\ensuremath{\Dvectsub{L}{\(A\),sys}=
+ \Tsub{net}\Delta t}}
+\newcommand*{\gravitationalinteraction}{\ensuremath{%
+ \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\magvectsub{r}{12}\squared}
+ (-\dirvectsub{r}{12})}}
+\newcommand*{\electricinteraction}{\ensuremath{%
+ \oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\magvectsub{r}{12}\squared}
\dirvectsub{r}{12}}}
-\newcommand{\Bfieldofparticle}{\ensuremath{%
- \mzofpmathsymbol\frac{Q\magvect{v}}{\msup{\magvect{r}}{2}}\dirvect{v}\times\dirvect{r}}}
-\newcommand{\Efieldofparticle}{\ensuremath{%
- \oofpezmathsymbol\frac{Q}{\msup{\magvect{r}}{2}}\dirvect{r}}}
-\newcommand{\Esys}{\ssub{E}{sys}}
-\newcommandx{\Us}[1][1]{\ssub{\ssub{U}{s}}{#1}}
-\newcommandx{\Ug}[1][1]{\ssub{\ssub{U}{g}}{#1}}
-\newcommandx{\Ue}[1][1]{\ssub{\ssub{U}{e}}{#1}}
-\newcommandx{\Ktrans}[1][1]{\ssub{\ssub{K}{trans}}{#1}}
-\newcommandx{\Krot}[1][1]{\ssub{\ssub{K}{rot}}{#1}}
-\newcommandx{\Eparticle}[1][1]{\ssub{\ssub{E}{particle}}{#1}}
-\newcommandx{\Einternal}[1][1]{\ssub{\ssub{E}{internal}}{#1}}
-\newcommandx{\Erest}[1][1]{\ssub{\ssub{E}{rest}}{#1}}
-\newcommandx{\Echem}[1][1]{\ssub{\ssub{E}{chem}}{#1}}
-\newcommandx{\Etherm}[1][1]{\ssub{\ssub{E}{therm}}{#1}}
-\newcommandx{\Evib}[1][1]{\ssub{\ssub{E}{vib}}{#1}}
-\newcommandx{\Ephoton}[1][1]{\ssub{\ssub{E}{photon}}{#1}}
-\newcommand{\DEsys}{\Changein\Esys}
-\newcommand{\DUs}{\Changein\Us}
-\newcommand{\DUg}{\Changein\Ug}
-\newcommand{\DUe}{\Changein\Ue}
-\newcommand{\DKtrans}{\Changein\Ktrans}
-\newcommand{\DKrot}{\Changein\Krot}
-\newcommand{\DEparticle}{\Changein\Eparticle}
-\newcommand{\DEinternal}{\Changein\Einternal}
-\newcommand{\DErest}{\Changein\Erest}
-\newcommand{\DEchem}{\Changein\Echem}
-\newcommand{\DEtherm}{\Changein\Etherm}
-\newcommand{\DEvib}{\Changein\Evib}
-\newcommand{\DEphoton}{\Changein\Ephoton}
-\newcommand{\Usfinal}{\ssub{\left(\onehalf\ks \msup{s}{2}\right)}{f}}
-\newcommand{\Usinitial}{\ssub{\left(\onehalf\ks \msup{s}{2}\right)}{i}}
-\newcommand{\Ugfinal}{\ssub{\left(-G\frac{\msub{M}{1}\msub{M}{2}}
- {\magvectsub{r}{12}}\right)}{f}}
-\newcommand{\Uginitial}{\ssub{\left(-G\frac{\msub{M}{1}\msub{M}{2}}
- {\magvectsub{r}{12}}\right)}{i}}
-\newcommand{\Uefinal}{\ssub{\left(\oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}}
- {\magvectsub{r}{12}}\right)}{f}}
-\newcommand{\Ueinitial}{\ssub{\left(\oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}}
- {\magvectsub{r}{12}}\right)}{i}}
-\newcommand{\ks}{\ssub{k}{s}}
-\newcommand{\Fnet}{\ensuremath{\vectsub{F}{net}}}
-\newcommand{\Fnetext}{\ensuremath{\vectsub{F}{net,ext}}}
-\newcommand{\Fnetsys}{\ensuremath{\vectsub{F}{net,sys}}}
-\newcommand{\Fsub}[1]{\ensuremath{\vectsub{F}{#1}}}
-\newcommand{\Tnet}{\ensuremath{\vectsub{T}{net}}}
-\newcommand{\Tnetext}{\ensuremath{\vectsub{T}{net,ext}}}
-\newcommand{\Tnetsys}{\ensuremath{\vectsub{T}{net,sys}}}
-\newcommand{\Tsub}[1]{\ensuremath{\vectsub{T}{#1}}}
-\newcommand{\vpythonline}{\lstinline[language=Python,numbers=left,numberstyle=\tiny,%
- upquote=true,breaklines]}
-\lstnewenvironment{vpythonblock}{\lstvpython}{}
-\newcommand{\vpythonfile}{\lstinputlisting[language=Python,numbers=left,%
- numberstyle=\tiny,upquote=true,breaklines]}
+\newcommand*{\springinteraction}{\ensuremath{\ks\magvect{s}(-\dirvect{s})}}
+\newcommand*{\Bfieldofparticle}{\ensuremath{%
+ \mzofpmathsymbol\frac{Q\magvect{v}}{\magvect{r}\squared}\dirvect{v}\times\dirvect{r}}}
+\newcommand*{\Efieldofparticle}{\ensuremath{%
+ \oofpezmathsymbol\frac{Q}{\magvect{r}\squared}\dirvect{r}}}
+\newcommandx{\Esys}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{sys}}{\ssub{E}{sys,#1}}}
+\newcommandx{\Us}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(s\)}}{\ssub{U}{\(s\),#1}}}
+\newcommandx{\Ug}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(g\)}}{\ssub{U}{\(g\),#1}}}
+\newcommandx{\Ue}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(e\)}}{\ssub{U}{\(e\),#1}}}
+\newcommandx{\Ktrans}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{trans}}
+ {\ssub{K}{trans,#1}}}
+\newcommandx{\Krot}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{rot}}{\ssub{K}{rot,#1}}}
+\newcommandx{\Kvib}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{vib}}{\ssub{K}{vib,#1}}}
+\newcommandx{\Eparticle}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{particle}}
+ {\ssub{E}{particle,#1}}}
+\newcommandx{\Einternal}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{internal}}
+ {\ssub{E}{internal,#1}}}
+\newcommandx{\Erest}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{rest}}{\ssub{E}{rest,#1}}}
+\newcommandx{\Echem}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{chem}}{\ssub{E}{chem,#1}}}
+\newcommandx{\Etherm}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{therm}}
+ {\ssub{E}{therm,#1}}}
+\newcommandx{\Evib}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{vib}}{\ssub{E}{vib,#1}}}
+\newcommandx{\Ephoton}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{photon}}
+ {\ssub{E}{photon,#1}}}
+\newcommand*{\DEsys}{\Changein\Esys}
+\newcommand*{\DUs}{\Changein\Us}
+\newcommand*{\DUg}{\Changein\Ug}
+\newcommand*{\DUe}{\Changein\Ue}
+\newcommand*{\DKtrans}{\Changein\Ktrans}
+\newcommand*{\DKrot}{\Changein\Krot}
+\newcommand*{\DKvib}{\Changein\Kvib}
+\newcommand*{\DEparticle}{\Changein\Eparticle}
+\newcommand*{\DEinternal}{\Changein\Einternal}
+\newcommand*{\DErest}{\Changein\Erest}
+\newcommand*{\DEchem}{\Changein\Echem}
+\newcommand*{\DEtherm}{\Changein\Etherm}
+\newcommand*{\DEvib}{\Changein\Evib}
+\newcommand*{\DEphoton}{\Changein\Ephoton}
+\newcommand*{\springpotentialenergy}{\onehalf\ks\magsquaredvect{s}}
+\newcommand*{\finalspringpotentialenergy}
+ {\ssub{\left(\springpotentialenergy\right)}{\!\!final}}
+\newcommand*{\initialspringpotentialenergy}
+ {\ssub{\left(\springpotentialenergy\right)}{\!\!initial}}
+\newcommand*{\gravitationalpotentialenergy}{\ensuremath{%
+ -G\frac{\msub{M}{1}\msub{M}{2}}{\magvectsub{r}{12}}}}
+\newcommand*{\finalgravitationalpotentialenergy}
+ {\ssub{\left(\gravitationalpotentialenergy\right)}{\!\!final}}
+\newcommand*{\initialgravitationalpotentialenergy}
+ {\ssub{\left(\gravitationalpotentialenergy\right)}{\!\!initial}}
+\newcommand*{\electricpotentialenergy}{\ensuremath{%
+ \oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}}{\magvectsub{r}{12}}}}
+\newcommand*{\finalelectricpotentialenergy}
+ {\ssub{\left(\electricpotentialenergy\right)}{\!\!final}}
+\newcommand*{\initialelectricpotentialenergy}
+ {\ssub{\left(\electricpotentialenergy\right)}{\!\!initial}}
+\newcommand*{\ks}{\msub{k}{s}}
+\newcommand*{\Fnet}{\ensuremath{\vectsub{F}{net}}}
+\newcommand*{\Fnetext}{\ensuremath{\vectsub{F}{net,ext}}}
+\newcommand*{\Fnetsys}{\ensuremath{\vectsub{F}{net,sys}}}
+\newcommand*{\Fsub}[1]{\ensuremath{\vectsub{F}{#1}}}
+\newcommand*{\Ltotal}{\ensuremath{\vectsub{L}{\(A\),total}}}
+\newcommand*{\Lsys}{\ensuremath{\vectsub{L}{\(A\),sys}}}
+\newcommand*{\Lsub}[1]{\ensuremath{\vectsub{L}{\(A\),{#1}}}}
+\newcommand*{\Tnet}{\ensuremath{\vectsub{\tau}{\(A\),net}}}
+\newcommand*{\Tnetext}{\ensuremath{\vectsub{\tau}{\(A\),net,ext}}}
+\newcommand*{\Tnetsys}{\ensuremath{\vectsub{\tau}{\(A\),net,sys}}}
+\newcommand*{\Tsub}[1]{\ensuremath{\vectsub{\tau}{\(A\),#1}}}
+\newcommand*{\LHSmaxwelliint}[1][\partial V]{\ensuremath{%
+ \closedsurfaceintegral{#1}{\vect{E}}}}
+\newcommand*{\RHSmaxwelliint}{\ensuremath{\frac{\ssub{Q}{\(e\),net}}%
+ {\vacuumpermittivitymathsymbol}}}
+\newcommand*{\RHSmaxwelliinta}[1][V]{\ensuremath{%
+ \frac{1}{\vacuumpermittivitymathsymbol}\volumeintegral{#1}{\msub{\rho}{e}}}}
+\newcommand*{\RHSmaxwelliintfree}{\ensuremath{0}}
+\newcommand*{\maxwelliint}[1][\partial V]{\ensuremath{%
+ \LHSmaxwelliint[#1]=\RHSmaxwelliint}}
+\newcommandx*{\maxwelliinta}[2][1={\partial V},2={V},usedefault]{\ensuremath{%
+ \LHSmaxwelliint[#1]=\RHSmaxwelliinta[#2]}}
+\newcommand*{\maxwelliintfree}[1][\partial V]{\ensuremath{%
+ \LHSmaxwelliint[#1]=\RHSmaxwelliintfree}}
+\newcommand*{\LHSmaxwelliiint}[1][\partial V]{\ensuremath{%
+ \closedsurfaceintegral{#1}{\vect{B}}}}
+\newcommand*{\RHSmaxwelliiint}{\ensuremath{0}}
+\newcommand*{\RHSmaxwelliiintm}{\ensuremath{%
+ \vacuumpermeabilitymathsymbol\ssub{Q}{\(m\),net}}}
+\newcommand*{\RHSmaxwelliiintma}[1][V]{\ensuremath{%
+ \vacuumpermeabilitymathsymbol\volumeintegral{#1}{\msub{\rho}{m}}}}
+\newcommand*{\RHSmaxwelliiintfree}{\ensuremath{0}}
+\newcommand*{\maxwelliiint}[1][\partial V]{\ensuremath{%
+ \LHSmaxwelliiint[#1]=\RHSmaxwelliiint}}
+\newcommand*{\maxwelliiintm}[1][\partial V]{\ensuremath{%
+ \LHSmaxwelliiint[#1]=\RHSmaxwelliiintm}}
+\newcommandx*{\maxwelliiintma}[2][1={\partial V},2={V},usedefault]{\ensuremath{%
+ \LHSmaxwelliiint[#1]=\RHSmaxwelliiintma[#2]}}
+\newcommand*{\maxwelliiintfree}[1][\partial V]{\ensuremath{%
+ \LHSmaxwelliiint[#1]=\RHSmaxwelliiintfree}}
+\newcommand*{\LHSmaxwelliiiint}[1][\partial\Omega]{\ensuremath{%
+ \closedlineintegral{#1}{\vect{E}}}}
+\newcommand*{\RHSmaxwelliiiint}[1][\Omega]{\ensuremath{%
+ -\dbydt\opensurfaceintegral{#1}{\vect{B}}}}
+\newcommand*{\RHSmaxwelliiiintm}[1][\Omega]{\ensuremath{%
+ -\dbydt\opensurfaceintegral{#1}{\vect{B}}%
+ -\vacuumpermeabilitymathsymbol\ssub{I}{\(m\),net}}}
+\newcommand*{\RHSmaxwelliiiintma}[1][\Omega]{\ensuremath{%
+ -\dbydt\opensurfaceintegral{#1}{\vect{B}}%
+ -\vacuumpermeabilitymathsymbol\opensurfaceintegral{#1}{\vectsub{J}{\(m\)}}}}
+\newcommand*{\RHSmaxwelliiiintfree}{\RHSmaxwelliiiint}
+\newcommandx*{\maxwelliiiint}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiint[#2]}}
+\newcommandx*{\maxwelliiiintm}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiintm[#2]}}
+\newcommandx*{\maxwelliiiintma}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiintma[#2]}}
+\newcommand*{\maxwelliiiintfree}{\maxwelliiiint}
+\newcommand*{\LHSmaxwellivint}[1][\partial\Omega]{\ensuremath{%
+ \closedlineintegral{#1}{\vect{B}}}}
+\newcommand*{\RHSmaxwellivint}[1][\Omega]{\ensuremath{%
+ \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol%
+ \dbydt\opensurfaceintegral{#1}{\vect{E}}+%
+ \vacuumpermeabilitymathsymbol\ssub{I}{\(e\),net}}}
+\newcommand*{\RHSmaxwellivinta}[1][\Omega]{\ensuremath{%
+ \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol%
+ \dbydt\opensurfaceintegral{#1}{\vect{E}}+%
+ \vacuumpermeabilitymathsymbol\opensurfaceintegral{#1}{\vectsub{J}{\(e\)}}}}
+\newcommand*{\RHSmaxwellivintfree}[1][\Omega]{\ensuremath{%
+ \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol%
+ \dbydt\opensurfaceintegral{#1}{\vect{E}}}}
+\newcommandx*{\maxwellivint}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivint[#2]}}
+\newcommandx*{\maxwellivinta}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivinta[#2]}}
+\newcommandx*{\maxwellivintfree}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivintfree[#2]}}
+\newcommand*{\LHSmaxwellidif}{\ensuremath{\divergence{\vect{E}}}}
+\newcommand*{\RHSmaxwellidif}{\ensuremath{\frac{\msub{\rho}{e}}
+ {\vacuumpermittivitymathsymbol}}}
+\newcommand*{\RHSmaxwellidiffree}{\ensuremath{0}}
+\newcommand*{\maxwellidif}{\ensuremath{\LHSmaxwellidif=\RHSmaxwellidif}}
+\newcommand*{\maxwellidiffree}{\ensuremath{\LHSmaxwellidif=\RHSmaxwellidiffree}}
+\newcommand*{\LHSmaxwelliidif}{\ensuremath{\divergence{\vect{B}}}}
+\newcommand*{\RHSmaxwelliidif}{\ensuremath{0}}
+\newcommand*{\RHSmaxwelliidifm}{\ensuremath{\vacuumpermeabilitymathsymbol%
+ \msub{\rho}{m}}}
+\newcommand*{\RHSmaxwelliidiffree}{\ensuremath{0}}
+\newcommand*{\maxwelliidif}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidif}}
+\newcommand*{\maxwelliidifm}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidifm}}
+\newcommand*{\maxwelliidiffree}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidiffree}}
+\newcommand*{\LHSmaxwelliiidif}{\ensuremath{\curl{\vect{E}}}}
+\newcommand*{\RHSmaxwelliiidif}{\ensuremath{-\pbypt[\vect{B}]}}
+\newcommand*{\RHSmaxwelliiidifm}{\ensuremath{-\pbypt[\vect{B}]-%
+ \vacuumpermeabilitymathsymbol\vectsub{J}{\(m\)}}}
+\newcommand*{\RHSmaxwelliiidiffree}{\RHSmaxwelliiidif}
+\newcommand*{\maxwelliiidif}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidif}}
+\newcommand*{\maxwelliiidifm}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidifm}}
+\newcommand*{\maxwelliiidiffree}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidif}}
+\newcommand*{\LHSmaxwellivdif}{\ensuremath{\curl{\vect{B}}}}
+\newcommand*{\RHSmaxwellivdif}{\ensuremath{\vacuumpermeabilitymathsymbol%
+ \vacuumpermittivitymathsymbol\pbypt[\vect{E}]+%
+ \vacuumpermeabilitymathsymbol\vectsub{J}{\(e\)}}}
+\newcommand*{\RHSmaxwellivdiffree}{\ensuremath{\vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol\pbypt[\vect{E}]}}
+\newcommand*{\maxwellivdif}{\ensuremath{\LHSmaxwellivdif=\RHSmaxwellivdif}}
+\newcommand*{\maxwellivdiffree}{\ensuremath{\LHSmaxwellivdif=\RHSmaxwellivdiffree}}
+\newcommand*{\RHSlorentzforce}{\ensuremath{\msub{q}{e}\left(\vect{E}+%
+ \vectcrossvect{\vect{v}}{\vect{B}}\right)}}
+\newcommand*{\RHSlorentzforcem}{\ensuremath{\RHSlorentzforce+\msub{q}{m}\left(%
+ \vect{B}-\vectcrossvect{\vect{v}}{\frac{\vect{E}}{c^2}}\right)}}
+\newcommand*{\vpythonline}{\lstinline[style=vpython]}
+\lstnewenvironment{vpythonblock}{\lstset{style=vpython}}{}
+\newcommand*{\vpythonfile}{\lstinputlisting[style=vpython]}
\newcommandx{\emptyanswer}[2][1=0.80,2=0.1,usedefault]
{\begin{minipage}{#1\textwidth}\hfill\vspace{#2\textheight}\end{minipage}}
\newenvironmentx{activityanswer}[5][1=white,2=black,3=black,4=0.90,5=0.10,usedefault]{%
@@ -8388,7 +9472,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\vspace{\baselineskip}%
\end{center}%
}%
-\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=,7=0.0,usedefault]
+\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=,
+7=0.0,usedefault]
{\begin{center}%
\fcolorbox{#3}{#2}{%
\begin{minipage}[c]{#5\textwidth}\color{#4}%
@@ -8433,65 +9518,50 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
- \emptyanswer[#5][#6]%
- }%
+ \emptyanswer[#5][#6]}%
\vspace{\baselineskip}%
- \end{center}%
- }%
- {\emptybox[#1][#2][#3][#4][#5][#6]%
- }%
+ \end{center}}%
+ {\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\newcommandx{\largeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.25,%
usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
- \emptyanswer[#5][#6]%
- }%
+ \emptyanswer[#5][#6]}%
\vspace{\baselineskip}%
- \end{center}%
- }%
- {\emptybox[#1][#2][#3][#4][#5][#6]%
- }%
+ \end{center}}%
+ {\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\newcommandx{\largeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.33,%
usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
- \emptyanswer[#5][#6]%
- }%
+ \emptyanswer[#5][#6]}%
\vspace{\baselineskip}%
- \end{center}%
- }%
- {\emptybox[#1][#2][#3][#4][#5][#6]%
- }%
+ \end{center}}%
+ {\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\newcommandx{\hugeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.50,%
usedefault]{%
\ifthenelse{\equal{#1}{}}
{\begin{center}%
\fcolorbox{#3}{#2}{%
- \emptyanswer[#5][#6]%
- }%
+ \emptyanswer[#5][#6]}%
\vspace{\baselineskip}%
- \end{center}%
- }%
- {\emptybox[#1][#2][#3][#4][#5][#6]%
- }%
+ \end{center}}%
+ {\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\newcommandx{\hugeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.75,%
usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
- \emptyanswer[#5][#6]%
- }%
+ \emptyanswer[#5][#6]}%
\vspace{\baselineskip}%
- \end{center}%
- }%
- {\emptybox[#1][#2][#3][#4][#5][#6]%
- }%
+ \end{center}}%
+ {\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\newcommandx{\fullpageanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=1.00,%
usedefault]{%
@@ -8504,12 +9574,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\mdfdefinestyle{miinstructornotestyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
frametitle={INSTRUCTOR NOTE},
- frametitlebackgroundcolor=cyan!60, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=cyan!25,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{miinstructornote}{%
\begin{mdframed}[style=miinstructornotestyle]
\begin{adjactivityanswer}[cyan!25][cyan!25][black]
@@ -8518,12 +9588,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{mdframed}
}%
\mdfdefinestyle{mistudentnotestyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
frametitle={STUDENT NOTE},
- frametitlebackgroundcolor=cyan!60, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=cyan!25,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{mistudentnote}{%
\begin{mdframed}[style=mistudentnotestyle]
\begin{adjactivityanswer}[cyan!25][cyan!25][black]
@@ -8532,12 +9602,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{mdframed}
}%
\mdfdefinestyle{miderivationstyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=0pt, rightmargin=0pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=0pt,rightmargin=0pt,linewidth=1,roundcorner=10,
frametitle={DERIVATION},
- frametitlebackgroundcolor=orange!60, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=orange!60,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=orange!25,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{miderivation}{%
\begin{mdframed}[style=miderivationstyle]
\setcounter{equation}{0}
@@ -8547,12 +9617,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{mdframed}
}%
\mdfdefinestyle{bwinstructornotestyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
frametitle={INSTRUCTOR NOTE},
- frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=gray!20,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{bwinstructornote}{%
\begin{mdframed}[style=bwinstructornotestyle]
\begin{adjactivityanswer}[gray!20][gray!20][black]
@@ -8561,12 +9631,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{mdframed}
}%
\mdfdefinestyle{bwstudentnotestyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
frametitle={STUDENT NOTE},
- frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=gray!20,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{bwstudentnote}{%
\begin{mdframed}[style=bwstudentnotestyle]
\begin{adjactivityanswer}[gray!20][gray!20][black]
@@ -8575,12 +9645,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{mdframed}
}%
\mdfdefinestyle{bwderivationstyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=0pt, rightmargin=0pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=0pt,rightmargin=0pt,linewidth=1,roundcorner=10,
frametitle={DERIVATION},
- frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=gray!20,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{bwderivation}{%
\begin{mdframed}[style=bwderivationstyle]
\setcounter{equation}{0}
@@ -8589,9 +9659,14 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{align*}
\end{mdframed}
}%
-\newcommand{\checkpoint}{%
+\NewEnviron{mysolution}{%
+ \begin{align*}
+ \BODY
+ \end{align*}
+}%
+\newcommand*{\checkpoint}{%
\vspace{1cm}\begin{center}|--------- CHECKPOINT ---------|\end{center}}%
-\newcommand{\image}[2]{%
+\newcommand*{\image}[2]{%
\begin{figure}[h!]
\begin{center}%
\includegraphics[scale=1]{#1}%
@@ -8599,11 +9674,11 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\label{#1}%
\end{center}%
\end{figure}}
-\newcommand{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}}
+\newcommand*{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}}
% undocumented diagnostic command
-\newcommand{\chkquantity}[1]{%
+\newcommand*{\chkquantity}[1]{%
\begin{center}
- \begin{tabular}{C{3cm} C{3cm} C{3cm} C{3cm}}
+ \begin{tabular}{C{4.5cm} C{4cm} C{4cm} C{4cm}}
name & baseunit & drvdunit & tradunit \tabularnewline
\cs{#1} & \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname &
\csname #1onlytradunit\endcsname
@@ -8611,9 +9686,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}
}%
% undocumented diagnostic command
-\newcommand{\chkconstant}[1]{%
+\newcommand*{\chkconstant}[1]{%
\begin{center}
- \begin{tabular}{C{3cm} C{1cm} C{2cm} C{3cm} C{3cm} C{3cm}}
+ \begin{tabular}{C{4cm} C{2cm} C{3cm} C{3cm} C{3cm} C{3cm}}
name & symbol & value & baseunit & drvdunit & tradunit \tabularnewline
\cs{#1} & \csname #1mathsymbol\endcsname & \csname #1value\endcsname &
\csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname &
@@ -8621,45 +9696,15 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{tabular}
\end{center}
}%
-% new |\vect| that allows for subscripts
-% #1 = kernel #2 = subscript
-\newcommandx{\vecto}[2][2,usedefault]{\ensuremath{%
- \ifthenelse{\equal{#2}{}}%
- {\vec{#1}}%
- {\ssub{\vec{#1}}{#2}}}}%
-% new |\compvect| that allows for subscripts
-% #1 = kernel #2 = component #3 = subscript
-\newcommandx{\compvecto}[3][3,usedefault]{\ensuremath{%
- \ifthenelse{\equal{#3}{}}%
- {\ssub{#1}{\(#2\)}}%
- {\ssub{#1}{\(#2\),#3}}}}%
-% new |\scompsvect| that allows for subscripts
-% #1 = kernel #2 = subscript
-\newcommandx{\scompsvecto}[2][2,usedefault]{\ensuremath{%
- \ifthenelse{\equal{#2}{}}%
- {\lv\compvecto{#1}{x},\compvecto{#1}{y},\compvecto{#1}{z}\rv}%
- {\lv\compvecto{#1}{x}[#2],\compvecto{#1}{y}[#2],\compvecto{#1}{z}[#2]\rv}}}%
-% new |\comppos| that allows for subscripts
-\newcommandx{\compposo}[2][2,usedefault]{\ensuremath{%
-% #1 = component #2 = subscript
- \ifthenelse{\equal{#1}{}}%
- {#1}%
- {\ssub{#1}{#2}}}}%
-% new |\scompspos| that allows for subscripts
-% #1 = subscript
-\newcommandx{\scompsposo}[1][1,usedefault]{\ensuremath{%
- \ifthenelse{\equal{#1}{}}%
- {\lv\compposo{x},\compposo{y},\compposo{z}\rv}%
- {\lv\compposo{x}[#1],\compposo{y}[#1],\compposo{z}[#1]\rv}}}%
% \end{macrocode}
% \newpage
% \section{Acknowledgements}
% I thank Marcel Heldoorn, Joseph Wright, Scott Pakin, Thomas Sturm, Aaron Titus,
-% Ruth Chabay, and Bruce Sherwood. Special thanks to Martin Scharrer for his
-% \texttt{sty2dtx.pl} utility, which saved me days of typing. Special thanks also
-% to Herbert Schulz for his custom \texttt{dtx} engine for \texttt{TeXShop}. Very
-% special thanks to Ulrich Diez for providing the mechanism that defines physics
-% quantities and constants.
+% David Zaslavsky, Ruth Chabay, and Bruce Sherwood. Special thanks to Martin
+% Scharrer for his \texttt{sty2dtx.pl} utility, which saved me days of typing.
+% Special thanks also to Herbert Schulz for his custom \texttt{dtx} engine for
+% \texttt{TeXShop}. Very special thanks to Ulrich Diez for providing the mechanism
+% that defines physics quantities and constants.
%
% \iffalse
%</package>
diff --git a/Master/texmf-dist/source/latex/mandi/mandi.ins b/Master/texmf-dist/source/latex/mandi/mandi.ins
index 05b68326fb8..743a77a224e 100644
--- a/Master/texmf-dist/source/latex/mandi/mandi.ins
+++ b/Master/texmf-dist/source/latex/mandi/mandi.ins
@@ -6,7 +6,7 @@
%%
%% mandi.dtx (with options: `install')
%%
-%% Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com>
+%% Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com>
%% ---------------------------------------------------------------------------
%% This work may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License, either version 1.3 of this license or (at
@@ -34,7 +34,7 @@
\usedir{tex/latex/mandi}
\preamble
-Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com>
+Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com>
---------------------------------------------------------------------------
This work may be distributed and/or modified under the conditions of the
LaTeX Project Public License, either version 1.3 of this license or (at
@@ -61,7 +61,7 @@ and includes the derived files mandi.ins
\generate{\file{\jobname.sty}{\from{\jobname.dtx}{package}}}
\generate{\file{\jobname.ins}{\from{\jobname.dtx}{install}}}
\generate{\usepreamble\empty\usepostamble\empty
- \file{vdemo.py}{\from{\jobname.dtx}{vdemo}}}
+ \file{README.txt}{\from{\jobname.dtx}{readme}}}
\obeyspaces
\Msg{*************************************************************}
@@ -76,6 +76,7 @@ and includes the derived files mandi.ins
\Msg{* *}
\Msg{*************************************************************}
\endbatchfile
+
\endinput
%%
%% End of file `mandi.ins'.
diff --git a/Master/texmf-dist/tex/latex/mandi/mandi.sty b/Master/texmf-dist/tex/latex/mandi/mandi.sty
index 46db7c1f230..700d2db36c8 100644
--- a/Master/texmf-dist/tex/latex/mandi/mandi.sty
+++ b/Master/texmf-dist/tex/latex/mandi/mandi.sty
@@ -6,7 +6,7 @@
%%
%% mandi.dtx (with options: `package')
%%
-%% Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com>
+%% Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com>
%% ---------------------------------------------------------------------------
%% This work may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License, either version 1.3 of this license or (at
@@ -28,15 +28,17 @@
%% mandi.pdf.
%% ---------------------------------------------------------------------------
%%
-\ProvidesPackage{mandi}[2013/06/14 2.2.0 Macros for physics and astronomy]
+\ProvidesPackage{mandi}[2014/12/29 2.4.0 Macros for physics and astronomy]
\NeedsTeXFormat{LaTeX2e}[1999/12/01]
+
\RequirePackage{amsmath}
\RequirePackage{amssymb}
\RequirePackage{array}
-\RequirePackage{bigints}
\RequirePackage{cancel}
\RequirePackage[dvipsnames]{xcolor}
\RequirePackage{environ}
+\RequirePackage{esint}
+\RequirePackage[g]{esvect}
\RequirePackage{etoolbox}
\RequirePackage{filehook}
\RequirePackage{extarrows}
@@ -53,151 +55,182 @@
\RequirePackage{xspace}
\RequirePackage{ifthen}
\RequirePackage{calligra}
+\RequirePackage{hyperref}
\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}
\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}
\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `basename #1 .tif`.png}
\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it}
\usetikzlibrary{shadows}
-\definecolor{vpythoncolor}{rgb}{0.95,0.95,0.95}
-\newcommand{\lstvpython}{\lstset{language=Python,numbers=left,numberstyle=\tiny,
- backgroundcolor=\color{vpythoncolor},upquote=true,breaklines}}
+\definecolor{vbgcolor}{rgb}{1,1,1}
+\definecolor{vshadowcolor}{rgb}{0.5,0.5,0.5}
+\lstdefinestyle{vpython}{% % style for VPython code
+ language=Python,% % select language
+ morekeywords={visual,arrow,box,cone,% % VPython specific keywords
+ convex,curve,cylinder,ellipsoid,extrusion,faces,helix,label,points,pyramid,ring,%
+ sphere,text,frame,graphs,vector,pos,axis,radius,color,opacity,material,up,%
+ make_trail,trail_type,trail_object,scene,mag,mag2,norm,dot,cross,proj,comp,%
+ diff_angle,rotate,astuple,radians,shaftwidth,headwidth,headlength,height,width,%
+ size,degrees,interval,retain,__future__,division,print_function,rate},%
+ frame=shadowbox,% % shadowbox around listing
+ rulesepcolor=\color{vshadowcolor},% % shadow color
+ basicstyle=\footnotesize,% % basic font for code listings
+ commentstyle=\bfseries\color{red}, % font for comments
+ keywordstyle=\bfseries\color{blue},% % font for keywords
+ showstringspaces=true,% % show spaces in strings
+ numbers=left,% % where to put line numbers
+ numberstyle=\tiny,% % set to 'none' for no line numbers
+ xleftmargin=20pt,% % extra left margin
+ backgroundcolor=\color{vbgcolor},% % some people find this annoying
+ upquote=true,% % how to typeset quotes
+ breaklines=true}% % break long lines
\newcolumntype{C}[1]{>{\centering}m{#1}}
-\newboolean{@optitalicvectors}
-\newboolean{@optdoubleabsbars}
+\newboolean{@optromanvectors}
+\newboolean{@optboldvectors}
+\newboolean{@optsingleabsbars}
\newboolean{@optbaseunits}
\newboolean{@optdrvdunits}
-\setboolean{@optitalicvectors}{false}
-\setboolean{@optdoubleabsbars}{false}
-\setboolean{@optbaseunits}{false}
-\setboolean{@optdrvdunits}{false}
-\DeclareOption{italicvectors}{\setboolean{@optitalicvectors}{true}}
-\DeclareOption{doubleabsbars}{\setboolean{@optdoubleabsbars}{true}}
+\newboolean{@optapproxconsts}
+\setboolean{@optromanvectors}{false} % this is where you set the default option
+\setboolean{@optboldvectors}{false} % this is where you set the default option
+\setboolean{@optsingleabsbars}{false} % this is where you set the default option
+\setboolean{@optbaseunits}{false} % this is where you set the default option
+\setboolean{@optdrvdunits}{false} % this is where you set the default option
+\setboolean{@optapproxconsts}{false} % this is where you set the default option
+\DeclareOption{romanvectors}{\setboolean{@optromanvectors}{true}}
+\DeclareOption{boldvectors}{\setboolean{@optboldvectors}{true}}
+\DeclareOption{singleabsbars}{\setboolean{@optsingleabsbars}{true}}
\DeclareOption{baseunits}{\setboolean{@optbaseunits}{true}}
\DeclareOption{drvdunits}{\setboolean{@optdrvdunits}{true}}
+\DeclareOption{approxconsts}{\setboolean{@optapproxconsts}{true}}
\ProcessOptions\relax
\@ifpackageloaded{amssymb}{%
\csundef{square}
- \typeout{mandi: Package amssymb detected. Its \protect\square\space has been redefined.}
+ \typeout{mandi: Package amssymb detected. Its \protect\square\space has been
+ redefined.}
}{%
\typeout{mandi: Package amssymb not detected.}
}%
-\newcommand{\per}{\ensuremath{/}}
-\newcommand{\usk}{\ensuremath{\cdot}}
-\newcommand{\unit}[2]{\ensuremath{{#1}\,{#2}}}
-\newcommand{\ampere}{\ensuremath{\mathrm{A}}}
-\newcommand{\arcminute}{\ensuremath{'}}
-\newcommand{\arcsecond}{\ensuremath{''}}
-\newcommand{\atomicmassunit}{\ensuremath{\mathrm{u}}}
-\newcommand{\candela}{\ensuremath{\mathrm{cd}}}
-\newcommand{\coulomb}{\ensuremath{\mathrm{C}}}
-\newcommand{\degree}{\ensuremath{^{\circ}}}
-\newcommand{\electronvolt}{\ensuremath{\mathrm{eV}}}
-\newcommand{\eV}{\electronvolt}
-\newcommand{\farad}{\ensuremath{\mathrm{F}}}
-\newcommand{\henry}{\ensuremath{\mathrm{H}}}
-\newcommand{\hertz}{\ensuremath{\mathrm{Hz}}}
-\newcommand{\hour}{\ensuremath{\mathrm{h}}}
-\newcommand{\joule}{\ensuremath{\mathrm{J}}}
-\newcommand{\kelvin}{\ensuremath{\mathrm{K}}}
-\newcommand{\kilogram}{\ensuremath{\mathrm{kg}}}
-\newcommand{\metre}{\ensuremath{\mathrm{m}}}
-\newcommand{\minute}{\ensuremath{\mathrm{min}}}
-\newcommand{\mole}{\ensuremath{\mathrm{mol}}}
-\newcommand{\newton}{\ensuremath{\mathrm{N}}}
-\newcommand{\ohm}{\ensuremath{\Omega}}
-\newcommand{\pascal}{\ensuremath{\mathrm{Pa}}}
-\newcommand{\radian}{\ensuremath{\mathrm{rad}}}
-\newcommand{\second}{\ensuremath{\mathrm{s}}}
-\newcommand{\siemens}{\ensuremath{\mathrm{S}}}
-\newcommand{\steradian}{\ensuremath{\mathrm{sr}}}
-\newcommand{\tesla}{\ensuremath{\mathrm{T}}}
-\newcommand{\volt}{\ensuremath{\mathrm{V}}}
-\newcommand{\watt}{\ensuremath{\mathrm{W}}}
-\newcommand{\weber}{\ensuremath{\mathrm{Wb}}}
-\newcommand{\C}{\coulomb}
-\newcommand{\F}{\farad}
-\newcommand{\J}{\joule}
-\newcommand{\N}{\newton}
-\newcommand{\Pa}{\pascal}
-\newcommand{\rad}{\radian}
-\newcommand{\sr}{\steradian}
-\newcommand{\T}{\tesla}
-\newcommand{\V}{\volt}
-\newcommand{\W}{\watt}
-\newcommand{\Wb}{\weber}
-\newcommand{\square}[1]{\ensuremath{\mathrm{#1}^{2}}} % prefix 2
-\newcommand*{\cubic}[1]{\ensuremath{\mathrm{#1}^{3}}} % prefix 3
-\newcommand*{\quartic}[1]{\ensuremath{\mathrm{#1}^{4}}} % prefix 4
-\newcommand*{\reciprocal}[1]{\ensuremath{\mathrm{#1}^{-1}}} % prefix -1
-\newcommand*{\reciprocalsquare}[1]{\ensuremath{\mathrm{#1}^{-2}}} % prefix -2
-\newcommand*{\reciprocalcubic}[1]{\ensuremath{\mathrm{#1}^{-3}}} % prefix -3
-\newcommand*{\reciprocalquartic}[1]{\ensuremath{\mathrm{#1}^{-4}}} % prefix -4
-\newcommand*{\squared}{\ensuremath{^{\mathrm{2}}}} % postfix 2
-\newcommand*{\cubed}{\ensuremath{^{\mathrm{3}}}} % postfix 3
-\newcommand*{\quarted}{\ensuremath{^{\mathrm{4}}}} % postfix 4
-\newcommand*{\reciprocaled}{\ensuremath{^{\mathrm{-1}}}} % postfix -1
-\newcommand*{\reciprocalsquared}{\ensuremath{^{\mathrm{-2}}}} % postfix -2
-\newcommand*{\reciprocalcubed}{\ensuremath{^{\mathrm{-3}}}} % postfix -3
-\newcommand*{\reciprocalquarted}{\ensuremath{^{\mathrm{-4}}}} % postfix -4
-\newcommand\mi@exchangeargs[2]{#2#1}%
-\newcommand\mi@name{}%
+\newcommand*{\mandiversion}{2.4.0}
+\typeout{mandi: You're using mandi version \mandiversion.}
+\newcommand*{\per}{\ensuremath{/}}
+\newcommand*{\usk}{\ensuremath{\cdot}}
+\newcommand*{\unit}[2]{\ensuremath{{#1}\,{#2}}}
+\newcommand*{\ampere}{\ensuremath{\mathrm{A}}}
+\newcommand*{\arcminute}{\ensuremath{'}}
+\newcommand*{\arcsecond}{\ensuremath{''}}
+\newcommand*{\atomicmassunit}{\ensuremath{\mathrm{u}}}
+\newcommand*{\candela}{\ensuremath{\mathrm{cd}}}
+\newcommand*{\coulomb}{\ensuremath{\mathrm{C}}}
+\newcommand*{\degree}{\ensuremath{^{\circ}}}
+\newcommand*{\electronvolt}{\ensuremath{\mathrm{eV}}}
+\newcommand*{\eV}{\electronvolt}
+\newcommand*{\farad}{\ensuremath{\mathrm{F}}}
+\newcommand*{\henry}{\ensuremath{\mathrm{H}}}
+\newcommand*{\hertz}{\ensuremath{\mathrm{Hz}}}
+\newcommand*{\hour}{\ensuremath{\mathrm{h}}}
+\newcommand*{\joule}{\ensuremath{\mathrm{J}}}
+\newcommand*{\kelvin}{\ensuremath{\mathrm{K}}}
+\newcommand*{\kilogram}{\ensuremath{\mathrm{kg}}}
+\newcommand*{\metre}{\ensuremath{\mathrm{m}}}
+\newcommand*{\minute}{\ensuremath{\mathrm{min}}}
+\newcommand*{\mole}{\ensuremath{\mathrm{mol}}}
+\newcommand*{\newton}{\ensuremath{\mathrm{N}}}
+\newcommand*{\ohm}{\ensuremath{\Omega}}
+\newcommand*{\pascal}{\ensuremath{\mathrm{Pa}}}
+\newcommand*{\radian}{\ensuremath{\mathrm{rad}}}
+\newcommand*{\second}{\ensuremath{\mathrm{s}}}
+\newcommand*{\siemens}{\ensuremath{\mathrm{S}}}
+\newcommand*{\steradian}{\ensuremath{\mathrm{sr}}}
+\newcommand*{\tesla}{\ensuremath{\mathrm{T}}}
+\newcommand*{\volt}{\ensuremath{\mathrm{V}}}
+\newcommand*{\watt}{\ensuremath{\mathrm{W}}}
+\newcommand*{\weber}{\ensuremath{\mathrm{Wb}}}
+\newcommand*{\C}{\coulomb}
+\newcommand*{\F}{\farad}
+\newcommand*{\J}{\joule}
+\newcommand*{\N}{\newton}
+\newcommand*{\Pa}{\pascal}
+\newcommand*{\rad}{\radian}
+\newcommand*{\sr}{\steradian}
+\newcommand*{\T}{\tesla}
+\newcommand*{\V}{\volt}
+\newcommand*{\W}{\watt}
+\newcommand*{\Wb}{\weber}
+\newcommand*{\square}[1]{\ensuremath{{#1}^2}} % prefix 2
+\newcommand*{\cubic}[1]{\ensuremath{{#1}^3}} % prefix 3
+\newcommand*{\quartic}[1]{\ensuremath{{#1}^4}} % prefix 4
+\newcommand*{\reciprocal}[1]{\ensuremath{{#1}^{-1}}} % prefix -1
+\newcommand*{\reciprocalsquare}[1]{\ensuremath{{#1}^{-2}}} % prefix -2
+\newcommand*{\reciprocalcubic}[1]{\ensuremath{{#1}^{-3}}} % prefix -3
+\newcommand*{\reciprocalquartic}[1]{\ensuremath{{#1}^{-4}}} % prefix -4
+\newcommand*{\squared}{\ensuremath{^2}} % postfix 2
+\newcommand*{\cubed}{\ensuremath{^3}} % postfix 3
+\newcommand*{\quarted}{\ensuremath{^4}} % postfix 4
+\newcommand*{\reciprocaled}{\ensuremath{^{-1}}} % postfix -1
+\newcommand*{\reciprocalsquared}{\ensuremath{^{-2}}} % postfix -2
+\newcommand*{\reciprocalcubed}{\ensuremath{^{-3}}} % postfix -3
+\newcommand*{\reciprocalquarted}{\ensuremath{^{-4}}} % postfix -4
+\newcommand*\mi@exchangeargs[2]{#2#1}%
+\newcommand*\mi@name{}%
\long\def\mi@name#1#{\romannumeral0\mi@innername{#1}}%
-\newcommand\mi@innername[2]{%
+\newcommand*\mi@innername[2]{%
\expandafter\mi@exchangeargs\expandafter{\csname#2\endcsname}{#1}}%
\begingroup
\@firstofone{%
\endgroup
- \newcommand\mi@forkifnull[3]{%
- \romannumeral\iffalse{\fi\expandafter\@secondoftwo\expandafter
+ \newcommand*\mi@forkifnull[3]{%
+ \romannumeral\iffalse{\fi\expandafter\@secondoftwo\expandafter%
{\expandafter{\string#1}\expandafter\@secondoftwo\string}%
\expandafter\@firstoftwo\expandafter{\iffalse}\fi0 #3}{0 #2}}}%
-\newcommand\selectbaseunit[3]{#1}
-\newcommand\selectdrvdunit[3]{#2}
-\newcommand\selecttradunit[3]{#3}
-\newcommand\selectunit{}
-\newcommand\perpusebaseunit{\let\selectunit=\selectbaseunit}
-\newcommand\perpusedrvdunit{\let\selectunit=\selectdrvdunit}
-\newcommand\perpusetradunit{\let\selectunit=\selecttradunit}
-\newcommand\hereusebaseunit[1]{%
+\newcommand*\selectbaseunit[3]{#1}
+\newcommand*\selectdrvdunit[3]{#2}
+\newcommand*\selecttradunit[3]{#3}
+\newcommand*\selectunit{}
+\newcommand*\perpusebaseunit{\let\selectunit=\selectbaseunit}
+\newcommand*\perpusedrvdunit{\let\selectunit=\selectdrvdunit}
+\newcommand*\perpusetradunit{\let\selectunit=\selecttradunit}
+\newcommand*\hereusebaseunit[1]{%
\begingroup\perpusebaseunit#1\endgroup}%
-\newcommand\hereusedrvdunit[1]{%
+\newcommand*\hereusedrvdunit[1]{%
\begingroup\perpusedrvdunit#1\endgroup}%
-\newcommand\hereusetradunit[1]{%
+\newcommand*\hereusetradunit[1]{%
\begingroup\perpusetradunit#1\endgroup}%
\newenvironment{usebaseunit}{\perpusebaseunit}{}%
\newenvironment{usedrvdunit}{\perpusedrvdunit}{}%
\newenvironment{usetradunit}{\perpusetradunit}{}%
\newcommand*\newphysicsquantity{\definephysicsquantity{\newcommand}}
\newcommand*\redefinephysicsquantity{\definephysicsquantity{\renewcommand}}
-\newcommandx\definephysicsquantity[5][4=,5=]{%
+\newcommandx*\definephysicsquantity[5][4=,5=]{%
\innerdefinewhatsoeverquantityfork{#3}{#4}{#5}{#1}{#2}{}{[1]}{##1}}%
\newcommand*\newphysicsconstant{\definephysicsconstant{\newcommand}}
\newcommand*\redefinephysicsconstant{\definephysicsconstant{\renewcommand}}
-\newcommandx\definephysicsconstant[7][6=,7=]{%
+\newcommandx*\definephysicsconstant[7][6=,7=]{%
\innerdefinewhatsoeverquantityfork{#5}{#6}{#7}{#1}{#2}{#3}{}{#4}}%
-\newcommand\innerdefinewhatsoeverquantityfork[3]{%
+\newcommand*\innerdefinewhatsoeverquantityfork[3]{%
\expandafter\innerdefinewhatsoeverquantity\romannumeral0%
\mi@forkifnull{#3}{\mi@forkifnull{#2}{{#1}}{{#2}}{#1}}%
{\mi@forkifnull{#2}{{#1}}{{#2}}{#3}}{#1}}%
-\newcommand\innerdefinewhatsoeverquantity[8]{%
- \mi@name#4{#5}#7{\ensuremath{\unit{#8}{\selectunit{#3}{#1}{#2}}}}%
- \mi@name#4{#5baseunit}#7{\ensuremath{\unit{#8}{#3}}}%
- \mi@name#4{#5drvdunit}#7{\ensuremath{\unit{#8}{#1}}}%
- \mi@name#4{#5tradunit}#7{\ensuremath{\unit{#8}{#2}}}%
- \mi@name#4{#5onlyunit}{\ensuremath{\selectunit{#3}{#1}{#2}}}%
+\newcommand*\innerdefinewhatsoeverquantity[8]{%
+ \mi@name#4{#5}#7{\unit{#8}{\selectunit{#3}{#1}{#2}}}%
+ \mi@name#4{#5baseunit}#7{\unit{#8}{#3}}%
+ \mi@name#4{#5drvdunit}#7{\unit{#8}{#1}}%
+ \mi@name#4{#5tradunit}#7{\unit{#8}{#2}}%
+ \mi@name#4{#5onlyunit}{\selectunit{#3}{#1}{#2}}%
\mi@name#4{#5onlybaseunit}{\ensuremath{#3}}%
\mi@name#4{#5onlydrvdunit}{\ensuremath{#1}}%
\mi@name#4{#5onlytradunit}{\ensuremath{#2}}%
\mi@name#4{#5value}#7{\ensuremath{#8}}%
\mi@forkifnull{#7}{%
\ifx#4\renewcommand\mi@name\let{#5mathsymbol}=\relax\fi
- \mi@name\newcommand{#5mathsymbol}{\ensuremath{#6}}}{}}%
-\ifthenelse{\boolean{@optitalicvectors}}
- {\typeout{mandi: You'll get italic vector kernels.}}
- {\typeout{mandi: You'll get Roman vector kernels.}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\typeout{mandi: You'll get double absolute value bars.}}
+ \mi@name\newcommand*{#5mathsymbol}{\ensuremath{#6}}}{}}%
+\ifthenelse{\boolean{@optboldvectors}}
+ {\typeout{mandi: You'll get bold vectors.}}
+ {\ifthenelse{\boolean{@optromanvectors}}
+ {\typeout{mandi: You'll get Roman vectors.}}
+ {\typeout{mandi: You'll get italic vectors.}}}
+\ifthenelse{\boolean{@optsingleabsbars}}
{\typeout{mandi: You'll get single absolute value bars.}}
+ {\typeout{mandi: You'll get double absolute value bars.}}
\ifthenelse{\boolean{@optbaseunits}}
{\perpusebaseunit %
\typeout{mandi: You'll get base units.}}
@@ -206,6 +239,12 @@
\typeout{mandi: You'll get derived units.}}
{\perpusetradunit %
\typeout{mandi: You'll get traditional units.}}}
+\ifthenelse{\boolean{@optapproxconsts}}
+ {\typeout{mandi: You'll get approximate constants.}}
+ {\typeout{mandi: You'll get precise constants.}}
+\ifthenelse{\boolean{@optapproxconsts}}
+ {\newcommand*{\mi@p}[2]{#1}} % approximate value
+ {\newcommand*{\mi@p}[2]{#2}} % precise value
\def\resetMathstrut@{%
\setbox\z@\hbox{%
\mathchardef\@tempa\mathcode`\[\relax
@@ -217,23 +256,21 @@
\catcode`)\active \xdef){\right\string)}
\endgroup
\mathcode`(="8000 \mathcode`)="8000
-\typeout{mandi: parentheses made adjustable in math mode.}
-\let\oldr@@t\r@@t
-\def\r@@t#1#2{%
-\setbox0=\hbox{\(\oldr@@t#1{#2\,}\)}\dimen0=\ht0
-\advance\dimen0-0.2\ht0
-\setbox2=\hbox{\vrule height\ht0 depth -\dimen0}%
-{\box0\lower0.4pt\box2}}
-\LetLtxMacro{\oldsqrt}{\sqrt}
-\renewcommand*{\sqrt}[2][\relax]{\oldsqrt[#1]{#2}}
-\typeout{mandi: square root symbol fixed.}
-\newcommand{\m}{\metre}
-\newcommand{\kg}{\kilogram}
-\newcommand{\s}{\second}
-\newcommand{\A}{\ampere}
-\newcommand{\K}{\kelvin}
-\newcommand{\mol}{\mole}
-\newcommand{\cd}{\candela}
+\typeout{mandi: Parentheses have been made adjustable in math mode.}
+\newcommand*{\m}{\metre}
+\newcommand*{\kg}{\kilogram}
+\newcommand*{\s}{\second}
+\newcommand*{\A}{\ampere}
+\newcommand*{\K}{\kelvin}
+\newcommand*{\mol}{\mole}
+\newcommand*{\cd}{\candela}
+\newcommand*{\dimdisplacement}{\ensuremath{\mathrm{L}}}
+\newcommand*{\dimmass}{\ensuremath{\mathrm{M}}}
+\newcommand*{\dimduration}{\ensuremath{\mathrm{T}}}
+\newcommand*{\dimcurrent}{\ensuremath{\mathrm{I}}}
+\newcommand*{\dimtemperature}{\ensuremath{\mathrm{\Theta}}}
+\newcommand*{\dimamount}{\ensuremath{\mathrm{N}}}
+\newcommand*{\dimluminous}{\ensuremath{\mathrm{J}}}
\newphysicsquantity{displacement}{\m}[\m][\m]
\newphysicsquantity{mass}{\kg}[\kg][\kg]
\newphysicsquantity{duration}{\s}[\s][\s]
@@ -241,131 +278,156 @@
\newphysicsquantity{temperature}{\K}[\K][\K]
\newphysicsquantity{amount}{\mol}[\mol][\mol]
\newphysicsquantity{luminous}{\cd}[\cd][\cd]
-\newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\rad]
-\newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\sr]
-\newcommand{\indegrees}[1]{\ensuremath{\unit{#1}{\degree}}}
-\newcommand{\inFarenheit}[1]{\ensuremath{\unit{#1}{\degree\mathrm{F}}}}
-\newcommand{\inCelsius}[1]{\ensuremath{\unit{#1}{\degree\mathrm{C}}}}
-\newcommand{\inarcminutes}[1]{\ensuremath{\unit{#1}{\arcminute}}}
-\newcommand{\inarcseconds}[1]{\ensuremath{\unit{#1}{\arcsecond}}}
-\newcommand{\ineV}[1]{\ensuremath{\unit{#1}{\electronvolt}}}
-\newcommand{\inMeVocs}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per\msup{c}{2}}}}
-\newcommand{\inMeVoc}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per c}}}
-\newcommand{\inAU}[1]{\ensuremath{\unit{#1}{\mathrm{AU}}}}
-\newcommand{\inly}[1]{\ensuremath{\unit{#1}{\mathrm{ly}}}}
-\newcommand{\incyr}[1]{\ensuremath{\unit{#1}{c\usk\mathrm{year}}}}
-\newcommand{\inpc}[1]{\ensuremath{\unit{#1}{\mathrm{pc}}}}
-\newcommand{\insolarL}[1]{\ensuremath{\unit{#1}{\Lsolar}}}
-\newcommand{\insolarT}[1]{\ensuremath{\unit{#1}{\Tsolar}}}
-\newcommand{\insolarR}[1]{\ensuremath{\unit{#1}{\Rsolar}}}
-\newcommand{\insolarM}[1]{\ensuremath{\unit{#1}{\Msolar}}}
-\newcommand{\insolarF}[1]{\ensuremath{\unit{#1}{\Fsolar}}}
-\newcommand{\insolarf}[1]{\ensuremath{\unit{#1}{\fsolar}}}
-\newcommand{\insolarMag}[1]{\ensuremath{\unit{#1}{\Magsolar}}}
-\newcommand{\insolarmag}[1]{\ensuremath{\unit{#1}{\magsolar}}}
-\newcommand{\insolarD}[1]{\ensuremath{\unit{#1}{\Dsolar}}}
-\newcommand{\insolard}[1]{\ensuremath{\unit{#1}{\dsolar}}}
-\newcommand{\velocityc}[1]{\ensuremath{#1c}}
+\newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\relax]
+\newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\relax]
+\newcommand*{\indegrees}[1]{\unit{#1}{\degree}}
+\newcommand*{\inFarenheit}[1]{\unit{#1}{\degree\mathrm{F}}}
+\newcommand*{\inCelsius}[1]{\unit{#1}{\degree\mathrm{C}}}
+\newcommand*{\inarcminutes}[1]{\unit{#1}{\arcminute}}
+\newcommand*{\inarcseconds}[1]{\unit{#1}{\arcsecond}}
+\newcommand*{\ineV}[1]{\unit{#1}{\electronvolt}}
+\newcommand*{\ineVocs}[1]{\unit{#1}{\mathrm{eV}\per c^2}}
+\newcommand*{\ineVoc}[1]{\unit{#1}{\mathrm{eV}\per c}}
+\newcommand*{\inMeV}[1]{\unit{#1}{\mathrm{MeV}}}
+\newcommand*{\inMeVocs}[1]{\unit{#1}{\mathrm{MeV}\per c^2}}
+\newcommand*{\inMeVoc}[1]{\unit{#1}{\mathrm{MeV}\per c}}
+\newcommand*{\inGeV}[1]{\unit{#1}{\mathrm{GeV}}}
+\newcommand*{\inGeVocs}[1]{\unit{#1}{\mathrm{GeV}\per c^2}}
+\newcommand*{\inGeVoc}[1]{\unit{#1}{\mathrm{GeV}\per c}}
+\newcommand*{\inamu}[1]{\unit{#1}{\mathrm{u}}}
+\newcommand*{\ingram}[1]{\unit{#1}{\mathrm{g}}}
+\newcommand*{\ingrampercubiccm}[1]{\unit{#1}{\mathrm{g}\per\cubic\mathrm{cm}}}
+\newcommand*{\inAU}[1]{\unit{#1}{\mathrm{AU}}}
+\newcommand*{\inly}[1]{\unit{#1}{\mathrm{ly}}}
+\newcommand*{\incyr}[1]{\unit{#1}{c\usk\mathrm{year}}}
+\newcommand*{\inpc}[1]{\unit{#1}{\mathrm{pc}}}
+\newcommand*{\insolarL}[1]{\unit{#1}{\Lsolar}}
+\newcommand*{\insolarT}[1]{\unit{#1}{\Tsolar}}
+\newcommand*{\insolarR}[1]{\unit{#1}{\Rsolar}}
+\newcommand*{\insolarM}[1]{\unit{#1}{\Msolar}}
+\newcommand*{\insolarF}[1]{\unit{#1}{\Fsolar}}
+\newcommand*{\insolarf}[1]{\unit{#1}{\fsolar}}
+\newcommand*{\insolarMag}[1]{\unit{#1}{\Magsolar}}
+\newcommand*{\insolarmag}[1]{\unit{#1}{\magsolar}}
+\newcommand*{\insolarD}[1]{\unit{#1}{\Dsolar}}
+\newcommand*{\insolard}[1]{\unit{#1}{\dsolar}}
+\newcommand*{\velocityc}[1]{\ensuremath{#1c}}
\newphysicsquantity{velocity}{\m\usk\reciprocal\s}[\m\usk\reciprocal\s][\m\per\s]
-\newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg][\m\per\s\squared]
-\newcommand{\lorentz}[1]{\ensuremath{#1}}
+\newcommand*{\speed}{\velocity}
+\newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg]%
+ [\m\per\s\squared]
+\newphysicsquantity{gravitationalfield}{\m\usk\s\reciprocalsquared}[\N\per\kg]%
+ [\N\per\kg]
+\newphysicsquantity{gravitationalpotential}{\square\m\usk\reciprocalsquare\s}%
+ [\J\per\kg][\J\per\kg]
+\newcommand*{\lorentz}[1]{\ensuremath{#1}}
\newphysicsquantity{momentum}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s]
-\newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s]
+\newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\N\usk\s]
\newphysicsquantity{force}{\m\usk\kg\usk\s\reciprocalsquared}[\N][\N]
\newphysicsquantity{springstiffness}{\kg\usk\s\reciprocalsquared}[\N\per\m][\N\per\m]
\newphysicsquantity{springstretch}{\m}
\newphysicsquantity{area}{\m\squared}
\newphysicsquantity{volume}{\cubic\m}
\newphysicsquantity{linearmassdensity}{\reciprocal\m\usk\kg}[\kg\per\m][\kg\per\m]
-\newphysicsquantity{areamassdensity}{\m\reciprocalsquared\usk\kg}[\kg\per\m\squared]
-[\kg\per\m\squared]
-\newphysicsquantity{volumemassdensity}{\m\reciprocalcubed\usk\kg}[\kg\per\m\cubed]
-[\kg\per\m\cubed]
-\newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}
-[\N\per\m\squared][\Pa]
+\newphysicsquantity{areamassdensity}{\m\reciprocalsquared\usk\kg}[\kg\per\m\squared]%
+ [\kg\per\m\squared]
+\newphysicsquantity{volumemassdensity}{\m\reciprocalcubed\usk\kg}[\kg\per\m\cubed]%
+ [\kg\per\m\cubed]
+\newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
+ [\N\per\m\squared][\Pa]
+\newphysicsquantity{stress}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
+ [\N\per\m\squared][\Pa]
+\newphysicsquantity{pressure}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
+ [\N\per\m\squared][\Pa]
+\newphysicsquantity{strain}{\relax}[\relax][\relax]
\newphysicsquantity{work}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m]
-\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m]
-\newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s]
+\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\N\usk\m][\J]
+\newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\J\per\s][\W]
+\newphysicsquantity{specificheatcapacity}{\J\per\K\usk\kg}[\J\per\K\usk\kg]%
+ [\J\per\K\usk\kg]
\newphysicsquantity{angularvelocity}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s]
-\newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}[\rad\per\s\squared]
-[\rad\per\s\squared]
-\newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s]
-[\kg\usk\m\squared\per\s]
-\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared][\kg\usk\m\squared]
-\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad][\N\usk\m]
+\newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}%
+ [\rad\per\s\squared][\rad\per\s\squared]
+\newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s]%
+ [\kg\usk\m\squared\per\s]
+\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared]%
+ [\kg\usk\m\squared]
+\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad]%
+ [\N\usk\m]
\newphysicsquantity{entropy}{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\K}
-[\J\per\K][\J\per\K]
+ [\J\per\K][\J\per\K]
\newphysicsquantity{wavelength}{\m}[\m][\m]
\newphysicsquantity{wavenumber}{\reciprocal\m}[\per\m][\per\m]
\newphysicsquantity{frequency}{\reciprocal\s}[\hertz][\hertz]
\newphysicsquantity{angularfrequency}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s]
\newphysicsquantity{charge}{\A\usk\s}[\C][\C]
\newphysicsquantity{permittivity}
-{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared}
-[\F\per\m][\C\squared\per\N\usk\m\squared]
-\newphysicsquantity{permeability}
-{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m][\T\usk\m\per\A]
-\newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}
-[\V\per\m][\N\per\C]
+{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared}%
+ [\F\per\m][\C\squared\per\N\usk\m\squared]
+\newphysicsquantity{permeability}%
+ {\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m]%
+ [\T\usk\m\per\A]
+\newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
+ [\V\per\m][\N\per\C]
\newphysicsquantity{electricdipolemoment}{\m\usk\s\usk\A}[\C\usk\m][\C\usk\m]
-\newphysicsquantity{electricflux}{\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}
-[\V\usk\m][\N\usk\m\squared\per\C]
-\newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T]
-[\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared
-\newphysicsquantity{magneticflux}
-{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s]
-[\T\usk\m\squared] % also \Wb and \J\per\A
-\newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}
-[\V\per\m][\N\per\C]
+\newphysicsquantity{electricflux}%
+ {\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
+ [\V\usk\m][\N\usk\m\squared\per\C]
+\newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T]%
+ [\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared
+\newphysicsquantity{magneticflux}%
+ {\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s]%
+ [\T\usk\m\squared] % also \Wb and \J\per\A
+\newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
+ [\V\per\m][\N\per\C]
\newphysicsquantity{linearchargedensity}{\reciprocal\m\usk\s\usk\A}[\C\per\m][\C\per\m]
-\newphysicsquantity{areachargedensity}{\reciprocalsquare\m\usk\s\usk\A}
-[\C\per\square\m][\C\per\square\m]
-\newphysicsquantity{volumechargedensity}{\reciprocalcubic\m\usk\s\usk\A}
-[\C\per\cubic\m][\C\per\cubic\m]
-\newphysicsquantity{mobility}
-{\m\squared\usk\kg\usk\s\reciprocalquarted\usk\reciprocal\A}[\m\squared\per\volt\usk\s]
-[(\m\per\s)\per(\N\per\C)]
+\newphysicsquantity{areachargedensity}{\reciprocalsquare\m\usk\s\usk\A}%
+ [\C\per\square\m][\C\per\square\m]
+\newphysicsquantity{volumechargedensity}{\reciprocalcubic\m\usk\s\usk\A}%
+ [\C\per\cubic\m][\C\per\cubic\m]
+\newphysicsquantity{mobility}%
+ {\m\squared\usk\kg\usk\s\reciprocalquarted\usk\reciprocal\A}[\m\squared\per\volt\usk\s]
+ [(\m\per\s)\per(\N\per\C)]
\newphysicsquantity{numberdensity}{\reciprocalcubic\m}[\per\cubic\m][\per\cubic\m]
-\newphysicsquantity{polarizability}{\reciprocal\kg\usk\s\quarted\usk\square\A}
-[\C\usk\square\m\per\V][\C\usk\m\per(\N\per\C)]
-\newphysicsquantity{electricpotential}
-{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}[\J\per\C][\V]
-\newphysicsquantity{emf}{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}
-[\J\per\C][\V]
+\newphysicsquantity{polarizability}{\reciprocal\kg\usk\s\quarted\usk\square\A}%
+ [\C\usk\square\m\per\V][\C\usk\m\per(\N\per\C)]
+\newphysicsquantity{electricpotential}%
+ {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}[\J\per\C][\V]
+\newphysicsquantity{emf}{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}%
+ [\J\per\C][\V]
\newphysicsquantity{dielectricconstant}{}[][]
\newphysicsquantity{indexofrefraction}{}[][]
\newphysicsquantity{relativepermittivity}{}[][]
\newphysicsquantity{relativepermeability}{}[][]
-\newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s}
-[\J\per\cubic\m][\J\per\cubic\m]
-\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed}
-[\W\per\m\squared][\W\per\m\squared]
-\newphysicsquantity{electroncurrent}{\reciprocal\s}
-[\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s]
+\newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s}%
+ [\J\per\cubic\m][\J\per\cubic\m]
+\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed}%
+ [\W\per\m\squared][\W\per\m\squared]
+\newphysicsquantity{electroncurrent}{\reciprocal\s}%
+ [\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s]
\newphysicsquantity{conventionalcurrent}{\A}[\C\per\s][\A]
\newphysicsquantity{magneticdipolemoment}{\square\m\usk\A}[\J\per\T][\A\usk\square\m]
-\newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m]
-[\A\per\square\m]
-\newphysicsquantity{capacitance}
-{\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V]
-\newphysicsquantity{inductance}
-{\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry]
-[\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A
-\newphysicsquantity{conductivity}
-{\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m]
-[(\A\per\square\m)\per(\V\per\m)]
-\newphysicsquantity{resistivity}
-{\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m]
-[(\V\per\m)\per(\A\per\square\m)]
-\newphysicsquantity{resistance}
-{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm]
-\newphysicsquantity{conductance}
-{\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens]
+\newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m]%
+ [\A\per\square\m]
+\newphysicsquantity{capacitance}%
+ {\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V]
+ % also \C\squared\per\N\usk\m, \s\per\ohm
+\newphysicsquantity{inductance}%
+ {\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry]%
+ [\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A
+\newphysicsquantity{conductivity}%
+ {\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m]%
+ [(\A\per\square\m)\per(\V\per\m)]
+\newphysicsquantity{resistivity}%
+ {\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m]%
+ [(\V\per\m)\per(\A\per\square\m)]
+\newphysicsquantity{resistance}%
+ {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm]
+\newphysicsquantity{conductance}%
+ {\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens]
\newphysicsquantity{magneticcharge}{\m\usk\A}[\m\usk\A][\m\usk\A]
-\newcommand{\lv}{\ensuremath{\left\langle}}
-\newcommand{\rv}{\ensuremath{\right\rangle}}
-\newcommand{\symvect}{\mivector}
-\newcommand{\ncompsvect}{\mivector}
+\newcommand*{\lv}{\ensuremath{\left\langle}}
+\newcommand*{\rv}{\ensuremath{\right\rangle}}
\ExplSyntaxOn % Written in LaTeX3
\NewDocumentCommand{\magvectncomps}{ m O{} }
{%
@@ -389,419 +451,347 @@
}%
}%
\ExplSyntaxOff
-\newcommand{\zerovect}{\vect{0}}
-\newcommand{\ncompszerovect}{\mivector{0,0,0}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\vect}[1]{\ensuremath{\vec{#1}}}}
- {\newcommand{\vect}[1]{\ensuremath{\vec{\mathrm{#1}}}}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\newcommand{\magvect}[1]{\ensuremath{\magof{\vect{#1}}}}}
- {\newcommand{\magvect}[1]{\ensuremath{\abs{\vect{#1}}}}}
-\newcommand{\dmagvect}[1]{\ensuremath{\dx{\magvect{#1}}}}
-\newcommand{\Dmagvect}[1]{\ensuremath{\Delta\!\magvect{#1}}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\dirvect}[1]{\ensuremath{\widehat{{#1}}}}}
- {\newcommand{\dirvect}[1]{\ensuremath{\widehat{\mathrm{#1}}}}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\compvect}[2]{\ensuremath{\ssub{#1}{\(#2\)}}}}
- {\newcommand{\compvect}[2]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\)}}}}
-\newcommand{\scompsvect}[1]{\ensuremath{\lv
- \compvect{#1}{x},
- \compvect{#1}{y},
+\newcommand*{\zerovect}{\vect{0}}
+\newcommand*{\ncompszerovect}{\mivector{0,0,0}}
+\ifthenelse{\boolean{@optboldvectors}}
+ {\newcommand*{\vect}[1]{\ensuremath{\boldsymbol{#1}}}}
+ {\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\vect}[1]{\ensuremath{\vv{\mathrm{#1}}}}}
+ {\newcommand*{\vect}[1]{\ensuremath{\vv{#1}}}}}
+\ifthenelse{\boolean{@optsingleabsbars}}
+ {\newcommand*{\magvect}[1]{\ensuremath{\abs{\vect{#1}}}}}
+ {\newcommand*{\magvect}[1]{\ensuremath{\magof{\vect{#1}}}}}
+\newcommand*{\magsquaredvect}[1]{\ensuremath{\magvect{#1}\squared}}
+\newcommand*{\magnvect}[2]{\ensuremath{\magvect{#1}^{#2}}}
+\newcommand*{\dmagvect}[1]{\ensuremath{\dx{\magvect{#1}}}}
+\newcommand*{\Dmagvect}[1]{\ensuremath{\Delta\!\magvect{#1}}}
+\ifthenelse{\boolean{@optboldvectors}}
+ {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{\boldsymbol{#1}}}}}
+ {\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{\mathrm{#1}}}}}
+ {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{#1}}}}}
+\newcommand*{\direction}{\dirvect}
+\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\compvect}[2]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\)}}}}
+ {\newcommand*{\compvect}[2]{\ensuremath{\ssub{#1}{\(#2\)}}}}
+\newcommand*{\scompsvect}[1]{\ensuremath{\lv%
+ \compvect{#1}{x},%
+ \compvect{#1}{y},%
\compvect{#1}{z}\rv}}
-\newcommand{\magvectscomps}[1]{\ensuremath{\sqrt{
- \msup{\compvect{#1}{x}}{2}+
- \msup{\compvect{#1}{y}}{2}+
- \msup{\compvect{#1}{z}}{2}}}}
-\newcommand{\dvect}[1]{\ensuremath{\mathrm{d}\vect{#1}}}
-\newcommand{\Dvect}[1]{\ensuremath{\Delta\vect{#1}}}
-\newcommand{\dirdvect}[1]{\ensuremath{\widehat{\dvect{#1}}}}
-\newcommand{\dirDvect}[1]{\ensuremath{\widehat{\Dvect{#1}}}}
-\newcommand{\ddirvect}[1]{\ensuremath{\mathrm{d}\dirvect{E}}}
-\newcommand{\Ddirvect}[1]{\ensuremath{\Delta\dirvect{E}}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\newcommand{\magdvect}[1]{\ensuremath{\magof{\dvect{#1}}}}
- \newcommand{\magDvect}[1]{\ensuremath{\magof{\Dvect{#1}}}}}
- {\newcommand{\magdvect}[1]{\ensuremath{\abs{\dvect{#1}}}}
- \newcommand{\magDvect}[1]{\ensuremath{\abs{\Dvect{#1}}}}}
-\newcommand{\compdvect}[2]{\ensuremath{\mathrm{d}\compvect{#1}{#2}}}
-\newcommand{\compDvect}[2]{\ensuremath{\Delta\compvect{#1}{#2}}}
-\newcommand{\scompsdvect}[1]{\ensuremath{\lv
- \compdvect{#1}{x},
- \compdvect{#1}{y},
+\newcommand*{\magvectscomps}[1]{\ensuremath{\sqrt{%
+ \compvect{#1}{x}\squared +%
+ \compvect{#1}{y}\squared +%
+ \compvect{#1}{z}\squared}}}
+\newcommand*{\dvect}[1]{\ensuremath{\mathrm{d}\vect{#1}}}
+\newcommand*{\Dvect}[1]{\ensuremath{\Delta\vect{#1}}}
+\newcommand*{\dirdvect}[1]{\ensuremath{\widehat{\dvect{#1}}}}
+\newcommand*{\dirDvect}[1]{\ensuremath{\widehat{\Dvect{#1}}}}
+\newcommand*{\ddirvect}[1]{\ensuremath{\mathrm{d}\dirvect{#1}}}
+\newcommand*{\ddirection}{\ddirvect}
+\newcommand*{\Ddirvect}[1]{\ensuremath{\Delta\dirvect{#1}}}
+\newcommand*{\Ddirection}{\Ddirvect}
+\ifthenelse{\boolean{@optsingleabsbars}}
+ {\newcommand*{\magdvect}[1]{\ensuremath{\abs{\dvect{#1}}}}
+ \newcommand*{\magDvect}[1]{\ensuremath{\abs{\Dvect{#1}}}}}
+ {\newcommand*{\magdvect}[1]{\ensuremath{\magof{\dvect{#1}}}}
+ \newcommand*{\magDvect}[1]{\ensuremath{\magof{\Dvect{#1}}}}}
+\newcommand*{\compdvect}[2]{\ensuremath{\mathrm{d}\compvect{#1}{#2}}}
+\newcommand*{\compDvect}[2]{\ensuremath{\Delta\compvect{#1}{#2}}}
+\newcommand*{\scompsdvect}[1]{\ensuremath{\lv%
+ \compdvect{#1}{x},%
+ \compdvect{#1}{y},%
\compdvect{#1}{z}\rv}}
-\newcommand{\scompsDvect}[1]{\ensuremath{\lv
- \compDvect{#1}{x},
- \compDvect{#1}{y},
+\newcommand*{\scompsDvect}[1]{\ensuremath{\lv%
+ \compDvect{#1}{x},%
+ \compDvect{#1}{y},%
\compDvect{#1}{z}\rv}}
-\newcommand{\dervect}[2]{\ensuremath{\frac{\dvect{#1}}{\mathrm{d}{#2}}}}
-\newcommand{\Dervect}[2]{\ensuremath{\frac{\Dvect{#1}}{\Delta{#2}}}}
-\newcommand{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#2}}{#3}}}
-\newcommand{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#2}}{#3}}}
-\newcommand{\scompsdervect}[2]{\ensuremath{\lv
- \compdervect{#1}{x}{#2},
- \compdervect{#1}{y}{#2},
+\newcommand*{\dervect}[2]{\ensuremath{\frac{\dvect{#1}}{\mathrm{d}{#2}}}}
+\newcommand*{\Dervect}[2]{\ensuremath{\frac{\Dvect{#1}}{\Delta{#2}}}}
+\newcommand*{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#2}}{#3}}}
+\newcommand*{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#2}}{#3}}}
+\newcommand*{\scompsdervect}[2]{\ensuremath{\lv%
+ \compdervect{#1}{x}{#2},%
+ \compdervect{#1}{y}{#2},%
\compdervect{#1}{z}{#2}\rv}}
-\newcommand{\scompsDervect}[2]{\ensuremath{\lv
- \compDervect{#1}{x}{#2},
- \compDervect{#1}{y}{#2},
+\newcommand*{\scompsDervect}[2]{\ensuremath{\lv%
+ \compDervect{#1}{x}{#2},%
+ \compDervect{#1}{y}{#2},%
\compDervect{#1}{z}{#2}\rv}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\newcommand{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}}
- \newcommand{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}}
- {\newcommand{\magdervect}[2]{\ensuremath{\abs{\dervect{#1}{#2}}}}
- \newcommand{\magDervect}[2]{\ensuremath{\abs{\Dervect{#1}{#2}}}}}
-\newcommand{\dermagvect}[2]{\ensuremath{\dbyd{\magvect{#1}}{#2}}}
-\newcommand{\Dermagvect}[2]{\ensuremath{\DbyD{\magvect{#1}}{#2}}}
-\newcommand{\scompspos}{\mivector{x,y,z}}
-\newcommand{\comppos}[1]{\ensuremath{{#1}}}
-\newcommand{\scompsdpos}{\mivector{\mathrm{d}x,\mathrm{d}y,\mathrm{d}z}}
-\newcommand{\scompsDpos}{\mivector{\Delta x,\Delta y,\Delta z}}
-\newcommand{\compdpos}[1]{\ensuremath{\mathrm{d}{#1}}}
-\newcommand{\compDpos}[1]{\ensuremath{\Delta{#1}}}
-\newcommand{\scompsderpos}[1]{\ensuremath{\lv
- \frac{\mathrm{d}x}{\mathrm{d}{#1}},\frac{\mathrm{d}y}{\mathrm{d}{#1}},
- \frac{\mathrm{d}z}{\mathrm{d}{#1}}\rv}}
-\newcommand{\scompsDerpos}[1]{\ensuremath{\lv
- \frac{\Delta x}{\Delta{#1}},\frac{\Delta y}{\Delta{#1}},
- \frac{\Delta z}{\Delta{#1}}\rv}}
-\newcommand{\compderpos}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}}
-\newcommand{\compDerpos}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}}
-\newcommand{\vectsub}[2]{\ensuremath{\ssub{\vect{#1}}{#2}}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{#1}{\(#2\),#3}}}}
- {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\),#3}}}}
-\newcommand{\scompsvectsub}[2]{\ensuremath{\lv
- \compvectsub{#1}{x}{#2},
- \compvectsub{#1}{y}{#2},
- \compvectsub{#1}{z}{#2}\rv}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\newcommand{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}}
- {\newcommand{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}}
-\newcommand{\magvectsubscomps}[2]{\ensuremath{\sqrt{
- \msup{\compvectsub{#1}{x}{#2}}{2}+
- \msup{\compvectsub{#1}{y}{#2}}{2}+
- \msup{\compvectsub{#1}{z}{#2}}{2}}}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}}
- {\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}}
-\newcommand{\dvectsub}[2]{\ensuremath{\mathrm{d}\vectsub{#1}{#2}}}
-\newcommand{\Dvectsub}[2]{\ensuremath{\Delta\vectsub{#1}{#2}}}
-\newcommand{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}}
-\newcommand{\compDvectsub}[3]{\ensuremath{\Delta\compvectsub{#1}{#2}{#3}}}
-\newcommand{\scompsdvectsub}[2]{\ensuremath{\lv
- \compdvectsub{#1}{x}{#2},
- \compdvectsub{#1}{y}{#2},
- \compdvectsub{#1}{z}{#2}\rv}}
-\newcommand{\scompsDvectsub}[2]{\ensuremath{\lv
- \compDvectsub{#1}{x}{#2},
- \compDvectsub{#1}{y}{#2},
- \compDvectsub{#1}{z}{#2}\rv}}
-\newcommand{\dermagvectsub}[3]{\ensuremath{\dbyd{\magvectsub{#1}{#2}}{#3}}}
-\newcommand{\Dermagvectsub}[3]{\ensuremath{\DbyD{\magvectsub{#1}{#2}}{#3}}}
-\newcommand{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}}
-\newcommand{\Dervectsub}[3]{\ensuremath{\DbyD{\vectsub{#1}{#2}}{#3}}}
-\ifthenelse{\boolean{@optdoubleabsbars}}
- {\newcommand{\magdervectsub}[3]{\ensuremath{\magof{\dervectsub{#1}{#2}{#3}}}}
- \newcommand{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}}
- {\newcommand{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}}
- \newcommand{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}}
-\newcommand{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}}
-\newcommand{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#3}}{#4}}}
-\newcommand{\scompsdervectsub}[3]{\ensuremath{\lv
- \compdervectsub{#1}{x}{#2}{#3},
- \compdervectsub{#1}{y}{#2}{#3},
- \compdervectsub{#1}{z}{#2}{#3}\rv}}
-\newcommand{\scompsDervectsub}[3]{\ensuremath{\lv
- \compDervectsub{#1}{x}{#2}{#3},
- \compDervectsub{#1}{y}{#2}{#3},
- \compDervectsub{#1}{z}{#2}{#3}\rv}}
-\newcommand{\comppossub}[2]{\ensuremath{\ssub{#1}{#2}}}
-\newcommand{\scompspossub}[1]{\ensuremath{\lv
- \comppossub{x}{#1},
- \comppossub{y}{#1},
- \comppossub{z}{#1}\rv}}
-\newcommand{\compdpossub}[2]{\ensuremath{\mathrm{d}\comppossub{#1}{#2}}}
-\newcommand{\compDpossub}[2]{\ensuremath{\Delta\comppossub{#1}{#2}}}
-\newcommand{\scompsdpossub}[1]{\ensuremath{\lv
- \compdpossub{x}{#1},
- \compdpossub{y}{#1},
- \compdpossub{z}{#1}\rv}}
-\newcommand{\scompsDpossub}[1]{\ensuremath{\lv
- \compDpossub{x}{#1},
- \compDpossub{y}{#1},
- \compDpossub{z}{#1}\rv}}
-\newcommand{\compderpossub}[3]{\ensuremath{\dbyd{\comppossub{#1}{#2}}{#3}}}
-\newcommand{\compDerpossub}[3]{\ensuremath{\DbyD{\comppossub{#1}{#2}}{#3}}}
-\newcommand{\scompsderpossub}[2]{\ensuremath{\lv
- \compderpossub{x}{#1}{#2},
- \compderpossub{y}{#1}{#2},
- \compderpossub{z}{#1}{#2}\rv}}
-\newcommand{\scompsDerpossub}[2]{\ensuremath{\lv
- \compDerpossub{x}{#1}{#2},
- \compDerpossub{y}{#1}{#2},
- \compDerpossub{z}{#1}{#2}\rv}}
-\newcommand{\relpos}[1]{\ensuremath{\vectsub{r}{#1}}}
-\newcommand{\relvel}[1]{\ensuremath{\vectsub{v}{#1}}}
-\newcommand{\relmom}[1]{\ensuremath{\vectsub{p}{#1}}}
-\newcommand{\relfor}[1]{\ensuremath{\vectsub{F}{#1}}}
-\newcommand{\vectdotvect}[2]{\ensuremath{{#1}\bullet{#2}}}
-\newcommand{\vectdotsvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsvect{#2}}}
-\newcommand{\vectdotevect}[2]{\ensuremath{
- \compvect{#1}{x}\compvect{#2}{x}+
- \compvect{#1}{y}\compvect{#2}{y}+
+\ifthenelse{\boolean{@optsingleabsbars}}
+ {\newcommand*{\magdervect}[2]{\ensuremath{\abs{\dervect{#1}{#2}}}}
+ \newcommand*{\magDervect}[2]{\ensuremath{\abs{\Dervect{#1}{#2}}}}}
+ {\newcommand*{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}}
+ \newcommand*{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}}
+\newcommand*{\dermagvect}[2]{\ensuremath{\dbyd{\magvect{#1}}{#2}}}
+\newcommand*{\Dermagvect}[2]{\ensuremath{\DbyD{\magvect{#1}}{#2}}}
+\newcommand*{\derdirvect}[2]{\ensuremath{\dbyd{\dirvect{#1}}{#2}}}
+\newcommand*{\derdirection}{\derdirvect}
+\newcommand*{\Derdirvect}[2]{\ensuremath{\DbyD{\dirvect{#1}}{#2}}}
+\newcommand*{\Derdirection}{\Derdirvect}
+\ifthenelse{\boolean{@optboldvectors}}
+ {\newcommand*{\vectsub}[2]{\ensuremath{\boldsymbol{#1}_{\text{\tiny{}#2}}}}}
+ {\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\vectsub}[2]{\ensuremath{\vv{\mathrm{#1}}_{\text{\tiny{#2}}}}}}
+ {\newcommand*{\vectsub}[2]{\ensuremath{\vv{#1}_{\text{\tiny{#2}}}}}}}
+\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{#2,\(#3\)}}}}
+ {\newcommand*{\compvectsub}[3]{\ensuremath{\ssub{#1}{#2,\(#3\)}}}}
+\newcommand*{\scompsvectsub}[2]{\ensuremath{\lv%
+ \compvectsub{#1}{#2}{x},%
+ \compvectsub{#1}{#2}{y},%
+ \compvectsub{#1}{#2}{z}\rv}}
+\ifthenelse{\boolean{@optsingleabsbars}}
+ {\newcommand*{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}}
+ {\newcommand*{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}}
+\newcommand*{\magsquaredvectsub}[2]{\ensuremath{\magvectsub{#1}{#2}\squared}}
+\newcommand*{\magnvectsub}[3]{\ensuremath{\magvectsub{#1}{#2}^{#3}}}
+\newcommand*{\magvectsubscomps}[2]{\ensuremath{\sqrt{%
+ \compvectsub{#1}{#2}{x}\squared +%
+ \compvectsub{#1}{#2}{y}\squared +%
+ \compvectsub{#1}{#2}{z}\squared}}}
+\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}}
+ {\newcommand*{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}}
+\newcommand*{\directionsub}{\dirvectsub}
+\newcommand*{\dvectsub}[2]{\ensuremath{\mathrm{d}\vectsub{#1}{#2}}}
+\newcommand*{\Dvectsub}[2]{\ensuremath{\Delta\vectsub{#1}{#2}}}
+\newcommand*{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}}
+\newcommand*{\compDvectsub}[3]{\ensuremath{\Delta\compvectsub{#1}{#2}{#3}}}
+\newcommand*{\scompsdvectsub}[2]{\ensuremath{\lv%
+ \compdvectsub{#1}{#2}{x},%
+ \compdvectsub{#1}{#2}{y},%
+ \compdvectsub{#1}{#2}{z}\rv}}
+\newcommand*{\scompsDvectsub}[2]{\ensuremath{\lv%
+ \compDvectsub{#1}{#2}{x},%
+ \compDvectsub{#1}{#2}{y},%
+ \compDvectsub{#1}{#2}{z}\rv}}
+\newcommand*{\dermagvectsub}[3]{\ensuremath{\dbyd{\magvectsub{#1}{#2}}{#3}}}
+\newcommand*{\Dermagvectsub}[3]{\ensuremath{\DbyD{\magvectsub{#1}{#2}}{#3}}}
+\newcommand*{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}}
+\newcommand*{\Dervectsub}[3]{\ensuremath{\DbyD{\vectsub{#1}{#2}}{#3}}}
+\ifthenelse{\boolean{@optsingleabsbars}}
+ {\newcommand*{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}}
+ \newcommand*{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}}
+ {\newcommand*{\magdervectsub}[3]{\ensuremath{\magof{\dervectsub{#1}{#2}{#3}}}}
+ \newcommand*{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}}
+\newcommand*{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}}
+\newcommand*{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#3}}{#4}}}
+\newcommand*{\scompsdervectsub}[3]{\ensuremath{\lv%
+ \compdervectsub{#1}{#2}{x}{#3},%
+ \compdervectsub{#1}{#2}{y}{#3},%
+ \compdervectsub{#1}{#2}{z}{#3}\rv}}
+\newcommand*{\scompsDervectsub}[3]{\ensuremath{\lv%
+ \compDervectsub{#1}{#2}{x}{#3},%
+ \compDervectsub{#1}{#2}{y}{#3},%
+ \compDervectsub{#1}{#2}{z}{#3}\rv}}
+\newcommand*{\vectdotvect}[2]{\ensuremath{{#1}\bullet{#2}}}
+\newcommand*{\vectdotsvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsvect{#2}}}
+\newcommand*{\vectdotevect}[2]{\ensuremath{%
+ \compvect{#1}{x}\compvect{#2}{x}+%
+ \compvect{#1}{y}\compvect{#2}{y}+%
\compvect{#1}{z}\compvect{#2}{z}}}
-\newcommand{\vectdotspos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompspos}}
-\newcommand{\vectdotepos}[1]{\ensuremath{
- \compvect{#1}{x}\comppos{x}+
- \compvect{#1}{y}\comppos{y}+
- \compvect{#1}{z}\comppos{z}}}
-\newcommand{\vectdotsdvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsdvect{#2}}}
-\newcommand{\vectdotsDvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsDvect{#2}}}
-\newcommand{\vectdotedvect}[2]{\ensuremath{
- \compvect{#1}{x}\compdvect{#2}{x}+
- \compvect{#1}{y}\compdvect{#2}{y}+
+\newcommand*{\vectdotsdvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsdvect{#2}}}
+\newcommand*{\vectdotsDvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsDvect{#2}}}
+\newcommand*{\vectdotedvect}[2]{\ensuremath{%
+ \compvect{#1}{x}\compdvect{#2}{x}+%
+ \compvect{#1}{y}\compdvect{#2}{y}+%
\compvect{#1}{z}\compdvect{#2}{z}}}
-\newcommand{\vectdoteDvect}[2]{\ensuremath{
- \compvect{#1}{x}\compDvect{#2}{x}+
- \compvect{#1}{y}\compDvect{#2}{y}+
+\newcommand*{\vectdoteDvect}[2]{\ensuremath{%
+ \compvect{#1}{x}\compDvect{#2}{x}+%
+ \compvect{#1}{y}\compDvect{#2}{y}+%
\compvect{#1}{z}\compDvect{#2}{z}}}
-\newcommand{\vectdotsdpos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompsdpos}}
-\newcommand{\vectdotsDpos}[1]{\ensuremath{\scompsvect{#1}\bullet\scompsDpos}}
-\newcommand{\vectdotedpos}[1]{\ensuremath{
- \compvect{#1}{x}\compdpos{x}+
- \compvect{#1}{y}\compdpos{y}+
- \compvect{#1}{z}\compdpos{z}}}
-\newcommand{\vectdoteDpos}[1]{\ensuremath{
- \compvect{#1}{x}\compDpos{x}+
- \compvect{#1}{y}\compDpos{y}+
- \compvect{#1}{z}\compDpos{z}}}
-\newcommand{\vectsubdotsvectsub}[4]{\ensuremath{
+\newcommand*{\vectsubdotsvectsub}[4]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsvectsub{#3}{#4}}}
-\newcommand{\vectsubdotevectsub}[4]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compvectsub{#3}{x}{#4}+
- \compvectsub{#1}{y}{#2}\compvectsub{#3}{y}{#4}+
- \compvectsub{#1}{z}{#2}\compvectsub{#3}{z}{#4}}}
-\newcommand{\vectsubdotsdvectsub}[4]{\ensuremath{%
+\newcommand*{\vectsubdotevectsub}[4]{\ensuremath{%
+ \compvectsub{#1}{#2}{x}\compvectsub{#3}{#4}{x}+%
+ \compvectsub{#1}{#2}{y}\compvectsub{#3}{#4}{y}+%
+ \compvectsub{#1}{#2}{z}\compvectsub{#3}{#4}{z}}}
+\newcommand*{\vectsubdotsdvectsub}[4]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsdvectsub{#3}{#4}}}
-\newcommand{\vectsubdotsDvectsub}[4]{\ensuremath{%
+\newcommand*{\vectsubdotsDvectsub}[4]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsDvectsub{#3}{#4}}}
-\newcommand{\vectsubdotedvectsub}[4]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compdvectsub{#3}{x}{#4}+
- \compvectsub{#1}{y}{#2}\compdvectsub{#3}{y}{#4}+
- \compvectsub{#1}{z}{#2}\compdvectsub{#3}{z}{#4}}}
-\newcommand{\vectsubdoteDvectsub}[4]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compDvectsub{#3}{x}{#4}+
- \compvectsub{#1}{y}{#2}\compDvectsub{#3}{y}{#4}+
- \compvectsub{#1}{z}{#2}\compDvectsub{#3}{z}{#4}}}
-\newcommand{\vectsubdotsdvect}[3]{\ensuremath{
+\newcommand*{\vectsubdotedvectsub}[4]{\ensuremath{%
+ \compvectsub{#1}{#2}{x}\compdvectsub{#3}{#4}{x}+%
+ \compvectsub{#1}{#2}{y}\compdvectsub{#3}{#4}{y}+%
+ \compvectsub{#1}{#2}{z}\compdvectsub{#3}{#4}{z}}}
+\newcommand*{\vectsubdoteDvectsub}[4]{\ensuremath{%
+ \compvectsub{#1}{#2}{x}\compDvectsub{#3}{#4}{x}+%
+ \compvectsub{#1}{#2}{y}\compDvectsub{#3}{#4}{y}+%
+ \compvectsub{#1}{#2}{z}\compDvectsub{#3}{#4}{z}}}
+\newcommand*{\vectsubdotsdvect}[3]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsdvect{#3}}}
-\newcommand{\vectsubdotsDvect}[3]{\ensuremath{
+\newcommand*{\vectsubdotsDvect}[3]{\ensuremath{%
\scompsvectsub{#1}{#2}\bullet\scompsDvect{#3}}}
-\newcommand{\vectsubdotedvect}[3]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compdvect{x}{#3}+
- \compvectsub{#1}{y}{#2}\compdvect{y}{#3}+
- \compvectsub{#1}{z}{#2}\compdvect{z}{#3}}}
-\newcommand{\vectsubdoteDvect}[3]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compDvect{x}{#3}+
- \compvectsub{#1}{y}{#2}\compDvect{y}{#3}+
- \compvectsub{#1}{z}{#2}\compDvect{z}{#3}}}
-\newcommand{\vectsubdotsdpos}[2]{\ensuremath{
- \scompsvectsub{#1}{#2}\bullet\scompsdpos}}
-\newcommand{\vectsubdotsDpos}[2]{\ensuremath{
- \scompsvectsub{#1}{#2}\bullet\scompsDpos}}
-\newcommand{\vectsubdotedpos}[2]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compdpos{x}+
- \compvectsub{#1}{y}{#2}\compdpos{y}+
- \compvectsub{#1}{z}{#2}\compdpos{z}}}
-\newcommand{\vectsubdoteDpos}[2]{\ensuremath{
- \compvectsub{#1}{x}{#2}\compDpos{x}+
- \compvectsub{#1}{y}{#2}\compDpos{y}+
- \compvectsub{#1}{z}{#2}\compDpos{z}}}
-\newcommand{\dervectdotsvect}[3]{\ensuremath{
+\newcommand*{\vectsubdotedvect}[3]{\ensuremath{%
+ \compvectsub{#1}{#2}{x}\compdvect{#3}{x}+%
+ \compvectsub{#1}{#2}{y}\compdvect{#3}{y}+%
+ \compvectsub{#1}{#2}{z}\compdvect{#3}{z}}}
+\newcommand*{\vectsubdoteDvect}[3]{\ensuremath{%
+ \compvectsub{#1}{#2}{x}\compDvect{#3}{x}+%
+ \compvectsub{#1}{#2}{y}\compDvect{#3}{y}+%
+ \compvectsub{#1}{#2}{z}\compDvect{#3}{z}}}
+\newcommand*{\dervectdotsvect}[3]{\ensuremath{%
\scompsdervect{#1}{#2}\bullet\scompsvect{#3}}}
-\newcommand{\Dervectdotsvect}[3]{\ensuremath{
+\newcommand*{\Dervectdotsvect}[3]{\ensuremath{%
\scompsDervect{#1}{#2}\bullet\scompsvect{#3}}}
-\newcommand{\dervectdotevect}[3]{\ensuremath{
- \compdervect{#1}{x}{#2}\compvect{x}{#3}+
- \compdervect{#1}{y}{#2}\compvect{y}{#3}+
- \compdervect{#1}{z}{#2}\compvect{z}{#3}}}
-\newcommand{\Dervectdotevect}[3]{\ensuremath{
- \compDervect{#1}{x}{#2}\compvect{x}{#3}+
- \compDervect{#1}{y}{#2}\compvect{y}{#3}+
- \compDervect{#1}{z}{#2}\compvect{z}{#3}}}
-\newcommand{\vectdotsdervect}[3]{\ensuremath{
+\newcommand*{\dervectdotevect}[3]{\ensuremath{%
+ \compdervect{#1}{x}{#2}\compvect{#3}{x}+%
+ \compdervect{#1}{y}{#2}\compvect{#3}{y}+%
+ \compdervect{#1}{z}{#2}\compvect{#3}{z}}}
+\newcommand*{\Dervectdotevect}[3]{\ensuremath{%
+ \compDervect{#1}{x}{#2}\compvect{#3}{x}+%
+ \compDervect{#1}{y}{#2}\compvect{#3}{y}+%
+ \compDervect{#1}{z}{#2}\compvect{#3}{z}}}
+\newcommand*{\vectdotsdervect}[3]{\ensuremath{%
\scompsvect{#1}\bullet\scompsdervect{#2}{#3}}}
-\newcommand{\vectdotsDervect}[3]{\ensuremath{
+\newcommand*{\vectdotsDervect}[3]{\ensuremath{%
\scompsvect{#1}\bullet\scompsDervect{#2}{#3}}}
-\newcommand{\vectdotedervect}[3]{\ensuremath{
- \compvect{#1}{x}\compdervect{#2}{x}{#3}+
- \compvect{#1}{y}\compdervect{#2}{y}{#3}+
+\newcommand*{\vectdotedervect}[3]{\ensuremath{%
+ \compvect{#1}{x}\compdervect{#2}{x}{#3}+%
+ \compvect{#1}{y}\compdervect{#2}{y}{#3}+%
\compvect{#1}{z}\compdervect{#2}{z}{#3}}}
-\newcommand{\vectdoteDervect}[3]{\ensuremath{
- \compvect{#1}{x}\compDervect{#2}{x}{#3}+
- \compvect{#1}{y}\compDervect{#2}{y}{#3}+
+\newcommand*{\vectdoteDervect}[3]{\ensuremath{%
+ \compvect{#1}{x}\compDervect{#2}{x}{#3}+%
+ \compvect{#1}{y}\compDervect{#2}{y}{#3}+%
\compvect{#1}{z}\compDervect{#2}{z}{#3}}}
-\newcommand{\dervectdotspos}[2]{\ensuremath{
- \scompsdervect{#1}{#2}\bullet\scompspos}}
-\newcommand{\Dervectdotspos}[2]{\ensuremath{
- \scompsDervect{#1}{#2}\bullet\scompspos}}
-\newcommand{\dervectdotepos}[2]{\ensuremath{
- \compdervect{#1}{x}{#2}\comppos{x}+
- \compdervect{#1}{y}{#2}\comppos{y}+
- \compdervect{#1}{z}{#2}\comppos{z}}}
-\newcommand{\Dervectdotepos}[2]{\ensuremath{
- \compDervect{#1}{x}{#2}\comppos{x}+
- \compDervect{#1}{y}{#2}\comppos{y}+
- \compDervect{#1}{z}{#2}\comppos{z}}}
-\newcommand{\dervectdotsdvect}[3]{\ensuremath{
+\newcommand*{\dervectdotsdvect}[3]{\ensuremath{%
\scompsdervect{#1}{#2}\bullet\scompsdvect{#3}}}
-\newcommand{\DervectdotsDvect}[3]{\ensuremath{
+\newcommand*{\DervectdotsDvect}[3]{\ensuremath{%
\scompsDervect{#1}{#2}\bullet\scompsDvect{#3}}}
-\newcommand{\dervectdotedvect}[3]{\ensuremath{
- \compdervect{#1}{x}{#2}\compdvect{#3}{x}+
- \compdervect{#1}{y}{#2}\compdvect{#3}{y}+
+\newcommand*{\dervectdotedvect}[3]{\ensuremath{%
+ \compdervect{#1}{x}{#2}\compdvect{#3}{x}+%
+ \compdervect{#1}{y}{#2}\compdvect{#3}{y}+%
\compdervect{#1}{z}{#2}\compdvect{#3}{z}}}
-\newcommand{\DervectdoteDvect}[3]{\ensuremath{
- \compDervect{#1}{x}{#2}\compDvect{#3}{x}+
- \compDervect{#1}{y}{#2}\compDvect{#3}{y}+
+\newcommand*{\DervectdoteDvect}[3]{\ensuremath{%
+ \compDervect{#1}{x}{#2}\compDvect{#3}{x}+%
+ \compDervect{#1}{y}{#2}\compDvect{#3}{y}+%
\compDervect{#1}{z}{#2}\compDvect{#3}{z}}}
-\newcommand{\dervectdotsdpos}[2]{\ensuremath{
- \scompsdervect{#1}{#2}\bullet\scompsdpos}}
-\newcommand{\DervectdotsDpos}[2]{\ensuremath{
- \scompsDervect{#1}{#2}\bullet\scompsDpos}}
-\newcommand{\dervectdotedpos}[2]{\ensuremath{
- \compdervect{#1}{x}{#2}\compdpos{x}+
- \compdervect{#1}{y}{#2}\compdpos{y}+
- \compdervect{#1}{z}{#2}\compdpos{z}}}
-\newcommand{\DervectdoteDpos}[2]{\ensuremath{
- \compDervect{#1}{x}{#2}\compDpos{x}+
- \compDervect{#1}{y}{#2}\compDpos{y}+
- \compDervect{#1}{z}{#2}\compDpos{z}}}
-\newcommand{\vectcrossvect}[2]{\ensuremath{{#1}\times{#2}}}
-\newcommand{\ltriplecross}[3]{\ensuremath{({#1}\times{#2})\times{#3}}}
-\newcommand{\rtriplecross}[3]{\ensuremath{{#1}\times({#2}\times{#3})}}
-\newcommand{\ltriplescalar}[3]{\ensuremath{{#1}\times{#2}\bullet{#3}}}
-\newcommand{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\times{#3}}}
-\newcommand{\ezero}{\ensuremath{\msub{\mathbf{e}}{0}}}
-\newcommand{\eone}{\ensuremath{\msub{\mathbf{e}}{1}}}
-\newcommand{\etwo}{\ensuremath{\msub{\mathbf{e}}{2}}}
-\newcommand{\ethree}{\ensuremath{\msub{\mathbf{e}}{3}}}
-\newcommand{\efour}{\ensuremath{\msub{\mathbf{e}}{4}}}
-\newcommand{\ek}[1]{\ensuremath{\msub{\mathbf{e}}{#1}}}
-\newcommand{\e}{\ek}
-\newcommand{\uezero}{\ensuremath{\msub{\widehat{\mathbf{e}}}{0}}}
-\newcommand{\ueone}{\ensuremath{\msub{\widehat{\mathbf{e}}}{1}}}
-\newcommand{\uetwo}{\ensuremath{\msub{\widehat{\mathbf{e}}}{2}}}
-\newcommand{\uethree}{\ensuremath{\msub{\widehat{\mathbf{e}}}{3}}}
-\newcommand{\uefour}{\ensuremath{\msub{\widehat{\mathbf{e}}}{4}}}
-\newcommand{\uek}[1]{\ensuremath{\msub{\widehat{\mathbf{e}}}{#1}}}
-\newcommand{\ue}{\uek}
-\newcommand{\ezerozero}{\ek{00}}
-\newcommand{\ezeroone}{\ek{01}}
-\newcommand{\ezerotwo}{\ek{02}}
-\newcommand{\ezerothree}{\ek{03}}
-\newcommand{\ezerofour}{\ek{04}}
-\newcommand{\eoneone}{\ek{11}}
-\newcommand{\eonetwo}{\ek{12}}
-\newcommand{\eonethree}{\ek{13}}
-\newcommand{\eonefour}{\ek{14}}
-\newcommand{\etwoone}{\ek{21}}
-\newcommand{\etwotwo}{\ek{22}}
-\newcommand{\etwothree}{\ek{23}}
-\newcommand{\etwofour}{\ek{24}}
-\newcommand{\ethreeone}{\ek{31}}
-\newcommand{\ethreetwo}{\ek{32}}
-\newcommand{\ethreethree}{\ek{33}}
-\newcommand{\ethreefour}{\ek{34}}
-\newcommand{\efourone}{\ek{41}}
-\newcommand{\efourtwo}{\ek{42}}
-\newcommand{\efourthree}{\ek{43}}
-\newcommand{\efourfour}{\ek{44}}
-\newcommand{\euzero}{\ensuremath{\msup{\mathbf{e}}{0}}}
-\newcommand{\euone}{\ensuremath{\msup{\mathbf{e}}{1}}}
-\newcommand{\eutwo}{\ensuremath{\msup{\mathbf{e}}{2}}}
-\newcommand{\euthree}{\ensuremath{\msup{\mathbf{e}}{3}}}
-\newcommand{\eufour}{\ensuremath{\msup{\mathbf{e}}{4}}}
-\newcommand{\euk}[1]{\ensuremath{\msup{\mathbf{e}}{#1}}}
-\newcommand{\eu}{\euk}
-\newcommand{\euzerozero}{\euk{00}}
-\newcommand{\euzeroone}{\euk{01}}
-\newcommand{\euzerotwo}{\euk{02}}
-\newcommand{\euzerothree}{\euk{03}}
-\newcommand{\euzerofour}{\euk{04}}
-\newcommand{\euoneone}{\euk{11}}
-\newcommand{\euonetwo}{\euk{12}}
-\newcommand{\euonethree}{\euk{13}}
-\newcommand{\euonefour}{\euk{14}}
-\newcommand{\eutwoone}{\euk{21}}
-\newcommand{\eutwotwo}{\euk{22}}
-\newcommand{\eutwothree}{\euk{23}}
-\newcommand{\eutwofour}{\euk{24}}
-\newcommand{\euthreeone}{\euk{31}}
-\newcommand{\euthreetwo}{\euk{32}}
-\newcommand{\euthreethree}{\euk{33}}
-\newcommand{\euthreefour}{\euk{34}}
-\newcommand{\eufourone}{\euk{41}}
-\newcommand{\eufourtwo}{\euk{42}}
-\newcommand{\eufourthree}{\euk{43}}
-\newcommand{\eufourfour}{\euk{44}}
-\newcommand{\gzero}{\ensuremath{\msub{\mathbf{\gamma}}{0}}}
-\newcommand{\gone}{\ensuremath{\msub{\mathbf{\gamma}}{1}}}
-\newcommand{\gtwo}{\ensuremath{\msub{\mathbf{\gamma}}{2}}}
-\newcommand{\gthree}{\ensuremath{\msub{\mathbf{\gamma}}{3}}}
-\newcommand{\gfour}{\ensuremath{\msub{\mathbf{\gamma}}{4}}}
-\newcommand{\gk}[1]{\ensuremath{\msub{\mathbf{\gamma}}{#1}}}
-\newcommand{\g}{\gk}
-\newcommand{\gzerozero}{\gk{00}}
-\newcommand{\gzeroone}{\gk{01}}
-\newcommand{\gzerotwo}{\gk{02}}
-\newcommand{\gzerothree}{\gk{03}}
-\newcommand{\gzerofour}{\gk{04}}
-\newcommand{\goneone}{\gk{11}}
-\newcommand{\gonetwo}{\gk{12}}
-\newcommand{\gonethree}{\gk{13}}
-\newcommand{\gonefour}{\gk{14}}
-\newcommand{\gtwoone}{\gk{21}}
-\newcommand{\gtwotwo}{\gk{22}}
-\newcommand{\gtwothree}{\gk{23}}
-\newcommand{\gtwofour}{\gk{24}}
-\newcommand{\gthreeone}{\gk{31}}
-\newcommand{\gthreetwo}{\gk{32}}
-\newcommand{\gthreethree}{\gk{33}}
-\newcommand{\gthreefour}{\gk{34}}
-\newcommand{\gfourone}{\gk{41}}
-\newcommand{\gfourtwo}{\gk{42}}
-\newcommand{\gfourthree}{\gk{43}}
-\newcommand{\gfourfour}{\gk{44}}
-\newcommand{\guzero}{\ensuremath{\msup{\mathbf{\gamma}}{0}}}
-\newcommand{\guone}{\ensuremath{\msup{\mathbf{\gamma}}{1}}}
-\newcommand{\gutwo}{\ensuremath{\msup{\mathbf{\gamma}}{2}}}
-\newcommand{\guthree}{\ensuremath{\msup{\mathbf{\gamma}}{3}}}
-\newcommand{\gufour}{\ensuremath{\msup{\mathbf{\gamma}}{4}}}
-\newcommand{\guk}[1]{\ensuremath{\msup{\mathbf{\gamma}}{#1}}}
-\newcommand{\gu}{\guk}
-\newcommand{\guzerozero}{\guk{00}}
-\newcommand{\guzeroone}{\guk{01}}
-\newcommand{\guzerotwo}{\guk{02}}
-\newcommand{\guzerothree}{\guk{03}}
-\newcommand{\guzerofour}{\guk{04}}
-\newcommand{\guoneone}{\guk{11}}
-\newcommand{\guonetwo}{\guk{12}}
-\newcommand{\guonethree}{\guk{13}}
-\newcommand{\guonefour}{\guk{14}}
-\newcommand{\gutwoone}{\guk{21}}
-\newcommand{\gutwotwo}{\guk{22}}
-\newcommand{\gutwothree}{\guk{23}}
-\newcommand{\gutwofour}{\guk{24}}
-\newcommand{\guthreeone}{\guk{31}}
-\newcommand{\guthreetwo}{\guk{32}}
-\newcommand{\guthreethree}{\guk{33}}
-\newcommand{\guthreefour}{\guk{34}}
-\newcommand{\gufourone}{\guk{41}}
-\newcommand{\gufourtwo}{\guk{42}}
-\newcommand{\gufourthree}{\guk{43}}
-\newcommand{\gufourfour}{\guk{44}}
+\newcommand*{\vectcrossvect}[2]{\ensuremath{{#1}\boldsymbol{\times}{#2}}}
+\newcommand*{\ltriplecross}[3]{\ensuremath{({#1}\boldsymbol{\times}{#2})%
+ \boldsymbol{\times}{#3}}}
+\newcommand*{\rtriplecross}[3]{\ensuremath{{#1}\boldsymbol{\times}%
+ ({#2}\boldsymbol{\times}{#3})}}
+\newcommand*{\ltriplescalar}[3]{\ensuremath{{#1}\boldsymbol{\times}{#2}\bullet{#3}}}
+\newcommand*{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\boldsymbol{\times}{#3}}}
+\newcommand*{\ezero}{\ensuremath{\msub{\boldsymbol{e}}{0}}}
+\newcommand*{\eone}{\ensuremath{\msub{\boldsymbol{e}}{1}}}
+\newcommand*{\etwo}{\ensuremath{\msub{\boldsymbol{e}}{2}}}
+\newcommand*{\ethree}{\ensuremath{\msub{\boldsymbol{e}}{3}}}
+\newcommand*{\efour}{\ensuremath{\msub{\boldsymbol{e}}{4}}}
+\newcommand*{\ek}[1]{\ensuremath{\msub{\boldsymbol{e}}{#1}}}
+\newcommand*{\e}{\ek}
+\newcommand*{\uezero}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{0}}}
+\newcommand*{\ueone}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{1}}}
+\newcommand*{\uetwo}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{2}}}
+\newcommand*{\uethree}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{3}}}
+\newcommand*{\uefour}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{4}}}
+\newcommand*{\uek}[1]{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{#1}}}
+\newcommand*{\ue}{\uek}
+\newcommand*{\ezerozero}{\ek{00}}
+\newcommand*{\ezeroone}{\ek{01}}
+\newcommand*{\ezerotwo}{\ek{02}}
+\newcommand*{\ezerothree}{\ek{03}}
+\newcommand*{\ezerofour}{\ek{04}}
+\newcommand*{\eoneone}{\ek{11}}
+\newcommand*{\eonetwo}{\ek{12}}
+\newcommand*{\eonethree}{\ek{13}}
+\newcommand*{\eonefour}{\ek{14}}
+\newcommand*{\etwoone}{\ek{21}}
+\newcommand*{\etwotwo}{\ek{22}}
+\newcommand*{\etwothree}{\ek{23}}
+\newcommand*{\etwofour}{\ek{24}}
+\newcommand*{\ethreeone}{\ek{31}}
+\newcommand*{\ethreetwo}{\ek{32}}
+\newcommand*{\ethreethree}{\ek{33}}
+\newcommand*{\ethreefour}{\ek{34}}
+\newcommand*{\efourone}{\ek{41}}
+\newcommand*{\efourtwo}{\ek{42}}
+\newcommand*{\efourthree}{\ek{43}}
+\newcommand*{\efourfour}{\ek{44}}
+\newcommand*{\euzero}{\ensuremath{\boldsymbol{e}^0}}
+\newcommand*{\euone}{\ensuremath{\boldsymbol{e}^1}}
+\newcommand*{\eutwo}{\ensuremath{\boldsymbol{e}^2}}
+\newcommand*{\euthree}{\ensuremath{\boldsymbol{e}^3}}
+\newcommand*{\eufour}{\ensuremath{\boldsymbol{e}^4}}
+\newcommand*{\euk}[1]{\ensuremath{\boldsymbol{e}^{#1}}}
+\newcommand*{\eu}{\euk}
+\newcommand*{\euzerozero}{\euk{00}}
+\newcommand*{\euzeroone}{\euk{01}}
+\newcommand*{\euzerotwo}{\euk{02}}
+\newcommand*{\euzerothree}{\euk{03}}
+\newcommand*{\euzerofour}{\euk{04}}
+\newcommand*{\euoneone}{\euk{11}}
+\newcommand*{\euonetwo}{\euk{12}}
+\newcommand*{\euonethree}{\euk{13}}
+\newcommand*{\euonefour}{\euk{14}}
+\newcommand*{\eutwoone}{\euk{21}}
+\newcommand*{\eutwotwo}{\euk{22}}
+\newcommand*{\eutwothree}{\euk{23}}
+\newcommand*{\eutwofour}{\euk{24}}
+\newcommand*{\euthreeone}{\euk{31}}
+\newcommand*{\euthreetwo}{\euk{32}}
+\newcommand*{\euthreethree}{\euk{33}}
+\newcommand*{\euthreefour}{\euk{34}}
+\newcommand*{\eufourone}{\euk{41}}
+\newcommand*{\eufourtwo}{\euk{42}}
+\newcommand*{\eufourthree}{\euk{43}}
+\newcommand*{\eufourfour}{\euk{44}}
+\newcommand*{\gzero}{\ensuremath{\msub{\boldsymbol{\gamma}}{0}}}
+\newcommand*{\gone}{\ensuremath{\msub{\boldsymbol{\gamma}}{1}}}
+\newcommand*{\gtwo}{\ensuremath{\msub{\boldsymbol{\gamma}}{2}}}
+\newcommand*{\gthree}{\ensuremath{\msub{\boldsymbol{\gamma}}{3}}}
+\newcommand*{\gfour}{\ensuremath{\msub{\boldsymbol{\gamma}}{4}}}
+\newcommand*{\gk}[1]{\ensuremath{\msub{\boldsymbol{\gamma}}{#1}}}
+\newcommand*{\g}{\gk}
+\newcommand*{\gzerozero}{\gk{00}}
+\newcommand*{\gzeroone}{\gk{01}}
+\newcommand*{\gzerotwo}{\gk{02}}
+\newcommand*{\gzerothree}{\gk{03}}
+\newcommand*{\gzerofour}{\gk{04}}
+\newcommand*{\goneone}{\gk{11}}
+\newcommand*{\gonetwo}{\gk{12}}
+\newcommand*{\gonethree}{\gk{13}}
+\newcommand*{\gonefour}{\gk{14}}
+\newcommand*{\gtwoone}{\gk{21}}
+\newcommand*{\gtwotwo}{\gk{22}}
+\newcommand*{\gtwothree}{\gk{23}}
+\newcommand*{\gtwofour}{\gk{24}}
+\newcommand*{\gthreeone}{\gk{31}}
+\newcommand*{\gthreetwo}{\gk{32}}
+\newcommand*{\gthreethree}{\gk{33}}
+\newcommand*{\gthreefour}{\gk{34}}
+\newcommand*{\gfourone}{\gk{41}}
+\newcommand*{\gfourtwo}{\gk{42}}
+\newcommand*{\gfourthree}{\gk{43}}
+\newcommand*{\gfourfour}{\gk{44}}
+\newcommand*{\guzero}{\ensuremath{\boldsymbol{\gamma}^0}}
+\newcommand*{\guone}{\ensuremath{\boldsymbol{\gamma}^1}}
+\newcommand*{\gutwo}{\ensuremath{\boldsymbol{\gamma}^2}}
+\newcommand*{\guthree}{\ensuremath{\boldsymbol{\gamma}^3}}
+\newcommand*{\gufour}{\ensuremath{\boldsymbol{\gamma}^4}}
+\newcommand*{\guk}[1]{\ensuremath{\boldsymbol{\gamma}^{#1}}}
+\newcommand*{\gu}{\guk}
+\newcommand*{\guzerozero}{\guk{00}}
+\newcommand*{\guzeroone}{\guk{01}}
+\newcommand*{\guzerotwo}{\guk{02}}
+\newcommand*{\guzerothree}{\guk{03}}
+\newcommand*{\guzerofour}{\guk{04}}
+\newcommand*{\guoneone}{\guk{11}}
+\newcommand*{\guonetwo}{\guk{12}}
+\newcommand*{\guonethree}{\guk{13}}
+\newcommand*{\guonefour}{\guk{14}}
+\newcommand*{\gutwoone}{\guk{21}}
+\newcommand*{\gutwotwo}{\guk{22}}
+\newcommand*{\gutwothree}{\guk{23}}
+\newcommand*{\gutwofour}{\guk{24}}
+\newcommand*{\guthreeone}{\guk{31}}
+\newcommand*{\guthreetwo}{\guk{32}}
+\newcommand*{\guthreethree}{\guk{33}}
+\newcommand*{\guthreefour}{\guk{34}}
+\newcommand*{\gufourone}{\guk{41}}
+\newcommand*{\gufourtwo}{\guk{42}}
+\newcommand*{\gufourthree}{\guk{43}}
+\newcommand*{\gufourfour}{\guk{44}}
\ExplSyntaxOn % Vectors formated as in M\&I, written in LaTeX3
\NewDocumentCommand{\mivector}{ O{,} m o }%
{%
@@ -859,261 +849,246 @@
\rowvector[,]{\msub{#2}{0},\msub{#2}{1},\msub{#2}{2},\msub{#2}{3}}%
}%
}%
-\newphysicsconstant{oofpez}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}}}}
-{\scin[8.9876]{9}}{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared}
-[\m\per\farad][\newton\usk\m\squared\per\coulomb\squared]
-\newcommand{\coulombconstant}{\oofpez}
-\newphysicsconstant{oofpezcs}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}
-c^2\phantom{_o}}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
+\newphysicsconstant{oofpez}{\ensuremath{\frac{1}
+{\phantom{_o}4\pi\epsilon_0}}}{\mi@p{9}{8.9876}\timestento{9}}
+{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared}[\m\per\farad]
+[\newton\usk\m\squared\per\coulomb\squared]
+\newcommand*{\coulombconstant}{\oofpez}
+\newphysicsconstant{oofpezcs}{\ensuremath{\frac{1}
+{\phantom{_o}4\pi\epsilon_0 c^2\phantom{_o}}}}{\tento{-7}}
+{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
[\T\usk\m\squared][\N\usk\s\squared\per\C\squared]
-\newcommand{\altcoulombconstant}{\oofpezcs}
-\newphysicsconstant{vacuumpermittivity}{\ensuremath{\ssub{\epsilon}{o}}}{\scin[8.8542]{-12}}
+\newcommand*{\altcoulombconstant}{\oofpezcs}
+\newphysicsconstant{vacuumpermittivity}{\ensuremath{\epsilon_0}}
+{\mi@p{9.0}{8.8542}\timestento{-12}}
{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\quarted\usk\A\squared}[\F\per\m]
[\C\squared\per\N\usk\m\squared]
-\newphysicsconstant{mzofp}{\ensuremath{\frac{\phantom{_oo}\ssub{\mu}{o}\phantom{_o}}
-{4\pi}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
+\newphysicsconstant{mzofp}
+{\ensuremath{\frac{\phantom{_oo}\mu_0\phantom{_o}}{4\pi}}}
+{\tento{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
[\henry\per\m][\tesla\usk\m\per\A]
-\newcommand{\biotsavartconstant}{\mzofp}
-\newphysicsconstant{vacuumpermeability}{\ensuremath{\ssub{\mu}{o}}}{\scin[4\pi]{-7}}
-{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m]
-[\T\usk\m\per\A]
-\newphysicsconstant{boltzmann}{\ensuremath{\ssub{k}{B}}}{\scin[1.3806]{-23}}
+\newcommand*{\biotsavartconstant}{\mzofp}
+\newphysicsconstant{vacuumpermeability}{\ensuremath{\mu_0}}
+{4\pi\timestento{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
+[\henry\per\m][\T\usk\m\per\A]
+\newphysicsconstant{boltzmann}{\ensuremath{k_B}}
+{\mi@p{1.4}{1.3806}\timestento{-23}}
{\m\squared\usk\kg\usk\reciprocalsquare\s\usk\reciprocal\K}[\joule\per\K][\J\per\K]
-\newcommand{\boltzmannconstant}{\boltzmann}
-\newphysicsconstant{boltzmanninev}{\ensuremath{\ssub{k}{B}}}{\scin[8.6173]{-5}}
+\newcommand*{\boltzmannconstant}{\boltzmann}
+\newphysicsconstant{boltzmannineV}{\ensuremath{k_B}}
+{\mi@p{8.6}{8.6173}\timestento{-5}}
{\eV\usk\reciprocal\K}[\eV\per\K][\eV\per\K]
-\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}}{\scin[5.6704]{-8}}
+\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}}
+{\mi@p{5.7}{5.6704}\timestento{-8}}
{\kg\usk\s\reciprocalcubed\usk\K\reciprocalquarted}[\W\per\m\squared\usk\K^4]
[\W\per\m\squared\usk\K\quarted]
-\newcommand{\stefanboltzmannconstant}{\stefanboltzmann}
-\newphysicsconstant{planck}{\ensuremath{h}}{\scin[6.6261]{-34}}
+\newcommand*{\stefanboltzmannconstant}{\stefanboltzmann}
+\newphysicsconstant{planck}{\ensuremath{h}}{\mi@p{6.6}{6.6261}\timestento{-34}}
{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s]
-\newcommand{\planckconstant}{\planck}
-\newphysicsconstant{planckinev}{\ensuremath{h}}{\scin[4.1357]{-15}}
+\newcommand*{\planckconstant}{\planck}
+\newphysicsconstant{planckineV}{\ensuremath{h}}{\mi@p{4.1}{4.1357}\timestento{-15}}
{\eV\usk\s}[\eV\usk\s][\eV\usk\s]
-\newphysicsconstant{planckbar}{\ensuremath{\hbar}}{\scin[1.0546]{-34}}
+\newphysicsconstant{planckbar}{\ensuremath{\hslash}}{\mi@p{1.1}{1.0546}\timestento{-34}}
{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s]
-\newcommand{\reducedplanckconstant}{\planckbar}
-\newphysicsconstant{planckbarinev}{\ensuremath{\hbar}}{\scin[6.5821]{-16}}
-{\eV\usk\s}[\eV\usk\s][\eV\usk\s]
-\newphysicsconstant{planckc}{\ensuremath{hc}}{\scin[1.9864]{-25}}
+\newcommand*{\reducedplanckconstant}{\planckbar}
+\newphysicsconstant{planckbarineV}{\ensuremath{\hslash}}
+{\mi@p{6.6}{6.5821}\timestento{-16}}{\eV\usk\s}[\eV\usk\s][\eV\usk\s]
+\newphysicsconstant{planckc}{\ensuremath{hc}}{\mi@p{2.0}{1.9864}\timestento{-25}}
{\m\cubed\usk\kg\usk\reciprocalsquare\s}[\J\usk\m][\J\usk\m]
-\newcommand{\planckconstanttimesc}{\planckc}
-\newphysicsconstant{planckcinev}{\ensuremath{hc}}{\scin[1.9864]{-25}}
-{\eV\usk\ensuremath{\mathrm{n}\m}}[\eV\usk\ensuremath{\mathrm{n}\m}]
-[\eV\usk\ensuremath{\mathrm{n}\m}]
-\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}}{\scin[1.0974]{7}}
-{\reciprocal\m}[\reciprocal\m][\reciprocal\m]
-\newcommand{\rydbergconstant}{\rydberg}
-\newphysicsconstant{bohrradius}{\ensuremath{\msub{a}{0}}}{\scin[5.2918]{-11}}{\m}[\m][\m]
-\newphysicsconstant{finestructure}{\ensuremath{\alpha}}{\scin[7.2974]{-3}}{\relax}
-\newcommand{\finestructureconstant}{\finestructure}
-\newphysicsconstant{avogadro}{\ensuremath{\ssub{N}{A}}}{\scin[6.0221]{23}}
-{\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol]
-\newcommand{\avogadroconstant}{\avogadro}
-\newphysicsconstant{universalgrav}{\ensuremath{G}}{\scin[6.6738]{-11}}
+\newcommand*{\planckconstanttimesc}{\planckc}
+\newphysicsconstant{planckcineV}{\ensuremath{hc}}
+{\mi@p{2.0}{1.9864}\timestento{-25}}{\eV\usk\text{n}\m}[\eV\usk\text{n}\m]
+[\eV\usk\text{n}\m]
+\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}}
+{\mi@p{1.1}{1.0974}\timestento{7}}{\reciprocal\m}[\reciprocal\m][\reciprocal\m]
+\newcommand*{\rydbergconstant}{\rydberg}
+\newphysicsconstant{bohrradius}{\ensuremath{a_0}}{\mi@p{5.3}{5.2918}\timestento{-11}}
+{\m}[\m][\m]
+\newphysicsconstant{finestructure}{\ensuremath{\alpha}}
+{\mi@p{\frac{1}{137}}{7.2974\timestento{-3}}}{\relax}
+\newcommand*{\finestructureconstant}{\finestructure}
+\newphysicsconstant{avogadro}{\ensuremath{N_A}}
+{\mi@p{6.0}{6.0221}\timestento{23}}{\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol]
+\newcommand*{\avogadroconstant}{\avogadro}
+\newphysicsconstant{universalgrav}{\ensuremath{G}}{\mi@p{6.7}{6.6738}\timestento{-11}}
{\m\cubed\usk\reciprocal\kg\usk\s\reciprocalsquared}[\J\usk\m\per\kg\squared]
[\N\usk\m\squared\per\kg\squared]
-\newcommand{\universalgravitationalconstant}{\universalgrav}
-\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{9.80}{\m\usk\s\reciprocalsquared}
-[\N\per\kg][\m\per\s\squared]
-\newcommand{\earthssurfacegravitationalfield}{\surfacegravfield}
-\newphysicsconstant{clight}{\ensuremath{c}}{\scin[2.9979]{8}}{\m\usk\reciprocal\s}
-[\m\per\s][\m\per\s]
-\newcommand{\photonconstant}{\clight}
-\newphysicsconstant{clightinfeet}{\ensuremath{c}}{0.9836}
-{\ensuremath{\mathrm{ft}\usk\reciprocal\mathrm{n}\s}}
-[\ensuremath{\mathrm{ft}\per\mathrm{n}\s}][\ensuremath{\mathrm{ft}\per\mathrm{n}\s}]
-\newphysicsconstant{Ratom}{\ensuremath{\ssub{r}{atom}}}{\scin{-10}}{\m}[\m][\m]
-\newcommand{\radiusofatom}{\Ratom}
-\newphysicsconstant{Mproton}{\ensuremath{\ssub{m}{proton}}}{\scin[1.6726]{-27}}
-{\kg}[\kg][\kg]
-\newcommand{\massofproton}{\Mproton}
-\newphysicsconstant{Mneutron}{\ensuremath{\ssub{m}{neutron}}}{\scin[1.6749]{-27}}
-{\kg}[\kg][\kg]
-\newcommand{\massofneutron}{\Mneutron}
-\newphysicsconstant{Mhydrogen}{\ensuremath{\ssub{m}{hydrogen}}}{\scin[1.6737]{-27}}
-{\kg}[\kg][\kg]
-\newcommand{\massofhydrogen}{\Mhydrogen}
-\newphysicsconstant{Melectron}{\ensuremath{\ssub{m}{electron}}}{\scin[9.1094]{-31}}
-{\kg}[\kg][\kg]
-\newcommand{\massofelectron}{\Melectron}
-\newphysicsconstant{echarge}{\ensuremath{e}}{\scin[1.6022]{-19}}{\A\usk\s}[\C][\C]
-\newcommand{\elementarycharge}{\echarge}
-\newphysicsconstant{Qelectron}{\ensuremath{\ssub{Q}{electron}}}{-\echargevalue}
+\newcommand*{\universalgravitationalconstant}{\universalgrav}
+\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{\mi@p{9.8}{9.80}}
+{\m\usk\s\reciprocalsquared}[\N\per\kg][\N\per\kg]
+\newcommand*{\earthssurfacegravitationalfield}{\surfacegravfield}
+\newphysicsconstant{clight}{\ensuremath{c}}
+{\mi@p{3}{2.9979}\timestento{8}}{\m\usk\reciprocal\s}[\m\per\s][\m\per\s]
+\newcommand*{\photonconstant}{\clight}
+\newphysicsconstant{clightinfeet}{\ensuremath{c}}{\mi@p{1}{0.9836}}
+{\text{ft}\usk\reciprocal{\text{n}\s}}[\text{ft}\per\text{n}\s]
+[\text{ft}\per\mathrm{n}\s]
+\newphysicsconstant{Ratom}{\ensuremath{r_{\text{atom}}}}{\tento{-10}}{\m}[\m][\m]
+\newphysicsconstant{Mproton}{\ensuremath{m_p}}
+{\mi@p{1.7}{1.6726}\timestento{-27}}{\kg}[\kg][\kg]
+\newphysicsconstant{Mneutron}{\ensuremath{m_n}}
+{\mi@p{1.7}{1.6749}\timestento{-27}}{\kg}[\kg][\kg]
+\newphysicsconstant{Mhydrogen}{\ensuremath{m_H}}
+{\mi@p{1.7}{1.6737}\timestento{-27}}{\kg}[\kg][\kg]
+\newphysicsconstant{Melectron}{\ensuremath{m_e}}
+{\mi@p{9.1}{9.1094}\timestento{-31}}{\kg}[\kg][\kg]
+\newphysicsconstant{echarge}{\ensuremath{e}}
+{\mi@p{1.6}{1.6022}\timestento{-19}}{\A\usk\s}[\C][\C]
+\newcommand*{\elementarycharge}{\echarge}
+\newphysicsconstant{Qelectron}{\ensuremath{Q_e}}{-\echargevalue}
{\A\usk\s}[\C][\C]
-\newphysicsconstant{qelectron}{\ensuremath{\ssub{q}{electron}}}{-\echargevalue}
+\newphysicsconstant{qelectron}{\ensuremath{q_e}}{-\echargevalue}
{\A\usk\s}[\C][\C]
-\newcommand{\chargeofelectron}{\Qelectron}
-\newphysicsconstant{Qproton}{\ensuremath{\ssub{Q}{proton}}}{+\echargevalue}
+\newphysicsconstant{Qproton}{\ensuremath{Q_p}}{+\echargevalue}
{\A\usk\s}[\C][\C]
-\newphysicsconstant{qproton}{\ensuremath{\ssub{q}{proton}}}{+\echargevalue}
+\newphysicsconstant{qproton}{\ensuremath{q_p}}{+\echargevalue}
{\A\usk\s}[\C][\C]
-\newcommand{\chargeofproton}{\Qproton}
-\newphysicsconstant{MEarth}{\ensuremath{\ssub{M}{Earth}}}{\scin[5.9736]{24}}{\kg}[\kg][\kg]
-\newcommand{\massofEarth}{\MEarth}
-\newphysicsconstant{MMoon}{\ensuremath{\ssub{M}{Moon}}}{\scin[7.3459]{22}}{\kg}[\kg][\kg]
-\newcommand{\massofMoon}{\MMoon}
-\newphysicsconstant{MSun}{\ensuremath{\ssub{M}{Sun}}}{\scin[1.9891]{30}}{\kg}[\kg][\kg]
-\newcommand{\massofSun}{\MSun}
-\newphysicsconstant{REarth}{\ensuremath{\ssub{R}{Earth}}}{\scin[6.3675]{6}}{\m}[\m][\m]
-\newcommand{\radiusofEarth}{\REarth}
-\newphysicsconstant{RMoon}{\ensuremath{\ssub{R}{Moon}}}{\scin[1.7375]{6}}{\m}[\m][\m]
-\newcommand{\radiusofMoon}{\RMoon}
-\newphysicsconstant{RSun}{\ensuremath{\ssub{R}{Sun}}}{\scin[6.9634]{8}}{\m}[\m][\m]
-\newcommand{\radiusofSun}{\RSun}
-\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\scin[1.4960]{11}}{\m}[\m][\m]
-\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\scin[1.4960]{11}}{\m}[\m][\m]
-\newcommand{\EarthSundistance}{\ESdist}
-\newcommand{\SunEarthdistance}{\SEdist}
-\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}{\scin[3.8440]{8}}{\m}[\m][\m]
-\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}{\scin[3.8440]{8}}{\m}[\m][\m]
-\newcommand{\EarthMoondistance}{\ESdist}
-\newcommand{\MoonEarthdistance}{\SEdist}
-\newphysicsconstant{LSun}{\ensuremath{\ssub{L}{Sun}}}{\scin[3.8460]{26}}
- {\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s]
-\newphysicsconstant{TSun}{\ensuremath{\ssub{T}{Sun}}}{5778}{\K}[\K][\K]
-\newphysicsconstant{MagSun}{\ensuremath{\ssub{M}{Sun}}}{+4.83}{}[][]
-\newphysicsconstant{magSun}{\ensuremath{\ssub{m}{Sun}}}{-26.74}{}[][]
-\newcommand{\Lstar}[1][\(\star\)]{\ensuremath{\ssub{L}{#1}}}
-\newcommand{\Lsolar}{\ensuremath{\Lstar[\(\odot\)]}}
-\newcommand{\Tstar}[1][\(\star\)]{\ensuremath{\ssub{T}{#1}}}
-\newcommand{\Tsolar}{\ensuremath{\Tstar[\(\odot\)]}}
-\newcommand{\Rstar}[1][\(\star\)]{\ensuremath{\ssub{R}{#1}}}
-\newcommand{\Rsolar}{\ensuremath{\Rstar[\(\odot\)]}}
-\newcommand{\Mstar}[1][\(\star\)]{\ensuremath{\ssub{M}{#1}}}
-\newcommand{\Msolar}{\ensuremath{\Mstar[\(\odot\)]}}
-\newcommand{\Fstar}[1][\(\star\)]{\ensuremath{\ssub{F}{#1}}}
-\newcommand{\fstar}[1][\(\star\)]{\ensuremath{\ssub{f}{#1}}}
-\newcommand{\Fsolar}{\ensuremath{\Fstar[\(\odot\)]}}
-\newcommand{\fsolar}{\ensuremath{\fstar[\(\odot\)]}}
-\newcommand{\Magstar}[1][\(\star\)]{\ensuremath{\ssub{M}{#1}}}
-\newcommand{\magstar}[1][\(\star\)]{\ensuremath{\ssub{m}{#1}}}
-\newcommand{\Magsolar}{\ensuremath{\Magstar[\(\odot\)]}}
-\newcommand{\magsolar}{\ensuremath{\magstar[\(\odot\)]}}
-\newcommand{\Dstar}[1][\(\star\)]{\ensuremath{\ssub{D}{#1}}}
-\newcommand{\dstar}[1][\(\star\)]{\ensuremath{\ssub{d}{#1}}}
-\newcommand{\Dsolar}{\ensuremath{\Dstar[\(\odot\)]}}
-\newcommand{\dsolar}{\ensuremath{\dstar[\(\odot\)]}}
-\newcommand{\onehalf}{\ensuremath{\frac{1}{2}}\xspace}
-\newcommand{\onethird}{\ensuremath{\frac{1}{3}}\xspace}
-\newcommand{\onefourth}{\ensuremath{\frac{1}{4}}\xspace}
-\newcommand{\onefifth}{\ensuremath{\frac{1}{5}}\xspace}
-\newcommand{\onesixth}{\ensuremath{\frac{1}{6}}\xspace}
-\newcommand{\oneseventh}{\ensuremath{\frac{1}{7}}\xspace}
-\newcommand{\oneeighth}{\ensuremath{\frac{1}{8}}\xspace}
-\newcommand{\oneninth}{\ensuremath{\frac{1}{9}}\xspace}
-\newcommand{\onetenth}{\ensuremath{\frac{1}{10}}\xspace}
-\newcommand{\twooneths}{\ensuremath{\frac{2}{1}}\xspace}
-\newcommand{\twohalves}{\ensuremath{\frac{2}{2}}\xspace}
-\newcommand{\twothirds}{\ensuremath{\frac{2}{3}}\xspace}
-\newcommand{\twofourths}{\ensuremath{\frac{2}{4}}\xspace}
-\newcommand{\twofifths}{\ensuremath{\frac{2}{5}}\xspace}
-\newcommand{\twosixths}{\ensuremath{\frac{2}{6}}\xspace}
-\newcommand{\twosevenths}{\ensuremath{\frac{2}{7}}\xspace}
-\newcommand{\twoeighths}{\ensuremath{\frac{2}{8}}\xspace}
-\newcommand{\twoninths}{\ensuremath{\frac{2}{9}}\xspace}
-\newcommand{\twotenths}{\ensuremath{\frac{2}{10}}\xspace}
-\newcommand{\threeoneths}{\ensuremath{\frac{3}{1}}\xspace}
-\newcommand{\threehalves}{\ensuremath{\frac{3}{2}}\xspace}
-\newcommand{\threethirds}{\ensuremath{\frac{3}{3}}\xspace}
-\newcommand{\threefourths}{\ensuremath{\frac{3}{4}}\xspace}
-\newcommand{\threefifths}{\ensuremath{\frac{3}{5}}\xspace}
-\newcommand{\threesixths}{\ensuremath{\frac{3}{6}}\xspace}
-\newcommand{\threesevenths}{\ensuremath{\frac{3}{7}}\xspace}
-\newcommand{\threeeighths}{\ensuremath{\frac{3}{8}}\xspace}
-\newcommand{\threeninths}{\ensuremath{\frac{3}{9}}\xspace}
-\newcommand{\threetenths}{\ensuremath{\frac{3}{10}}\xspace}
-\newcommand{\fouroneths}{\ensuremath{\frac{4}{1}}\xspace}
-\newcommand{\fourhalves}{\ensuremath{\frac{4}{2}}\xspace}
-\newcommand{\fourthirds}{\ensuremath{\frac{4}{3}}\xspace}
-\newcommand{\fourfourths}{\ensuremath{\frac{4}{4}}\xspace}
-\newcommand{\fourfifths}{\ensuremath{\frac{4}{5}}\xspace}
-\newcommand{\foursixths}{\ensuremath{\frac{4}{6}}\xspace}
-\newcommand{\foursevenths}{\ensuremath{\frac{4}{7}}\xspace}
-\newcommand{\foureighths}{\ensuremath{\frac{4}{8}}\xspace}
-\newcommand{\fourninths}{\ensuremath{\frac{4}{9}}\xspace}
-\newcommand{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace}
-\newcommand{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}}
-\newcommand{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}}
-\@ifpackageloaded{physymb}{%
- \typeout{mandi: Package physymb detected. Its commands will be used.}
-}{%
- \newcommand{\evalat}[2]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}}}
-}%
-\newcommand{\evaluatedat}[1]{\ensuremath{\Bigg.\Bigg\rvert_{#1}}}
-\newcommandx{\integral}[4][1,2,usedefault]{\ensuremath{
+\newphysicsconstant{MEarth}{\ensuremath{M_{\text{Earth}}}}
+{\mi@p{6.0}{5.9736}\timestento{24}}{\kg}[\kg][\kg]
+\newphysicsconstant{MMoon}{\ensuremath{M_{\text{Moon}}}}
+{\mi@p{7.3}{7.3459}\timestento{22}}{\kg}[\kg][\kg]
+\newphysicsconstant{MSun}{\ensuremath{M_{\text{Sun}}}}
+{\mi@p{2.0}{1.9891}\timestento{30}}
+{\kg}[\kg][\kg]
+\newphysicsconstant{REarth}{\ensuremath{R_{\text{Earth}}}}
+{\mi@p{6.4}{6.3675}\timestento{6}}{\m}[\m][\m]
+\newphysicsconstant{RMoon}{\ensuremath{R_{\text{Moon}}}}
+{\mi@p{1.7}{1.7375}\timestento{6}}{\m}[\m][\m]
+\newphysicsconstant{RSun}{\ensuremath{R_{\text{Sun}}}}{\mi@p{7.0}{6.9634}\timestento{8}}
+{\m}[\m][\m]
+\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\mi@p{1.5}{1.4960}\timestento{11}}{\m}
+[\m][\m]
+\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\mi@p{1.5}{1.4960}\timestento{11}}{\m}
+[\m][\m]
+\newcommand*{\EarthSundistance}{\ESdist}
+\newcommand*{\SunEarthdistance}{\SEdist}
+\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}
+{\mi@p{3.8}{3.8440}\timestento{8}}{\m}[\m][\m]
+\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}
+{\mi@p{3.8}{3.8440}\timestento{8}}{\m}[\m][\m]
+\newcommand*{\EarthMoondistance}{\ESdist}
+\newcommand*{\MoonEarthdistance}{\SEdist}
+\newphysicsconstant{LSun}{\ensuremath{L_{\text{Sun}}}}
+{\mi@p{3.8}{3.8460}\timestento{26}}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W]
+[\J\per\s]
+\newphysicsconstant{TSun}{\ensuremath{T_{\text{Sun}}}}{\mi@p{5800}{5778}}{\K}[\K][\K]
+\newphysicsconstant{MagSun}{\ensuremath{M_{\text{Sun}}}}{+4.83}{}[][]
+\newphysicsconstant{magSun}{\ensuremath{m_{\text{Sun}}}}{-26.74}{}[][]
+\newcommand*{\Lstar}[1][\(\star\)]{\ensuremath{L_{\text{#1}}}\xspace}
+\newcommand*{\Lsolar}{\ensuremath{\Lstar[\(\odot\)]}\xspace}
+\newcommand*{\Tstar}[1][\(\star\)]{\ensuremath{T_{\text{#1}}}\xspace}
+\newcommand*{\Tsolar}{\ensuremath{\Tstar[\(\odot\)]}\xspace}
+\newcommand*{\Rstar}[1][\(\star\)]{\ensuremath{R_{\text{#1}}}\xspace}
+\newcommand*{\Rsolar}{\ensuremath{\Rstar[\(\odot\)]}\xspace}
+\newcommand*{\Mstar}[1][\(\star\)]{\ensuremath{M_{\text{#1}}}\xspace}
+\newcommand*{\Msolar}{\ensuremath{\Mstar[\(\odot\)]}\xspace}
+\newcommand*{\Fstar}[1][\(\star\)]{\ensuremath{F_{\text{#1}}}\xspace}
+\newcommand*{\fstar}[1][\(\star\)]{\ensuremath{f_{\text{#1}}}\xspace}
+\newcommand*{\Fsolar}{\ensuremath{\Fstar[\(\odot\)]}\xspace}
+\newcommand*{\fsolar}{\ensuremath{\fstar[\(\odot\)]}\xspace}
+\newcommand*{\Magstar}[1][\(\star\)]{\ensuremath{M_{\text{#1}}}\xspace}
+\newcommand*{\magstar}[1][\(\star\)]{\ensuremath{m_{\text{#1}}}\xspace}
+\newcommand*{\Magsolar}{\ensuremath{\Magstar[\(\odot\)]}\xspace}
+\newcommand*{\magsolar}{\ensuremath{\magstar[\(\odot\)]}\xspace}
+\newcommand*{\Dstar}[1][\(\star\)]{\ensuremath{D_{\text{#1}}}\xspace}
+\newcommand*{\dstar}[1][\(\star\)]{\ensuremath{d_{\text{#1}}}\xspace}
+\newcommand*{\Dsolar}{\ensuremath{\Dstar[\(\odot\)]}\xspace}
+\newcommand*{\dsolar}{\ensuremath{\dstar[\(\odot\)]}\xspace}
+\newcommand*{\onehalf}{\ensuremath{\frac{1}{2}}\xspace}
+\newcommand*{\onethird}{\ensuremath{\frac{1}{3}}\xspace}
+\newcommand*{\onefourth}{\ensuremath{\frac{1}{4}}\xspace}
+\newcommand*{\onefifth}{\ensuremath{\frac{1}{5}}\xspace}
+\newcommand*{\onesixth}{\ensuremath{\frac{1}{6}}\xspace}
+\newcommand*{\oneseventh}{\ensuremath{\frac{1}{7}}\xspace}
+\newcommand*{\oneeighth}{\ensuremath{\frac{1}{8}}\xspace}
+\newcommand*{\oneninth}{\ensuremath{\frac{1}{9}}\xspace}
+\newcommand*{\onetenth}{\ensuremath{\frac{1}{10}}\xspace}
+\newcommand*{\twooneths}{\ensuremath{\frac{2}{1}}\xspace}
+\newcommand*{\twohalves}{\ensuremath{\frac{2}{2}}\xspace}
+\newcommand*{\twothirds}{\ensuremath{\frac{2}{3}}\xspace}
+\newcommand*{\twofourths}{\ensuremath{\frac{2}{4}}\xspace}
+\newcommand*{\twofifths}{\ensuremath{\frac{2}{5}}\xspace}
+\newcommand*{\twosixths}{\ensuremath{\frac{2}{6}}\xspace}
+\newcommand*{\twosevenths}{\ensuremath{\frac{2}{7}}\xspace}
+\newcommand*{\twoeighths}{\ensuremath{\frac{2}{8}}\xspace}
+\newcommand*{\twoninths}{\ensuremath{\frac{2}{9}}\xspace}
+\newcommand*{\twotenths}{\ensuremath{\frac{2}{10}}\xspace}
+\newcommand*{\threeoneths}{\ensuremath{\frac{3}{1}}\xspace}
+\newcommand*{\threehalves}{\ensuremath{\frac{3}{2}}\xspace}
+\newcommand*{\threethirds}{\ensuremath{\frac{3}{3}}\xspace}
+\newcommand*{\threefourths}{\ensuremath{\frac{3}{4}}\xspace}
+\newcommand*{\threefifths}{\ensuremath{\frac{3}{5}}\xspace}
+\newcommand*{\threesixths}{\ensuremath{\frac{3}{6}}\xspace}
+\newcommand*{\threesevenths}{\ensuremath{\frac{3}{7}}\xspace}
+\newcommand*{\threeeighths}{\ensuremath{\frac{3}{8}}\xspace}
+\newcommand*{\threeninths}{\ensuremath{\frac{3}{9}}\xspace}
+\newcommand*{\threetenths}{\ensuremath{\frac{3}{10}}\xspace}
+\newcommand*{\fouroneths}{\ensuremath{\frac{4}{1}}\xspace}
+\newcommand*{\fourhalves}{\ensuremath{\frac{4}{2}}\xspace}
+\newcommand*{\fourthirds}{\ensuremath{\frac{4}{3}}\xspace}
+\newcommand*{\fourfourths}{\ensuremath{\frac{4}{4}}\xspace}
+\newcommand*{\fourfifths}{\ensuremath{\frac{4}{5}}\xspace}
+\newcommand*{\foursixths}{\ensuremath{\frac{4}{6}}\xspace}
+\newcommand*{\foursevenths}{\ensuremath{\frac{4}{7}}\xspace}
+\newcommand*{\foureighths}{\ensuremath{\frac{4}{8}}\xspace}
+\newcommand*{\fourninths}{\ensuremath{\frac{4}{9}}\xspace}
+\newcommand*{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace}
+\newcommand*{\sumoverall}[1]{\ensuremath{\displaystyle\sum_{\substack{\text{\tiny{all }}
+ \text{\tiny{{#1}}}}}}}
+\newcommand*{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}}
+\newcommand*{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}}
+\newcommand*{\evalat}[2]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}}}
+\newcommand*{\evaluatedat}[1]{\ensuremath{\Bigg.\Bigg\rvert_{#1}}}
+\newcommandx{\integral}[4][1,2,usedefault]{\ensuremath{%
\int_{\ifthenelse{\equal{#1}{}}{}{#4=#1}}^{\ifthenelse{\equal{#2}{}}{}{#4=#2}}}
{#3}\dx{#4}}
-\newcommandx{\Integral}[4][1,2,usedefault]{\ensuremath{
- \bigint_{\ifthenelse{\equal{#1}{}}{}{#4=#1}}^{\ifthenelse{\equal{#2}{}}{}
- {#4=#2}}}{#3}\dx{#4}}
-\newcommand{\opensurfintegral}[2]{\ensuremath{
- \int\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}}
-\newcommand{\opensurfIntegral}[2]{\ensuremath{
- \bigint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}}
- \vectdotvect{\vect{#2}}{\dirvect{n}}
- \dx{A}}}
-\newcommand{\closedsurfintegral}[2]{\ensuremath{
- \oint\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}}
-\newcommand{\closedsurfIntegral}[2]{\ensuremath{
- \bigoint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}}\;\;
- \vectdotvect{\vect{#2}}{\dirvect{n}}\dx{A}}}
-\newcommand{\openlineintegral}[2]{\ensuremath{
- \int\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{t}}
- \dx{\ell}}}
-\newcommand{\openlineIntegral}[2]{\ensuremath{
- \bigint\nolimits_{\mskip -25.00mu\displaystyle\mathbf{#1}}
- \vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}}
-\newcommand{\closedlineintegral}[2]{\ensuremath{
- \oint\nolimits_{#1}\vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}}
-\newcommand{\closedlineIntegral}[2]{\ensuremath{
- \bigoint\nolimits_{\mskip -25.00mu\displaystyle\mathbf {#1}}\;\;
- \vectdotvect{\vect{#2}}{\dirvect{t}}\dx{\ell}}}
+\newcommand*{\opensurfaceintegral}[2]{\ensuremath{%
+ \iint\nolimits_{#1}\vectdotvect{#2}{\dirvect{n}}\dx{A}}}
+\newcommand*{\closedsurfaceintegral}[2]{\ensuremath{%
+ \varoiint\nolimits_{#1}\vectdotvect{#2}{\dirvect{n}}\dx{A}}}
+\newcommand*{\openlineintegral}[2]{\ensuremath{%
+ \int\nolimits_{#1}\vectdotvect{#2}{\dirvect{t}}\dx{\ell}}}
+\newcommand*{\closedlineintegral}[2]{\ensuremath{%
+ \oint\nolimits_{#1}\vectdotvect{#2}{\dirvect{t}}\dx{\ell}}}
+\newcommand*{\volumeintegral}[2]{\ensuremath{\iiint\nolimits_{#1}{#2}\dx{V}}}
\newcommandx{\dbydt}[1][1]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}t}}}
\newcommandx{\DbyDt}[1][1]{\ensuremath{\frac{\Delta{#1}}{\Delta t}}}
\newcommandx{\ddbydt}[1][1]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}t^{2}}}}
\newcommandx{\DDbyDt}[1][1]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta t^{2}}}}
\newcommandx{\pbypt}[1][1]{\ensuremath{\frac{\partial{#1}}{\partial t}}}
\newcommandx{\ppbypt}[1][1]{\ensuremath{\frac{\partial^{2}{#1}}{\partial t^{2}}}}
-\newcommand{\dbyd}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}}
-\newcommand{\DbyD}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}}
-\newcommand{\ddbyd}[2]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}{#2}^{2}}}}
-\newcommand{\DDbyD}[2]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta{#2}^{2}}}}
-\newcommand{\pbyp}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}}
-\newcommand{\ppbyp}[2]{\ensuremath{\frac{\partial^{2}{#1}}{\partial{#2}^{2}}}}
-\newcommand{\seriesfofx}{\ensuremath{%
+\newcommand*{\dbyd}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}}
+\newcommand*{\DbyD}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}}
+\newcommand*{\ddbyd}[2]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}{#2}^{2}}}}
+\newcommand*{\DDbyD}[2]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta{#2}^{2}}}}
+\newcommand*{\pbyp}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}}
+\newcommand*{\ppbyp}[2]{\ensuremath{\frac{\partial^{2}{#1}}{\partial{#2}^{2}}}}
+\newcommand*{\seriesfofx}{\ensuremath{%
f(x) \approx f(a) + \frac{f^\prime (a)}{1!}(x-a) + \frac{f^{\prime\prime}(a)}{2!}(x-a)^2
+ \frac{f^{\prime\prime\prime}(a)}{3!}(x-a)^3 + \ldots}\xspace}
-\newcommand{\seriesexpx}{\ensuremath{%
+\newcommand*{\seriesexpx}{\ensuremath{%
e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots}\xspace}
-\newcommand{\seriessinx}{\ensuremath{%
+\newcommand*{\seriessinx}{\ensuremath{%
\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots}\xspace}
-\newcommand{\seriescosx}{\ensuremath{%
+\newcommand*{\seriescosx}{\ensuremath{%
\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots}\xspace}
-\newcommand{\seriestanx}{\ensuremath{%
+\newcommand*{\seriestanx}{\ensuremath{%
\tan x \approx x + \frac{x^3}{3} + \frac{2x^5}{15} + \ldots}\xspace}
-\newcommand{\seriesatox}{\ensuremath{%
+\newcommand*{\seriesatox}{\ensuremath{%
a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ldots}
\xspace}
-\newcommand{\serieslnoneplusx}{\ensuremath{%
-\ln(1 \pm x) \approx \pm\; x - \frac{x^2}{2} \pm \frac{x^3}{3} - \frac{x^4}{4} \pm \ldots}
-\xspace}
-\newcommand{\binomialseries}{\ensuremath{%
+\newcommand*{\serieslnoneplusx}{\ensuremath{%
+\ln(1 \pm x) \approx \pm\; x - \frac{x^2}{2} \pm \frac{x^3}{3} - \frac{x^4}{4} \pm
+\ldots}\xspace}
+\newcommand*{\binomialseries}{\ensuremath{%
(1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots}\xspace}
-\@ifpackageloaded{physymb}{%
- \typeout{mandi: Package physymb detected. Its commands will be used.}
-}{%
- \newcommand{\gradient}{\ensuremath{\nabla}}
- \newcommand{\divergence}{\ensuremath{\nabla\bullet}}
- \newcommand{\curl}{\ensuremath{\nabla\times}}
- \newcommand{\laplacian}{\ensuremath{\msup{\nabla}{2}}}
- \newcommand{\dalembertian}{\ensuremath{\Box}}
-}%
-\newcommand{\diracdelta}[1]{\ensuremath{\boldsymbol{\delta}\quant{#1}}}
-\@ifpackageloaded{physymb}{%
- \typeout{mandi: Package physymb detected. Its commands will be used.}
-}{%
+\newcommand*{\gradient}{\ensuremath{\boldsymbol{\nabla}}}
+\newcommand*{\divergence}{\ensuremath{\boldsymbol{\nabla}\bullet}}
+\newcommand*{\curl}{\ensuremath{\boldsymbol{\nabla\times}}}
+\newcommand*{\laplacian}{\ensuremath{\boldsymbol{\nabla}^2}}
+\newcommand*{\dalembertian}{\ensuremath{\boldsymbol{\Box}}}
+\newcommand*{\diracdelta}[1]{\ensuremath{\delta}(#1)}
+\newcommand*{\orderof}[1]{\ensuremath{\mathcal{O}(#1)}}
\DeclareMathOperator{\asin}{\sin^{-1}}
\DeclareMathOperator{\acos}{\cos^{-1}}
\DeclareMathOperator{\atan}{\tan^{-1}}
@@ -1129,179 +1104,311 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\DeclareMathOperator{\acsch}{\csch^{-1}}
\DeclareMathOperator{\acoth}{\coth^{-1}}
\DeclareMathOperator{\sgn}{sgn}
-}%
\DeclareMathOperator{\dex}{dex}
-\newcommand{\logb}[1][\relax]{\ensuremath{\log_{_{#1}}}}
-\ifthenelse{\boolean{@optitalicvectors}}
- {\newcommand{\cB}{\ensuremath{c\mskip -5.00mu B}}}
- {\newcommand{\cB}{\ensuremath{\textsf{c}\mskip -3.00mu\mathrm{B}}}}
-\newcommand{\newpi}{\ensuremath{\pi\mskip -7.8mu\pi}}
-\newcommand{\scripty}[1]{\ensuremath{\mathcalligra{#1}}}
+\newcommand*{\logb}[1][\relax]{\ensuremath{\log_{#1}}}
+\ifthenelse{\boolean{@optboldvectors}}
+ {\newcommand*{\cB}{\ensuremath{\boldsymbol{c\mskip -3.00mu B}}}}
+ {\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\cB}{\ensuremath{\textsf{c}\mskip -3.00mu\mathrm{B}}}}
+ {\newcommand*{\cB}{\ensuremath{c\mskip -3.00mu B}}}}
+\newcommand*{\newpi}{\ensuremath{\pi\mskip -7.8mu\pi}}
+\newcommand*{\scripty}[1]{\ensuremath{\mathcalligra{#1}}}
\newcommandx{\flux}[1][1]{\ensuremath{\ssub{\Phi}{#1}}}
-\@ifpackageloaded{physymb}{%
- \typeout{mandi: Package physymb detected. Its commands will be used.}
+\@ifpackageloaded{commath}{%
+ \typeout{mandi: Package commath detected. Its \protect\abs\space command will
+ be used.}
}{%
- \newcommand{\abs}[1]{\ensuremath{\left\lvert{#1}\right\rvert}}
+ \typeout{mandi: Package commath not detected. mandi's \protect\abs\space command
+ will be used.}
+ \newcommand*{\abs}[1]{\ensuremath{\left\lvert{#1}\right\rvert}}
}%
-\newcommand{\magof}[1]{\ensuremath{\left\lVert{#1}\right\rVert}}
-\newcommand{\dimsof}[1]{\ensuremath{\left[{#1}\right]}}
-\newcommand{\unitsof}[1]{\ensuremath{\left[{#1}\right]_{_{u}}}}
-\newcommand{\quant}[1]{\ensuremath{\left({#1}\right)}}
-\newcommand{\bquant}[1]{\ensuremath{\left[{#1}\right]}}
-\newcommand{\changein}[1]{\ensuremath{\delta{#1}}}
-\newcommand{\Changein}[1]{\ensuremath{\Delta{#1}}}
+\newcommand*{\magof}[1]{\ensuremath{\left\lVert{#1}\right\rVert}}
+\newcommand*{\dimsof}[1]{\ensuremath{\left[{#1}\right]}}
+\newcommand*{\unitsof}[1]{\ensuremath{\left[{#1}\right]_u}}
+\newcommand*{\changein}[1]{\ensuremath{\delta{#1}}}
+\newcommand*{\Changein}[1]{\ensuremath{\Delta{#1}}}
\newcommandx{\scin}[3][1,3=\!\!,usedefault]{\ensuremath{%
\ifthenelse{\equal{#1}{}}
- {\unit{\msup{10}{#2}}{#3}}
- {\unit{\msup{{#1}\times 10}{#2}}{#3}}}}
-\newcommand{\ee}[2]{\texttt{{#1}e{#2}}}
-\newcommand{\EE}[2]{\texttt{{#1}E{#2}}}
-\newcommand{\dms}[3]{\ensuremath{\indegrees{#1}\inarcminutes{#2}\inarcseconds{#3}}}
-\newcommand{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}}
-\newcommand{\clockreading}{\hms}
-\newcommand{\latitude}[1]{\ensuremath{\unit{#1}{\degree}}}
-\newcommand{\latitudeN}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{N}}}}
-\newcommand{\latitudeS}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{S}}}}
-\newcommand{\longitude}[1]{\ensuremath{\unit{#1}{\degree}}}
-\newcommand{\longitudeE}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{E}}}}
-\newcommand{\longitudeW}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{W}}}}
-\newcommand{\ssub}[2]{\ensuremath{{#1}_{_{_{\mbox{\tiny{#2}}}}}}}
-\newcommand{\ssup}[2]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}}}
-\newcommand{\ssud}[3]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}_{_{_{\mbox{\tiny{#3}}}}}}}
-\newcommand{\msub}[2]{\ensuremath{#1^{^{\scriptstyle{{}}}}_{_{_{\scriptstyle{#2}}}}}}
-\newcommand{\msup}[2]{\ensuremath{#1^{^{\scriptstyle{#2}}}}}
-\newcommand{\msud}[3]{\ensuremath{#1^{^{\scriptstyle{#2}}}_{_{_{\scriptstyle{#3}}}}}}
-\newcommand{\levicivita}[1]{\ensuremath{\msub{\varepsilon}{#1}}}
-\newcommand{\kronecker}[1]{\ensuremath{\msub{\delta}{#1}}}
-\newcommand{\xaxis}{\ensuremath{x\mbox{-axis }}}
-\newcommand{\yaxis}{\ensuremath{y\mbox{-axis }}}
-\newcommand{\zaxis}{\ensuremath{z\mbox{-axis }}}
-\newcommand{\naxis}[1]{\ensuremath{{#1}\mbox{-axis}}}
-\newcommand{\xyplane}{\ensuremath{xy\mbox{-plane }}}
-\newcommand{\yzplane}{\ensuremath{yz\mbox{-plane }}}
-\newcommand{\zxplane}{\ensuremath{zx\mbox{-plane }}}
-\newcommand{\yxplane}{\ensuremath{yx\mbox{-plane }}}
-\newcommand{\zyplane}{\ensuremath{zy\mbox{-plane }}}
-\newcommand{\xzplane}{\ensuremath{xz\mbox{-plane }}}
-\newcommand{\cuberoot}[1]{\ensuremath{\sqrt[3]{#1}}}
-\newcommand{\fourthroot}[1]{\ensuremath{\sqrt[4]{#1}}}
-\newcommand{\fifthroot}[1]{\ensuremath{\sqrt[5]{#1}}}
-\newcommand{\fsqrt}[1]{\ensuremath{\msup{#1}{\onehalf}}}
-\newcommand{\fcuberoot}[1]{\ensuremath{\msup{#1}{\onethird}}}
-\newcommand{\ffourthroot}[1]{\ensuremath{\msup{#1}{\onefourth}}}
-\newcommand{\ffifthroot}[1]{\ensuremath{\msup{#1}{\onefifth}}}
-\newcommand{\relgamma}[1]{\ensuremath{
- \frac{1}{\sqrt{1-\msup{\quant{\frac{#1}{c}}}{2}}}}}
-\newcommand{\frelgamma}[1]{\ensuremath{
- \msup{\quant{1-\frac{\msup{{#1}}{2}}{\msup{c}{2}}}}{-\onehalf}}}
-\newcommand{\oosqrtomxs}[1]{\ensuremath{\frac{1}{\sqrt{1-\msup{#1}{2}}}}}
-\newcommand{\oosqrtomx}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}}}}}
-\newcommand{\ooomx}[1]{\ensuremath{\frac{1}{1-{#1}}}}
-\newcommand{\ooopx}[1]{\ensuremath{\frac{1}{1+{#1}}}}
-\newcommand{\isequals}{\wordoperator{?}{=}\xspace}
-\newcommand{\wordoperator}[2]{\ensuremath{%
+ {\unit{10^{#2}}{#3}}
+ {\unit{{#1}\times 10^{#2}}{#3}}}}
+\newcommandx{\timestento}[2][2=\!\!,usedefault]{\ensuremath{%
+ \ifthenelse{\equal{#2}{}}
+ {\unit{\;\times\;10^{#1}}{}}
+ {\unit{\;\times\;10^{#1}}{#2}}}}
+\newcommand*{\xtento}{\timestento}
+\newcommandx{\tento}[2][2=\!\!,usedefault]{\ensuremath{%
+ \ifthenelse{\equal{#2}{}}
+ {\unit{10^{#1}}{}}
+ {\unit{10^{#1}}{#2}}}}
+\newcommand*{\ee}[2]{\texttt{{#1}e{#2}}}
+\newcommand*{\EE}[2]{\texttt{{#1}E{#2}}}
+\newcommand*{\dms}[3]{\ensuremath{\indegrees{#1}\inarcminutes{#2}\inarcseconds{#3}}}
+\newcommand*{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}}
+\newcommand*{\clockreading}{\hms}
+\newcommand*{\latitude}[1]{\unit{#1}{\degree}}
+\newcommand*{\latitudeN}[1]{\unit{#1}{\degree\;\mathrm{N}}}
+\newcommand*{\latitudeS}[1]{\unit{#1}{\degree\;\mathrm{S}}}
+\newcommand*{\longitude}[1]{\unit{#1}{\degree}}
+\newcommand*{\longitudeE}[1]{\unit{#1}{\degree\;\mathrm{E}}}
+\newcommand*{\longitudeW}[1]{\unit{#1}{\degree\;\mathrm{W}}}
+\newcommand*{\ssub}[2]{\ensuremath{#1_{\text{#2}}}}
+\newcommand*{\ssup}[2]{\ensuremath{#1^{\text{#2}}}}
+\newcommand*{\ssud}[3]{\ensuremath{#1^{\text{#2}}_{\text{#3}}}}
+\newcommand*{\msub}[2]{\ensuremath{#1_{#2}}}
+\newcommand*{\msup}[2]{\ensuremath{#1^{#2}}}
+\newcommand*{\msud}[3]{\ensuremath{#1^{#2}_{#3}}}
+\newcommand*{\levicivita}[1]{\ensuremath{\varepsilon_{\scriptscriptstyle{#1}}}}
+\newcommand*{\kronecker}[1]{\ensuremath{\delta_{\scriptscriptstyle{#1}}}}
+\newcommand*{\xaxis}{\ensuremath{x\text{-axis}}\xspace}
+\newcommand*{\yaxis}{\ensuremath{y\text{-axis}}\xspace}
+\newcommand*{\zaxis}{\ensuremath{z\text{-axis}}\xspace}
+\newcommand*{\naxis}[1]{\ensuremath{{#1}\text{-axis}}\xspace}
+\newcommand*{\axis}{\ensuremath{\text{-axis}}\xspace}
+\newcommand*{\xyplane}{\ensuremath{xy\text{-plane}}\xspace}
+\newcommand*{\yzplane}{\ensuremath{yz\text{-plane}}\xspace}
+\newcommand*{\zxplane}{\ensuremath{zx\text{-plane}}\xspace}
+\newcommand*{\yxplane}{\ensuremath{yx\text{-plane}}\xspace}
+\newcommand*{\zyplane}{\ensuremath{zy\text{-plane}}\xspace}
+\newcommand*{\xzplane}{\ensuremath{xz\text{-plane}}\xspace}
+\newcommand*{\plane}{\ensuremath{\text{-plane}}\xspace}
+\newcommand*{\cuberoot}[1]{\ensuremath{\sqrt[3]{#1}}}
+\newcommand*{\fourthroot}[1]{\ensuremath{\sqrt[4]{#1}}}
+\newcommand*{\fifthroot}[1]{\ensuremath{\sqrt[5]{#1}}}
+\newcommand*{\fsqrt}[1]{\ensuremath{{#1}^\onehalf}}
+\newcommand*{\fcuberoot}[1]{\ensuremath{{#1}^\onethird}}
+\newcommand*{\ffourthroot}[1]{\ensuremath{{#1}^\onefourth}}
+\newcommand*{\ffifthroot}[1]{\ensuremath{{#1}^\onefifth}}
+\newcommand*{\relgamma}[1]{\ensuremath{%
+ \frac{1}{\sqrt{1-(\frac{#1}{c})\squared}}}}
+\newcommand*{\frelgamma}[1]{\ensuremath{%
+ (1-\frac{{#1}\squared}{c\squared})^{-\onehalf}}}
+\newcommand*{\oosqrtomxs}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}\squared}}}}
+\newcommand*{\oosqrtomx}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}}}}}
+\newcommand*{\ooomx}[1]{\ensuremath{\frac{1}{1-{#1}}}}
+\newcommand*{\ooopx}[1]{\ensuremath{\frac{1}{1+{#1}}}}
+\newcommand*{\isequals}{\wordoperator{?}{=}\xspace}
+\newcommand*{\wordoperator}[2]{\ensuremath{%
\mathrel{\vcenter{\offinterlineskip
\halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex}
{#1}\cr\noalign{\vskip.5ex}{#2}\cr}}}}}
-\newcommand{\definedas}{\wordoperator{defined}{as}\xspace}
-\newcommand{\associated}{\wordoperator{associated}{with}\xspace}
-\newcommand{\adjustedby}{\wordoperator{adjusted}{by}\xspace}
-\newcommand{\earlierthan}{\wordoperator{earlier}{than}\xspace}
-\newcommand{\laterthan}{\wordoperator{later}{than}\xspace}
-\newcommand{\forevery}{\wordoperator{for}{every}\xspace}
-\newcommand{\pwordoperator}[2]{\ensuremath{\left(%
- \mathrel{\vcenter{\offinterlineskip
- \halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex}
+\newcommand*{\definedas}{\wordoperator{defined}{as}\xspace}
+\newcommand*{\associated}{\wordoperator{associated}{with}\xspace}
+\newcommand*{\adjustedby}{\wordoperator{adjusted}{by}\xspace}
+\newcommand*{\earlierthan}{\wordoperator{earlier}{than}\xspace}
+\newcommand*{\laterthan}{\wordoperator{later}{than}\xspace}
+\newcommand*{\forevery}{\wordoperator{for}{every}\xspace}
+\newcommand*{\pwordoperator}[2]{\ensuremath{\left(%
+ \mathrel{\vcenter{\offinterlineskip%
+ \halign{\hfil\tiny\upshape##\hfil\cr\noalign{\vskip-.5ex}%
{#1}\cr\noalign{\vskip.5ex}{#2}\cr}}}\right)}}%
-\newcommand{\pdefinedas}{\pwordoperator{defined}{as}\xspace}
-\newcommand{\passociated}{\pwordoperator{associated}{with}\xspace}
-\newcommand{\padjustedby}{\pwordoperator{adjusted}{by}\xspace}
-\newcommand{\pearlierthan}{\pwordoperator{earlier}{than}\xspace}
-\newcommand{\platerthan}{\pwordoperator{later}{than}\xspace}
-\newcommand{\pforevery}{\pwordoperator{for}{every}\xspace}
-\newcommand{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace}
-\newcommand{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}}\xspace}
-\newcommand{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace}
-\newcommand{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace}
-\newcommand{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}}
-\newcommand{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}}
-\newcommand{\brelatedto}[2]{\ensuremath{%
+\newcommand*{\pdefinedas}{\pwordoperator{defined}{as}\xspace}
+\newcommand*{\passociated}{\pwordoperator{associated}{with}\xspace}
+\newcommand*{\padjustedby}{\pwordoperator{adjusted}{by}\xspace}
+\newcommand*{\pearlierthan}{\pwordoperator{earlier}{than}\xspace}
+\newcommand*{\platerthan}{\pwordoperator{later}{than}\xspace}
+\newcommand*{\pforevery}{\pwordoperator{for}{every}\xspace}
+\newcommand*{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace}
+\newcommand*{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}}
+ \xspace}
+\newcommand*{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace}
+\newcommand*{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace}
+\newcommand*{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}}
+\newcommand*{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}}
+\newcommand*{\brelatedto}[2]{\ensuremath{%
\xLongleftrightarrow[\text{\tiny{#1}}]{\text{\tiny{#2}}}}}
-\newcommand{\momentumprinciple}{\ensuremath{
- \vectsub{p}{sys,f}=\vectsub{p}{sys,i}+\Fnetsys\Delta t}}
-\newcommand{\LHSmomentumprinciple}{\ensuremath{%
- \vectsub{p}{sys,f}}}
-\newcommand{\RHSmomentumprinciple}{\ensuremath{%
- \vectsub{p}{sys,i}+\Fnetsys\Delta t}}
-\newcommand{\energyprinciple}{\ensuremath{\ssub{E}{sys,f}=\ssub{E}{sys,i}+
- \ssub{W}{ext}+Q}}
-\newcommand{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,f}}}
-\newcommand{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,i}+\ssub{W}{ext}+Q}}
-\newcommand{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}=
- \vectsub{L}{sys,A,i}+\Tnetsys\Delta t}}
-\newcommand{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}}}
-\newcommand{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,i}+
- \Tnetsys\Delta t}}
-\newcommand{\gravitationalinteraction}{\ensuremath{%
- \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\msup{\magvectsub{r}{12}}{2}}
- \quant{-\dirvectsub{r}{12}}}}
-\newcommand{\electricinteraction}{\ensuremath{%
- \oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\msup{\magvectsub{r}{12}}{2}}
+\newcommand*{\momentumprinciple}{\ensuremath{%
+ \vectsub{p}{sys,final}=\vectsub{p}{sys,initial}+\Fnetsys\Delta t}}
+\newcommand*{\LHSmomentumprinciple}{\ensuremath{\vectsub{p}{sys,final}}}
+\newcommand*{\RHSmomentumprinciple}{\ensuremath{\vectsub{p}{sys,initial}+\Fnetsys
+ \Delta t}}
+\newcommand*{\momentumprinciplediff}{\ensuremath{\Dvectsub{p}{sys}=\Fnetsys\Delta t}}
+\newcommand*{\energyprinciple}{\ensuremath{\ssub{E}{sys,final}=\ssub{E}{sys,initial}+W
+ +Q}}
+\newcommand*{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,final}}}
+\newcommand*{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,initial}+W+Q}}
+\newcommand*{\energyprinciplediff}{\ensuremath{\Delta\ssub{E}{sys}=W+Q}}
+\newcommand*{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,final}=
+ \vectsub{L}{\(A\),sys,initial}+\Tsub{net}\Delta t}}
+\newcommand*{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,final}}}
+\newcommand*{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,initial}+
+ \Tsub{net}\Delta t}}
+\newcommand*{\angularmomentumprinciplediff}{\ensuremath{\Dvectsub{L}{\(A\),sys}=
+ \Tsub{net}\Delta t}}
+\newcommand*{\gravitationalinteraction}{\ensuremath{%
+ \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\magvectsub{r}{12}\squared}
+ (-\dirvectsub{r}{12})}}
+\newcommand*{\electricinteraction}{\ensuremath{%
+ \oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\magvectsub{r}{12}\squared}
\dirvectsub{r}{12}}}
-\newcommand{\Bfieldofparticle}{\ensuremath{%
- \mzofpmathsymbol\frac{Q\magvect{v}}{\msup{\magvect{r}}{2}}\dirvect{v}\times\dirvect{r}}}
-\newcommand{\Efieldofparticle}{\ensuremath{%
- \oofpezmathsymbol\frac{Q}{\msup{\magvect{r}}{2}}\dirvect{r}}}
-\newcommand{\Esys}{\ssub{E}{sys}}
-\newcommandx{\Us}[1][1]{\ssub{\ssub{U}{s}}{#1}}
-\newcommandx{\Ug}[1][1]{\ssub{\ssub{U}{g}}{#1}}
-\newcommandx{\Ue}[1][1]{\ssub{\ssub{U}{e}}{#1}}
-\newcommandx{\Ktrans}[1][1]{\ssub{\ssub{K}{trans}}{#1}}
-\newcommandx{\Krot}[1][1]{\ssub{\ssub{K}{rot}}{#1}}
-\newcommandx{\Eparticle}[1][1]{\ssub{\ssub{E}{particle}}{#1}}
-\newcommandx{\Einternal}[1][1]{\ssub{\ssub{E}{internal}}{#1}}
-\newcommandx{\Erest}[1][1]{\ssub{\ssub{E}{rest}}{#1}}
-\newcommandx{\Echem}[1][1]{\ssub{\ssub{E}{chem}}{#1}}
-\newcommandx{\Etherm}[1][1]{\ssub{\ssub{E}{therm}}{#1}}
-\newcommandx{\Evib}[1][1]{\ssub{\ssub{E}{vib}}{#1}}
-\newcommandx{\Ephoton}[1][1]{\ssub{\ssub{E}{photon}}{#1}}
-\newcommand{\DEsys}{\Changein\Esys}
-\newcommand{\DUs}{\Changein\Us}
-\newcommand{\DUg}{\Changein\Ug}
-\newcommand{\DUe}{\Changein\Ue}
-\newcommand{\DKtrans}{\Changein\Ktrans}
-\newcommand{\DKrot}{\Changein\Krot}
-\newcommand{\DEparticle}{\Changein\Eparticle}
-\newcommand{\DEinternal}{\Changein\Einternal}
-\newcommand{\DErest}{\Changein\Erest}
-\newcommand{\DEchem}{\Changein\Echem}
-\newcommand{\DEtherm}{\Changein\Etherm}
-\newcommand{\DEvib}{\Changein\Evib}
-\newcommand{\DEphoton}{\Changein\Ephoton}
-\newcommand{\Usfinal}{\ssub{\left(\onehalf\ks \msup{s}{2}\right)}{f}}
-\newcommand{\Usinitial}{\ssub{\left(\onehalf\ks \msup{s}{2}\right)}{i}}
-\newcommand{\Ugfinal}{\ssub{\left(-G\frac{\msub{M}{1}\msub{M}{2}}
- {\magvectsub{r}{12}}\right)}{f}}
-\newcommand{\Uginitial}{\ssub{\left(-G\frac{\msub{M}{1}\msub{M}{2}}
- {\magvectsub{r}{12}}\right)}{i}}
-\newcommand{\Uefinal}{\ssub{\left(\oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}}
- {\magvectsub{r}{12}}\right)}{f}}
-\newcommand{\Ueinitial}{\ssub{\left(\oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}}
- {\magvectsub{r}{12}}\right)}{i}}
-\newcommand{\ks}{\ssub{k}{s}}
-\newcommand{\Fnet}{\ensuremath{\vectsub{F}{net}}}
-\newcommand{\Fnetext}{\ensuremath{\vectsub{F}{net,ext}}}
-\newcommand{\Fnetsys}{\ensuremath{\vectsub{F}{net,sys}}}
-\newcommand{\Fsub}[1]{\ensuremath{\vectsub{F}{#1}}}
-\newcommand{\Tnet}{\ensuremath{\vectsub{T}{net}}}
-\newcommand{\Tnetext}{\ensuremath{\vectsub{T}{net,ext}}}
-\newcommand{\Tnetsys}{\ensuremath{\vectsub{T}{net,sys}}}
-\newcommand{\Tsub}[1]{\ensuremath{\vectsub{T}{#1}}}
-\newcommand{\vpythonline}{\lstinline[language=Python,numbers=left,numberstyle=\tiny,%
- upquote=true,breaklines]}
-\lstnewenvironment{vpythonblock}{\lstvpython}{}
-\newcommand{\vpythonfile}{\lstinputlisting[language=Python,numbers=left,%
- numberstyle=\tiny,upquote=true,breaklines]}
+\newcommand*{\springinteraction}{\ensuremath{\ks\magvect{s}(-\dirvect{s})}}
+\newcommand*{\Bfieldofparticle}{\ensuremath{%
+ \mzofpmathsymbol\frac{Q\magvect{v}}{\magvect{r}\squared}\dirvect{v}\times\dirvect{r}}}
+\newcommand*{\Efieldofparticle}{\ensuremath{%
+ \oofpezmathsymbol\frac{Q}{\magvect{r}\squared}\dirvect{r}}}
+\newcommandx{\Esys}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{sys}}{\ssub{E}{sys,#1}}}
+\newcommandx{\Us}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(s\)}}{\ssub{U}{\(s\),#1}}}
+\newcommandx{\Ug}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(g\)}}{\ssub{U}{\(g\),#1}}}
+\newcommandx{\Ue}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(e\)}}{\ssub{U}{\(e\),#1}}}
+\newcommandx{\Ktrans}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{trans}}
+ {\ssub{K}{trans,#1}}}
+\newcommandx{\Krot}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{rot}}{\ssub{K}{rot,#1}}}
+\newcommandx{\Kvib}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{vib}}{\ssub{K}{vib,#1}}}
+\newcommandx{\Eparticle}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{particle}}
+ {\ssub{E}{particle,#1}}}
+\newcommandx{\Einternal}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{internal}}
+ {\ssub{E}{internal,#1}}}
+\newcommandx{\Erest}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{rest}}{\ssub{E}{rest,#1}}}
+\newcommandx{\Echem}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{chem}}{\ssub{E}{chem,#1}}}
+\newcommandx{\Etherm}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{therm}}
+ {\ssub{E}{therm,#1}}}
+\newcommandx{\Evib}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{vib}}{\ssub{E}{vib,#1}}}
+\newcommandx{\Ephoton}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{photon}}
+ {\ssub{E}{photon,#1}}}
+\newcommand*{\DEsys}{\Changein\Esys}
+\newcommand*{\DUs}{\Changein\Us}
+\newcommand*{\DUg}{\Changein\Ug}
+\newcommand*{\DUe}{\Changein\Ue}
+\newcommand*{\DKtrans}{\Changein\Ktrans}
+\newcommand*{\DKrot}{\Changein\Krot}
+\newcommand*{\DKvib}{\Changein\Kvib}
+\newcommand*{\DEparticle}{\Changein\Eparticle}
+\newcommand*{\DEinternal}{\Changein\Einternal}
+\newcommand*{\DErest}{\Changein\Erest}
+\newcommand*{\DEchem}{\Changein\Echem}
+\newcommand*{\DEtherm}{\Changein\Etherm}
+\newcommand*{\DEvib}{\Changein\Evib}
+\newcommand*{\DEphoton}{\Changein\Ephoton}
+\newcommand*{\springpotentialenergy}{\onehalf\ks\magsquaredvect{s}}
+\newcommand*{\finalspringpotentialenergy}
+ {\ssub{\left(\springpotentialenergy\right)}{\!\!final}}
+\newcommand*{\initialspringpotentialenergy}
+ {\ssub{\left(\springpotentialenergy\right)}{\!\!initial}}
+\newcommand*{\gravitationalpotentialenergy}{\ensuremath{%
+ -G\frac{\msub{M}{1}\msub{M}{2}}{\magvectsub{r}{12}}}}
+\newcommand*{\finalgravitationalpotentialenergy}
+ {\ssub{\left(\gravitationalpotentialenergy\right)}{\!\!final}}
+\newcommand*{\initialgravitationalpotentialenergy}
+ {\ssub{\left(\gravitationalpotentialenergy\right)}{\!\!initial}}
+\newcommand*{\electricpotentialenergy}{\ensuremath{%
+ \oofpezmathsymbol\frac{\ssub{Q}{1}\ssub{Q}{2}}{\magvectsub{r}{12}}}}
+\newcommand*{\finalelectricpotentialenergy}
+ {\ssub{\left(\electricpotentialenergy\right)}{\!\!final}}
+\newcommand*{\initialelectricpotentialenergy}
+ {\ssub{\left(\electricpotentialenergy\right)}{\!\!initial}}
+\newcommand*{\ks}{\msub{k}{s}}
+\newcommand*{\Fnet}{\ensuremath{\vectsub{F}{net}}}
+\newcommand*{\Fnetext}{\ensuremath{\vectsub{F}{net,ext}}}
+\newcommand*{\Fnetsys}{\ensuremath{\vectsub{F}{net,sys}}}
+\newcommand*{\Fsub}[1]{\ensuremath{\vectsub{F}{#1}}}
+\newcommand*{\Ltotal}{\ensuremath{\vectsub{L}{\(A\),total}}}
+\newcommand*{\Lsys}{\ensuremath{\vectsub{L}{\(A\),sys}}}
+\newcommand*{\Lsub}[1]{\ensuremath{\vectsub{L}{\(A\),{#1}}}}
+\newcommand*{\Tnet}{\ensuremath{\vectsub{\tau}{\(A\),net}}}
+\newcommand*{\Tnetext}{\ensuremath{\vectsub{\tau}{\(A\),net,ext}}}
+\newcommand*{\Tnetsys}{\ensuremath{\vectsub{\tau}{\(A\),net,sys}}}
+\newcommand*{\Tsub}[1]{\ensuremath{\vectsub{\tau}{\(A\),#1}}}
+\newcommand*{\LHSmaxwelliint}[1][\partial V]{\ensuremath{%
+ \closedsurfaceintegral{#1}{\vect{E}}}}
+\newcommand*{\RHSmaxwelliint}{\ensuremath{\frac{\ssub{Q}{\(e\),net}}%
+ {\vacuumpermittivitymathsymbol}}}
+\newcommand*{\RHSmaxwelliinta}[1][V]{\ensuremath{%
+ \frac{1}{\vacuumpermittivitymathsymbol}\volumeintegral{#1}{\msub{\rho}{e}}}}
+\newcommand*{\RHSmaxwelliintfree}{\ensuremath{0}}
+\newcommand*{\maxwelliint}[1][\partial V]{\ensuremath{%
+ \LHSmaxwelliint[#1]=\RHSmaxwelliint}}
+\newcommandx*{\maxwelliinta}[2][1={\partial V},2={V},usedefault]{\ensuremath{%
+ \LHSmaxwelliint[#1]=\RHSmaxwelliinta[#2]}}
+\newcommand*{\maxwelliintfree}[1][\partial V]{\ensuremath{%
+ \LHSmaxwelliint[#1]=\RHSmaxwelliintfree}}
+\newcommand*{\LHSmaxwelliiint}[1][\partial V]{\ensuremath{%
+ \closedsurfaceintegral{#1}{\vect{B}}}}
+\newcommand*{\RHSmaxwelliiint}{\ensuremath{0}}
+\newcommand*{\RHSmaxwelliiintm}{\ensuremath{%
+ \vacuumpermeabilitymathsymbol\ssub{Q}{\(m\),net}}}
+\newcommand*{\RHSmaxwelliiintma}[1][V]{\ensuremath{%
+ \vacuumpermeabilitymathsymbol\volumeintegral{#1}{\msub{\rho}{m}}}}
+\newcommand*{\RHSmaxwelliiintfree}{\ensuremath{0}}
+\newcommand*{\maxwelliiint}[1][\partial V]{\ensuremath{%
+ \LHSmaxwelliiint[#1]=\RHSmaxwelliiint}}
+\newcommand*{\maxwelliiintm}[1][\partial V]{\ensuremath{%
+ \LHSmaxwelliiint[#1]=\RHSmaxwelliiintm}}
+\newcommandx*{\maxwelliiintma}[2][1={\partial V},2={V},usedefault]{\ensuremath{%
+ \LHSmaxwelliiint[#1]=\RHSmaxwelliiintma[#2]}}
+\newcommand*{\maxwelliiintfree}[1][\partial V]{\ensuremath{%
+ \LHSmaxwelliiint[#1]=\RHSmaxwelliiintfree}}
+\newcommand*{\LHSmaxwelliiiint}[1][\partial\Omega]{\ensuremath{%
+ \closedlineintegral{#1}{\vect{E}}}}
+\newcommand*{\RHSmaxwelliiiint}[1][\Omega]{\ensuremath{%
+ -\dbydt\opensurfaceintegral{#1}{\vect{B}}}}
+\newcommand*{\RHSmaxwelliiiintm}[1][\Omega]{\ensuremath{%
+ -\dbydt\opensurfaceintegral{#1}{\vect{B}}%
+ -\vacuumpermeabilitymathsymbol\ssub{I}{\(m\),net}}}
+\newcommand*{\RHSmaxwelliiiintma}[1][\Omega]{\ensuremath{%
+ -\dbydt\opensurfaceintegral{#1}{\vect{B}}%
+ -\vacuumpermeabilitymathsymbol\opensurfaceintegral{#1}{\vectsub{J}{\(m\)}}}}
+\newcommand*{\RHSmaxwelliiiintfree}{\RHSmaxwelliiiint}
+\newcommandx*{\maxwelliiiint}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiint[#2]}}
+\newcommandx*{\maxwelliiiintm}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiintm[#2]}}
+\newcommandx*{\maxwelliiiintma}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwelliiiint[#1]=\RHSmaxwelliiiintma[#2]}}
+\newcommand*{\maxwelliiiintfree}{\maxwelliiiint}
+\newcommand*{\LHSmaxwellivint}[1][\partial\Omega]{\ensuremath{%
+ \closedlineintegral{#1}{\vect{B}}}}
+\newcommand*{\RHSmaxwellivint}[1][\Omega]{\ensuremath{%
+ \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol%
+ \dbydt\opensurfaceintegral{#1}{\vect{E}}+%
+ \vacuumpermeabilitymathsymbol\ssub{I}{\(e\),net}}}
+\newcommand*{\RHSmaxwellivinta}[1][\Omega]{\ensuremath{%
+ \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol%
+ \dbydt\opensurfaceintegral{#1}{\vect{E}}+%
+ \vacuumpermeabilitymathsymbol\opensurfaceintegral{#1}{\vectsub{J}{\(e\)}}}}
+\newcommand*{\RHSmaxwellivintfree}[1][\Omega]{\ensuremath{%
+ \vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol%
+ \dbydt\opensurfaceintegral{#1}{\vect{E}}}}
+\newcommandx*{\maxwellivint}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivint[#2]}}
+\newcommandx*{\maxwellivinta}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivinta[#2]}}
+\newcommandx*{\maxwellivintfree}[2][1={\partial\Omega},2={\Omega},usedefault]%
+ {\ensuremath{\LHSmaxwellivint[#1]=\RHSmaxwellivintfree[#2]}}
+\newcommand*{\LHSmaxwellidif}{\ensuremath{\divergence{\vect{E}}}}
+\newcommand*{\RHSmaxwellidif}{\ensuremath{\frac{\msub{\rho}{e}}
+ {\vacuumpermittivitymathsymbol}}}
+\newcommand*{\RHSmaxwellidiffree}{\ensuremath{0}}
+\newcommand*{\maxwellidif}{\ensuremath{\LHSmaxwellidif=\RHSmaxwellidif}}
+\newcommand*{\maxwellidiffree}{\ensuremath{\LHSmaxwellidif=\RHSmaxwellidiffree}}
+\newcommand*{\LHSmaxwelliidif}{\ensuremath{\divergence{\vect{B}}}}
+\newcommand*{\RHSmaxwelliidif}{\ensuremath{0}}
+\newcommand*{\RHSmaxwelliidifm}{\ensuremath{\vacuumpermeabilitymathsymbol%
+ \msub{\rho}{m}}}
+\newcommand*{\RHSmaxwelliidiffree}{\ensuremath{0}}
+\newcommand*{\maxwelliidif}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidif}}
+\newcommand*{\maxwelliidifm}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidifm}}
+\newcommand*{\maxwelliidiffree}{\ensuremath{\LHSmaxwelliidif=\RHSmaxwelliidiffree}}
+\newcommand*{\LHSmaxwelliiidif}{\ensuremath{\curl{\vect{E}}}}
+\newcommand*{\RHSmaxwelliiidif}{\ensuremath{-\pbypt[\vect{B}]}}
+\newcommand*{\RHSmaxwelliiidifm}{\ensuremath{-\pbypt[\vect{B}]-%
+ \vacuumpermeabilitymathsymbol\vectsub{J}{\(m\)}}}
+\newcommand*{\RHSmaxwelliiidiffree}{\RHSmaxwelliiidif}
+\newcommand*{\maxwelliiidif}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidif}}
+\newcommand*{\maxwelliiidifm}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidifm}}
+\newcommand*{\maxwelliiidiffree}{\ensuremath{\LHSmaxwelliiidif=\RHSmaxwelliiidif}}
+\newcommand*{\LHSmaxwellivdif}{\ensuremath{\curl{\vect{B}}}}
+\newcommand*{\RHSmaxwellivdif}{\ensuremath{\vacuumpermeabilitymathsymbol%
+ \vacuumpermittivitymathsymbol\pbypt[\vect{E}]+%
+ \vacuumpermeabilitymathsymbol\vectsub{J}{\(e\)}}}
+\newcommand*{\RHSmaxwellivdiffree}{\ensuremath{\vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol\pbypt[\vect{E}]}}
+\newcommand*{\maxwellivdif}{\ensuremath{\LHSmaxwellivdif=\RHSmaxwellivdif}}
+\newcommand*{\maxwellivdiffree}{\ensuremath{\LHSmaxwellivdif=\RHSmaxwellivdiffree}}
+\newcommand*{\RHSlorentzforce}{\ensuremath{\msub{q}{e}\left(\vect{E}+%
+ \vectcrossvect{\vect{v}}{\vect{B}}\right)}}
+\newcommand*{\RHSlorentzforcem}{\ensuremath{\RHSlorentzforce+\msub{q}{m}\left(%
+ \vect{B}-\vectcrossvect{\vect{v}}{\frac{\vect{E}}{c^2}}\right)}}
+\newcommand*{\vpythonline}{\lstinline[style=vpython]}
+\lstnewenvironment{vpythonblock}{\lstset{style=vpython}}{}
+\newcommand*{\vpythonfile}{\lstinputlisting[style=vpython]}
\newcommandx{\emptyanswer}[2][1=0.80,2=0.1,usedefault]
{\begin{minipage}{#1\textwidth}\hfill\vspace{#2\textheight}\end{minipage}}
\newenvironmentx{activityanswer}[5][1=white,2=black,3=black,4=0.90,5=0.10,usedefault]{%
@@ -1340,7 +1447,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\vspace{\baselineskip}%
\end{center}%
}%
-\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=,7=0.0,usedefault]
+\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=,
+7=0.0,usedefault]
{\begin{center}%
\fcolorbox{#3}{#2}{%
\begin{minipage}[c]{#5\textwidth}\color{#4}%
@@ -1385,65 +1493,50 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
- \emptyanswer[#5][#6]%
- }%
+ \emptyanswer[#5][#6]}%
\vspace{\baselineskip}%
- \end{center}%
- }%
- {\emptybox[#1][#2][#3][#4][#5][#6]%
- }%
+ \end{center}}%
+ {\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\newcommandx{\largeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.25,%
usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
- \emptyanswer[#5][#6]%
- }%
+ \emptyanswer[#5][#6]}%
\vspace{\baselineskip}%
- \end{center}%
- }%
- {\emptybox[#1][#2][#3][#4][#5][#6]%
- }%
+ \end{center}}%
+ {\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\newcommandx{\largeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.33,%
usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
- \emptyanswer[#5][#6]%
- }%
+ \emptyanswer[#5][#6]}%
\vspace{\baselineskip}%
- \end{center}%
- }%
- {\emptybox[#1][#2][#3][#4][#5][#6]%
- }%
+ \end{center}}%
+ {\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\newcommandx{\hugeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.50,%
usedefault]{%
\ifthenelse{\equal{#1}{}}
{\begin{center}%
\fcolorbox{#3}{#2}{%
- \emptyanswer[#5][#6]%
- }%
+ \emptyanswer[#5][#6]}%
\vspace{\baselineskip}%
- \end{center}%
- }%
- {\emptybox[#1][#2][#3][#4][#5][#6]%
- }%
+ \end{center}}%
+ {\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\newcommandx{\hugeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.75,%
usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
- \emptyanswer[#5][#6]%
- }%
+ \emptyanswer[#5][#6]}%
\vspace{\baselineskip}%
- \end{center}%
- }%
- {\emptybox[#1][#2][#3][#4][#5][#6]%
- }%
+ \end{center}}%
+ {\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\newcommandx{\fullpageanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=1.00,%
usedefault]{%
@@ -1456,12 +1549,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
\mdfdefinestyle{miinstructornotestyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
frametitle={INSTRUCTOR NOTE},
- frametitlebackgroundcolor=cyan!60, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=cyan!25,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{miinstructornote}{%
\begin{mdframed}[style=miinstructornotestyle]
\begin{adjactivityanswer}[cyan!25][cyan!25][black]
@@ -1470,12 +1563,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{mdframed}
}%
\mdfdefinestyle{mistudentnotestyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
frametitle={STUDENT NOTE},
- frametitlebackgroundcolor=cyan!60, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=cyan!25,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{mistudentnote}{%
\begin{mdframed}[style=mistudentnotestyle]
\begin{adjactivityanswer}[cyan!25][cyan!25][black]
@@ -1484,12 +1577,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{mdframed}
}%
\mdfdefinestyle{miderivationstyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=0pt, rightmargin=0pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=0pt,rightmargin=0pt,linewidth=1,roundcorner=10,
frametitle={DERIVATION},
- frametitlebackgroundcolor=orange!60, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=orange!60,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=orange!25,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{miderivation}{%
\begin{mdframed}[style=miderivationstyle]
\setcounter{equation}{0}
@@ -1499,12 +1592,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{mdframed}
}%
\mdfdefinestyle{bwinstructornotestyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
frametitle={INSTRUCTOR NOTE},
- frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=gray!20,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{bwinstructornote}{%
\begin{mdframed}[style=bwinstructornotestyle]
\begin{adjactivityanswer}[gray!20][gray!20][black]
@@ -1513,12 +1606,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{mdframed}
}%
\mdfdefinestyle{bwstudentnotestyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=40pt, rightmargin=40pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
frametitle={STUDENT NOTE},
- frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=gray!20,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{bwstudentnote}{%
\begin{mdframed}[style=bwstudentnotestyle]
\begin{adjactivityanswer}[gray!20][gray!20][black]
@@ -1527,12 +1620,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{mdframed}
}%
\mdfdefinestyle{bwderivationstyle}{%
- hidealllines=false, skipbelow=\baselineskip, skipabove=\baselineskip,
- leftmargin=0pt, rightmargin=0pt, linewidth=1, roundcorner=10,
+ hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
+ leftmargin=0pt,rightmargin=0pt,linewidth=1,roundcorner=10,
frametitle={DERIVATION},
- frametitlebackgroundcolor=gray!50, frametitlerule=true, frametitlerulewidth=1,
+ frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=gray!20,
- linecolor=black, fontcolor=black, shadow=true}
+ linecolor=black,fontcolor=black,shadow=true}
\NewEnviron{bwderivation}{%
\begin{mdframed}[style=bwderivationstyle]
\setcounter{equation}{0}
@@ -1541,9 +1634,14 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{align*}
\end{mdframed}
}%
-\newcommand{\checkpoint}{%
+\NewEnviron{mysolution}{%
+ \begin{align*}
+ \BODY
+ \end{align*}
+}%
+\newcommand*{\checkpoint}{%
\vspace{1cm}\begin{center}|--------- CHECKPOINT ---------|\end{center}}%
-\newcommand{\image}[2]{%
+\newcommand*{\image}[2]{%
\begin{figure}[h!]
\begin{center}%
\includegraphics[scale=1]{#1}%
@@ -1551,19 +1649,19 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\label{#1}%
\end{center}%
\end{figure}}
-\newcommand{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}}
-\newcommand{\chkquantity}[1]{%
+\newcommand*{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}}
+\newcommand*{\chkquantity}[1]{%
\begin{center}
- \begin{tabular}{C{3cm} C{3cm} C{3cm} C{3cm}}
+ \begin{tabular}{C{4.5cm} C{4cm} C{4cm} C{4cm}}
name & baseunit & drvdunit & tradunit \tabularnewline
\cs{#1} & \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname &
\csname #1onlytradunit\endcsname
\end{tabular}
\end{center}
}%
-\newcommand{\chkconstant}[1]{%
+\newcommand*{\chkconstant}[1]{%
\begin{center}
- \begin{tabular}{C{3cm} C{1cm} C{2cm} C{3cm} C{3cm} C{3cm}}
+ \begin{tabular}{C{4cm} C{2cm} C{3cm} C{3cm} C{3cm} C{3cm}}
name & symbol & value & baseunit & drvdunit & tradunit \tabularnewline
\cs{#1} & \csname #1mathsymbol\endcsname & \csname #1value\endcsname &
\csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname &
@@ -1571,26 +1669,6 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{tabular}
\end{center}
}%
-\newcommandx{\vecto}[2][2,usedefault]{\ensuremath{%
- \ifthenelse{\equal{#2}{}}%
- {\vec{#1}}%
- {\ssub{\vec{#1}}{#2}}}}%
-\newcommandx{\compvecto}[3][3,usedefault]{\ensuremath{%
- \ifthenelse{\equal{#3}{}}%
- {\ssub{#1}{\(#2\)}}%
- {\ssub{#1}{\(#2\),#3}}}}%
-\newcommandx{\scompsvecto}[2][2,usedefault]{\ensuremath{%
- \ifthenelse{\equal{#2}{}}%
- {\lv\compvecto{#1}{x},\compvecto{#1}{y},\compvecto{#1}{z}\rv}%
- {\lv\compvecto{#1}{x}[#2],\compvecto{#1}{y}[#2],\compvecto{#1}{z}[#2]\rv}}}%
-\newcommandx{\compposo}[2][2,usedefault]{\ensuremath{%
- \ifthenelse{\equal{#1}{}}%
- {#1}%
- {\ssub{#1}{#2}}}}%
-\newcommandx{\scompsposo}[1][1,usedefault]{\ensuremath{%
- \ifthenelse{\equal{#1}{}}%
- {\lv\compposo{x},\compposo{y},\compposo{z}\rv}%
- {\lv\compposo{x}[#1],\compposo{y}[#1],\compposo{z}[#1]\rv}}}%
\endinput
%%
%% End of file `mandi.sty'.