diff options
author | Karl Berry <karl@freefriends.org> | 2021-01-18 22:07:17 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2021-01-18 22:07:17 +0000 |
commit | 4ef7b1fd9ac6a9e8aece78903e0ae5a5160791ce (patch) | |
tree | def9de9877c67097e88d10ea281c3f151bf725b2 | |
parent | 9380089753cb3d8dd2b9027d82d97c92a507f63f (diff) |
profcollege (17jan21)
git-svn-id: svn://tug.org/texlive/trunk@57456 c570f23f-e606-0410-a88d-b1316a301751
19 files changed, 13744 insertions, 1 deletions
diff --git a/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.pdf b/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.pdf Binary files differnew file mode 100644 index 00000000000..7bdee3edec6 --- /dev/null +++ b/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.pdf diff --git a/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.zip b/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.zip Binary files differnew file mode 100644 index 00000000000..ffd4e8dd82a --- /dev/null +++ b/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.zip diff --git a/Master/texmf-dist/doc/latex/profcollege/README b/Master/texmf-dist/doc/latex/profcollege/README new file mode 100644 index 00000000000..1c43726c9dc --- /dev/null +++ b/Master/texmf-dist/doc/latex/profcollege/README @@ -0,0 +1,13 @@ +Vous êtes un enseignant de mathématiques en collège ? +profcollege est un package qui vous aidera à utiliser LaTeX au quotidien. + +---------------- + +You are a french mathematics teacher ? +profcollege is a useful package to daily use of LaTeX. + +--------------- + +Author : Christophe Poulain +email : chrpoulain@gmail.com +Licence : Released under the LaTeX Project Public License v1.3c or later, see http://www.latex-project.org/lppl.txtf diff --git a/Master/texmf-dist/metapost/profcollege/PfC-Calculatrice.mp b/Master/texmf-dist/metapost/profcollege/PfC-Calculatrice.mp new file mode 100644 index 00000000000..a6326e19258 --- /dev/null +++ b/Master/texmf-dist/metapost/profcollege/PfC-Calculatrice.mp @@ -0,0 +1,198 @@ +%Author : Christophe Poulain +%Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +prologues:=3; + +path carre[]; + +u:=0.5mm; + +vardef BlocAffichage= + for k=0 upto 34: + carre[k]:=(unitsquare scaled u) shifted(u*(k mod 5,5-(k div 5))); + endfor; +enddef; + +vardef Affichage(expr decomp)= + save $; + picture $; + drawoptions(withpen pensquare scaled0.1); + $=image(% + for k=0 upto 34: + if (substring(k,k+1) of decomp)="1": + fill carre[k]; + fi; + endfor; + ); + drawoptions(); + $ +enddef; + +nblignes:=0; + +boolean print; +print:=false; + +color CouleurEcran; +CouleurEcran=(107/255,148/255,107/255); + +boolean Math; +Math=true; + +decahoriz:=0; + +vardef Test(expr cptk,cptnt)= + pair decalage; + if nblignes mod 2=0: + decalage:=u*((20-length(cptnt)+cptk)*6,-8*(nblignes-1)); + else: + decalage:=u*(decahoriz,-8*(nblignes-1)); + decahoriz:=decahoriz+6; + fi; + if substring(cptk,cptk+1) of cptnt="A":draw Affichage("01110100011000110001111111000110001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="B":draw Affichage("11110100011000111110100011000111110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="C":draw Affichage("01110100011000010000100001000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="D":draw Affichage("11100100101000110001100011001011100") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="E":draw Affichage("11111100001000011111100001000011111") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="F":draw Affichage("11111100001000011111100001000010000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="G":draw Affichage("01110100011000010111100011000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="H":draw Affichage("10001100011000111111100011000110001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="I":draw Affichage("01110001000010000100001000010001110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="J":draw Affichage("00111000100001000010000101001001100") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="K":draw Affichage("10001100101010011000101001001010001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="L":draw Affichage("10000100001000010000100001000011111") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="M":draw Affichage("10001110111010110101100011000110001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="N":draw Affichage("10001100011100110101100111000110001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="O":draw Affichage("01110100011000110001100011000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="P":draw Affichage("11110100011000111110100001000010000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="Q":draw Affichage("01110100011000110001101011001001101") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="R":draw Affichage("11110100011000111110101001001010001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="S":draw Affichage("01111100001000001110000010000111110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="T":draw Affichage("11111001000010000100001000010000100") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="U":draw Affichage("10001100011000110001100011000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="V":draw Affichage("10001100011000110001100010101000100") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="W":draw Affichage("10101101011010110101101011010101010") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="X":draw Affichage("10001100010101000100010101000110001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="Y":draw Affichage("10001100011000101010001000010000100") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="Z":draw Affichage("11111000010001000100010001000011111") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="a":draw Affichage("00000000000111100001011111000101111") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="b":draw Affichage("10000100001011011001100011000111110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="c":draw Affichage("00000000000111010000100001000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="d":draw Affichage("00001000010110110011100011000101111") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="e":if Math: + draw Affichage("00000000000000000001101000100010100") shifted(decalage); + decalage:=u*(decahoriz-1,-8*(nblignes-1)); + draw Affichage("00000000001001010101101011010110010") shifted(decalage); + decahoriz:=decahoriz+6; + else: + draw Affichage("00000000000111010001111111000001110") shifted(decalage); + fi; + elseif substring(cptk,cptk+1) of cptnt="@":draw Affichage("00010001000111010001111111000001110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="f":draw Affichage("00110010010100011100010000100001000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="g":draw Affichage("00000011111000110001011110000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="h":draw Affichage("10000100001011011001100011000110001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="i":draw Affichage("00100000000110000100001000010001110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="j":if Math=true: + draw Affichage("00011000011110100001000000000000000") shifted(decalage); + else: + draw Affichage("00010000000011000010000101001001100") shifted(decalage); + fi; + elseif substring(cptk,cptk+1) of cptnt="k":if Math=true: + draw Affichage("11100001000100011100000000000000000") shifted(decalage); + else: + draw Affichage("10000100001001010100110001010010010") shifted(decalage); + fi; + elseif substring(cptk,cptk+1) of cptnt="l":if Math=true: + draw Affichage("11100010000010011100000000000000000") shifted(decalage); + else: + draw Affichage("01100001000010000100001000010001110") shifted(decalage); + fi; + elseif substring(cptk,cptk+1) of cptnt="m":draw Affichage("00000000001101010101101011000110001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="n":draw Affichage("00000000001011011001100011000110001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="o":draw Affichage("00000000000111010001100011000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="p":draw Affichage("00000000001111010001111101000010000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="q":if Math=true: + draw Affichage("00000000001111101010010100101010001") shifted(decalage); + else: + draw Affichage("00000000000110110011011110000100001") shifted(decalage); + fi; + elseif substring(cptk,cptk+1) of cptnt="r":draw Affichage("00000000001011011001100001000010000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="s":draw Affichage("00000000000111010000011100000111110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="t":draw Affichage("01000010001110001000010000100100110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="u":draw Affichage("00000000001000110001100011001101101") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="v":if Math=true: + draw Affichage("00111001000010000100101000110000100") shifted(decalage); + else: + draw Affichage("00000000001000110001100010111000100") shifted(decalage); + fi; + elseif substring(cptk,cptk+1) of cptnt="w":draw Affichage("00000000001010110101101011010101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="x":draw Affichage("00000000001000101010001000101010001") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="y":draw Affichage("00000000001000110001011110000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="z":draw Affichage("00000000001111100010001000100011111") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="0":draw Affichage("01110100011001110101110011000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="1":draw Affichage("00100011000010000100001000010001110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="2":draw Affichage("01110100010000100010001000100011111") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="3":draw Affichage("11111000100010000010000011000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="4":draw Affichage("00010001100101010010111110001000010") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="5":draw Affichage("11111100001111000001000011000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="6":draw Affichage("00110010001000011110100011000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="7":draw Affichage("11111000010001000100010000100001000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="8":draw Affichage("01110100011000101110100011000101110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="9":draw Affichage("01110100011000101111000010001001100") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="!":draw Affichage("00100001000010000100000000000000100") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="'":draw Affichage("01100001000100000000000000000000000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="(":draw Affichage("00010001000100001000010000010000010") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt=")":draw Affichage("01000001000001000010000100010001000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="*":draw Affichage("00000001001010101110101010010000000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="+":draw Affichage("00000001000010011111001000010000000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt=",":draw Affichage("00000000000000000000011000010001000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="-":draw Affichage("00000000000000011111000000000000000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt=".":draw Affichage("00000000000000000000000000110001100") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="/":draw Affichage("00000000010001000100010001000000000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt=":":if Math=true: + draw Affichage("00000000000000000000000000000000000") shifted(decalage); + else: + draw Affichage("00000011000110000000011000110000000") shifted(decalage); + fi; + elseif substring(cptk,cptk+1) of cptnt=";":if Math=true: + draw Affichage("00000001000000011111000000010000000") shifted(decalage); + else: + draw Affichage("00000011000110000000011000010001000") shifted(decalage); + fi; + elseif substring(cptk,cptk+1) of cptnt="<":draw Affichage("00010001000100010000010000010000010") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="=":draw Affichage("00000000001111100000111110000000000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt=">":draw Affichage("10000010000010000010001000100010000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="?":draw Affichage("01110100010000100010001000000000100") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="[":draw Affichage("01110010000100001000010000100001110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="]":draw Affichage("01110000100001000010000100001001110") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="`":draw Affichage("01000001000001000000000000000000000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="|":draw Affichage("00100001000010000100001000010000100") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt=" ":draw Affichage("00000100010101000100010101000100000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="&":draw Affichage("00000100001100011100110001000000000") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="$":draw Affichage("00000000000000100001000010000111111") shifted(decalage); + elseif substring(cptk,cptk+1) of cptnt="^":draw Affichage("00100010101000100000000000000000000") shifted(decalage); + fi; +enddef; + +vardef LCD(text nt)(text rep)= + decahoriz:=0; + nblignes:=nblignes+1; + path Ecran; + Ecran:=(u*(0,-1)--u*(120,-1)--u*(120,7)--u*(0,7)--cycle) shifted(u*(0,-8*(nblignes-1))); + fill Ecran withcolor if print=true:0.8white else:CouleurEcran fi; + draw Ecran withcolor if print=true:0.8white else:CouleurEcran fi; + for k=0 upto length(nt)-1: + BlocAffichage; + Test(k,nt); + endfor; + nblignes:=nblignes+1; + Ecran:=(u*(0,-1)--u*(120,-1)--u*(120,7)--u*(0,7)--cycle) shifted(u*(0,-8*(nblignes-1))); + fill Ecran withcolor if print=true:0.8white else:CouleurEcran fi; + draw Ecran withcolor if print=true:0.8white else:CouleurEcran fi; + for k=0 upto length(rep)-1: + BlocAffichage; + Test(k,rep); + endfor; +enddef; + +endinput; diff --git a/Master/texmf-dist/metapost/profcollege/PfC-Constantes.mp b/Master/texmf-dist/metapost/profcollege/PfC-Constantes.mp new file mode 100644 index 00000000000..b97bd8a4c0a --- /dev/null +++ b/Master/texmf-dist/metapost/profcollege/PfC-Constantes.mp @@ -0,0 +1,23 @@ +%Author : Christophe Poulain +%Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +%Constantes +u:=1cm; +v:=(sqrt3)/2; +pi:=3.141592654; +e:=2.718281828; +c:=57.29578; % conversion d'un radian en degres +color rouge,vert,bleu,jaune,noir,blanc,orange,rose,violet,ciel,cielfonce,orangevif,gris; +rouge=(1,0,0); +bleu=(0,0,1); +noir=(0,0,0); +blanc=(1,1,1); +orange=(1,0.5,0); +violet=blanc-vert; +rose=(1,0.7,0.7); +cielfonce=0.9*(0.25,1,1); +ciel=bleu+vert; +orangevif=(1,0.25,0.1); +vert=(0,1,0); +jaune=rouge+vert; +gris=0.8*white; diff --git a/Master/texmf-dist/metapost/profcollege/PfC-Geometrie.mp b/Master/texmf-dist/metapost/profcollege/PfC-Geometrie.mp new file mode 100644 index 00000000000..222df574193 --- /dev/null +++ b/Master/texmf-dist/metapost/profcollege/PfC-Geometrie.mp @@ -0,0 +1,1206 @@ +%=============================================== +%% PfC-Geometrie +%% christophe.poulain@melusine.eu.org +%%=============================================== +%------------------------------------------------ +% Appel fichier +%------------------------------------------------ +%input PfC-Constantes; +%------------------------------------------------ +% La figure (debut et fin) JMS/CP +%------------------------------------------------ +path feuillet; +numeric _tfig,_nfig; +_tfig:=5cm; +_nfig:=0; +pair coinbg,coinbd,coinhd,coinhg; + +string typetrace; +typetrace="normal"; + +def feuille(expr xa,ya,xb,yb) = + feuillet := (xa,ya)--(xa,yb)--(xb,yb)--(xb,ya)--cycle; + coinbg := (xa,ya); + coinbd := (xb,ya); + coinhd := (xb,yb); + coinhg := (xa,yb); + %modifie le 29.09.04 + z.so=(xpart(coinbg/1cm),ypart(coinbg/1cm)); + z.ne=(xpart(coinhd/1cm),ypart(coinhd/1cm)); + %fin modification + extra_endfig := "clip currentpicture to feuillet;" & extra_endfig; +enddef; + +def Figure(expr xa,ya,xb,yb) = + feuille(xa,ya,xb,yb); + _tfig:= if (xb-xa)>(yb-ya): xb-xa else: yb-ya fi; + _tfig:=2*_tfig; +enddef; + +%%----------------------------------------------- +%% Les marques (JMS) +%%----------------------------------------------- +string marque_p; +marque_p := "non"; +marque_r := 20; +marque_a := 20; +marque_s := 5; +marque_ang := 10; +m_c := 10 ;%Pour la croix du marquage des points + +%------------------------------------------------ +% Les tables +%------------------------------------------------ +numeric _tn; +_tn:=0; +pair _t[]; +color _T[]; + +%%----------------------------------------------- +%% Procedures d'affichage +%%----------------------------------------------- +def MarquePoint(expr p)= + if typetrace="3D": + %JMS + if marque_p = "plein": + fill fullcircle scaled (marque_r/5) shifted Projette(p); + elseif marque_p = "creux": + fill fullcircle scaled (marque_r/5) shifted (Projette(p)) withcolor white; + draw fullcircle scaled (marque_r/5) shifted (Projette(p)); + %fin JMS + elseif marque_p = "croix": + draw (Projette(p) shifted (-u/10,u/10))--(Projette(p) shifted (u/10,-u/10)); + draw (Projette(p) shifted (-u/10,-u/10))--(Projette(p) shifted (u/10,u/10)); + elseif marque_p = "tiretv": + draw (Projette(p) shifted (0,u/10))--(Projette(p) shifted(0,-u/10)); + elseif marque_p = "tireth": + draw (Projette(p) shifted (u/10,0))--(Projette(p) shifted(-u/10,0)); + fi; + else: + if marque_p = "plein": + fill fullcircle scaled (marque_r/5) shifted p; + elseif marque_p = "creux": + fill fullcircle scaled (marque_r/5) shifted p withcolor white; + draw fullcircle scaled (marque_r/5) shifted p; + elseif marque_p = "croix": + draw (p shifted (-u/m_c,u/m_c))--(p shifted (u/m_c,-u/m_c)); + draw (p shifted (-u/m_c,-u/m_c))--(p shifted (u/m_c,u/m_c)); + elseif marque_p = "tiretv": + draw (p shifted (0,u/10))--(p shifted(0,-u/10)); + elseif marque_p = "tireth": + draw (p shifted (u/10,0))--(p shifted(-u/10,0)); + fi; + fi; +enddef; + +vardef pointe(text t) = + for p_ = t: if (pair p_) or (color p_): MarquePoint(p_); fi endfor; +enddef; + +%------------------------------------------------ +% Points +%------------------------------------------------ +%JMS +vardef iso(text t) = + save s,n; numeric n; + if typetrace="3D": + color s; s := (0,0,0) ; n := 0; + for p_ = t: s := s + p_; n := n + 1 ; endfor; + else: + pair s; s := (0,0) ; n := 0; + for p_ = t: s := s + p_; n := n + 1 ; endfor; + fi; + if n>0: (1/n)*s fi +enddef; + +vardef milieu(expr AA,BB)= + save $; + pair $; + if typetrace="mainlevee": + $=point((length segment(AA,BB))*(1/2+(-1+uniformdeviate(2))/10)) of segment(AA,BB) + else: + $=iso(AA,BB) + fi; + $ +enddef; + +vardef CentreCercleI(expr aa,bb,cc)= + save $,a,c; + pair $; + numeric a,c; + a=(angle(aa-cc)-angle(bb-cc))/2; + c=(angle(cc-bb)-angle(aa-bb))/2; + ($-cc) rotated a shifted cc=whatever[aa,cc]; + ($-bb) rotated c shifted bb=whatever[bb,cc]; + $ +enddef; + +%------------------------------------------------ +% Cercles +%------------------------------------------------ +%Cercle connaissant le centre A et le rayon q +vardef cercle(expr aa, q)=fullcircle scaled (2*q) shifted aa +enddef; +%Cercle de centre A et passant par B +vardef cerclepoint(expr aa,bb)=fullcircle scaled (2*abs(aa-bb)) shifted aa +enddef; +%Cercle connaissant le diametre [AB] +vardef cercledia(expr aa,bb)=cercles(iso(aa,bb),bb) + %fullcircle scaled (2*abs(1/2[aa,bb]-bb)) shifted (1/2[aa,bb]) +enddef; +%Cercles complets +vardef cercles(text t)= + save Cer; + save n; + n:=0; + for p_=t: + if pair p_: + n:=n+1; + _t[n]:=p_; + fi + if numeric p_: + rayon:=p_; + fi; + if color p_: + n:=n+1; + _T[n]:=p_; + fi; + endfor; + if typetrace="3D":%centre aa passant par bb dans le plan (ccddee) généralement aa=cc + path Cer; + color ptcer[]; + for k=0 step 5 until 360 : + ptcer[k div 5]-_T[1]=Distance(_T[1],_T[2])*((_T[4]-_T[3])*cosd(k)/Distance(_T[3],_T[4])+(_T[5]-_T[3])*sind(k)/Distance(_T[3],_T[5])); + endfor; + Cer=Projette(ptcer0) + for k=0 step 5 until 360 : + ..Projette(ptcer[k div 5]) + endfor + ..cycle; + else: + path Cer; + if n=1 : Cer=fullcircle scaled (2*rayon) shifted _t[1]; + elseif n=2 : Cer=fullcircle scaled (2*abs(_t[1]-_t[2])) shifted _t[1]; + elseif n=3 : Cer=cercles(CentreCercleC(_t[1],_t[2],_t[3]),_t[1]); + fi + fi + Cer +enddef; + +%Point particulier sur le cercle +vardef pointarc(expr cercla,angle)= + point(arctime((angle/360)*arclength cercla) of cercla) of cercla +enddef; + +%Arc de cercle AB de centre 0(dans le sens direct) : les points A et B doivent etre sur le cercle. +vardef arccercle(expr aa,bb,oo)= + path tempo; + path arc; + tempo=fullcircle scaled (2*abs(aa-oo)) shifted oo; + if (angle(aa-oo)=0) or (angle(aa-oo)>0) : + if (angle(bb-oo)=0) or (angle(bb-oo)>0): + if (angle(aa-oo)<angle(bb-oo)): + arc=subpath(angle(aa-oo)*(length tempo)/360,angle(bb-oo)*(length tempo)/360) of tempo; + else: + arc=subpath(angle(aa-oo)*(length tempo)/360,(length tempo)+angle(bb-oo)*(length tempo)/360) of tempo; + fi; + elseif (angle(bb-oo)<0): + arc=subpath(angle(aa-oo)*(length tempo)/360,(length tempo)+angle(bb-oo)*(length tempo)/360) of tempo; + fi; + elseif (angle(aa-oo)<0): + if (angle(bb-oo)=0) or (angle(bb-oo)>0): + arc=subpath(length tempo+angle(aa-oo)*(length tempo)/360,length tempo+angle(bb-oo)*(length tempo)/360) of tempo; + elseif (angle(bb-oo)<0): + if (angle(aa-oo)=angle(bb-oo)) or (angle(aa-oo)<angle(bb-oo)): + arc=subpath((length tempo)+angle(aa-oo)*(length tempo)/360,(length tempo)+angle(bb-oo)*(length tempo)/360) of tempo; + else: + arc=subpath((length tempo)+angle(aa-oo)*(length tempo)/360,2*(length tempo)+angle(bb-oo)*(length tempo)/360) of tempo; + fi; + fi; + fi; + arc +enddef; + +vardef coupdecompas(expr ab,ac,ad)=arccercle(pointarc(cercles(ab,ac),angle(ac-ab)-ad),pointarc(cercles(ab,ac),angle(ac-ab)+ad),ab) +enddef; + +%------------------------------------------------ +% Procedures de codage +%------------------------------------------------ +%Codage de l'angle droit de sommet B +vardef codeperp(expr aa,bb,cc,m)=%normalement m=5 + save codep; + path codep; + if typetrace="3D": + codep=(Projette(bb)+m*unitvector(Projette(aa)-Projette(bb)))--(Projette(bb)+m*unitvector(Projette(aa)-Projette(bb))+m*unitvector(Projette(cc)-Projette(bb)))--(Projette(bb)+m*unitvector(Projette(cc)-Projette(bb))); + else: + codep=(bb+m*unitvector(aa-bb))--(bb+m*unitvector(aa-bb)+m*unitvector(cc-bb))--(bb+m*unitvector(cc-bb)); + fi; + codep +enddef; + +%Codage d'un milieu +vardef codemil(expr AA,BB, n) =%extremites-angle de codage + save $,a,b,c,d; + path $; + pair a,b,c,d; + a=1/2[AA,BB]; + b=(a+marque_s*unitvector(BB-AA))-(a-marque_s*unitvector(BB-AA)); + c=b rotated n shifted a; + d=2[c,a]; + $=c--d; + $ +enddef; +%Codage de deux segments egaux +vardef codesegments(expr aa,bb,cc,dd,n)=%extremites des segments(4)-type de codage + save $,v,w; + picture $; + pair AA,BB,CC,DD; + $=image( + if typetrace="3D": + AA=Projette(aa); BB=Projette(bb); CC=Projette(cc); DD=Projette(dd); + else: + AA=aa;BB=bb;CC=cc;DD=dd; + fi; + if n=5 : + draw fullcircle scaled 0.1cm shifted (1/2[AA,BB]); + draw fullcircle scaled 0.1cm shifted (1/2[CC,DD]); + elseif n=4 : + pair v,w; + v=1/2[AA,BB]; + w=1/2[CC,DD]; + draw codemil(AA,BB,60); + draw codemil(AA,BB,120); + draw codemil(CC,DD,60); + draw codemil(CC,DD,120); + elseif n=3 : + draw codemil(AA,BB,60); + draw codemil(AA,BB,60) shifted (2*unitvector(AA-BB)); + draw codemil(AA,BB,60) shifted (2*unitvector(BB-AA)); + draw codemil(CC,DD,60); + draw codemil(CC,DD,60) shifted (2*unitvector(CC-DD)); + draw codemil(CC,DD,60) shifted (2*unitvector(DD-CC)); + elseif n=2 : + draw codemil(AA,BB,60) shifted unitvector(AA-BB); + draw codemil(AA,BB,60) shifted unitvector(BB-AA); + draw codemil(CC,DD,60) shifted unitvector(CC-DD); + draw codemil(CC,DD,60) shifted unitvector(DD-CC); + elseif n=1 : + draw codemil(AA,BB,60); + draw codemil(CC,DD,60); + fi; + ); + $ + enddef; + +%Codage de plusieurs segments de meme longueur + vardef Codelongueur(text t)= + save result; + picture result; + pair tt[]; + k:=0; + for p_=t: + if pair p_: + k:=k+1; + tt[k]=p_; + elseif color p_: + k:=k+1; + tt[k]=Projette(p_); + elseif numeric p_: + co:=p_; + fi; + endfor; + result=image( + if co=5: + for j=1 upto (k div 2): + draw fullcircle scaled 0.1cm shifted (1/2[tt[2*j-1],tt[2*j]]); + endfor; + elseif co=4: + for j=1 upto (k div 2): + draw codemil(tt[2*j-1],tt[2*j],60); + draw codemil(tt[2*j-1],tt[2*j],120); + endfor; + elseif co=3: + for j=1 upto (k div 2): + draw codemil(tt[2*j-1],tt[2*j],60); + draw codemil(tt[2*j-1],tt[2*j],60) shifted (2*unitvector(tt[2*j-1]-tt[2*j])); + draw codemil(tt[2*j-1],tt[2*j],60) shifted (2*unitvector(tt[2*j]-tt[2*j-1])); + endfor; + elseif co=2: + for j=1 upto (k div 2): + draw codemil(tt[2*j-1],tt[2*j],60) shifted unitvector(tt[2*j-1]-tt[2*j]); + draw codemil(tt[2*j-1],tt[2*j],60) shifted unitvector(tt[2*j]-tt[2*j-1]); + endfor; + elseif co=1: + for j=1 upto (k div 2): + draw codemil(tt[2*j-1],tt[2*j],60); + endfor; + fi; + ); + result +enddef; + +%Codage de l'angle abc non oriente (mais donne dans le sens direct) n fois avec des mesures differentes +vardef codeangle@#(expr aa,bb,cc,nb,nom)= + save s,p,$; + path p; + picture $; + $=image( + trace marqueangle(aa,bb,cc,nb); + label.@#(nom,w); + ); + $ +enddef; + +vardef Marqueangle(expr aa,bb,mark)=%codage d'un angle forme par les demi-droites aa et bb dans le sens direct avec la marque mark + save $; + picture $; + path conf,rr; + pair w,tangent; + numeric t,tt; + conf=fullcircle scaled (2*marque_a) shifted (aa intersectionpoint bb); + numeric te; + te=angle((conf intersectionpoint aa)-(aa intersectionpoint bb)); + rr=(conf intersectionpoint aa){dir(90+angle((conf intersectionpoint aa)-(aa intersectionpoint bb)))}..(conf intersectionpoint bb); + t=length rr/2; + w=point(t) of rr; + tangent=unitvector(direction t of rr); + $=image( + trace rr; + if mark=1: + trace rotation((w shifted(5*tangent))--(w shifted(-5*tangent)),w,90); + elseif mark=2: + trace rotation((w shifted(5*tangent))--(w shifted(-5*tangent)),w,90) shifted tangent; + trace rotation((w shifted(5*tangent))--(w shifted(-5*tangent)),w,90) shifted(-tangent); + elseif mark=3: + trace rotation((w shifted(5*tangent))--(w shifted(-5*tangent)),w,90); + trace rotation((w shifted(5*tangent))--(w shifted(-5*tangent)),w,90) shifted(1.5*tangent); + trace rotation((w shifted(5*tangent))--(w shifted(-5*tangent)),w,90) shifted(-1.5*tangent); + elseif mark=4: + trace rotation((w shifted(5*tangent))--(w shifted(-5*tangent)),w,45); + trace rotation((w shifted(5*tangent))--(w shifted(-5*tangent)),w,-45); + fi; + ); + $ +enddef; + +vardef marqueangle(expr aa,bb,cc,mark)=%codage d'un angle de sommet bb dans le sens direct par la marque mark. + save $; + picture $; + path conf,rr; + pair w,tangent; + numeric t; + if typetrace="mainlevee": + conf=fullcircle scaled (2*marque_a) shifted bb; + rr=(conf intersectionpoint demidroite(bb,aa)){dir(90+angle(aa-bb))}..(conf intersectionpoint demidroite(bb,cc)); + w=rr intersectionpoint droite(bb,CentreCercleI(aa,bb,cc)); + t=length rr/2; + tangent=unitvector(direction t of rr); + $=image( + trace rr; + if mark=1: + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90); + elseif mark=2: + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90) shifted tangent; + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90) shifted(-tangent); + elseif mark=3: + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90); + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90) shifted(1.marque_s*tangent); + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90) shifted(-1.marque_s*tangent); + elseif mark=4: + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,45); + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,-45); + fi; + ); + else: + rr=arccercle(bb+marque_a*unitvector(aa-bb),bb+marque_a*unitvector(cc-bb),bb); + w=rr intersectionpoint droite(bb,CentreCercleI(aa,bb,cc)); + t=length rr/2; + tangent=unitvector(direction t of rr); + $=image( + if mark=5: + drawarrow rr; + else: + trace rr; + fi; + if mark=1: + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90); + elseif mark=2: + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90) shifted tangent; + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90) shifted(-tangent); + elseif mark=3: + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90); + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90) shifted(1.marque_s*tangent); + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,90) shifted(-1.marque_s*tangent); + elseif mark=4: + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,45); + trace rotation((w shifted(marque_s*tangent))--(w shifted(-marque_s*tangent)),w,-45); + fi; + ); + fi; + $ +enddef; + +vardef coloreangle(expr aa,bb,cc)=arccercle(bb+marque_a*unitvector(aa-bb),bb+marque_a*unitvector(cc-bb),bb)--bb--cycle +enddef; + +vardef Codeangle(expr aa,bb,cc,nb,nom)= + save s,p,$; + path p; + picture $; + $=image( + trace marqueangle(aa,bb,cc,nb); + label(nom,w shifted(marque_ang*unitvector(w-bb))); + ); + $ +enddef; + +vardef marquesegment(expr aa,bb)= + save tr; + picture tr; + if typetrace="3D": + tr=image(% + typetrace:="normal"; + trace rotation(segment(Projette(aa)-marque_s*unitvector(Projette(bb)-Projette(aa)),Projette(aa)+marque_s*unitvector(Projette(bb)-Projette(aa))),Projette(aa),90); + trace rotation(segment(Projette(bb)-marque_s*unitvector(Projette(bb)-Projette(aa)),Projette(bb)+marque_s*unitvector(Projette(bb)-Projette(aa))),Projette(bb),90); + typetrace:="3D"; + ); + else: + tr=image(% + trace rotation(segment(aa-marque_s*unitvector(bb-aa),aa+marque_s*unitvector(bb-aa)),aa,90); + trace rotation(segment(bb-marque_s*unitvector(bb-aa),bb+marque_s*unitvector(bb-aa)),bb,90); + ); + fi; + tr +enddef; + +vardef marquedemidroite(expr aa,bb)= + save tr; + picture tr; + tr=image( + trace rotation(segment(aa-marque_s*unitvector(bb-aa),aa+marque_s*unitvector(bb-aa)),aa,90); + ); + tr +enddef; + +%------------------------------------------------ +% Transformations +%------------------------------------------------ +vardef projection(expr m,a,b) = + save h; pair h; + h - m = whatever * (b-a) rotated 90; + h = whatever [a,b]; + if typetrace="mainlevee": + h:=h shifted((-2+uniformdeviate(4))*unitvector(a-b)) + fi; + h +enddef; + +vardef homothetie(expr objet,CTR,rapport)= + ((objet shifted (-CTR)) scaled rapport) shifted CTR +enddef; + +vardef rotation(expr p,c,a)= + p rotatedaround(c,a) +enddef; + +vardef symetrie(expr x)(text t)= + save n; + n:=0; + for p_=t: if pair p_: + n:=n+1; + _t[n]:=p_; + elseif color p_: + n:=n+1; + _T[n]:=p_; + fi; + endfor; + if n=1: + if typetrace="3D": + 2[x,_T[1]] + else: + rotation(x,_t[1],180) + fi + elseif n=2: + x reflectedabout(_t[1],_t[2]) + elseif n=3:%Par rapport a un plan + 2[x,ProjectionsurPlan(x,_T[1],_T[2],_T[3])] + fi +enddef; + +%------------------------------------------------ +% Droites +%------------------------------------------------ +vardef segment(expr aa,bb)= + save Seg; + path Seg; + if typetrace="mainlevee": + Seg=aa{dir(angle(bb-aa)+5)}..bb{dir(angle(bb-aa)+5)} + elseif typetrace="3D": + Seg=Projette(aa)--Projette(bb) + else: + Seg=aa--bb + fi; + Seg +enddef; + +vardef droite(expr AA,BB)= + save Dro; + path Dro; + if typetrace="mainlevee": + Dro=(_tfig/abs(AA-BB))[BB,AA]{dir(angle(BB-AA)+10)}..segment(AA,BB)..(_tfig/abs(AA-BB))[AA,BB]{dir(angle(BB-AA)+10)} + elseif typetrace="3D": + Dro=(_tfig/abs(Projette(AA)-Projette(BB)))[Projette(BB),Projette(AA)]--(_tfig/abs(Projette(AA)-Projette(BB)))[Projette(AA),Projette(BB)] + else: + Dro=(_tfig/abs(AA-BB))[BB,AA]--(_tfig/abs(AA-BB))[AA,BB] + fi; + Dro +enddef; +vardef demidroite(expr AA,BB)= + save Dem; + path Dem; + if typetrace="mainlevee": + Dem=segment(AA,BB)..(_tfig/abs(AA-BB))[AA,BB]{dir(angle(BB-AA)+10)} + elseif typetrace="3D": + Dem=Projette(AA)--(_tfig/abs(Projette(AA)-Projette(BB)))[Projette(AA),Projette(BB)] + else: + Dem=AA--(_tfig/abs(AA-BB))[AA,BB] + fi; + Dem +enddef; + +vardef bissectrice(expr AA,BB,CC)= + save $; + path $; + if typetrace="mainlevee": + $=rotation(demidroite(BB,CentreCercleI(AA,BB,CC)),BB,-5+uniformdeviate(10)) + else: + $=demidroite(BB,CentreCercleI(AA,BB,CC)) + fi; + $ +enddef; + +vardef mediatrice(expr AA,BB)=droite(iso(AA,BB),rotation(BB,iso(AA,BB),90)) +enddef; +%main levee : passer par la perpendiculaire passant par le milieu. + +vardef perpendiculaire(expr AA,BB,II)=droite(iso(AA,BB),rotation(BB,iso(AA,BB),90)) shifted (II-iso(AA,BB)) +enddef; + +vardef parallele(expr AA,BB,II)=droite(AA,BB) shifted (II-(projection(II,AA,BB))) +enddef; + +%%%%%%%%%% +%Polygone/Ligne brisée +%%%%%%%%% +vardef polygone(text t)= + pair aaa[]; + j:=0; + for p_=t: if pair p_: + j:=j+1; + aaa[j]=p_; + elseif color p_: + j:=j+1; + aaa[j]=Projette(p_); + fi; + endfor; + aaa[j+1]:=aaa[1]; + save $; + path $; + $=aaa1-- + for k=2 upto j: + aaa[k]-- + endfor + cycle; + $ +enddef; + +vardef chemin(text t)= + pair aaa[]; + j:=0; + for p_=t: if pair p_: + j:=j+1; + aaa[j]=p_; + elseif color p_: + j:=j+1; + aaa[j]=Projette(p_); + fi; + endfor; + if typetrace="mainlevee": + save $; + picture $; + $=image( + for k=1 upto (j-1): + trace segment(aaa[k],aaa[k+1]); + endfor; + ); + else: + save $; + path $; + $=aaa1 + for k=2 upto j: + --aaa[k] + endfor; + fi; + $ +enddef; + +%------------------------------------------------ +%Sucres +%------------------------------------------------ +vardef hachurage(expr chemin, angle, ecart, trace)= + save $; + picture $; + path support; + support=((u*(-37,0))--(u*(37,0))) rotated angle; + if trace=1: + drawoptions(dashed evenly); + elseif trace=2: + drawoptions(dashed dashpattern(on12bp off6bp on3bp off6bp)); + elseif trace=3: + drawoptions(dashed withdots); + fi; + $ = image( + for j=-200 upto 200: + if ((support shifted (ecart*j*(u,0))) intersectiontimes chemin)<>(-1,-1): + draw support shifted (ecart*j*(u,0)); + fi + endfor; + ); + clip $ to chemin; + drawoptions(); + $ +enddef; +%fleche pour coter un segment [AB] (Jacques Marot) +vardef cotation(expr aa,bb,ecart,decalage,cote)= + pair m[] ; + save $; + picture $; + m3=unitvector(bb-aa) rotated 90; + m1=aa+ecart*m3; + m2=bb+ecart*m3; + $=image( + pickup pencircle scaled 0.2bp; + drawdblarrow m1--m2 ; + draw aa--m1 dashed evenly; + draw bb--m2 dashed evenly; + label(cote rotated angle(m2-m1),(m1+m2)/2+decalage*m3); + ); + $ +enddef; + +vardef appelation(expr aa,bb,decalage,cote)= + save $; + pair m[],AA,BB; + if color aa: + AA=Projette(aa); + else: + AA=aa; + fi; + if color bb: + BB=Projette(bb); + else: + BB=bb; + fi; + m3=unitvector(BB-AA) rotated 90; + picture $; + $=image( + label(cote rotated angle(BB-AA),(BB+AA)/2+decalage*m3); + ); + $ +enddef; + +vardef cotationmil(expr aa,bb,ecart,decalage,cote)= %Christophe + pair m[],AA,BB; + save $; + picture cot; + if color aa: + AA=Projette(aa) + else: + AA=aa + fi; + if color bb: + BB=Projette(bb) + else: + BB=bb + fi; + m3=unitvector(BB-AA) rotated 90; + m1=AA+ecart*m3; + m2=BB+ecart*m3; + cot=image( + pickup pencircle scaled 0.2bp; + drawarrow (1/2[m1,m2]+decalage*unitvector(m1-m2))--m1; + drawarrow (1/2[m1,m2]-decalage*unitvector(m1-m2))--m2; + draw AA--m1 dashed evenly; + draw BB--m2 dashed evenly; + label(cote rotated angle(m2-m1),(m1+m2)/2); + ); + cot +enddef; + +%%%%%%%%%% +%francisation +%%%%%%%%% +def trace expr o = + if path o: draw o else: draw o fi +enddef; +def remplis expr o = + if path o: fill o else: fill o fi +enddef; + +%3D - basé sur donymodule +color Sommet[]; + +color Co[]; +Co0=jaune; +Co1=violet; +Co2=orange; +Co3=ciel; +Co4=vert; +Co5=bleu; +Co6=rouge; + +string pointilles; + +string typerepre; +typerepre:="proj"; + +%generalite +vardef Projette(expr X)= + pair $; + Xobs := -redpart(X)*Aux1 + greenpart(X)*Aux3; + Yobs := -redpart(X)*Aux5 - greenpart(X)*Aux6 + bluepart(X)*Aux4; + if typerepre="proj": + Zobs := -redpart(X)*Aux7 - greenpart(X)*Aux8 - bluepart(X)*Aux2 + Rho; + XProj := DE*Xobs/Zobs; + YProj := DE*Yobs/Zobs; + elseif typerepre="persp": + XProj := DE*Xobs; + YProj := DE*Yobs; + fi; + $=(XProj,YProj); + $ +enddef; + +vardef Initialisation(expr r,t,p,d)= + Rho:=r; + Theta:=t; + Phi:=p; + DE:=d; + Aux1:=sind(Theta); + Aux2:=sind(Phi); + Aux3:=cosd(Theta); + Aux4:=cosd(Phi); + Aux5:=Aux3*Aux2; + Aux6:=Aux1*Aux2; + Aux7:=Aux3*Aux4; + Aux8:=Aux1*Aux4; + pointilles:="oui"; +enddef; + +%vues cachees + +vardef Face(text t)= + j:=0; + for p_=t : + if numeric p_: + a[j]:=p_; + j:=j+1; + fi; + endfor; + for k=1 upto (j-1): + Fc[a0*100+(k-1)]:=a[k]; + endfor; +enddef; + +vardef Oeil=(Rho*Aux7,Rho*Aux8,Rho*Aux2) +enddef; + +vardef Vision(expr num)= + save bb; + color bb; + bb=(redpart(Oeil-Sommet[num]),greenpart(Oeil-Sommet[num]),bluepart(Oeil-Sommet[num])); + bb +enddef; + +vardef Normal(expr vecun,vecde,vectr)= + save aa; + color aa; + P1:=redpart(vecde-vecun); + P2:=greenpart(vecde-vecun); + P3:=bluepart(vecde-vecun); + Q1:=redpart(vectr-vecun); + Q2:=greenpart(vectr-vecun); + Q3:=bluepart(vectr-vecun); + aa=(P2*Q3-Q2*P3,P3*Q1-Q3*P1,P1*Q2-Q1*P2); + aa +enddef; + +vardef ProduitScalaire(expr wec,mor)= + redpart(wec)*redpart(mor)+greenpart(wec)*greenpart(mor)+bluepart(wec)*bluepart(mor) +enddef; + +vardef Distance(expr aa,bb)=%Entre deux points + sqrt((redpart(bb)-redpart(aa))*(redpart(bb)-redpart(aa))+(greenpart(bb)-greenpart(aa))*(greenpart(bb)-greenpart(aa))+(bluepart(bb)-bluepart(aa))*(bluepart(bb)-bluepart(aa))) +enddef; + +vardef Module(expr aa)=%module d'un vecteur +sqrt((redpart(aa))**2+(greenpart(aa))**2+(bluepart(aa)**2)) +enddef; + +color CoulTrace; +CoulTrace=black; + +vardef DessineObjet= + for l=1 upto NF: + color cc,dd; + dd=Vision(Fc[l*100+1]); + cc=Normal(Sommet[Fc[l*100+1]],Sommet[Fc[l*100+2]],Sommet[Fc[l*100+3]]); + if (ProduitScalaire(dd,cc)<0): + if pointilles="oui": + drawoptions(dashed dashpattern(on3pt off6pt) withcolor CoulTrace); + trace for k=1 upto Fc[100*l]: + Projette(Sommet[Fc[100*l+k]])-- + endfor + cycle; + fi; + else: + trace for k=1 upto Fc[100*l]: + Projette(Sommet[Fc[100*l+k]])-- + endfor + cycle withcolor CoulTrace; + fi; + drawoptions(); + endfor; +enddef; + +%%Transformations + +%Translations + +vardef TranslateSommets(expr v)= + for k=1 upto NbS: + Sommet[k]:=Sommet[k]+v; + endfor; +enddef; + +vardef SymetriePlanZ(expr vv)= + for k=1 upto NbS: + w:=vv-bluepart(Sommet[k]); + Sommet[k]:=(redpart(Sommet[k]),greenpart(Sommet[k]),w); + endfor; +enddef; + +vardef IntersectionDroite(expr aa,bb,cc,dd)= + save tt; + color tt; + tt=whatever[aa,bb]; + tt=whatever[cc,dd]; + tt +enddef; + +%%denis Roegel---------- +vardef Intersectionplandroite(expr aa,bb,cc,dd,ee)= + save int; + boolean int; + color gg,caaa[]; + caaa3=Normal(aa,bb,cc)/Module(Normal(aa,bb,cc)); + caaa1=aa-dd; + caaa2=ee-dd; + if ProduitScalaire(caaa2,caaa3)<>0: + caaa4=caaa2*(ProduitScalaire(caaa1,caaa3)/ProduitScalaire(caaa2,caaa3)); + int:=true; + else: % the line is parallel to the plane + int:=false; + fi; + int +enddef; + +vardef IntersectionPlanDroite(expr aa,bb,cc,dd,ee)=%plan (aa,bb,cc) droite(dd,ee) + if Intersectionplandroite(aa,bb,cc,dd,ee): + gg=dd+caaa4; + fi; + gg +enddef; + +vardef ProjectionsurPlan(expr aa,bb,cc,dd)=%Projection du point aa sur le plan (bbccdd) + save di,vc; + color va,vb,vc; + va=Normal(bb,cc,dd)/Module(Normal(bb,cc,dd)); + vb=aa-bb; + di=-ProduitScalaire(vb,va); + va:=di*va; + vb:=vb+va; + vc=bb+vb; + vc +enddef; + +vardef Intersectionplanplan(expr AA,BB,CC,DD,EE,FF)=%besoin pour la suite + color trial[]; + path INTer; + if Intersectionplandroite(DD,EE,FF,AA,BB): + trial1=IntersectionPlanDroite(DD,EE,FF,AA,BB); + else:% there is no intersection or the intersection is the line + trial1=IntersectionPlanDroite(DD,EE,FF,AA,1/2[BB,CC]); + fi; + if Intersectionplandroite(DD,EE,FF,AA,CC): + trial2=IntersectionPlanDroite(DD,EE,FF,AA,CC); + else:% there is no intersection or the intersection is the line + trial2=IntersectionPlanDroite(DD,EE,FF,CC,1/2[BB,AA]);%modif de cp + fi; + %INTer=segment(10[trial1,trial2],10[trial2,trial1]); + INTer=droite(trial1,trial2); + INTer +enddef; + +vardef IntersectionPlanPlan(expr aa,bb,cc,dd,ee,ff)= + %a verifier + save da,db,dc,int,INTER; + boolean int; + path INTER; + da=Module(aa-ProjectionsurPlan(aa,dd,ee,ff)); + %show da; + db=Module(bb-ProjectionsurPlan(bb,dd,ee,ff)); + %show db; + dc=Module(cc-ProjectionsurPlan(cc,dd,ee,ff)); + %show dc; + if (da=db) and (db=dc): % the two planes are parallel + int:=false; + else: + int:=true; + if (da=db): + INTER=droite(aa,bb); + elseif (db=dc): + INTER=droite(bb,cc); + elseif (dc=da): + INTER=droite(cc,aa); + elseif (da>=db) and (da>=dc): + INTER=Intersectionplanplan(aa,bb,cc,dd,ee,ff); + elseif (db>=da) and (db>=dc): + INTER=Intersectionplanplan(bb,cc,aa,dd,ee,ff); + elseif (dc>=da) and (dc>=db): + INTER=Intersectionplanplan(cc,aa,bb,dd,ee,ff); + fi; + fi; + INTER +enddef; +%%--------------------- + +%Cube +numeric arete; +arete=1; + +vardef Cube(text t)= + picture cub; + cub=image( + NbS:=8; + Sommet1:=(arete,0,0); + Sommet2:=(arete,arete,0); + Sommet3:=(0,arete,0); + Sommet4:=(0,0,0); + Sommet5:=(0,0,arete); + Sommet6:=(arete,0,arete); + Sommet7:=(arete,arete,arete); + Sommet8:=(0,arete,arete); +%%Faces + NF:=6; + Fc[100]:=4;Fc[101]:=1;Fc[102]:=4;Fc[103]:=3;Fc[104]:=2; + Fc[200]:=4;Fc[201]:=4;Fc[202]:=5;Fc[203]:=8;Fc[204]:=3; + Fc[300]:=4;Fc[301]:=1;Fc[302]:=6;Fc[303]:=5;Fc[304]:=4; + Fc[400]:=4;Fc[401]:=5;Fc[402]:=6;Fc[403]:=7;Fc[404]:=8; + Fc[500]:=4;Fc[501]:=2;Fc[502]:=3;Fc[503]:=8;Fc[504]:=7; + Fc[600]:=4;Fc[601]:=1;Fc[602]:=2;Fc[603]:=7;Fc[604]:=6; + DessineObjet; + k:=1; + for p_=t: + if color p_: + p_=Sommet[k]; + k:=k+1; + fi + endfor; + ); +cub +enddef; + +vardef cube= + typetrace:="3D"; + typerepre:="persp"; + Initialisation(1500,30,20,100); + picture cub; + cub=image( + NbS:=8; + Sommet1:=(arete,0,0); + Sommet2:=(arete,arete,0); + Sommet3:=(0,arete,0); + Sommet4:=(0,0,0); + Sommet5:=(0,0,arete); + Sommet6:=(arete,0,arete); + Sommet7:=(arete,arete,arete); + Sommet8:=(0,arete,arete); +%%Faces + NF:=6; + Fc[100]:=4;Fc[101]:=1;Fc[102]:=4;Fc[103]:=3;Fc[104]:=2; + Fc[200]:=4;Fc[201]:=4;Fc[202]:=5;Fc[203]:=8;Fc[204]:=3; + Fc[300]:=4;Fc[301]:=1;Fc[302]:=6;Fc[303]:=5;Fc[304]:=4; + Fc[400]:=4;Fc[401]:=5;Fc[402]:=6;Fc[403]:=7;Fc[404]:=8; + Fc[500]:=4;Fc[501]:=2;Fc[502]:=3;Fc[503]:=8;Fc[504]:=7; + Fc[600]:=4;Fc[601]:=1;Fc[602]:=2;Fc[603]:=7;Fc[604]:=6; + DessineObjet; + ); + cub +enddef; + +%Cube +vardef Paveh(text t)= + picture paveh; + paveh=image( + NbS:=8; + Sommet1:=(0.75,0,0); + Sommet2:=(0.75,1.5,0); + Sommet3:=(0,1.5,0); + Sommet4:=(0,0,0); + Sommet5:=(0,0,1); + Sommet6:=(0.75,0,1); + Sommet7:=(0.75,1.5,1); + Sommet8:=(0,1.5,1); +%%Faces + NF:=6; + Fc[100]:=4;Fc[101]:=1;Fc[102]:=4;Fc[103]:=3;Fc[104]:=2; + Fc[200]:=4;Fc[201]:=4;Fc[202]:=5;Fc[203]:=8;Fc[204]:=3; + Fc[300]:=4;Fc[301]:=1;Fc[302]:=6;Fc[303]:=5;Fc[304]:=4; + Fc[400]:=4;Fc[401]:=5;Fc[402]:=6;Fc[403]:=7;Fc[404]:=8; + Fc[500]:=4;Fc[501]:=2;Fc[502]:=3;Fc[503]:=8;Fc[504]:=7; + Fc[600]:=4;Fc[601]:=1;Fc[602]:=2;Fc[603]:=7;Fc[604]:=6; + DessineObjet; + k:=1; + for p_=t: + if color p_: + p_=Sommet[k]; + k:=k+1; + fi + endfor; + ); +paveh +enddef; + +%Cube +vardef Pavev(text t)= + picture pavev; + pavev=image( + NbS:=8; + Sommet1:=(1,0,0); + Sommet2:=(1,0.75,0); + Sommet3:=(0,0.75,0); + Sommet4:=(0,0,0); + Sommet5:=(0,0,1.5); + Sommet6:=(1,0,1.5); + Sommet7:=(1,0.75,1.5); + Sommet8:=(0,0.75,1.5); +%%Faces + NF:=6; + Fc[100]:=4;Fc[101]:=1;Fc[102]:=4;Fc[103]:=3;Fc[104]:=2; + Fc[200]:=4;Fc[201]:=4;Fc[202]:=5;Fc[203]:=8;Fc[204]:=3; + Fc[300]:=4;Fc[301]:=1;Fc[302]:=6;Fc[303]:=5;Fc[304]:=4; + Fc[400]:=4;Fc[401]:=5;Fc[402]:=6;Fc[403]:=7;Fc[404]:=8; + Fc[500]:=4;Fc[501]:=2;Fc[502]:=3;Fc[503]:=8;Fc[504]:=7; + Fc[600]:=4;Fc[601]:=1;Fc[602]:=2;Fc[603]:=7;Fc[604]:=6; + DessineObjet; + k:=1; + for p_=t: + if color p_: + p_=Sommet[k]; + k:=k+1; + fi + endfor; + ); +pavev +enddef; + +vardef Pave(text t)(expr aa,bb,cc)= + picture pave; + pave=image( + NbS:=8; + Sommet1:=(aa,0,0); + Sommet2:=(aa,bb,0); + Sommet3:=(0,bb,0); + Sommet4:=(0,0,0); + Sommet5:=(0,0,cc); + Sommet6:=(aa,0,cc); + Sommet7:=(aa,bb,cc); + Sommet8:=(0,bb,cc); +%%Faces + NF:=6; + Fc[100]:=4;Fc[101]:=4;Fc[102]:=3;Fc[103]:=2;Fc[104]:=1; + Fc[200]:=4;Fc[201]:=4;Fc[202]:=5;Fc[203]:=8;Fc[204]:=3; + Fc[300]:=4;Fc[301]:=4;Fc[302]:=1;Fc[303]:=6;Fc[304]:=5; + Fc[400]:=4;Fc[401]:=5;Fc[402]:=6;Fc[403]:=7;Fc[404]:=8; + Fc[500]:=4;Fc[501]:=2;Fc[502]:=3;Fc[503]:=8;Fc[504]:=7; + Fc[600]:=4;Fc[601]:=1;Fc[602]:=2;Fc[603]:=7;Fc[604]:=6; + DessineObjet; + k:=1; + for p_=t: + if color p_: + p_=Sommet[k]; + k:=k+1; + fi + endfor; + ); +pave +enddef; + +vardef pave(expr aa,bb,cc)= + typetrace:="3D"; + typerepre:="persp"; + Initialisation(1500,30,20,100); + picture PAVE; + PAVE=image( + NbS:=8; + Sommet1:=(aa,0,0); + Sommet2:=(aa,bb,0); + Sommet3:=(0,bb,0); + Sommet4:=(0,0,0); + Sommet5:=(0,0,cc); + Sommet6:=(aa,0,cc); + Sommet7:=(aa,bb,cc); + Sommet8:=(0,bb,cc); +%%Faces + NF:=6; + Fc[100]:=4;Fc[101]:=4;Fc[102]:=3;Fc[103]:=2;Fc[104]:=1; + Fc[200]:=4;Fc[201]:=4;Fc[202]:=5;Fc[203]:=8;Fc[204]:=3; + Fc[300]:=4;Fc[301]:=4;Fc[302]:=1;Fc[303]:=6;Fc[304]:=5; + Fc[400]:=4;Fc[401]:=5;Fc[402]:=6;Fc[403]:=7;Fc[404]:=8; + Fc[500]:=4;Fc[501]:=2;Fc[502]:=3;Fc[503]:=8;Fc[504]:=7; + Fc[600]:=4;Fc[601]:=1;Fc[602]:=2;Fc[603]:=7;Fc[604]:=6; + DessineObjet; + ); + PAVE +enddef; + +vardef Tetraedrer(text t)= + picture tetrar; + tetrar=image( + %Sommets + NbS:=4; + Sommet1:=(0,0,1); + Sommet2:=(-0.4714045,-0.8164965,-1/3); + Sommet3:=(0.942809,0,-1/3); + Sommet4:=(-0.4714045,0.8164965,-1/3); + %Faces + NF:=4; + Fc[100]:=3;Fc[101]:=1;Fc[102]:=2;Fc[103]:=3; + Fc[200]:=3;Fc[201]:=1;Fc[202]:=3;Fc[203]:=4; + Fc[300]:=3;Fc[301]:=1;Fc[302]:=4;Fc[303]:=2; + Fc[400]:=3;Fc[401]:=2;Fc[402]:=4;Fc[403]:=3; + DessineObjet; + k:=1; + for p_=t: + if color p_: + p_=Sommet[k]; + k:=k+1; + fi + endfor; + ); + tetrar +enddef; + +endinput; diff --git a/Master/texmf-dist/metapost/profcollege/PfC-LaTeX.mp b/Master/texmf-dist/metapost/profcollege/PfC-LaTeX.mp new file mode 100644 index 00000000000..daa206a603d --- /dev/null +++ b/Master/texmf-dist/metapost/profcollege/PfC-LaTeX.mp @@ -0,0 +1,20 @@ +%Author : Christophe Poulain +%Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +vardef LATEX primary s = + write "verbatimtex" to "mptextmp.mp"; + write "%&latex" to "mptextmp.mp"; + write "\documentclass[]{article}" to "mptextmp.mp"; + write "\usepackage[utf8]{inputenc}" to "mptextmp.mp"; + write "\usepackage[T1]{fontenc}" to "mptextmp.mp"; + write "\usepackage{fourier}" to "mptextmp.mp"; + write "\usepackage{mathtools,amssymb}" to "mptextmp.mp"; + write "\usepackage{siunitx}" to "mptextmp.mp"; + write "\sisetup{locale=FR,detect-all,output-decimal-marker={,},group-four-digits}" to "mptextmp.mp"; + write "\usepackage[french]{babel}" to "mptextmp.mp"; + write "\begin{document}" to "mptextmp.mp"; + write "etex" to "mptextmp.mp"; + write "btex "&s&" etex" to "mptextmp.mp"; + write EOF to "mptextmp.mp"; + scantokens "input mptextmp" +enddef; diff --git a/Master/texmf-dist/metapost/profcollege/PfC-Svgnames.mp b/Master/texmf-dist/metapost/profcollege/PfC-Svgnames.mp new file mode 100644 index 00000000000..3af1336dc33 --- /dev/null +++ b/Master/texmf-dist/metapost/profcollege/PfC-Svgnames.mp @@ -0,0 +1,156 @@ +%Author : Christophe Poulain +%Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +%D'après /usr/local/texlive/2020/texmf-dist/tex/latex/xcolor/svgnam.def +color AliceBlue; AliceBlue = (.94,.972,1); +color AntiqueWhite; AntiqueWhite = (.98,.92,.844); +color Aqua; Aqua = (0,1,1); +color Aquamarine; Aquamarine = (.498,1,.83); +color Azure; Azure = (.94,1,1); +color Beige; Beige = (.96,.96,.864); +color Bisque; Bisque = (1,.894,.77); +color Black; Black = (0,0,0); +color BlanchedAlmond; BlanchedAlmond = (1,.92,.804); +color Blue; Blue = (0,0,1); +color BlueViolet; BlueViolet = (.54,.17,.888); +color Brown; Brown = (.648,.165,.165); +color BurlyWood; BurlyWood = (.87,.72,.53); +color CadetBlue; CadetBlue = (.372,.62,.628); +color Chartreuse; Chartreuse = (.498,1,0); +color Chocolate; Chocolate = (.824,.41,.116); +color Coral; Coral = (1,.498,.312); +color CornflowerBlue; CornflowerBlue = (.392,.585,.93); +color Cornsilk; Cornsilk = (1,.972,.864); +color Crimson; Crimson = (.864,.08,.235); +color Cyan; Cyan = (0,1,1); +color DarkBlue; DarkBlue = (0,0,.545); +color DarkCyan; DarkCyan = (0,.545,.545); +color DarkGoldenrod; DarkGoldenrod = (.72,.525,.044); +color DarkGray; DarkGray = (.664,.664,.664); +color DarkGreen; DarkGreen = (0,.392,0); +color DarkGrey; DarkGrey = (.664,.664,.664); +color DarkKhaki; DarkKhaki = (.74,.716,.42); +color DarkMagenta; DarkMagenta = (.545,0,.545); +color DarkOliveGreen; DarkOliveGreen = (.332,.42,.185); +color DarkOrange; DarkOrange = (1,.55,0); +color DarkOrchid; DarkOrchid = (.6,.196,.8); +color DarkRed; DarkRed = (.545,0,0); +color DarkSalmon; DarkSalmon = (.912,.59,.48); +color DarkSeaGreen; DarkSeaGreen = (.56,.736,.56); +color DarkSlateBlue; DarkSlateBlue = (.284,.24,.545); +color DarkSlateGray; DarkSlateGray = (.185,.31,.31); +color DarkSlateGrey; DarkSlateGrey = (.185,.31,.31); +color DarkTurquoise; DarkTurquoise = (0,.808,.82); +color DarkViolet; DarkViolet = (.58,0,.828); +color DeepPink; DeepPink = (1,.08,.576); +color DeepSkyBlue; DeepSkyBlue = (0,.75,1); +color DimGray; DimGray = (.41,.41,.41); +color DimGrey; DimGrey = (.41,.41,.41); +color DodgerBlue; DodgerBlue = (.116,.565,1); +color FireBrick; FireBrick = (.698,.132,.132); +color FloralWhite; FloralWhite = (1,.98,.94); +color ForestGreen; ForestGreen = (.132,.545,.132); +color Fuchsia; Fuchsia = (1,0,1); +color Gainsboro; Gainsboro = (.864,.864,.864); +color GhostWhite; GhostWhite = (.972,.972,1); +color Gold; Gold = (1,.844,0); +color Goldenrod; Goldenrod = (.855,.648,.125); +color Gray; Gray = (.5,.5,.5); +color Green; Green = (0,.5,0); +color GreenYellow; GreenYellow = (.68,1,.185); +color Grey; Grey = (.5,.5,.5); +color Honeydew; Honeydew = (.94,1,.94); +color HotPink; HotPink = (1,.41,.705); +color IndianRed; IndianRed = (.804,.36,.36); +color Indigo; Indigo = (.294,0,.51); +color Ivory; Ivory = (1,1,.94); +color Khaki; Khaki = (.94,.9,.55); +color Lavender; Lavender = (.9,.9,.98); +color LavenderBlush; LavenderBlush = (1,.94,.96); +color LawnGreen; LawnGreen = (.488,.99,0); +color LemonChiffon; LemonChiffon = (1,.98,.804); +color LightBlue; LightBlue = (.68,.848,.9); +color LightCoral; LightCoral = (.94,.5,.5); +color LightCyan; LightCyan = (.88,1,1); +color LightGoldenrod; LightGoldenrod = (.933,.867,.51); +color LightGoldenrodYellow; LightGoldenrodYellow = (.98,.98,.824); +color LightGray; LightGray = (.828,.828,.828); +color LightGreen; LightGreen = (.565,.932,.565); +color LightGrey; LightGrey = (.828,.828,.828); +color LightPink; LightPink = (1,.712,.756); +color LightSalmon; LightSalmon = (1,.628,.48); +color LightSeaGreen; LightSeaGreen = (.125,.698,.668); +color LightSkyBlue; LightSkyBlue = (.53,.808,.98); +color LightSlateBlue; LightSlateBlue = (.518,.44,1); +color LightSlateGray; LightSlateGray = (.468,.532,.6); +color LightSlateGrey; LightSlateGrey = (.468,.532,.6); +color LightSteelBlue; LightSteelBlue = (.69,.77,.87); +color LightYellow; LightYellow = (1,1,.88); +color Lime; Lime = (0,1,0); +color LimeGreen; LimeGreen = (.196,.804,.196); +color Linen; Linen = (.98,.94,.9); +color Magenta; Magenta = (1,0,1); +color Maroon; Maroon = (.5,0,0); +color MediumAquamarine; MediumAquamarine = (.4,.804,.668); +color MediumBlue; MediumBlue = (0,0,.804); +color MediumOrchid; MediumOrchid = (.73,.332,.828); +color MediumPurple; MediumPurple = (.576,.44,.86); +color MediumSeaGreen; MediumSeaGreen = (.235,.7,.444); +color MediumSlateBlue; MediumSlateBlue = (.484,.408,.932); +color MediumSpringGreen; MediumSpringGreen = (0,.98,.604); +color MediumTurquoise; MediumTurquoise = (.284,.82,.8); +color MediumVioletRed; MediumVioletRed = (.78,.084,.52); +color MidnightBlue; MidnightBlue = (.098,.098,.44); +color MintCream; MintCream = (.96,1,.98); +color MistyRose; MistyRose = (1,.894,.884); +color Moccasin; Moccasin = (1,.894,.71); +color NavajoWhite; NavajoWhite = (1,.87,.68); +color Navy; Navy = (0,0,.5); +color NavyBlue; NavyBlue = (0,0,.5); +color OldLace; OldLace = (.992,.96,.9); +color Olive; Olive = (.5,.5,0); +color OliveDrab; OliveDrab = (.42,.556,.136); +color Orange; Orange = (1,.648,0); +color OrangeRed; OrangeRed = (1,.27,0); +color Orchid; Orchid = (.855,.44,.84); +color PaleGoldenrod; PaleGoldenrod = (.932,.91,.668); +color PaleGreen; PaleGreen = (.596,.985,.596); +color PaleTurquoise; PaleTurquoise = (.688,.932,.932); +color PaleVioletRed; PaleVioletRed = (.86,.44,.576); +color PapayaWhip; PapayaWhip = (1,.936,.835); +color PeachPuff; PeachPuff = (1,.855,.725); +color Peru; Peru = (.804,.52,.248); +color Pink; Pink = (1,.752,.796); +color Plum; Plum = (.868,.628,.868); +color PowderBlue; PowderBlue = (.69,.88,.9); +color Purple; Purple = (.5,0,.5); +color Red; Red = (1,0,0); +color RosyBrown; RosyBrown = (.736,.56,.56); +color RoyalBlue; RoyalBlue = (.255,.41,.884); +color SaddleBrown; SaddleBrown = (.545,.27,.075); +color Salmon; Salmon = (.98,.5,.448); +color SandyBrown; SandyBrown = (.956,.644,.376); +color SeaGreen; SeaGreen = (.18,.545,.34); +color Seashell; Seashell = (1,.96,.932); +color Sienna; Sienna = (.628,.32,.176); +color Silver; Silver = (.752,.752,.752); +color SkyBlue; SkyBlue = (.53,.808,.92); +color SlateBlue; SlateBlue = (.415,.352,.804); +color SlateGray; SlateGray = (.44,.5,.565); +color SlateGrey; SlateGrey = (.44,.5,.565); +color Snow; Snow = (1,.98,.98); +color SpringGreen; SpringGreen = (0,1,.498); +color SteelBlue; SteelBlue = (.275,.51,.705); +color Tan; Tan = (.824,.705,.55); +color Teal; Teal = (0,.5,.5); +color Thistle; Thistle = (.848,.75,.848); +color Tomato; Tomato = (1,.39,.28); +color Turquoise; Turquoise = (.25,.88,.815); +color Violet; Violet = (.932,.51,.932); +color VioletRed; VioletRed = (.816,.125,.565); +color Wheat; Wheat = (.96,.87,.7); +color White; White = (1,1,1); +color WhiteSmoke; WhiteSmoke = (.96,.96,.96); +color Yellow; Yellow = (1,1,0); +color YellowGreen; YellowGreen = (.604,.804,.196); +endinput diff --git a/Master/texmf-dist/tex/latex/profcollege/PfC-EquationComposition1.tex b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationComposition1.tex new file mode 100644 index 00000000000..b513a6b1163 --- /dev/null +++ b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationComposition1.tex @@ -0,0 +1,277 @@ +% Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +\newcommand{\EquaDeuxComposition}[5][]{%type ax+b=d ou b=cx+d$ + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide + \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3} + \else%cas ax+b=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }{%ELSE + \xintifboolexpr{#3=0}{%ax+b=d + \EquaBase[#1]{#2}{}{}{#5}% + }{%ax+b=d$ Ici + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} + \begin{align*} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{%ICI ? + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + }{} + } + } + \fi +} + +\newcommand{\EquaTroisComposition}[5][]{%ax+b=cx ou ax=cx+d + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 + \ifx\bla#5\bla% + %% paramètre oublié + \else + \EquaTroisComposition[#1]{#4}{#5}{#2}{}% + \fi + \else + \xintifboolexpr{#2=0}{%b=cx + \EquaBase[#1]{#4}{}{}{#3} + }{% + \xintifboolexpr{#4=0}{%ax+b=0 + \EquaDeuxComposition[#1]{#2}{#3}{}{0} + }{%ax+b=cx + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=0}{%ax=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solution.}% + {%ax+b=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + }% + }{%% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} + \begin{align*} + \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{0}\tikzmark{F-\theNbequa}\\ + \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{0-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} + \begin{align*}% + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + }% + }% + }% + }% + \fi + }% + + +\newcommand{\ResolEquationComposition}[5][]{% + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#4=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }% + {%0x+b=cx+d$ + \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3}% + }% + }{% + \xintifboolexpr{#4=0}{%ax+b=0x+d + \EquaDeuxComposition[#1]{#2}{#3}{}{#5}% + } + {%ax+b=cx+d$ + \xintifboolexpr{#3=0}{% + \xintifboolexpr{#5=0}{%ax=cx + \EquaTroisComposition[#1]{#2}{0}{#4}{}% + }% + {%ax=cx+d + \EquaTroisComposition[#1]{#4}{#5}{#2}{}% + }% + }% + {\xintifboolexpr{#5=0}{%ax+b=cx + \EquaTroisComposition[#1]{#2}{#3}{#4}{}% + }% + {%ax+b=cx+d -- ici + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solution.}% + {%b<>d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + }% + }{ + %% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} + \begin{align*} + \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{F-\theNbequa}\\ + \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}% + \begin{align*}% + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ + \mathcolor{Ccompo}{\num{\fpeval{#3-#5}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{}% + }% + }% + }% + }% + }% + }% +}% + + diff --git a/Master/texmf-dist/tex/latex/profcollege/PfC-EquationLaurent1.tex b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationLaurent1.tex new file mode 100644 index 00000000000..347afc0e8d9 --- /dev/null +++ b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationLaurent1.tex @@ -0,0 +1,226 @@ +% Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +\newcommand{\EquaBaseLaurent}[5][]{%type ax=d ou b=cx + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#2\bla%on teste si le paramètre #2 est vide: + % si oui, on est dans le cas b=cx. Eh bien on échange :) + % Mais attention si les deux paramètres a et c sont vides... + \EquaBase[#1]{#4}{}{}{#3} + \else + % si non, on est dans le cas ax=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#5=0}{% + L'équation $0\useKV[ClesEquation]{ELettre}=0$ a une infinité de solution.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% + }{%\else + \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else + \begin{align*}% + \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{#2}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{#2}}}}&=\xintifboolexpr{#2=1}{\num{#5}}{\color{Cdecomp}\frac{\color{black}\num{#5}}{\num{#2}}} + \xintifboolexpr{#2=1}{}{\\\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{#5}{#2}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\ + }{} + }{} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\useKV[ClesEquation]{Lettre}=\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% + }{} + } + } + \fi +} + +\newcommand{\EquaDeuxLaurent}[5][]{%type ax+b=d ou b=cx+d$ + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide + \EquaDeuxLaurent[#1]{#4}{#5}{#2}{#3} + \else%cas ax+b=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }{%ELSE + \xintifboolexpr{#3=0}{%ax+b=d + \EquaBaseLaurent[#1]{#2}{}{}{#5}% + }{%ax+b=d$ Ici + \begin{align*} + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\num{#5}\xintifboolexpr{#3>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ + \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}%\\ + \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + }{} + } + } +} + +\newcommand{\EquaTroisLaurent}[5][]{%ax+b=cx ou ax=cx+d + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 + \ifx\bla#5\bla% + %% paramètre oublié + \else + \EquaTroisLaurent[#1]{#4}{#5}{#2}{}% + \fi + \else + \xintifboolexpr{#2=0}{%b=cx + \EquaBaseLaurent[#1]{#4}{}{}{#3} + }{% + \xintifboolexpr{#4=0}{%ax+b=0 + \EquaDeuxLaurent[#1]{#2}{#3}{}{0} + }{%ax+b=cx + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=0}{%ax=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solution.}% + {%ax+b=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + }% + }{%% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c + \begin{align*} + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}\\ + \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\ + \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + }{%ax+b=cx avec a<c % Autre cas délicat + \begin{align*}% + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\\ + \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\ + \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=0\xintifboolexpr{#3>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ + \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + }% + }% + }% + }% + \fi +}% + +\newcommand{\ResolEquationLaurent}[5][]{% + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#4=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }% + {%0x+b=cx+d + \EquaDeuxLaurent[#1]{#4}{#5}{}{#3}% + }% + }{% + \xintifboolexpr{#4=0}{%ax+b=0x+d + \EquaDeuxLaurent[#1]{#2}{#3}{}{#5}% + } + {%ax+b=cx+d + \xintifboolexpr{#3=0}{% + \xintifboolexpr{#5=0}{%ax=cx + \EquaTroisLaurent[#1]{#2}{0}{#4}{}% + }% + {%ax=cx+d + \EquaTroisLaurent[#1]{#4}{#5}{#2}{}% + }% + }% + {\xintifboolexpr{#5=0}{%ax+b=cx + \EquaTroisLaurent[#1]{#2}{#3}{#4}{}% + }% + {%ax+b=cx+d -- ici + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solution.}% + {%b<>d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + }% + }{%% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c + \begin{align*} + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ + \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\ + \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \begin{align*}% + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}% + &=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText} + \\ + \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{\tiny\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{\tiny\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\ + \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{}% + }% + }% + }% + }% + }% + }% +}%
\ No newline at end of file diff --git a/Master/texmf-dist/tex/latex/profcollege/PfC-EquationPose1.tex b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationPose1.tex new file mode 100644 index 00000000000..e34d382a588 --- /dev/null +++ b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationPose1.tex @@ -0,0 +1,246 @@ +% Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +\newcommand{\EquaBaseL}[5][]{%type ax=d ou b=cx + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#2\bla%on teste si le paramètre #2 est vide: + % si oui, on est dans le cas b=cx. Eh bien on échange :) + % Mais attention si les deux paramètres a et c sont vides... + \EquaBaseL[#1]{#4}{}{}{#3} + \else + % si non, on est dans le cas ax=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#5=0}{% + L'équation $0\useKV[ClesEquation]{Lettre}=0$ a une infinité de solution.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% + }{%\else + \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else + \begin{align*}% + \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\ + \xintifboolexpr{#2=1}{}{% + \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\} + \useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{#5}{#2}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\ + }{} + }{} + %\ifboolKV[ClesEquation]{Fleches}{% + %\stepcounter{Nbequa}}% + %{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{} + %} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\useKV[ClesEquation]{Lettre}=\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% + }{} + } + } + \fi +} + +\newcommand{\EquaDeuxL}[5][]{%type ax+b=d ou b=cx+d$ + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide + \EquaDeuxL[#1]{#4}{#5}{#2}{#3} + \else%cas ax+b=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }{%ELSE + \xintifboolexpr{#3=0}{%ax+b=d + \EquaBaseL[#1]{#2}{}{}{#5}% + }{%ax+b=d$ Ici + \begin{align*} + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ + \phantom{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\ + \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{% + \\\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\SSimplifie{\Coeffb}{\Coeffa}% + }{}%\\ + }{} + }{} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + }{} + } + } + \fi +} + +\newcommand{\EquaTroisL}[5][]{%ax+b=cx ou ax=cx+d + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 + \ifx\bla#5\bla% + %% paramètre oublié + \else + \EquaTroisL[#1]{#4}{#5}{#2}{}% + \fi + \else + \xintifboolexpr{#2=0}{%b=cx + \EquaBaseL[#1]{#4}{}{}{#3} + }{% + \xintifboolexpr{#4=0}{%ax+b=0 + \EquaDeuxL[#1]{#2}{#3}{}{0} + }{%ax+b=cx + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=0}{%ax=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solution.}% + {%ax+b=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + }% + }{%% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c + \begin{align*} + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ + \mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\ + \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ + \phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\ + \xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ + \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\% + \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\SSimplifie{\Coeffb}{\Coeffa}%\\ + }{} + }{} + }{} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \begin{align*}% + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ + \mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ + \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ + \frac{\num{\Coeffb}}{\num{\Coeffa}}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\% + \SSimplifie{\Coeffb}{\Coeffa}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ + }{} + }{} + }{} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + }% + }% + }% + }% + \fi + }%\\ + % \\ + +\newcommand{\ResolEquationL}[5][]{% + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#4=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }% + {%0x+b=cx+d$ + \EquaDeuxL[#1]{#4}{#5}{}{#3}% + }% + }{% + \xintifboolexpr{#4=0}{%ax+b=0x+d + \EquaDeuxL[#1]{#2}{#3}{}{#5}% + } + {%ax+b=cx+d$ + \xintifboolexpr{#3=0}{% + \xintifboolexpr{#5=0}{%ax=cx + \EquaTroisL[#1]{#2}{0}{#4}{}% + }% + {%ax=cx+d + \EquaTroisL[#1]{#4}{#5}{#2}{}% + }% + }% + {\xintifboolexpr{#5=0}{%ax+b=cx + \EquaTroisL[#1]{#2}{#3}{#4}{}% + }% + {%ax+b=cx+d -- ici + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solution.}% + {%b<>d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + }% + }{ + %% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c + \begin{align*} + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{\phantom{{}={}}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\ + \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{\phantom{{}+{}}\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{{}={}\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\ + \xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{\Coeffb>0}{\phantom{{}+{}}\num{\Coeffb}}{{}-{}\num{\fpeval{0-\Coeffb}}}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ + \phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\% + \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\SSimplifie{\Coeffb}{\Coeffa}%\\ + }{} + }{} + }{} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \begin{align*}% + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\xintifboolexpr{#4<0}{\phantom{={}}}{}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ + \xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{{}-{}\num{#5}}{{}+{}\num{\fpeval{0-#5}}}}&\phantom{{}={}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\ + \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\xintifboolexpr{\Coeffa<0}{\phantom{{}={}}}{\phantom{=}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ + \frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\ + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{}% + }% + }% + }% + }% + }% + }% +}% diff --git a/Master/texmf-dist/tex/latex/profcollege/PfC-EquationSoustraction1.tex b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationSoustraction1.tex new file mode 100644 index 00000000000..034aa7e2ed4 --- /dev/null +++ b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationSoustraction1.tex @@ -0,0 +1,332 @@ +% Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +\newcommand{\EquaBase}[5][]{%type ax=d ou b=cx + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#2\bla%on teste si le paramètre #2 est vide: + % si oui, on est dans le cas b=cx. Eh bien on échange :) + % Mais attention si les deux paramètres a et c sont vides... + \EquaBase[#1]{#4}{}{}{#3} + \else + % si non, on est dans le cas ax=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#5=0}{% + L'équation $0\useKV[ClesEquation]{ELettre}=0$ a une infinité de solution.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% + }{%\else + \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else + \begin{align*}% + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\tikzmark{C-\theNbequa}\\ + \tikzmark{B-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}\tikzmark{D-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}% + \rightcomment{C-\theNbequa}{D-\theNbequa}{D-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}% + }{% + \ifboolKV[ClesEquation]{FlecheDiv}{% + \Leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}% + \Rightcomment{C-\theNbequa}{D-\theNbequa}{D-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}% + }{}% + }%% + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{#5}{#2}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\ + }{} + }{} + \ifboolKV[ClesEquation]{Fleches}{% + \stepcounter{Nbequa}}% + {\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{} + } + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\useKV[ClesEquation]{Lettre}=\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% + }{} + } + } + \fi +} + +\newcommand{\EquaDeuxSoustraction}[5][]{%type ax+b=d ou b=cx+d$ + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide + \EquaDeuxSoustraction[#1]{#4}{#5}{#2}{#3} + \else%cas ax+b=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }{%ELSE + \xintifboolexpr{#3=0}{%ax+b=d + \EquaBase[#1]{#2}{}{}{#5}% + }{%ax+b=d$ Ici + \begin{align*} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\ + \ifboolKV[ClesEquation]{Decomposition}{% + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + }{}% + \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{%ICI ? + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + }{} + } + } + \fi +} + +\newcommand{\EquaTroisSoustraction}[5][]{%ax+b=cx ou ax=cx+d + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 + \ifx\bla#5\bla% + %% paramètre oublié + \else + \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}% + \fi + \else + \xintifboolexpr{#2=0}{%b=cx + \EquaBase[#1]{#4}{}{}{#3} + }{% + \xintifboolexpr{#4=0}{%ax+b=0 + \EquaDeuxSoustraction[#1]{#2}{#3}{}{0} + }{%ax+b=cx + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=0}{%ax=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solution.}% + {%ax+b=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + }% + }{%% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c + \begin{align*} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \ifboolKV[ClesEquation]{Decomposition}{% + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\ + }{} + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\ + \ifboolKV[ClesEquation]{Decomposition}{% + \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=0\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\ + }{}% + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \begin{align*}% + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \ifboolKV[ClesEquation]{Decomposition}{% + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ + }{} + \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + }% + }% + }% + }% + \fi + }% + + +\newcommand{\ResolEquationSoustraction}[5][]{% + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#4=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }% + {%0x+b=cx+d$ + \EquaDeuxSoustraction[#1]{#4}{#5}{}{#3}% + }% + }{% + \xintifboolexpr{#4=0}{%ax+b=0x+d + \EquaDeuxSoustraction[#1]{#2}{#3}{}{#5}% + } + {%ax+b=cx+d$ + \xintifboolexpr{#3=0}{% + \xintifboolexpr{#5=0}{%ax=cx + \EquaTroisSoustraction[#1]{#2}{0}{#4}{}% + }% + {%ax=cx+d + \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}% + }% + }% + {\xintifboolexpr{#5=0}{%ax+b=cx + \EquaTroisSoustraction[#1]{#2}{#3}{#4}{}% + }% + {%ax+b=cx+d -- ici + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solution.}% + {%b<>d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + }% + }{ + %% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c + \begin{align*} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \ifboolKV[ClesEquation]{Decomposition}{% + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + }{} + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\\ + \ifboolKV[ClesEquation]{Decomposition}{% + \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + }{}% + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \begin{align*}% + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \ifboolKV[ClesEquation]{Decomposition}{% + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + }{} + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ + \ifboolKV[ClesEquation]{Decomposition}{% + \num{#3}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\ + }{}% + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{}% + }% + }% + }% + }% + }% + }% +}% + + diff --git a/Master/texmf-dist/tex/latex/profcollege/PfC-EquationSymbole1.tex b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationSymbole1.tex new file mode 100644 index 00000000000..4faec4767ae --- /dev/null +++ b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationSymbole1.tex @@ -0,0 +1,225 @@ +% Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +\newcommand{\EquaBaseSymbole}[5][]{%type ax=d ou b=cx + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false} + \ifx\bla#2\bla%on teste si le paramètre #2 est vide: + % si oui, on est dans le cas b=cx. Eh bien on échange :) + % Mais attention si les deux paramètres a et c sont vides... + \ifx\bla#4\bla + %% il manque un paramètre + \else + \EquaBaseSymbole[#1]{#4}{}{}{#3} + \fi + \else + % si non, on est dans le cas ax=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#5=0}{% + L'équation $0\times\useKV[ClesEquation]{Lettre}=0$ a une infinité de solution.}{L'équation $0\times\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% + }{%\else + \xintifboolexpr{#5=0}{L'équation $\num{#2}\times\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else + \begin{align*}% + \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\ + \useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{#5}{#2}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\ + }{} + }{} + \end{align*} + } + } + \fi +} + +\newcommand{\EquaDeuxSymbole}[5][]{%type ax+b=d ou b=cx+d$ + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false} + \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide + \EquaDeuxSymbole[#1]{#4}{#5}{#2}{#3} + \else%cas ax+b=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }{%ELSE + \xintifboolexpr{#3=0}{%ax+b=d + \EquaBaseSymbole[#1]{#2}{}{}{#5}% + }{%ax+b=d$ Ici + \begin{align*} + \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ + \ifboolKV[ClesEquation]{Bloc}{\Fdash{$\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\}{}% + \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\ + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \\ + \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \end{align*} + } + } + \fi +} + +\newcommand{\EquaTroisSymbole}[5][]{%ax+b=cx ou ax=cx+d + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false} + \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 + \ifx\bla#5\bla% + %% paramètre oublié + \else + \EquaTroisSymbole[#1]{#4}{#5}{#2}{}% + \fi + \else + \xintifboolexpr{#2=0}{%b=cx + \EquaBaseSymbole[#1]{#4}{}{}{#3} + }{% + \xintifboolexpr{#4=0}{%ax+b=0 + \EquaDeuxSymbole[#1]{#2}{#3}{}{0} + }{%ax+b=cx + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=0}{%ax=ax + L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}=\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$ a une infinité de solution.}% + {%ax+b=ax + L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + }% + }{%% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c + \begin{align*} + \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\\ + \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#4-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#2-#4}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\\ + \xdef\Coeffa{\fpeval{#2-#4}}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ + \ifboolKV[ClesEquation]{Bloc}{\Fdash{\mathcolor{Csymbole!30}{$\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\}{} + \xdef\Coeffb{\fpeval{0-#3}}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}%\\ + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \end{align*} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \begin{align*}% + \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\\ + \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#4-#2}}{+\useKV[ClesEquation]{Lettre}}\\ + \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}% \\ + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \\\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + } + \end{align*} + }% + }% + }% + }% + \fi + }% + + +\newcommand{\ResolEquationSymbole}[5][]{% + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false} + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#4=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }% + {%0x+b=cx+d$ + \EquaDeuxSymbole[#1]{#4}{#5}{#2}{#3}% + }% + }{% + \xintifboolexpr{#4=0}{%ax+b=0x+d + \EquaDeuxSymbole[#1]{#2}{#3}{}{#5}% + } + {%ax+b=cx+d$ + \xintifboolexpr{#3=0}{% + \xintifboolexpr{#5=0}{%ax=cx + \EquaTroisSymbole[#1]{#2}{0}{#4}{}% + }% + {%ax=cx+d + \EquaTroisSymbole[#1]{#4}{#5}{#2}{}% + }% + }% + {\xintifboolexpr{#5=0}{%ax+b=cx + \EquaTroisSymbole[#1]{#2}{#3}{#4}{}% + }% + {%ax+b=cx+d -- ici + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solution.}% + {%b<>d + L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + }% + }{ + %% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c + \begin{align*} + \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#4-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#2-#4}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \xdef\Coeffa{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ + \ifboolKV[ClesEquation]{Bloc}{% + \Fdash{$\mathcolor{Csymbole!30}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ + }{}% + \xdef\Coeffb{\fpeval{#5-#3}}\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\ + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \end{align*} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \begin{align*}% + \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#4-#2}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \xdef\Coeffa{\fpeval{#4-#2}}\num{#3}&=\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \ifboolKV[ClesEquation]{Bloc}{% + \num{#3}&=\Fdash{$\mathcolor{Csymbole!30}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}}$}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + }{}% + \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}%\\ + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \\\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\ + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + } + \end{align*} + }% + }% + }% + }% + }% + }% +}% + + diff --git a/Master/texmf-dist/tex/latex/profcollege/PfC-EquationTerme1.tex b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationTerme1.tex new file mode 100644 index 00000000000..f3930d0408b --- /dev/null +++ b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationTerme1.tex @@ -0,0 +1,276 @@ +% Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +\newcommand{\EquaDeuxTerme}[5][]{%type ax+b=d ou b=cx+d$ + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide + \EquaDeuxTerme[#1]{#4}{#5}{#2}{#3} + \else%cas ax+b=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }{%ELSE + \xintifboolexpr{#3=0}{%ax+b=d + \EquaBase[#1]{#2}{}{}{#5}% + }{%ax+b=d$ Ici + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} + \begin{align*} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{%ICI ? + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + }{} + } + } + \fi +} + +\newcommand{\EquaTroisTerme}[5][]{%ax+b=cx ou ax=cx+d + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 + \ifx\bla#5\bla% + %% paramètre oublié + \else + \EquaTroisTerme[#1]{#4}{#5}{#2}{}% + \fi + \else + \xintifboolexpr{#2=0}{%b=cx + \EquaBase[#1]{#4}{}{}{#3} + }{% + \xintifboolexpr{#4=0}{%ax+b=0 + \EquaDeuxTerme[#1]{#2}{#3}{}{0} + }{%ax+b=cx + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=0}{%ax=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solution.}% + {%ax+b=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + }% + }{%% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} + \begin{align*} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\ + \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=0\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} + \begin{align*}% + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + }% + }% + }% + }% + \fi + }% + +\newcommand{\ResolEquationTerme}[5][]{% + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#4=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }% + {%0x+b=cx+d$ + \EquaDeuxTerme[#1]{#4}{#5}{#2}{#3}% + }% + }{% + \xintifboolexpr{#4=0}{%ax+b=0x+d + \EquaDeuxTerme[#1]{#2}{#3}{}{#5}% + } + {%ax+b=cx+d$ + \xintifboolexpr{#3=0}{% + \xintifboolexpr{#5=0}{%ax=cx + \EquaTroisTerme[#1]{#2}{0}{#4}{}% + }% + {%ax=cx+d + \EquaTroisTerme[#1]{#4}{#5}{#2}{}% + }% + }% + {\xintifboolexpr{#5=0}{%ax+b=cx + \EquaTroisTerme[#1]{#2}{#3}{#4}{}% + }% + {%ax+b=cx+d -- ici + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solution.}% + {%b<>d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + }% + }{ + %% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} + \begin{align*} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#5>0}{\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\tikzmark{F-\theNbequa}\\ + \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} + \begin{align*}% + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ + \num{#3}\mathcolor{Cterme}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{}% + }% + }% + }% + }% + }% + }% +}% + + diff --git a/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty b/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty new file mode 100644 index 00000000000..30aa5d3e9d2 --- /dev/null +++ b/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty @@ -0,0 +1,10542 @@ +% Author : Christophe Poulain +% Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +%%%%%%% +% 87-88 : amélioration \Thales. \Labyrinthe. +% 85 : passage à lua. +% 75 : plein de choses que j'ai oubliées :( +% 71 : Possibilité de choisir les fontes pour les figures MP +% 70 : Ajout de la commande \calculatrice. Coupure des calculs longs +% pour la moyenne et médiane. Egalités remarquables pour le +% développement. Tableau vide pour les stats. +% 67 : préparation au dépôt sur ctan.org +% 66 : Ajout de la commande \Ratio. +% 62 : Refonte des commandes !\Result! - Ajout d'une commande \Result +% dans SommeAngles. Rectification espace dans \Distri avec Reduction active. +% 61 : Simplication d'une fraction en version longue :) - Ajout +% d'options à la commande \lstinline!\Stat!. Ajout d'options à la +% commande \lstinline!\Thales!. +% 60 : Nouvelle présentation de la résolution d'une équation. Reprise +% et ajout d'une clé à la commande \SommeAngles. +% 59 : amélioration de la macro \Pythagore pour pouvoir enchaîner les +% calculs. Amélioration de la macro \Reperage pour améliorer +% la gestion de l'affichage sur les droites graduées. +% 58 : ajout d'un affichage des angles dans les diagrammes circulaires. +% 57 : ajout de la commande \Fraction. Ajout d'un VF dans la macro \QCM +% 56 : ajout de commandes "utiles" :) / Modification de \SommeAngles +% pour éviter les conflits. +% 55 : ajout d'une clé \Cle{Longue} dans la commande \Décomposition +% 54 : adaptations mineures :) à gmp +% 53 : ajout de la commande \QFlash +% 52 : ajout de la macro \QCM +% 51 : ajout de la macro \Relie +% 50 : Changement des clés. +% 37 : Reprise de la macro \Distri pour qu'elle accepte des valeurs +%décimales. +% 36 : Ajout d'un développement numérique. Reprise de la décomposition +% des nombres premiers (pour éviter conflit entre \newcount\c et la +% commande \c... Suppression de "spurious blank" +% 35 : Ajout d'une quatrième version de présentation de la résolution +% d'une équation - Nouvelle macro : Puissances. Ajout d'une option +% \EFacteurs pour les équations produit nul. Amélioration (rédaction) +% de \FonctionAffine - Ajout de la couleur de fond paramétrable dans +% les fleches PH et BH de \Propor +% 34 : Ajout de la commande \ResultatTrigo, \ResultatThalesx... Suppression de spurious blank. Corrections typographiques. Reprise de l'affichage de la moyenne dans la commande \Stat +% 33 : MAJ Distri : Problème d'espace en utilisant les nombres négatifs (1ere étape). +% 32 : MAJ Pythagore : Ajout de la clé PUnite - Possibilité de récupérer la valeur numérique obtenue par la macro Pythagore - Justification des textes dans les bulles. Ajout d'un FlecheCoefDebut dans \Propor. +% 31 : MAJ Pourcentage. Correction quelques bugs. Correction de \og spurious blank\fg. Oubli du RequirePackage{multido} :( +% 29 : MAJ Trigo (figure reprise pour utiliser \num de siunitx) +% 28 : Mise à jour de \Propor : flèches inversées \FlechesPH et \FlechesPB, homogénéité des flèches. Pourcentage. +% 27 : ajout du repérage +% 26 : ajout des schémas de proba + MAJ avec geometriesyr16 + MAJ Nombre premier. +% 25 : ajout des formules +% 24 : ajout d'une option pour les équations $X^2=a$ +% 23 : ajout d'une option pour les équations produit. +% 22 : ajout d'une option TColonnes dans la macro Tableaux +% 21 : Ajout d'une vérification dans la macro \ResolEquation - Correction de quelques bugs dans la résolution d'équation. +% 20: ajout d'une macro simpliste (car pas beaucoup d'utilité) sur les fonctions. +% 19 : Modification AAntécédent dans Affine + Amélioration Pythagore (Cas des triangles rectangles isocèles, dans le calcul de la longueur d'un côté) + +\NeedsTeXFormat{LaTeX2e} +\ProvidesPackage{ProfCollege}[2021/01/18 v0.89 Aide pour l'utilisation de LaTeX au collège] + +\RequirePackage{mathtools}%Amélioration des rendus +\RequirePackage{amssymb} + +% mathématiques +\RequirePackage{siunitx}%unités SI +\sisetup{% + locale=FR, + detect-all,% + output-decimal-marker={,},% + group-four-digits% +} + +\DeclareSIUnit{\kmh}{\km\per\hour} +\newcommand\speed[1]{\SI{#1}{\kmh}} +\newcommand\Speed[1]{\SI[per-mode=symbol]{#1}{\kmh}} + +\RequirePackage[table,svgnames]{xcolor}%Gestion des couleurs +\RequirePackage{xstring}%Gestion de chaines de caractères +\RequirePackage{simplekv}%Gestion de paramètres sous forme de clés +\RequirePackage{ifthen} +\RequirePackage{modulus}%Pour certains calculs arithmétiques. +\RequirePackage{xinttools}%Pour la création dynamique d'un tableau + +\newif\if@shellescape \@shellescapetrue +\DeclareOption{nonshellescape}{\@shellescapefalse} +\ProcessOptions\relax + +\if@shellescape +\RequirePackage[shellescape,latex]{gmp}%inclusion de figures metapost "à la volée"% +\gmpoptions{everymp={prologues:=3; input PfC-LaTeX; input PfC-Svgnames; input PfC-Constantes; input PfC-Geometrie;}} +\usempxclass{article} +\usempxpackage[utf8]{inputenc} +\usempxpackage[T1]{fontenc} +\usempxpackage{fourier} +\usempxpackage[french]{babel} +\usempxpackage{pifont} +\usempxpackage[locale=FR]{siunitx} +\else +\RequirePackage[latex]{gmp}%inclusion de figures metapost "à la volée"% +\gmpoptions{everymp={prologues:=3; input PfC-LaTeX; input PfC-Svgnames; input PfC-Constantes; input PfC-Geometrie;}} +\usempxclass{article} +\usempxpackage[utf8]{inputenc} +\usempxpackage[T1]{fontenc} +\usempxpackage{fourier} +\usempxpackage[french]{babel} +\usempxpackage{pifont} +\usempxpackage[locale=FR]{siunitx} +\fi + +\RequirePackage{xintexpr} +\RequirePackage{listofitems}%pour définir simplement la liste des données. +\RequirePackage{datatool} +\RequirePackage{multido} + +\RequirePackage{xlop}%Pour effectuer les calculs nécessaires. +\opset{decimalsepsymbol={,}}% + +\RequirePackage{xfp}%Pour les calculs trigonométriques + +\RequirePackage[most]{tcolorbox} + +\RequirePackage{tikz} +% https://tex.stackexchange.com/questions/349259/curved-arrow-describing-a-step-in-a-equation-derivation +%https://tex.stackexchange.com/questions/58656/best-way-to-draw-a-chevron-diagram-using-tikz +\usetikzlibrary{calc,arrows,tikzmark,chains,positioning,shapes.symbols} + +\RequirePackage{suffix}%pour la commande étoilée + +\RequirePackage{multicol} + +\RequirePackage{hhline}% Pour la cohabitation de cline avec les couleurs + +\RequirePackage{iftex} + +\RequirePackage{stackengine} +\RequirePackage[thicklines]{cancel} + +\ifpdftex +\RequirePackage[babel=true,kerning=true]{microtype}%Pour gérer le souci du ; dans tikz avec pdftex... +\fi + +% https://stackoverflow.com/questions/3391103/how-to-make-the-grayed-round-box-using-tiks +\RequirePackage{environ} + +%%% 80 +\ifluatex +\RequirePackage{luamplib} +\everymplib{input PfC-Svgnames; input PfC-Constantes; input PfC-Geometrie; beginfig(1);} +\everyendmplib{endfig;} +\fi + +%%%%% Quelques besoins particuliers + +\def\bla{}%JCC :) Pour les tests sur arguments vides + +%% Colorer en mode mathématique. \color ne gère pas les espaces propres au mode mathématique. Donc besoin de changer +% https://tex.stackexchange.com/questions/21598/how-to-color-math-symbols +\makeatletter +\def\mathcolor#1#{\@mathcolor{#1}} +\def\@mathcolor#1#2#3{% + \protect\leavevmode + \begingroup + \color#1{#2}#3% + \endgroup +} +\makeatother + +% Colorer uniquement la barre de soulignement +% https://tex.stackexchange.com/questions/9466/color-underline-a-formula/153884 +\def\mathunderline#1#2{\color{#1}\underline{{\color{black}#2}}\color{black}} + +% Ecrire des lignes d'équations +\catcode`\@=11 +\def\Eqalign#1{\null\,\vcenter{\openup\jot\m@th\ialign{ + \strut\hfil$\displaystyle{##}$&$\displaystyle{{}##}$\hfil + &&\quad\strut\hfil$\displaystyle{##}$&$\displaystyle{{}##}$ + \hfil\crcr #1\crcr}}\,} +\catcode`\@=12 + +%%%%%%%%%%%%%%%%%%%%% +%% Commandes "utiles" +%%%%%%%%%%%%%%%%%%%%% +%encadrer avec des "sommets arrondis" +\newsavebox{\logobox} + +\newcommand{\Logo}[2]{% +\setbox1=\hbox{\includegraphics[scale=#2]{#1}} +\begin{tikzpicture}% +\clip[rounded corners=5mm] (0,0) rectangle (\wd1,\ht1); +\node[xshift=0.5\wd1, yshift=0.5\ht1, inner xsep=0pt, inner ysep=0pt] (box) {% +\includegraphics[scale=#2]{#1}% +};% +\end{tikzpicture}% +} + +\makeatletter +\def\Dotfill{% +\leavevmode +\cleaders \hb@xt@ .44em{\hss\xleaders\hrule width0.33em\hss}\hfill +\kern\z@} +\makeatother + +\newcommand\pointilles[1][]{% + \ifx\bla#1\bla% + \Dotfill% + \else% + \hbox to#1{\Dotfill}% + \fi +} + +\newcommand\Lignespointilles[1]{% + \xintFor* ##1 in {\xintSeq {1}{#1}}\do{ + \pointilles\par% + } +} + +%%%%%%%%%%%%%%%%% +% Tables Addition-Multiplication +%%%%%%%%%%%%%%%%% +\setKVdefault[Tables]{Addition=false,Multiplication=true,Seul=false,Debut=0,Fin=10,Couleur=white} + +% pour mémoire +\newcommand\TableMultiplicationComplete{% + \xdef\NbColTabMul{\fpeval{\useKV[Tables]{Fin}+1-\useKV[Tables]{Debut}}}% + \begin{tabular}{|>{\columncolor{gray!15}\centering\arraybackslash}p{1.5em}|*{\NbColTabMul}{>{\centering\arraybackslash}p{1.5em}|}}% + \hline + $\times$\xintFor* ##1 in {\xintSeq {\useKV[Tables]{Debut}}{\useKV[Tables]{Fin}}}\do{% + &\cellcolor{gray!15}\fpeval{##1} + } + \\ + \hline + \xintFor* ##1 in {\xintSeq {0}{10}}\do{% + ##1\xintFor* ##2 in {\xintSeq {\useKV[Tables]{Debut}}{\useKV[Tables]{Fin}}}\do{% + &\fpeval{##2*##1} + } + \\ + \hline + } + \end{tabular}% +} +%%%% + +\newcommand\TableMultiplicationCompleteColore{% + \xdef\NbColTabMul{\fpeval{\useKV[Tables]{Fin}+1-\useKV[Tables]{Debut}}}% + \begin{tabular}{|>{\columncolor{gray!15}\centering\arraybackslash}p{1.5em}|*{\NbColTabMul}{>{\centering\arraybackslash}p{1.5em}|}}% + \hline + $\times$\xintFor* ##1 in {\xintSeq {\useKV[Tables]{Debut}}{\useKV[Tables]{Fin}}}\do{% + &\cellcolor{gray!15}\fpeval{##1} + } + \\ + \hline + \xintFor* ##1 in {\xintSeq {0}{10}}\do{% + ##1\xintFor* ##2 in {\xintSeq {\useKV[Tables]{Debut}}{\useKV[Tables]{Fin}}}\do{% + &\xintifboolexpr{##2<##1}{\cellcolor{\useKV[Tables]{Couleur}!\fpeval{##1*10}}}{\xintifboolexpr{##2>##1}{\cellcolor{\useKV[Tables]{Couleur}!\fpeval{##2*10}}}{}}\fpeval{##2*##1} + } + \\ + \hline + } + \end{tabular}% +} + +\newcommand\TableAdditionComplete{% + \xdef\NbColTabMul{\fpeval{\useKV[Tables]{Fin}+1-\useKV[Tables]{Debut}}}% + \begin{tabular}{|>{\columncolor{gray!15}\centering\arraybackslash}p{1.5em}|*{\NbColTabMul}{>{\centering\arraybackslash}p{1.5em}|}}% + \hline + $+$\xintFor* ##1 in {\xintSeq {\useKV[Tables]{Debut}}{\useKV[Tables]{Fin}}}\do{% + &\cellcolor{gray!15}\fpeval{##1} + } + \\ + \hline + \xintFor* ##1 in {\xintSeq {0}{10}}\do{% + ##1\xintFor* ##2 in {\xintSeq {\useKV[Tables]{Debut}}{\useKV[Tables]{Fin}}}\do{% + &\fpeval{##2+##1} + } + \\ + \hline + } + \end{tabular}% +} + +\newcommand\TableMultiplicationSeule[1]{% + \ensuremath{% + \begin{array}{ccccc}% + \xintFor* ##1 in {\xintSeq + {\useKV[Tables]{Debut}}{\useKV[Tables]{Fin}}}\do{ + ##1&\times&=&\fpeval{##1*#1}\\ + } + \end{array} + }% +}% + +\newcommand\TableAdditionSeule[1]{% + \ensuremath{% + \begin{array}{ccccc} + \xintFor* ##1 in {\xintSeq + {\useKV[Tables]{Debut}}{\useKV[Tables]{Fin}}}\do{ + ##1&+&=&\fpeval{##1+#1}\\ + } + \end{array} + }% +}% + + +\newcommand\Tables[2][]{% + \useKVdefault[Tables]% + \setKV[Tables]{#1}% + \ifboolKV[Tables]{Seul}{% + \ifboolKV[Tables]{Addition}{% + \TableAdditionSeule{#2}% + }{% + \TableMultiplicationSeule{#2}% + }% + }{ + \ifboolKV[Tables]{Addition}{% + \TableAdditionComplete% + }{% + \TableMultiplicationCompleteColore% + }% + }% +}% + +%%%%%%%%%%%%%% +% Labyrinthe +%%%%%%%%%%%%%% +\setKVdefault[Labyrinthe]{Lignes=6,Colonnes=3,Longueur=4,Hauteur=2,Passages=false,EcartH=1,EcartV=1,CouleurF=gray!50,Texte=\color{black}} + +\newcommand\Labyrinthe[3][]{% + \useKVdefault[Labyrinthe]% + \setKV[Labyrinthe]{#1}% + \setsepchar[*]{,*/}%\ignoreemptyitems% + \readlist*\ListeLaby{#2}% + \ifboolKV[Labyrinthe]{Passages}{% + \readlist*\ListeLabySol{#3}% + }{}% + \xdef\LabyLong{\useKV[Labyrinthe]{Longueur}}% + \xdef\LabyHaut{\useKV[Labyrinthe]{Hauteur}}% + \xdef\TotalLaby{\fpeval{3*\useKV[Labyrinthe]{Colonnes}-2}}% + \xdef\CouleurF{\useKV[Labyrinthe]{CouleurF}}% + \xdef\MotifTexte{\useKV[Labyrinthe]{Texte}}% + \xintifboolexpr{\ListeLabylen=\fpeval{\useKV[Labyrinthe]{Lignes}*\useKV[Labyrinthe]{Colonnes}}}{% + \begin{tikzpicture}[remember picture] + % on dessine les cadres + \foreach \compteurv in {1,...,\useKV[Labyrinthe]{Lignes}}{% + \foreach \compteurh in {1,...,\useKV[Labyrinthe]{Colonnes}}{% + \xdef\ColorFill{\ListeLaby[\fpeval{\useKV[Labyrinthe]{Colonnes}*(\compteurv-1)+\compteurh},2]}% + \node[fill=\ColorFill,draw,minimum height=\LabyHaut*1cm,minimum width=\LabyLong*1cm,name=A-\compteurh-\compteurv] at + (\fpeval{\LabyLong+\useKV[Labyrinthe]{EcartH}}*\compteurh,-\fpeval{\LabyHaut+\useKV[Labyrinthe]{EcartV}}*\compteurv) {\ListeLaby[\fpeval{\useKV[Labyrinthe]{Colonnes}*(\compteurv-1)+\compteurh},1]};% + }% + }% + % on dessine les flèches + \foreach \compteurv in {1,...,\fpeval{\useKV[Labyrinthe]{Lignes}-1}}{% + \foreach \compteurh in {1,...,\useKV[Labyrinthe]{Colonnes}}{% + \ifboolKV[Labyrinthe]{Passages}{% + \xdef\NomNode{\ListeLabySol[1,\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+2*(\compteurh-1)}]}% + \draw[\CouleurF,line width=1pt,stealth-stealth] (A-\compteurh-\compteurv) -- node[fill=white,midway]{\MotifTexte\NomNode}(A-\compteurh-\fpeval{\compteurv+1});% + }{% + \draw[\CouleurF,line width=1pt,stealth-stealth] (A-\compteurh-\compteurv) -- (A-\compteurh-\fpeval{\compteurv+1});% + }% + } + } + \foreach \compteurv in {1,...,\useKV[Labyrinthe]{Lignes}}{% + \foreach \compteurh in {1,...,\fpeval{\useKV[Labyrinthe]{Colonnes}-1}}{% + \ifboolKV[Labyrinthe]{Passages}{% + \xdef\NomNode{\ListeLabySol[1,\fpeval{\TotalLaby*(\compteurv-1)+\compteurh}]}% + \draw[\CouleurF,line width=1pt,stealth-stealth] + (A-\compteurh-\compteurv) -- node[fill=white,midway]{\MotifTexte\NomNode}(A-\fpeval{\compteurh+1}-\compteurv); + }{% + \draw[\CouleurF,line width=1pt,stealth-stealth] + (A-\compteurh-\compteurv) -- (A-\fpeval{\compteurh+1}-\compteurv); + }% + } + } + \foreach \compteurv in {2,...,\fpeval{\useKV[Labyrinthe]{Lignes}}}{% + \foreach \compteurh in {1,...,\fpeval{\useKV[Labyrinthe]{Colonnes}-1}}{% + \draw[\CouleurF,line width=1pt,stealth-stealth] (A-\compteurh-\compteurv) -- (A-\fpeval{\compteurh+1}-\fpeval{\compteurv-1}); + } + } + \foreach \compteurv in {1,...,\fpeval{\useKV[Labyrinthe]{Lignes}-1}}{% + \foreach \compteurh in {1,...,\fpeval{\useKV[Labyrinthe]{Colonnes}-1}}{% + \ifboolKV[Labyrinthe]{Passages}{% + \xdef\NomNode{\ListeLabySol[1,\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+2*(\compteurh-1)+1}]}% + \draw[\CouleurF,line width=1pt,stealth-stealth] (A-\compteurh-\compteurv) -- node[fill=white,midway]{\MotifTexte\NomNode}(A-\fpeval{\compteurh+1}-\fpeval{\compteurv+1}); + }{% + \draw[\CouleurF,line width=1pt,stealth-stealth] (A-\compteurh-\compteurv) -- (A-\fpeval{\compteurh+1}-\fpeval{\compteurv+1}); + }% + }% + }% + \end{tikzpicture} + }{\textbf{! Le nombre d'informations n'est pas compatible avec les + définitions de {\ttfamily Colonnes} et {\ttfamily Lignes} !}}% +} + +%%%%%%%%%%%%%%% +% Calculatrice +%%%%%%%%%%%%%%% +%https://tex.stackexchange.com/questions/290321/mimicking-a-calculator-inputs-and-screen +\definecolor{lightorange}{rgb}{0.9,0.4,0} +\definecolor{lightestorange}{rgb}{1,0.8,0.5} +\definecolor{darkorange}{rgb}{0.2,0.1,0} + +\colorlet{blackened}{black!90!white} +\colorlet{blackish}{black!70!white} +\colorlet{greyish}{black!60!white} +\colorlet{whiteish}{white} +\colorlet{orangeish}{yellow!90!red} +\colorlet{greenish}{green!16!gray} +\colorlet{redish}{red!80!black} + +\tcbset{calbackground/.style={ + enhanced, + leftright skip=0.25cm,beforeafter skip=0pt, + toptitle=0mm,bottomtitle=0mm, + right=2mm,left=2mm, + top=1pt, + bottom=0.25cm, + boxsep=0pt, + boxrule=0mm, + sharp corners, + sidebyside, + sidebyside gap=2mm, + lefthand ratio=0.6, + bicolor, + colback=black!10!white, + colbacklower=greenish, + colframe=white, + autoparskip, + }} + +\newtcbox{\KY}[1][]{ + enhanced, + on line, + arc=2pt,outer arc=2pt, + boxrule=0pt,bottomrule=0.25mm,rightrule=0.2mm, + boxsep=0pt,left=0pt,right=0pt,top=1pt,bottom=1pt, + interior style={top color=blackish,bottom color=blackened}, + colframe=greyish, + width=2.5em, + tcbox width=forced center, + equal height group=K, + valign=center, + fontupper=\footnotesize\sffamily, + coltext=orangeish, + before upper=\vrule width 0pt height 2ex depth 1ex\relax, +} + +\newtcbox{\KYm}[1][]{ + enhanced, + on line, + arc=2pt,outer arc=2pt, + boxrule=0pt,bottomrule=0.25mm,rightrule=0.2mm, + boxsep=0pt,left=0pt,right=0pt,top=1pt,bottom=1pt, + interior style={top color=blackish,bottom color=blackened}, + colframe=greyish, + width=2.5em, + tcbox width=forced center, + equal height group=K, + valign=center, + fontupper=\footnotesize\sffamily, + coltext=orangeish, + before upper=\vrule width 0pt height 2ex depth 1ex\relax$, + after upper=$, +} + +\newtcbox{\KN}{ + enhanced, + on line, + arc=2pt,outer arc=2pt, + boxrule=0pt,bottomrule=0.25mm,rightrule=0.2mm, + boxsep=0pt,left=0pt,right=0pt,top=1pt,bottom=1pt, + interior style={top color=blackish,bottom color=blackened}, + colframe=greyish, + width=1.5em, + tcbox width=forced center, + equal height group=K, + valign=center, + fontupper=\footnotesize\sffamily, + coltext=whiteish, + before upper=\vrule width 0pt height 2ex depth 1ex\relax, +} + +\parindent0pt + +\newtcolorbox{calc}[1][]{% + enhanced,bicolor, + boxsep=0pt, + boxrule=0pt, + top=6pt,bottom=0pt,left=6pt,right=0pt, + sharp corners, + frame empty, + colback=black!10, + colbacklower=greenish, + sidebyside, + sidebyside align=top seam, + sidebyside gap=0pt, + righthand width=50.7mm, + before lower=\begin{tabular}{@{}l@{}}, + after lower=\end{tabular}, + overlay={\node[inner sep=0pt, outer sep=0pt, text height=5pt, text + depth=1pt, text width=50.7mm, fill=greenish, anchor=north + east, font=\sffamily\tiny\bfseries, align=flush right] + at (frame.north east) {#1};} +} + +\def\MPCalculatrice#1#2{ + % #1 Calcul %2 réponse + \ifluatex + \mplibforcehmode + \begin{mplibcode} + input PfC-Calculatrice; + LCD(#1)(#2); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Calculatrice;}] + LCD(#1)(#2); + \end{mpost} + \fi +} + +\setKVdefault[ClesCalculatrice]{Ecran=false} + +\newcommand\Calculatrice[2][]{% + \setstackgap{L}{0.775\baselineskip}% + \useKVdefault[ClesCalculatrice]% + \setKV[ClesCalculatrice]{#1}% + \ifboolKV[ClesCalculatrice]{Ecran}{% + \setsepchar[*]{,*/}% + \readlist\ListeCalc{#2}% + \MPCalculatrice{\ListeCalc[1,1]}{\ListeCalc[1,2]}% + }{% + \setsepchar[*]{,*/}% + \readlist\ListeCalc{#2}% + \foreachitem\compteur\in\ListeCalc{\xintifboolexpr{\listlen\ListeCalc[\compteurcnt]=2}{\Longstack{{\tiny\ListeCalc[\compteurcnt,1]} \KN{\ListeCalc[\compteurcnt,2]}}}{\Longstack{{\tiny\ListeCalc[\compteurcnt,2]} \KY{\ListeCalc[\compteurcnt,3]}}}% + }% + }% + \setstackgap{L}{\baselineskip}% +}% + + +%%%%%%%%%%%%%%%% +%%% Questions Flash +%%%%%%%%%%%%%%%% +\tcbset{Expression/.style={colback=white,valign=center,left=0mm,right=0mm,top=1mm,bottom=1mm,colframe=white}}% +\tcbset{ExpressionSerie1/.style={colback=\useKV[ClesFlash]{Couleur1},left=0mm,right=0mm,top=1mm,bottom=1mm}}% +\tcbset{ExpressionSerie2/.style={colback=\useKV[ClesFlash]{Couleur2},left=0mm,right=0mm,top=1mm,bottom=1mm}}% +\tcbset{ExpressionSerie3/.style={colback=\useKV[ClesFlash]{Couleur3},left=0mm,right=0mm,top=1mm,bottom=1mm}} +\tcbset{ExpressionSerie4/.style={colback=\useKV[ClesFlash]{Couleur4},left=0mm,right=0mm,top=1mm,bottom=1mm}} +\tcbset{BoiteExpression/.style={enhanced,nobeforeafter,tcbox raise + base,colback=white,right=3.5mm,left=3.5mm,halign=center,colframe=black}} +\newtcolorbox{CadreNombre}[1][]{% + Expression,#1} + +\setKVdefault[ClesFlash]{Hauteur=0.2\textheight,Simple=false,Intrus=false,Kahout=false,Daily=false,Expression=false,Mental=false,Mesure=false,Heure=false,Decimal=false,Operation=Multiplie,Numeration=false,Evaluation=false,Pause=false,Couleur1=blue!10,Couleur2=orange!10,Couleur3=green!10,Couleur4=yellow!10} + +\newlength{\HauteurFlash} + +\tikzset{ + arrow/.style={ + draw, + minimum height=1.25cm, + inner sep=0.25em, + shape=signal, + signal from=west, + signal to=east, + signal pointer angle=150, + } +} + +\def\MPHorloge#1#2#3{ + \ifluatex + \mplibforcehmode + \begin{mplibcode} + marque_horloge=1; + save Hor; + picture Hor; + path gdeaig,pteaig,trot; + pair centrehorloge; + centrehorloge=(0,0); + path tourhorloge; + tourhorloge=cercles(centrehorloge,marque_horloge*cm); + Hor=image( + %% dessin de l'horloge + draw tourhorloge; + for i=0 upto 59: + if (i mod 5)=0: + if (i mod 15)=0: + draw pointarc(tourhorloge,6*i)--(pointarc(tourhorloge,6*i) shifted (7*unitvector(centrehorloge-pointarc(tourhorloge,6*i)))) withpen pencircle scaled 2bp; + else: + draw pointarc(tourhorloge,6*i)--(pointarc(tourhorloge,6*i) shifted (5*unitvector(centrehorloge-pointarc(tourhorloge,6*i)))) withpen pencircle scaled 1.5bp; + fi; + else: + draw pointarc(tourhorloge,6*i)--(pointarc(tourhorloge,6*i) shifted (3*unitvector(centrehorloge-pointarc(tourhorloge,6*i)))); + fi; + endfor; + path graduhorloge; + graduhorloge=cercles(centrehorloge,marque_horloge*cm+5*abs(unitvector(centrehorloge-pointarc(tourhorloge,0)))); + % + marque_p:="plein"; + pointe(centrehorloge); + marque_p:="rien"; + %% placement des aiguilles + gdeaig=centrehorloge--(pointarc(tourhorloge,0) shifted (7*unitvector(centrehorloge-pointarc(tourhorloge,0)))); + pteaig=centrehorloge--(pointarc(tourhorloge,0) shifted (18*unitvector(centrehorloge-pointarc(tourhorloge,0)))); + trot=centrehorloge--(pointarc(tourhorloge,0) shifted (10*unitvector(centrehorloge-pointarc(tourhorloge,0)))); + draw rotation(trot,centrehorloge,90-6*#3) withpen pencircle scaled0.4; + draw rotation(gdeaig,centrehorloge,90-6*#2) withpen pencircle scaled1.25; + draw rotation(pteaig,centrehorloge,90-30*(#1+#2/60)) withpen pencircle scaled 2bp; + ); + draw Hor; + \end{mplibcode} +\else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + marque_horloge=1; + save Hor; + picture Hor; + path gdeaig,pteaig,trot; + pair centrehorloge; + centrehorloge=(0,0); + path tourhorloge; + tourhorloge=cercles(centrehorloge,marque_horloge*cm); + Hor=image( + %% dessin de l'horloge + draw tourhorloge; + for i=0 upto 59: + if (i mod 5)=0: + if (i mod 15)=0: + draw pointarc(tourhorloge,6*i)--(pointarc(tourhorloge,6*i) shifted (7*unitvector(centrehorloge-pointarc(tourhorloge,6*i)))) withpen pencircle scaled 2bp; + else: + draw pointarc(tourhorloge,6*i)--(pointarc(tourhorloge,6*i) shifted (5*unitvector(centrehorloge-pointarc(tourhorloge,6*i)))) withpen pencircle scaled 1.5bp; + fi; + else: + draw pointarc(tourhorloge,6*i)--(pointarc(tourhorloge,6*i) shifted (3*unitvector(centrehorloge-pointarc(tourhorloge,6*i)))); + fi; + endfor; + path graduhorloge; + graduhorloge=cercles(centrehorloge,marque_horloge*cm+5*abs(unitvector(centrehorloge-pointarc(tourhorloge,0)))); + % + marque_p:="plein"; + pointe(centrehorloge); + marque_p:="rien"; + %% placement des aiguilles + gdeaig=centrehorloge--(pointarc(tourhorloge,0) shifted (7*unitvector(centrehorloge-pointarc(tourhorloge,0)))); + pteaig=centrehorloge--(pointarc(tourhorloge,0) shifted (18*unitvector(centrehorloge-pointarc(tourhorloge,0)))); + trot=centrehorloge--(pointarc(tourhorloge,0) shifted (10*unitvector(centrehorloge-pointarc(tourhorloge,0)))); + draw rotation(trot,centrehorloge,90-6*#3) withpen pencircle scaled0.4; + draw rotation(gdeaig,centrehorloge,90-6*#2) withpen pencircle scaled1.25; + draw rotation(pteaig,centrehorloge,90-30*(#1+#2/60)) withpen pencircle scaled 2bp; + ); + draw Hor; + \end{mpost} + \fi +} + +\newcommand\QFNumeration{% + \begin{CadreNombre} + {\Large LE NOMBRE DU JOUR est : } + \tcbox[BoiteExpression]{\num{\ListeFlash[1,1]}} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie1] + $\square$ \textbf{Le chiffre des \ListeFlash[1,2] est :} + \tcbox[BoiteExpression]{\phantom{1500000}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie2] + $\square$ \textbf{Le chiffre \ListeFlash[1,3] représente le + chiffre des :} + \tcbox[BoiteExpression]{\phantom{1500000}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie3] + $\square$ \textbf{Le nombre de \ListeFlash[1,4] est :} + \tcbox[BoiteExpression]{\phantom{1500000}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie4] + $\square$ \textbf{Le nombre de \ListeFlash[1,5] est :} + \tcbox[BoiteExpression]{\phantom{1500000}} + \end{tcolorbox} + \end{CadreNombre} +} + +\newcommand\QFHeure{% + \begin{CadreNombre} + {\Large L'HEURE DU JOUR est : }\raisebox{-0.9cm}{\MPHorloge{\NbHeures}{\NbMinutes}{\NbSecondes}} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie1] + $\square$ \textbf{\ListeFlash[1,2] :} + \tcbox[BoiteExpression]{\phantom{1500000000}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie2] + $\square$ \textbf{\ListeFlash[1,3] :} + \tcbox[BoiteExpression]{\phantom{1500000000}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie3] + $\square$ \textbf{\ListeFlash[1,4] :} + \tcbox[BoiteExpression]{\phantom{\hbox to4.5em{15}}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie4] + $\square$ \textbf{\ListeFlash[1,5] :} + \tcbox[BoiteExpression]{\phantom{\hbox to4.5em{1500000}}} + \end{tcolorbox} + \end{CadreNombre} +} + +\newcommand\QFMesure{% + \begin{CadreNombre} + {\Large LA MESURE DU JOUR est : } + \tcbox[BoiteExpression]{\ListeFlash[1,1]} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie1] + $\square$ \textbf{Convertis la en \ListeFlash[1,2] :} + \tcbox[BoiteExpression]{\phantom{1500000000}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie2] + $\square$ \textbf{Convertis la en \ListeFlash[1,3] :} + \tcbox[BoiteExpression]{\phantom{1500000000}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie3] + $\square$ \textbf{Ajoute lui \ListeFlash[1,4] :} + \tcbox[BoiteExpression]{\phantom{\hbox to5em{1500000}}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie4] + $\square$ \textbf{Enlève lui \ListeFlash[1,5] :} + \tcbox[BoiteExpression]{\phantom{\hbox to5em{1500000}}} + \end{tcolorbox} + \end{CadreNombre} +} + +\newcommand\QFDaily{% + \begin{tikzpicture} + \begin{scope}[start chain=transition going right,node + distance=-\pgflinewidth] + \foreach \s in {1,...,\ListeFlashlen}{% + \xintifboolexpr{\s = 1}{% + \node[arrow,on chain] {\Huge\bfseries\ListeFlash[\s]}; + \ifboolKV[ClesFlash]{Pause}{\pause}{} + }{% + \xintifboolexpr{\s = \ListeFlashlen}{% + \node[arrow,on chain] {\Huge\bfseries?}; + }{% + \node[arrow,on chain] {\ListeFlash[\s]}; + \ifboolKV[ClesFlash]{Pause}{\pause}{} + } + } + } + \end{scope} + \end{tikzpicture} +} + +\newcommand\QFDecimal{% + \begin{CadreNombre} + {\Large LE NOMBRE DU JOUR est : } + \tcbox[BoiteExpression]{\num{\ListeFlash[1,1]}} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie1] + \textbf{\'Ecriture en fraction décimale :} + \tcbox[BoiteExpression]{$\dfrac{\phantom{1000000}}{\phantom{1000000}}$} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie2] + \begin{tabular}{c} + \textbf{Partie}\\ + \textbf{entière} + \end{tabular} \textbf{: } + \tcbox[BoiteExpression]{\phantom{100000}}\hfill% + \begin{tabular}{c} + \textbf{Partie}\\ + \textbf{décimale} + \end{tabular} \textbf{: } + \tcbox[BoiteExpression]{\phantom{100000}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie3] + \textbf{\useKV[ClesFlash]{Operation} le par + \ListeFlash[1,2] :} \tcbox[BoiteExpression]{\phantom{1000000000}} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie4] + \textbf{Trouve le nombre entier le plus proche :} \tcbox[BoiteExpression]{\phantom{10000000}} + \end{tcolorbox} + \end{CadreNombre} +} + +\newcommand\QFMental{% + \begin{CadreNombre} + {\Large LE NOMBRE DU JOUR est : } + \tcbox[BoiteExpression]{\ListeFlash[1,1]} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie1] + $\square$ \textbf{Ajoute lui} + \tcbox[BoiteExpression]{\ListeFlash[1,2]}\hfill$\square$ + \textbf{Soustrais lui} \tcbox[BoiteExpression]{\ListeFlash[1,3]} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie2] + $\square$ \textbf{Multiplie le par } + \tcbox[BoiteExpression]{\ListeFlash[1,4]}\hfill$\square$ + \textbf{Divise le par } \tcbox[BoiteExpression]{\ListeFlash[1,5]} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie3] + $\square$ \textbf{Trouve} + \tcbox[BoiteExpression]{\ListeFlash[1,6]} + \textbf{\% de ce nombre.} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie4] + $\square$ \textbf{Trouve } \tcbox[BoiteExpression]{\ListeFlash[1,7]} + \textbf{de ce nombre.} + \end{tcolorbox} + \end{CadreNombre} +} + +\newcommand\QFExpression{% + \begin{CadreNombre} + {\Large L'EXPRESSION DU JOUR est : } + \tcbox[BoiteExpression]{\ListeFlash[1,1]} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie1] + $\square$ \textbf{Ajoute lui} + \tcbox[BoiteExpression]{\ListeFlash[1,2]} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie2] + $\square$ \textbf{Soustrais lui} + \tcbox[BoiteExpression]{\ListeFlash[1,3]} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie3] + $\square$ \textbf{Multiplie la par} + \tcbox[BoiteExpression]{\ListeFlash[1,4]} + \end{tcolorbox} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{tcolorbox}[ExpressionSerie4] + $\square$ \textbf{\'Evalue la lorsque} \tcbox[BoiteExpression]{\ListeFlash[1,5]} + \end{tcolorbox} + \end{CadreNombre} +} + +\newcommand\QFlash[2][]{% + \useKVdefault[ClesFlash] + \setKV[ClesFlash]{#1} + \setlength{\HauteurFlash}{\useKV[ClesFlash]{Hauteur}} + \colorlet{CouleurUn}{\useKV[ClesFlash]{Couleur1}} + \colorlet{CouleurDeux}{\useKV[ClesFlash]{Couleur2}} + \colorlet{CouleurTrois}{\useKV[ClesFlash]{Couleur3}} + \colorlet{CouleurQuatre}{\useKV[ClesFlash]{Couleur4}} + \ifboolKV[ClesFlash]{Evaluation}{% + \ifboolKV[ClesFlash]{Numeration}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \QFNumeration% + }{% + \ifboolKV[ClesFlash]{Heure}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \StrMid{\ListeFlash[1,1]}{1}{2}[\NbHeures]% + \StrMid{\ListeFlash[1,1]}{3}{4}[\NbMinutes]% + \StrMid{\ListeFlash[1,1]}{5}{6}[\NbSecondes]% + \QFHeure% + }{% + \ifboolKV[ClesFlash]{Mesure}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \QFMesure% + }{% + \ifboolKV[ClesFlash]{Daily}{% + \setsepchar[*]{/}% + \readlist*\ListeFlash{#2}% + \QFDaily% + }{% + \ifboolKV[ClesFlash]{Decimal}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \begin{frame} + \QFDecimal% + \end{frame} + }{% + \ifboolKV[ClesFlash]{Mental}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \QFMental% + }{% + \ifboolKV[ClesFlash]{Expression}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \QFExpression% + }{% + \setsepchar[*]{/}% + \readlist*\ListeFlash{#2}% + \ifboolKV[ClesFlash]{Simple}{% + \ListeFlash[1] + \begin{tcolorbox}[valign=center] + \ListeFlash[2] + \end{tcolorbox} + }{% + \setsepchar[*]{*/}% + \readlist*\ListeFlash{#2}% + \ifboolKV[ClesFlash]{Kahout}{% + \setsepchar[*]{*/}% + \readlist*\ListeFlash{#2}% + \begin{tcolorbox}[halign=center,valign=center] + \ListeFlash[1,1] + \end{tcolorbox} + % \par + \begin{multicols}{4} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurUn!150,colback=CouleurUn,halign=center,valign=center] + \ListeFlash[1,2] + \end{tcolorbox} + % \hfill% + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurDeux!150,colback=CouleurDeux,halign=center,valign=center] + \ListeFlash[1,3] + \end{tcolorbox} + % \hfill% + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurTrois!150,colback=CouleurTrois,halign=center,valign=center] + \ListeFlash[1,4] + \end{tcolorbox} + % \hfill% + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurQuatre!150,colback=CouleurQuatre,halign=center,valign=center] + \ListeFlash[1,5] + \end{tcolorbox} + \end{multicols} + }{% + \setsepchar[*]{*/}% + \readlist*\ListeFlash{#2}% + \begin{tcolorbox}[halign=center,valign=center] + \ListeFlash[1,1] + \end{tcolorbox} + \begin{multicols}{4} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurUn!150,colback=white,boxrule=1mm,halign=center,valign=center] + \ListeFlash[1,2] + \end{tcolorbox} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurDeux!150,colback=white,boxrule=1mm,halign=center,valign=center] + \ListeFlash[1,3] + \end{tcolorbox} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurTrois!150,boxrule=1mm,colback=white,halign=center,valign=center] + \ListeFlash[1,4] + \end{tcolorbox} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurQuatre!150,colback=white,boxrule=1mm,halign=center,valign=center] + \ListeFlash[1,5] + \end{tcolorbox} + \end{multicols} + }% + }% + }% + }% + } + }% + }% + }% + }% + }{% + \ifboolKV[ClesFlash]{Numeration}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \begin{frame} + \QFNumeration% + \end{frame} + }{% + \ifboolKV[ClesFlash]{Heure}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \StrMid{\ListeFlash[1,1]}{1}{2}[\NbHeures]% + \StrMid{\ListeFlash[1,1]}{3}{4}[\NbMinutes]% + \StrMid{\ListeFlash[1,1]}{5}{6}[\NbSecondes]% + \begin{frame} + \QFHeure% + \end{frame} + }{% + \ifboolKV[ClesFlash]{Mesure}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \begin{frame} + \QFMesure% + \end{frame} + }{% + \ifboolKV[ClesFlash]{Daily}{% + \setsepchar[*]{/}% + \readlist*\ListeFlash{#2}% + \begin{frame} + \QFDaily + \end{frame} + }{% + \ifboolKV[ClesFlash]{Decimal}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \begin{frame} + \QFDecimal% + \end{frame} + }{% + \ifboolKV[ClesFlash]{Mental}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \begin{frame} + \QFMental% + \end{frame} + }{ + \ifboolKV[ClesFlash]{Expression}{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \begin{frame} + \QFExpression% + \end{frame} + }{% + \setsepchar[*]{/}% + \readlist*\ListeFlash{#2}% + \ifboolKV[ClesFlash]{Simple}{% + \begin{frame} + \ListeFlash[1] + \begin{tcolorbox}[valign=center] + \ListeFlash[2] + \end{tcolorbox} + \end{frame} + }{% + \setsepchar[*]{,*/}% + \readlist*\ListeFlash{#2}% + \ifboolKV[ClesFlash]{Kahout}{% + \setsepchar[*]{*/}% + \readlist*\ListeFlash{#2}% + \begin{frame} + \begin{tcolorbox}[valign=center] + \ListeFlash[1,1] + \end{tcolorbox} + \vfill + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{columns}[T] + \begin{column}{0.45\linewidth} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurUn!150,colback=CouleurUn,halign=center,valign=center] + \ListeFlash[1,2] + \end{tcolorbox} + \end{column} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{column}{0.45\linewidth} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurDeux!150,colback=CouleurDeux,halign=center,valign=center] + \ListeFlash[1,3] + \end{tcolorbox} + \end{column} + \end{columns} + \bigskip + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{columns}[T] + \begin{column}{0.45\linewidth} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurTrois!150,colback=CouleurTrois,halign=center,valign=center] + \ListeFlash[1,4] + \end{tcolorbox} + \end{column} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{column}{0.45\linewidth} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurQuatre!150,colback=CouleurQuatre,halign=center,valign=center] + \ListeFlash[1,5] + \end{tcolorbox} + \end{column} + \end{columns} + \end{frame} + }{% + \setsepchar[*]{*/}% + \readlist*\ListeFlash{#2}% + \begin{frame} + \begin{tcolorbox}[valign=center] + \ListeFlash[1,1] + \end{tcolorbox} + \vfill + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{columns}[T] + \begin{column}{0.45\linewidth} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurUn!150,colback=white,boxrule=1mm,halign=center,valign=center] + \ListeFlash[1,2] + \end{tcolorbox} + \end{column} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{column}{0.45\linewidth} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurDeux!150,colback=white,boxrule=1mm,halign=center,valign=center] + \ListeFlash[1,3] + \end{tcolorbox} + \end{column} + \end{columns} + \bigskip + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{columns}[T] + \begin{column}{0.45\linewidth} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurTrois!150,boxrule=1mm,colback=white,halign=center,valign=center] + \ListeFlash[1,4] + \end{tcolorbox} + \end{column} + \ifboolKV[ClesFlash]{Pause}{\pause}{} + \begin{column}{0.45\linewidth} + \begin{tcolorbox}[height=\HauteurFlash,colframe=CouleurQuatre!150,colback=white,boxrule=1mm,halign=center,valign=center] + \ListeFlash[1,5] + \end{tcolorbox} + \end{column} + \end{columns} + \end{frame} + }% + }% + }% + }% + } + }% + }% + }% + }% + }% +}% + +%%%%%%%%%%%%% +%%% Fractions +%%%%%%%%%%%%% +\setKVdefault[ClesFraction]{Rayon=2cm,Disque,Regulier=false,Segment=false,Rectangle=false,Longueur=5cm,Largeur=2cm,Cotes=5,Couleur=green,Reponse=false,Multiple=1} + +\def\MPFractionRegulier#1#2#3#4#5{ + % #1 rayon, #2 nb côtés, #3 num, #4 deno, #5 couleur + \ifluatex + \mplibforcehmode + \begin{mplibcode} + pair O,A[],B[]; + O=u*(0,0); + path cc,cd; + cc=cercles(O,#1); + for k=0 upto #2: + A[k]=pointarc(cc,k*(360/#2)); + endfor; + cd=polygone(A0 for k=1 upto #2-1:,A[k] endfor); + for k=0 upto #4-1: + B[k]=point(k*(#2/#4)) of cd; + endfor; + remplis O--arccercle(B[0],B[#3],O)--cycle withcolor #5; + %fi; + clip currentpicture to cd; + draw polygone(A0 for k=1 upto #2:,A[k] endfor); + if #4>1: + for k=0 upto #4-1: + draw segment(O,B[k]) cutafter cd; + endfor; + fi; + \end{mplibcode} + \else +\begin{mpost}[mpsettings={input PfC-Geometrie;}] + pair O,A[],B[]; + O=u*(0,0); + path cc,cd; + cc=cercles(O,#1); + for k=0 upto #2: + A[k]=pointarc(cc,k*(360/#2)); + endfor; + cd=polygone(A0 for k=1 upto #2-1:,A[k] endfor); + for k=0 upto #4-1: + B[k]=point(k*(#2/#4)) of cd; + endfor; + remplis O--arccercle(B[0],B[#3],O)--cycle withcolor #5; + %fi; + clip currentpicture to cd; + draw polygone(A0 for k=1 upto #2:,A[k] endfor); + if #4>1: + for k=0 upto #4-1: + draw segment(O,B[k]) cutafter cd; + endfor; + fi; + \end{mpost} + \fi +} + +\def\MPFractionRectangle#1#2#3#4#5#6{% + % #1 longueur, #2 largeur, #3 num, #4 deno, #5 couleur, #6 multiple + \ifluatex + \mplibforcehmode + \begin{mplibcode} + pair A,B,C,D,M[],N[],R[],S[]; + A=(1,1); + B-A=(#1,0); + C-B=(0,#2); + D-C=A-B; + numeric parts; + parts=(#4 div #6); + for k=0 upto parts: + M[k]=(k/parts)[A,B]; + N[k]=(k/parts)[D,C]; + endfor; + if #6>1: + for k=0 upto #6: + R[k]=(k/#6)[A,D]; + S[k]=(k/#6)[B,C]; + endfor; + fi; + if #6=1: + remplis polygone(A,M[#3],N[#3],D) withcolor #5; + else: + DDiv=#3 div parts; + MMod=#3 mod parts; + remplis polygone(A,B,S[DDiv],R[DDiv]) withcolor #5; + remplis + polygone(R[DDiv],(xpart(M[MMod]),ypart(R[DDiv])),(xpart(M[MMod]),ypart(R[DDiv+1])),R[DDiv+1]) withcolor #5; + fi; + draw polygone(A,B,C,D); + for k=1 upto (parts-1): + draw segment(M[k],N[k]); + endfor; + if #6>1: + for k=1 upto (#6-1): + draw segment(R[k],S[k]); + endfor; + fi; + \end{mplibcode} + \else +\begin{mpost}[mpsettings={input PfC-Geometrie;}] + pair A,B,C,D,M[],N[],R[],S[]; + A=(1,1); + B-A=(#1,0); + C-B=(0,#2); + D-C=A-B; + numeric parts; + parts=(#4 div #6); + for k=0 upto parts: + M[k]=(k/parts)[A,B]; + N[k]=(k/parts)[D,C]; + endfor; + if #6>1: + for k=0 upto #6: + R[k]=(k/#6)[A,D]; + S[k]=(k/#6)[B,C]; + endfor; + fi; + if #6=1: + remplis polygone(A,M[#3],N[#3],D) withcolor #5; + else: + DDiv=#3 div parts; + MMod=#3 mod parts; + remplis polygone(A,B,S[DDiv],R[DDiv]) withcolor #5; + remplis + polygone(R[DDiv],(xpart(M[MMod]),ypart(R[DDiv])),(xpart(M[MMod]),ypart(R[DDiv+1])),R[DDiv+1]) withcolor #5; + fi; + draw polygone(A,B,C,D); + for k=1 upto (parts-1): + draw segment(M[k],N[k]); + endfor; + if #6>1: + for k=1 upto (#6-1): + draw segment(R[k],S[k]); + endfor; + fi; + \end{mpost} + \fi +} + +\def\MPFractionDisque#1#2#3#4{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + pair A,B[]; + A=(0,0); + path cc; + cc=cercles(A,#1); + for k=0 upto (#3-1): + B[k]=pointarc(cc,(360/#3)*k); + endfor; + fill (A--B0--arccercle(B[0],B[#2],A)--cycle) withcolor #4; + draw cc; + for k=0 upto (#3-1): + draw segment(A,B[k]); + endfor; + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + pair A,B[]; + A=(0,0); + path cc; + cc=cercles(A,#1); + for k=0 upto (#3-1): + B[k]=pointarc(cc,(360/#3)*k); + endfor; + fill (A--B0--arccercle(B[0],B[#2],A)--cycle) withcolor #4; + draw cc; + for k=0 upto (#3-1): + draw segment(A,B[k]); + endfor; + \end{mpost} + \fi +} + +\def\MPFractionSegment#1#2#3#4{ + \ifluatex + \mplibforcehmode + \begin{mplibcode} + pair A,C,B[]; + A=(0,0); + C-A=(#1,0); + for k=0 upto #3: + B[k]=(k/#3)[A,C]; + endfor; + draw segment(B[0],B[#2]) withpen pencircle scaled 2 withcolor #4; + draw segment(A,C); + marque_p:="tiretv"; + for k=0 upto #3: + pointe(B[k]); + endfor; + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + pair A,C,B[]; + A=(0,0); + C-A=(#1,0); + for k=0 upto #3: + B[k]=(k/#3)[A,C]; + endfor; + draw segment(B[0],B[#2]) withpen pencircle scaled 2 withcolor #4; + draw segment(A,C); + marque_p:="tiretv"; + for k=0 upto #3: + pointe(B[k]); + endfor; + \end{mpost} + \fi +} + +\newcommand\Fraction[2][]{% + \useKVdefault[ClesFraction]% + \setKV[ClesFraction]{#1}% + \setsepchar[*]{/}% + \readlist*\ListeFraction{#2}% + %\ListeFractionlen -- Le numérateur est \ListeFraction[1] et le + %dénominateur est \ListeFraction[2]. + \ifboolKV[ClesFraction]{Regulier}{% + \ifboolKV[ClesFraction]{Reponse}{}{\setKV[ClesFraction]{Couleur=white}}% + \MPFractionRegulier{\useKV[ClesFraction]{Rayon}}{\useKV[ClesFraction]{Cotes}}{\ListeFraction[1]}{\ListeFraction[2]}{\useKV[ClesFraction]{Couleur}}% + }{% + \ifboolKV[ClesFraction]{Segment}{% + \ifboolKV[ClesFraction]{Reponse}{}{\setKV[ClesFraction]{Couleur=white}}% + \MPFractionSegment{\useKV[ClesFraction]{Longueur}}{\ListeFraction[1]}{\ListeFraction[2]}{\useKV[ClesFraction]{Couleur}}% + }{ + \ifboolKV[ClesFraction]{Rectangle}{%rectangle + \ifboolKV[ClesFraction]{Reponse}{}{\setKV[ClesFraction]{Couleur=white}}% + \MPFractionRectangle{\useKV[ClesFraction]{Longueur}}{\useKV[ClesFraction]{Largeur}}{\ListeFraction[1]}{\ListeFraction[2]}{\useKV[ClesFraction]{Couleur}}{\useKV[ClesFraction]{Multiple}}% + }{%disque + \ifboolKV[ClesFraction]{Reponse}{}{\setKV[ClesFraction]{Couleur=white}}% + \MPFractionDisque{\useKV[ClesFraction]{Rayon}}{\ListeFraction[1]}{\ListeFraction[2]}{\useKV[ClesFraction]{Couleur}}% + }% + }% + }% +}% + +%%%%%%%%%%%%%%%% +%%% Réponses à relier +%%%%%%%%%%%%%%%% +\setKVdefault[ClesRelie]{Solution=false,LargeurG=5cm,LargeurD=2cm,Stretch=1.5,Ecart=2cm} + +\newcommand\Relie[2][]{% + \useKVdefault[ClesRelie]% + \setKV[ClesRelie]{#1}% + \setsepchar[*]{,*/}% + \readlist*\ListeRelie{#2}% + \buildtabrelie% + \ifboolKV[ClesRelie]{Solution}{% + \xintFor* ##1 in {\xintSeq {1}{\ListeRelielen}}\do{% + \itemtomacro\ListeRelie[##1,1]\untest + \ifx\bla\untest\bla% + \else + \tikz[remember picture,overlay]{\draw (RelieG-##1) -- (RelieD-\ListeRelie[##1,3]);}% + \fi + }% + }{% + }% +} + +\newcounter{NbRelie} + +\def\buildtabrelie{% + \setcounter{NbRelie}{0}% + \renewcommand{\arraystretch}{\useKV[ClesRelie]{Stretch}}% + \begin{tabular}{p{\useKV[ClesRelie]{LargeurG}}cp{\useKV[ClesRelie]{Ecart}}>{\tikz[remember + picture]{\node[name=RelieD-\theNbRelie,inner + sep=0pt]{};\fill[] (RelieD-\theNbRelie) circle[radius=1.5pt]}}cp{\useKV[ClesRelie]{LargeurD}}}% + \xintFor* ##1 in {\xintSeq {1}{\ListeRelielen}}\do{\ListeRelie[##1,1]\itemtomacro\ListeRelie[##1,1]\untest% +\ifx\bla\untest\bla% + \uppercase{&}\stepcounter{NbRelie}% + \else + \uppercase{&}\stepcounter{NbRelie}\tikz[remember + picture,overlay]{\node[name=RelieG-\theNbRelie,inner + sep=0pt]{};\fill[] + (RelieG-\theNbRelie) circle[radius=1.5pt];} +\fi&&&\ListeRelie[##1,2]\\}% + \end{tabular}% + \setcounter{NbRelie}{0}% +}% + +\def\buildtabrelieold{% + \setcounter{NbRelie}{0}% + \renewcommand{\arraystretch}{\useKV[ClesRelie]{Stretch}}% + \begin{tabular}{p{\useKV[ClesRelie]{LargeurG}}cp{\useKV[ClesRelie]{Ecart}}>{\tikz[remember + picture,baseline]{\node[name=RelieD-\theNbRelie]{\Large\textbullet};}}cp{\useKV[ClesRelie]{LargeurD}}}% + \xintFor* ##1 in {\xintSeq {1}{\ListeRelielen}}\do{\ListeRelie[##1,1]\itemtomacro\ListeRelie[##1,1]\untest% +\ifx\bla\untest\bla% + \uppercase{&}\stepcounter{NbRelie}% + \else + \uppercase{&}\stepcounter{NbRelie}\tikz[remember picture,baseline]{\node[name=RelieG-\theNbRelie]{\Large\textbullet};} +\fi&&&\ListeRelie[##1,2]\\}% + \end{tabular}% + \setcounter{NbRelie}{0}% +}% + +%%%%%%%%%%%%%%%%%% +%% QCM +%%%%%%%%%%%%%%%%%% +\setKVdefault[ClesQCM]{Reponses=3,Solution=false,Stretch=1,Largeur=2cm,Couleur=gray!15,Titre=false,Nom=Réponse,Alph=false,VF=false} +\newlength{\LargeurQCM} +\newcounter{QuestionQCM} +\newcommand\QCM[2][]{% + \setcounter{QuestionQCM}{0} + \useKVdefault[ClesQCM]% + \setKV[ClesQCM]{#1}% + \setsepchar[*]{,*&}\ignoreemptyitems% + \readlist*\ListeQCM{#2}% + \ifboolKV[ClesQCM]{VF}{% + \setKV[ClesQCM]{Reponses=2} + \renewcommand{\arraystretch}{\useKV[ClesQCM]{Stretch}}% + \setlength{\LargeurQCM}{\fpeval{(\linewidth-\useKV[ClesQCM]{Reponses}*(3*\tabcolsep+\useKV[ClesQCM]{Largeur}))}pt}% + \xdef\NBcases{\fpeval{\useKV[ClesQCM]{Reponses}+1}}% + \begin{tabular}{|p{\LargeurQCM}|*{\useKV[ClesQCM]{Reponses}}{>{\centering\arraybackslash}p{\useKV[ClesQCM]{Largeur}}|}}% + \cline{2-\NBcases}% + \multicolumn{1}{c|}{}&Vrai&Faux\\ + \hline% + \xintFor* ##1 in {\xintSeq {1}{\ListeQCMlen}}\do{% + \stepcounter{QuestionQCM}\ifboolKV[ClesQCM]{Alph}{\textbf{\Alph{QuestionQCM}}/}{\textbf{\theQuestionQCM/}}~\ListeQCM[##1,1]\xintFor* ##2 in {\xintSeq {1}{\useKV[ClesQCM]{Reponses}}}\do{% + &\ifboolKV[ClesQCM]{Solution}{\xintifboolexpr{##2=\ListeQCM[##1,2]}{$\boxtimes$}{$\square$}}{$\square$}% + }\\ + }% + \hline% + \end{tabular} + }{% + \renewcommand{\arraystretch}{\useKV[ClesQCM]{Stretch}}% + \setlength{\LargeurQCM}{\fpeval{(\linewidth-\useKV[ClesQCM]{Reponses}*(3*\tabcolsep+\useKV[ClesQCM]{Largeur}))}pt}% + \xdef\NBcases{\fpeval{\useKV[ClesQCM]{Reponses}+1}}% + \begin{tabular}{|p{\LargeurQCM}|*{\useKV[ClesQCM]{Reponses}}{>{\centering\arraybackslash}p{\useKV[ClesQCM]{Largeur}}|}}% + \ifboolKV[ClesQCM]{Titre}{\cline{2-\NBcases}% + \multicolumn{1}{c|}{}\xintFor* ##2 in {\xintSeq {1}{\useKV[ClesQCM]{Reponses}}}\do{% + &\useKV[ClesQCM]{Nom} ##2}% + \\ + }{} + \hline% + \xintFor* ##1 in {\xintSeq {1}{\ListeQCMlen}}\do{% + \stepcounter{QuestionQCM}\ifboolKV[ClesQCM]{Alph}{\textbf{\Alph{QuestionQCM}}/}{\textbf{\theQuestionQCM/}}~\ListeQCM[##1,1]\xintFor* ##2 in {\xintSeq {1}{\useKV[ClesQCM]{Reponses}}}\do{% + &\ifboolKV[ClesQCM]{Solution}{\xdef\NumeroReponse{\fpeval{\useKV[ClesQCM]{Reponses}+2}}\xintifboolexpr{##2=\ListeQCM[##1,\NumeroReponse]}{\cellcolor{\useKV[ClesQCM]{Couleur}}}{}}{}\ListeQCM[##1,##2+1]% + }\\ + }% + \hline% + \end{tabular}% + }% +} + + + +%%%%%%%%%%%%%%%%%%%%% +%%%% Somme des angles +%%%%%%%%%%%%%%%%%%%%% + +\setKVdefault[ClesSommeAngle]{Detail=true,Figure=false,Isocele=false}% + +% On définit la figure à utiliser +\def\MPFigureSommeAngle#1#2#3#4#5#6{ + % #1 Premier sommet + % #2 Deuxième sommet + % #3 Troisième sommet + % #4 1er angle + % #5 2eme angle + % #6 0 isocèle / 1 pas isocèle + \ifluatex + \mplibcodeinherit{enable} + \mplibforcehmode + \begin{mplibcode} + pair A,B,C,O,I;% + % On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=u*(1,1); + B-A=u*(4,0); + C=(A--2[A,B rotatedabout(A,45)]) intersectionpoint (B--2[B,A rotatedabout(B,-60)]); + % On définit le centre du cercle circonscrit + O - .5[A,B] = whatever * (B-A) rotated 90; + O - .5[B,C] = whatever * (C-B) rotated 90; + % On tourne pour éventuellement moins de lassitude :) + numeric Angle; + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % On définit le centre du cercle inscrit + (I-C) rotated ((angle(A-C)-angle(B-C))/2) shifted C=whatever[A,C]; + (I-B) rotated ((angle(C-B)-angle(A-B))/2) shifted B=whatever[B,C]; + % on dessine à main levée :) + path triangle; + triangle=A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}--B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}--C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}--cycle; + % pour marquer les angles + path cc; + cc=fullcircle scaled 1u; + % on marque les angles + picture MAngle; + MAngle=image( + draw (cc shifted A); + draw (cc shifted B); + draw (cc shifted C); + ); + draw MAngle; + clip currentpicture to triangle; + draw A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + % on labelise + label(btex #1 etex,1.2[O,A]); + label(btex #2 etex,1.2[O,B]); + label(btex #3 etex,1.2[O,C]); + if #6=0: + if #4=#5: + marque_s:=marque_s/2; + draw Codelongueur(A,B,A,C,2); + marque_s:=marque_s*2; + label(btex $\ang{#4}$ etex,B+0.95u*unitvector(I-B)); + % label(btex $\ang{#5}$ etex,C+0.95u*unitvector(I-C)); + label(btex ? etex,A+0.95u*unitvector(I-A)); + else: +% if (#4=180-#5-#4) or (#5=180-#5-#4): + marque_s:=marque_s/2; + draw Codelongueur(A,B,A,C,2); + marque_s:=marque_s*2; + label(btex $\ang{#4}$ etex,A+0.95u*unitvector(I-A)); + label(btex ? etex,B+0.95u*unitvector(I-B)); + % label(btex $\ang{#5}$ etex,C+0.95u*unitvector(I-C)); + fi; + else: + label(btex $\ang{#4}$ etex,B+0.95u*unitvector(I-B)); + label(btex $\ang{#5}$ etex,C+0.95u*unitvector(I-C)); + label(btex ? etex,A+0.95u*unitvector(I-A)); + fi; + %fi; + \end{mplibcode} + \mplibcodeinherit{disable} + \else + \begin{mpost} + input PfC-Geometrie; + u:=1cm; + pair A,B,C,O,I;% + % On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=u*(1,1); + B-A=u*(4,0); + C=(A--2[A,B rotatedabout(A,45)]) intersectionpoint (B--2[B,A rotatedabout(B,-60)]); + % On définit le centre du cercle circonscrit + O - .5[A,B] = whatever * (B-A) rotated 90; + O - .5[B,C] = whatever * (C-B) rotated 90; + % On tourne pour éventuellement moins de lassitude :) + numeric Angle; + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % On définit le centre du cercle inscrit + (I-C) rotated ((angle(A-C)-angle(B-C))/2) shifted C=whatever[A,C]; + (I-B) rotated ((angle(C-B)-angle(A-B))/2) shifted B=whatever[B,C]; + % on dessine à main levée :) + path triangle; + triangle=A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}--B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}--C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}--cycle; + % pour marquer les angles + path cc; + cc=fullcircle scaled 1u; + % on marque les angles + picture MAngle; + MAngle=image( + draw (cc shifted A); + draw (cc shifted B); + draw (cc shifted C); + ); + draw MAngle; + clip currentpicture to triangle; + draw A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + % on labelise + label(btex #1 etex,1.2[O,A]); + label(btex #2 etex,1.2[O,B]); + label(btex #3 etex,1.2[O,C]); + if #6=0: + if #4=#5: + marque_s:=marque_s/2; + draw Codelongueur(A,B,A,C,2); + marque_s:=marque_s*2; + label(btex $\ang{#4}$ etex,B+0.95u*unitvector(I-B)); + % label(btex $\ang{#5}$ etex,C+0.95u*unitvector(I-C)); + label(btex ? etex,A+0.95u*unitvector(I-A)); + else: + %if (#4=180-#5-#4) or (#5=180-#5-#4): + marque_s:=marque_s/2; + draw Codelongueur(A,B,A,C,2); + marque_s:=marque_s*2; + label(btex $\ang{#4}$ etex,A+0.95u*unitvector(I-A)); + label(btex ? etex,B+0.95u*unitvector(I-B)); + % label(btex $\ang{#5}$ etex,C+0.95u*unitvector(I-C)); + fi; + else: + label(btex $\ang{#4}$ etex,B+0.95u*unitvector(I-B)); + label(btex $\ang{#5}$ etex,C+0.95u*unitvector(I-C)); + label(btex ? etex,A+0.95u*unitvector(I-A)); + fi; + %fi; + \end{mpost} + \fi +} + +\newcommand\RedactionSomme[4][]{% + % #1 : nom du triangle pA pB pC + % #2 : mesure de l'angle pApBpC + % #3 : mesure de l'angle pBpCpA + % la macro calculant la mesure de l'angle pCpApB + \useKVdefault[ClesSommeAngle]%obligatoire car la macro n'est pas dans un groupe. + \setKV[ClesSommeAngle]{#1}%On lit les arguments optionnels + % On récupère les noms des sommets. + \StrMid{#2}{1}{1}[\NomA]% + \StrMid{#2}{2}{2}[\NomB]% + \StrMid{#2}{3}{3}[\NomC]% + % On rédige + Dans le triangle $\NomA\NomB\NomC$,\ifboolKV[ClesSommeAngle]{Isocele}{ isocèle en \NomA,}{} on a :% + \ifboolKV[ClesSommeAngle]{Isocele}{% + \ifx#4\bla\bla% + \begin{align*}% + \widehat{\NomA\NomB\NomC}+\widehat{\NomB\NomC\NomA}+\widehat{\NomC\NomA\NomB}&=\ang{180}\\% + 2\times\ang{#3}+\widehat{\NomC\NomA\NomB}&=\ang{180}\\% + \xdef\sommeangle{\fpeval{2*#3}}\xdef\totalangle{\fpeval{180-\sommeangle}}\ang{\sommeangle}+\widehat{\NomC\NomA\NomB}&=\ang{180}\\% + \ifboolKV[ClesSommeAngle]{Detail}{\widehat{\NomC\NomA\NomB}&=\ang{180}-\ang{\sommeangle}\\}{\widehat{\NomC\NomA\NomB}&=\ang{\totalangle}}% + \ifboolKV[ClesSommeAngle]{Detail}{\widehat{\NomC\NomA\NomB}&=\ang{\totalangle}}{}% + \end{align*}% + \xdef\ResultatAngle{\totalangle}% + \else% + \begin{align*}% + \widehat{\NomA\NomB\NomC}+\widehat{\NomB\NomC\NomA}+\widehat{\NomC\NomA\NomB}&=\ang{180}\\% + 2\times\widehat{\NomA\NomB\NomC}+\ang{#4}&=\ang{180}\\% + \xdef\totalangle{\fpeval{180-#4}}% + \ifboolKV[ClesSommeAngle]{Detail}{2\times\widehat{\NomA\NomB\NomC}&=\ang{180}-\ang{#4}\\}{2\times\widehat{\NomA\NomB\NomC}&=\ang{\totalangle}\\}% + \ifboolKV[ClesSommeAngle]{Detail}{2\times\widehat{\NomA\NomB\NomC}&=\ang{\totalangle}\\}{\widehat{\NomA\NomB\NomC}&=\frac{\ang{\totalangle}}{2}\\}% + \ifboolKV[ClesSommeAngle]{Detail}{\widehat{\NomA\NomB\NomC}&=\frac{\ang{\totalangle}}{2}\\}{\widehat{\NomA\NomB\NomC}&=\ang{\fpeval{0.5*(180-#4)}}}%\\ + \ifboolKV[ClesSommeAngle]{Detail}{\widehat{\NomA\NomB\NomC}&=\ang{\fpeval{0.5*(180-#4)}}\\}{}% + \end{align*}% + \xdef\ResultatAngle{\fpeval{0.5*(180-#4)}}% + \fi% + }{% + \begin{align*}% + \widehat{\NomA\NomB\NomC}+\widehat{\NomB\NomC\NomA}+\widehat{\NomC\NomA\NomB}&=\ang{180}\\% + \ang{#3}+\ang{#4}+\widehat{\NomC\NomA\NomB}&=\ang{180}\\% + \xdef\sommeangle{\fpeval{#3+#4}}\xdef\totalangle{\fpeval{180-\sommeangle}}\ang{\sommeangle}+\widehat{\NomC\NomA\NomB}&=\ang{180}\\% + \ifboolKV[ClesSommeAngle]{Detail}{\widehat{\NomC\NomA\NomB}&=\ang{180}-\ang{\sommeangle}\\}{\widehat{\NomC\NomA\NomB}&=\ang{\totalangle}}%\\ + \ifboolKV[ClesSommeAngle]{Detail}{\widehat{\NomC\NomA\NomB}&=\ang{\totalangle}}{}% + \end{align*}% + \xdef\ResultatAngle{\totalangle}% + }% +}% + +\newcommand\SommeAngles[4][]{% + % #1 : nom du triangle pA pB pC + % #2 : mesure de l'angle pApBpC + % #3 : mesure de l'angle pBpCpA + % la macro calculant la mesure de l'angle pCpApB + \useKVdefault[ClesSommeAngle]%obligatoire car la macro n'est pas dans un groupe. + \setKV[ClesSommeAngle]{#1}%On lit les arguments optionnels + % On récupère les noms des sommets. + \StrMid{#2}{1}{1}[\NomA]% + \StrMid{#2}{2}{2}[\NomB]% + \StrMid{#2}{3}{3}[\NomC]% + % Figure ou pas ? + \ifboolKV[ClesSommeAngle]{Figure}{% + \begin{multicols}{2}% + {\em La figure est donnée à titre indicatif.}% + \ifx#3\bla\bla% + \xdef\Intermed{\fpeval{0.5*(180-#4)}}% + \[\MPFigureSommeAngle{\NomA}{\NomB}{\NomC}{#4}{\Intermed}{0}\]% + \else% + \ifx#4\bla\bla% + \[\MPFigureSommeAngle{\NomA}{\NomB}{\NomC}{#3}{#3}{0}\]% + \else% + \[\MPFigureSommeAngle{\NomA}{\NomB}{\NomC}{#3}{#4}{1}\]% + \fi% + \fi% + \par\columnbreak\par% + % on rédige + \RedactionSomme[#1]{#2}{#3}{#4}% + \end{multicols}% + }{% on rédige + \RedactionSomme[#1]{#2}{#3}{#4}% + }% +}% + +%%%%%%%%%%%%%%%% +%% Le théorème de Pythagore +%%%%%%%%%%%%%%%% +% On définit le trousseau de clés optionnelles +\setKVdefault[ClesPythagore]{Exact=false,AvantRacine=false,Racine=false,Entier=false,Egalite=false,Precision=2,Soustraction=false,Figure=false,Angle=0,Reciproque=false,ReciColonnes=false,Faible=false,Unite=cm,EnchaineA=false,EnchaineB=false,EnchaineC=false,ValeurA=0,ValeurB=0,ValeurC=0} + +% On définit les figures à utiliser +\def\MPFigurePytha#1#2#3#4#5#6{% + % #1 Premier sommet + % #2 Sommet de l'angle droit + % #3 troisième sommet + % #4 1ere longueur + % #5 2eme longueur + % #6 angle de rotation de la figure + \ifluatex + \mplibforcehmode + \begin{mplibcode} + u:=1cm; + pair A,B,C,O,D,E,F;%B est le sommet de l'angle droit + O=u*(2.5,2.5); + path cc; + cc=(fullcircle scaled 4u) shifted O; + % On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=point(0.9*length cc) of cc; + B=A rotatedabout(O,-120); + C=2[A,O]; + % On tourne pour éventuellement moins de lassitude :) + A:=A rotatedabout(O,#6); + B:=B rotatedabout(O,#6); + C:=C rotatedabout(O,#6); + % On définit l'angle droit + D-B=7*unitvector(C-B); + F-B=7*unitvector(A-B); + E-D=F-B; + draw A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + draw D--E--F; + decalage=3mm; + if #4<#5 : + if ypart(B)>ypart(O) : + label(btex \num{#4} etex rotated angle(C-B),1/2[C,B]-decalage*(unitvector(A-B))); + label(btex \num{#5} etex rotated(angle(B-A)),1/2[A,B]-decalage*(unitvector(C-B))); + else: + label(btex \num{#4} etex rotated angle(B-C),1/2[C,B]-decalage*(unitvector(A-B))); + label(btex \num{#5} etex rotated(angle(A-B)),1/2[A,B]-decalage*(unitvector(C-B))); + fi + else: + if ypart(B)>ypart(O) : + label(btex \num{#4} etex rotated angle(C-A),1/2[C,A]-decalage*(unitvector(C-A) rotated 90)); + label(btex \num{#5} etex rotated(angle(C-B)),1/2[C,B]-decalage*(unitvector(C-B))); + else: + label(btex \num{#4} etex rotated angle(A-C),1/2[A,C]+decalage*(unitvector(A-C) rotated 90)); + label(btex \num{#5} etex rotated(angle(A-B)),1/2[A,B]-decalage*(unitvector(C-B))); + fi; + fi; + label(btex #3 etex,1.2[O,A]); + label(btex #2 etex,1.2[O,B]); + label(btex #1 etex,1.2[O,C]); + \end{mplibcode} + \else + \begin{mpost} + u:=1cm; + pair A,B,C,O,D,E,F;%B est le sommet de l'angle droit + O=u*(2.5,2.5); + path cc; + cc=(fullcircle scaled 4u) shifted O; + % On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=point(0.9*length cc) of cc; + B=A rotatedabout(O,-120); + C=2[A,O]; + % On tourne pour éventuellement moins de lassitude :) + A:=A rotatedabout(O,#6); + B:=B rotatedabout(O,#6); + C:=C rotatedabout(O,#6); + % On définit l'angle droit + D-B=7*unitvector(C-B); + F-B=7*unitvector(A-B); + E-D=F-B; + draw A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + draw D--E--F; + decalage=3mm; + if #4<#5 : + if ypart(B)>ypart(O) : + label(LATEX("\num{"&decimal(#4)&"}") rotated + angle(C-B),1/2[C,B]-decalage*(unitvector(A-B))); + label(LATEX("\num{"&decimal(#5)&"}") rotated(angle(B-A)),1/2[A,B]-decalage*(unitvector(C-B))); + else: + label(LATEX("\num{"&decimal(#4)&"}") rotated angle(B-C),1/2[C,B]-decalage*(unitvector(A-B))); + label(LATEX("\num{"&decimal(#5)&"}") rotated(angle(A-B)),1/2[A,B]-decalage*(unitvector(C-B))); + fi + else: + if ypart(B)>ypart(O) : + label(LATEX("\num{"&decimal(#4)&"}") rotated angle(C-A),1/2[C,A]-decalage*(unitvector(C-A) rotated 90)); + label(LATEX("\num{"&decimal(#5)&"}") rotated(angle(C-B)),1/2[C,B]-decalage*(unitvector(C-B))); + else: + label(LATEX("\num{"&decimal(#4)&"}") rotated angle(A-C),1/2[A,C]+decalage*(unitvector(A-C) rotated 90)); + label(LATEX("\num{"&decimal(#5)&"}") rotated(angle(A-B)),1/2[A,B]-decalage*(unitvector(C-B))); + fi; + fi; + label(btex #3 etex,1.2[O,A]); + label(btex #2 etex,1.2[O,B]); + label(btex #1 etex,1.2[O,C]); + \end{mpost} + \fi +} + +\def\MPFigureReciPytha#1#2#3#4#5#6#7{% + % #1 Premier sommet + % #2 Sommet de l'angle droit + % #3 troisième sommet + % #4 1ere longueur + % #5 2eme longueur + % #6 3eme longueur + % #7 angle de rotation de la figure + \ifluatex + \mplibforcehmode + \begin{mplibcode} + u:=1cm; + pair A,B,C,O,D,E,F;%B est le sommet de l'angle droit + O=u*(2.5,2.5); + path cc; + cc=(fullcircle scaled 4u) shifted O; + % On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=point(0.8*length cc) of cc; + B=A rotatedabout(O,-100); + C=2[A,O]; + % On tourne pour éventuellement moins de lassitude :) + A:=A rotatedabout(O,#7); + B:=B rotatedabout(O,#7); + C:=C rotatedabout(O,#7); + % On définit l'angle droit + % D-B=7*unitvector(C-B); + % F-B=7*unitvector(A-B); + % E-D=F-B; + draw A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + % draw D--E--F; + decalage=3mm; + if ypart(B)>ypart(O) : + label(btex \num{#4} etex rotated angle(C-A),1/2[C,A]-decalage*(unitvector(C-A) rotated 90)); + label(btex \num{#5} etex rotated(angle(C-B)),1/2[C,B]-decalage*(unitvector(C-B))); + label(btex \num{#6} etex rotated(angle(B-A)),1/2[A,B]-decalage*(unitvector(C-B))); + else: + label(btex \num{#4} etex rotated angle(A-C),1/2[A,C]+decalage*(unitvector(A-C) rotated 90)); + label(btex \num{#5} etex rotated(angle(A-B)),1/2[A,B]-decalage*(unitvector(C-B))); + label(btex \num{#6} etex rotated angle(C-B),1/2[C,B]-decalage*(unitvector(A-B))); + fi; + label(btex #1 etex,1.2[O,A]); + label(btex #2 etex,1.2[O,B]); + label(btex #3 etex,1.2[O,C]); + \end{mplibcode} + \else + \begin{mpost} + u:=1cm; + pair A,B,C,O,D,E,F;%B est le sommet de l'angle droit + O=u*(2.5,2.5); + path cc; + cc=(fullcircle scaled 4u) shifted O; + % On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=point(0.8*length cc) of cc; + B=A rotatedabout(O,-100); + C=2[A,O]; + % On tourne pour éventuellement moins de lassitude :) + A:=A rotatedabout(O,#7); + B:=B rotatedabout(O,#7); + C:=C rotatedabout(O,#7); + % On définit l'angle droit + % D-B=7*unitvector(C-B); + % F-B=7*unitvector(A-B); + % E-D=F-B; + draw A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + % draw D--E--F; + decalage=3mm; + if ypart(B)>ypart(O) : + label(LATEX("\num{"&decimal(#4)&"}") rotated angle(C-A),1/2[C,A]-decalage*(unitvector(C-A) rotated 90)); + label(LATEX("\num{"&decimal(#5)&"}") rotated(angle(C-B)),1/2[C,B]-decalage*(unitvector(C-B))); + label(LATEX("\num{"&decimal(#6)&"}") rotated(angle(B-A)),1/2[A,B]-decalage*(unitvector(C-B))); + else: + label(LATEX("\num{"&decimal(#4)&"}") rotated angle(A-C),1/2[A,C]+decalage*(unitvector(A-C) rotated 90)); + label(LATEX("\num{"&decimal(#5)&"}") rotated(angle(A-B)),1/2[A,B]-decalage*(unitvector(C-B))); + label(LATEX("\num{"&decimal(#6)&"}") rotated angle(C-B),1/2[C,B]-decalage*(unitvector(A-B))); + fi; + label(btex #1 etex,1.2[O,A]); + label(btex #2 etex,1.2[O,B]); + label(btex #3 etex,1.2[O,C]); + \end{mpost} + \fi +} + +\newcommand{\Pythagore}[5][]{% + % #1 Paramètres sous forme de clés + % #2 Nom "complet" du triangle : ABC par exemple + % #3 Première longueur + % #4 Deuxième longueur + % #5 Troisième longueur (éventuellement vide) + \useKVdefault[ClesPythagore]%obligatoire car la macro n'est pas dans un groupe. + \setKV[ClesPythagore]{#1}%On lit les arguments optionnels + \ifboolKV[ClesPythagore]{Reciproque}{% + % On retient les noms des sommets + \StrMid{#2}{1}{1}[\NomA]% + \StrMid{#2}{2}{2}[\NomB]% + \StrMid{#2}{3}{3}[\NomC]% + % on stocke les valeurs données + \opcopy{#3}{A1}% + \opcopy{#4}{A2}% + \opcopy{#5}{A3}% + % On trace une figure ou pas ? + \ifboolKV[ClesPythagore]{Figure}{%Utilisation obligatoire de l'option --shell-escape de la compilation + \begin{multicols}{2} + {\em La figure est donnée à titre indicatif.}% + \[\MPFigureReciPytha{\NomA}{\NomB}{\NomC}{#3}{#4}{#5}{\useKV[ClesPythagore]{Angle}}\]% + \par\columnbreak\par% + % on rédige + Dans le triangle $#2$, $[\NomA\NomC]$ est le plus grand côté.% + \ifboolKV[ClesPythagore]{ReciColonnes}{% + \[ + \begin{array}{cccc|cccc} + \NomA\NomC^2&&&&&\NomA\NomB^2&+&\NomB\NomC^2\\ + \opexport{A1}{\Aun}\num{\Aun}^2&&&&&\opexport{A2}{\Adeux}\num{\Adeux}^2&+&\opexport{A3}{\Atrois}\num{\Atrois}^2\\ + \opmul*{A1}{A1}{a1}&&&&&\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}&+&\opmul*{A3}{A3}{a3}\opexport{a3}{\Atrois}\num{\Atrois}\\ + \opexport{a1}{\Aun}\num{\Aun}&&&&&\multicolumn{3}{c}{\opadd*{a2}{a3}{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}}\\ + \end{array} + \] + }{% + \[\left. + \begin{array}{l} + \NomA\NomC^2=\opexport{A1}{\Aun}\num{\Aun}^2=\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}\\ + \\ + \NomA\NomB^2+\NomB\NomC^2=\opexport{A2}{\Adeux}\num{\Adeux}^2+\opexport{A3}{\Atrois}\num{\Atrois}^2=\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}+\opmul*{A3}{A3}{a3}\opexport{a3}{\Atrois}\num{\Atrois}=\opadd*{a2}{a3}{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}\\ + \end{array} + \right\}\opcmp{a1}{a4}\ifopeq\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2\fi\opcmp{a1}{a4}\ifopneq\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2\fi + \] + } + \ifboolKV[ClesPythagore]{Egalite}{% + \opcmp{a1}{a4}\ifopeq Comme $\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2$, alors l'égalité de Pythagore est vérifiée. Donc le triangle $#2$ est rectangle en $\NomB$.\fi% + \opcmp{a1}{a4}\ifopneq Comme $\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2$, alors l'égalité de Pythagore n'est pas vérifiée. Donc le triangle $#2$ n'est pas rectangle.\fi% + }{% + \opcmp{a1}{a4}\ifopeq Comme $\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2$, alors le triangle $#2$ est rectangle + en $\NomB$ d'après la réciproque du théorème de Pythagore.\fi% + \opcmp{a1}{a4}\ifopneq Comme $\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2$, alors le + triangle $#2$ n'est pas rectangle\ifboolKV[ClesPythagore]{Faible}{.}{ d'après la contraposée du théorème de Pythagore.}\fi% + } + \end{multicols} + }{% + Dans le triangle $#2$, $[\NomA\NomC]$ est le plus grand côté.% + \ifboolKV[ClesPythagore]{ReciColonnes}{% + \[ + \begin{array}{cccc|cccc} + \NomA\NomC^2&&&&&\NomA\NomB^2&+&\NomB\NomC^2\\ + \opexport{A1}{\Aun}\num{\Aun}^2&&&&&\opexport{A2}{\Adeux}\num{\Adeux}^2&+&\opexport{A3}{\Atrois}\num{\Atrois}^2\\ + \opmul*{A1}{A1}{a1}&&&&&\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}&+&\opmul*{A3}{A3}{a3}\opexport{a3}{\Atrois}\num{\Atrois}\\ + \opexport{a1}{\Aun}\num{\Aun}&&&&&\multicolumn{3}{c}{\opadd*{a2}{a3}{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}}\\ + \end{array} + \] + }{% + \[\left. + \begin{array}{l} + \NomA\NomC^2=\opexport{A1}{\Aun}\num{\Aun}^2=\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}\\ + \\ + \NomA\NomB^2+\NomB\NomC^2=\opexport{A2}{\Adeux}\num{\Adeux}^2+\opexport{A3}{\Atrois}\num{\Atrois}^2=\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}+\opmul*{A3}{A3}{a3}\opexport{a3}{\Atrois}\num{\Atrois}=\opadd*{a2}{a3}{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}\\ + \end{array} + \right\}\opcmp{a1}{a4}\ifopeq\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2\fi\opcmp{a1}{a4}\ifopneq\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2\fi + \] + } + \ifboolKV[ClesPythagore]{Egalite}{% + \opcmp{a1}{a4}\ifopeq Comme $\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2$, alors l'égalité de Pythagore est vérifiée. Donc le triangle $#2$ est rectangle en $\NomB$.\fi% + \opcmp{a1}{a4}\ifopneq Comme $\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2$, alors l'égalité de Pythagore n'est pas vérifiée. Donc le triangle $#2$ n'est pas rectangle.\fi% + }{% + \opcmp{a1}{a4}\ifopeq Comme $\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2$, alors le triangle $#2$ est rectangle + en $\NomB$ d'après la réciproque du théorème de Pythagore.\fi% + \opcmp{a1}{a4}\ifopneq Comme $\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2$, alors le + triangle $#2$ n'est pas rectangle\ifboolKV[ClesPythagore]{Faible}{.}{ d'après la contraposée du théorème de Pythagore.}\fi% + } + } + }{% + % [xlop] paramètres de calcul + \opcopy{#3}{A1}% + \opcopy{#4}{A2}% + \opcopy{\useKV[ClesPythagore]{Precision}}{pres}% + % On retient les noms des sommets + \StrMid{#2}{1}{1}[\NomA]% + \StrMid{#2}{2}{2}[\NomB]% + \StrMid{#2}{3}{3}[\NomC]% + % On trace une figure ou pas ? + \ifboolKV[ClesPythagore]{Figure}{%Utilisation obligatoire de l'option --shell-escape de la compilation + \begin{multicols}{2}% + {\em La figure est donnée à titre indicatif.}% + \[\MPFigurePytha{\NomA}{\NomB}{\NomC}{#3}{#4}{\useKV[ClesPythagore]{Angle}}\] + \par\columnbreak\par% + % On démarre la résolution + \ifboolKV[ClesPythagore]{Egalite}{Comme le triangle $#2$ est rectangle en $\NomB$, alors l'égalité de Pythagore est vérifiée :}{Dans le triangle $#2$ rectangle en $\NomB$, le th\'eor\`eme de Pythagore permet d'\'ecrire :% + }% + \xintifboolexpr{#3<#4 || #3=#4}{%\ifnum#3<#4% + \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% + \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% + \begin{align*} + \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ + \NomA\NomC^2&=\ifboolKV[ClesPythagore]{EnchaineA}{\opcopy{\useKV[ClesPythagore]{ValeurA}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ + \NomA\NomC^2&=\ifboolKV[ClesPythagore]{EnchaineA}{\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}+\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomC^2&=\opadd*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ + \ifboolKV[ClesPythagore]{AvantRacine}{}{% + \\ + \ifboolKV[ClesPythagore]{Entier}{}{\NomA\NomC&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}\\} + \ifboolKV[ClesPythagore]{Racine}{}{\ifboolKV[ClesPythagore]{Exact}{\NomA\NomC&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomC&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ + } + \end{align*} + }{%\else% + \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2-#4^2),\useKV[ClesPythagore]{Precision})}}% + \begin{align*} + \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ + \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ + \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}-\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomB^2&=\opsub*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ + \ifboolKV[ClesPythagore]{AvantRacine}{}{% + \\ + \ifboolKV[ClesPythagore]{Entier}{}{\NomA\NomB&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}\\} + \ifboolKV[ClesPythagore]{Racine}{}{\ifboolKV[ClesPythagore]{Exact}{\NomA\NomB&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomB&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ + } + \end{align*} + }%\fi% + \end{multicols} + }{% + % On démarre la résolution + \ifboolKV[ClesPythagore]{Egalite}{Comme le triangle $#2$ est rectangle en $\NomB$, alors l'égalité de Pythagore est vérifiée :}{Dans le triangle $#2$ rectangle en $\NomB$, le th\'eor\`eme de Pythagore permet d'\'ecrire :% + }% + \xintifboolexpr{#3<#4 || #3=#4}{%\ifnum#3<#4% + \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% + \begin{align*} + \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ + \NomA\NomC^2&=\ifboolKV[ClesPythagore]{EnchaineA}{\opcopy{\useKV[ClesPythagore]{ValeurA}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ + \NomA\NomC^2&=\ifboolKV[ClesPythagore]{EnchaineA}{\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}+\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomC^2&=\opadd*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ + \ifboolKV[ClesPythagore]{AvantRacine}{}{% + \\ + \ifboolKV[ClesPythagore]{Entier}{}{\NomA\NomC&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}\\} + \ifboolKV[ClesPythagore]{Racine}{}{\ifboolKV[ClesPythagore]{Exact}{\NomA\NomC&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomC&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ + } + \end{align*} + }{%\else + \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2-#4^2),\useKV[ClesPythagore]{Precision})}}% + \ifboolKV[ClesPythagore]{Soustraction}{% + \begin{align*} + \NomA\NomB^2&=\NomA\NomC^2-\NomB\NomC^2\\ + \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}-\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ + \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}-\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomB^2&=\opsub*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ + \ifboolKV[ClesPythagore]{AvantRacine}{}{% + \\ + \ifboolKV[ClesPythagore]{Entier}{}{\NomA\NomB&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}\\} + \ifboolKV[ClesPythagore]{Racine}{}{\ifboolKV[ClesPythagore]{Exact}{\NomA\NomB&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomB&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ + } + \end{align*} + }{% + \begin{align*} + \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ + \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ + \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}-\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomB^2&=\opsub*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ + \ifboolKV[ClesPythagore]{AvantRacine}{}{% + \\ + \ifboolKV[ClesPythagore]{Entier}{}{\NomA\NomB&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}\\} + \ifboolKV[ClesPythagore]{Racine}{}{\ifboolKV[ClesPythagore]{Exact}{\NomA\NomB&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomB&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ + } + \end{align*} + }% + }%\fi% + }% + }% +}% + +%%%%%%%%%%%%%%%%% +%% Distributivité +%%%%%%%%%%%%%%%%% +% https://tex.stackexchange.com/questions/168972/draw-arrows-to-show-multiplication-pattern-distributive-property/169278?noredirect=1 +\newcommand{\Tikzmark}[1]{% + \tikz[remember picture,baseline,inner sep=0pt]{% + \node[name=Distri-\theNbDistri,anchor=base] {${#1}$};}% + \stepcounter{NbDistri}% +}% + +\newcommand{\DrawArrow}{% + \begin{tikzpicture}[overlay,remember picture] + \draw[-stealth,out=50,in=140,DCFlechesh,transform canvas={yshift=2pt}] (Distri-0.north) to (Distri-2.north); + \draw[-stealth,out=50,in=140,DCFlechesh!50,transform canvas={yshift=2pt}] (Distri-0.north) to (Distri-3.north); + \draw[-stealth,out=-50,in=-140,DCFlechesb,transform canvas={yshift=-2pt}] (Distri-1.south) to (Distri-2.south); + \draw[-stealth,out=-50,in=-140,DCFlechesb!50,transform canvas={yshift=-2pt}] (Distri-1.south) to (Distri-3.south); + \end{tikzpicture} +} + +\newcommand{\DrawArrowSimple}[1]{% + \begin{tikzpicture}[overlay,remember picture] + \draw[-stealth,out=50,in=140,DCFlechesh,transform canvas={yshift=2pt}] (Distri-#1.north) to (Distri-2.north); + \draw[-stealth,out=50,in=140,DCFlechesh!50,transform canvas={yshift=2pt}] (Distri-#1.north) to (Distri-3.north); + \end{tikzpicture} +} + +\newcommand{\DrawArrowSimpleRenverse}[1]{% + \begin{tikzpicture}[overlay,remember picture] + \draw[-stealth,out=140,in=50,DCFlechesh,transform canvas={yshift=2pt}] (Distri-#1.north) to (Distri-0.north); + \draw[-stealth,out=140,in=50,DCFlechesh!50,transform canvas={yshift=2pt}] (Distri-#1.north) to (Distri-1.north); + \end{tikzpicture} +} + +\newcounter{NbDistri}% +\setcounter{NbDistri}{0}% + +\newcounter{NbCalculDistri}%Pour compter combien de distributivité il +% y a dans un "seul calcul". +\setcounter{NbCalculDistri}{0} + +\setKVdefault[ClesDistributivite]{Etape=1,Lettre=x,Fleches=false,AideMul=false,Reduction=false,AideAdda=false,AideAddb=false,CouleurAide=red,CouleurReduction=black,CouleurFH=blue,CouleurFB=red,Somme=false,Difference=false,RAZ=false,Oppose=false,All=false,NomExpression=A,Fin=4,Numerique=false,Remarquable=false,Echange=0}%,AideAdd=false + %inutile ? + +\newcommand\Affichage[4][]{% + \setKV[ClesDistributivite]{#1}%On lit les arguments optionnels + \def\LETTRE{\useKV[ClesDistributivite]{Lettre}}% + \ensuremath{% + % partie du x^2 + \xintifboolexpr{#2=0}{}{\xintifboolexpr{#2=1}{}{\xintifboolexpr{#2=-1}{-}{\num{#2}}}\LETTRE^2}% + % partie du x + \xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{\xintifboolexpr{#2=0}{}{+}\xintifboolexpr{#3=1}{}{\num{#3}}}{% + \xintifboolexpr{#2=0}{\xintifboolexpr{#3=-1}{-}{\num{#3}}}{\xintifboolexpr{#3=-1}{-}{-\num{\fpeval{abs(#3)}}}}% + }\LETTRE}% + % partie du nombre + \xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\xintifboolexpr{#2=0}{\xintifboolexpr{#3=0}{}{+}}{+}\num{#4}}{% + \xintifboolexpr{#2=0}{\xintifboolexpr{#3=0}{\num{#4}}{-\num{\fpeval{abs(#4)}}}}{-\num{\fpeval{abs(#4)}}}}}% + % + }% +}% + +\xdef\SommeA{0}% +\xdef\SommeB{0}% +\xdef\SommeC{0}% + +\newcommand{\Distri}[5][]{% + \ensuremath{% + \useKVdefault[ClesDistributivite]%obligatoire car la macro n'est pas dans un groupe. + \setKV[ClesDistributivite]{#1}%On lit les arguments optionnels + \ifboolKV[ClesDistributivite]{RAZ}{\xdef\SommeA{0}\xdef\SommeB{0}\xdef\SommeC{0}% + % 80 + \setcounter{NbCalculDistri}{0}% + % fin 80 + }{}% + \colorlet{DCAide}{\useKV[ClesDistributivite]{CouleurAide}}% + \colorlet{DCReduction}{\useKV[ClesDistributivite]{CouleurReduction}}% + \colorlet{DCFlechesh}{\useKV[ClesDistributivite]{CouleurFH}}% + \colorlet{DCFlechesb}{\useKV[ClesDistributivite]{CouleurFB}}% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}>0}{% + \DistriEchange[#1]{#2}{#3}{#4}{#5}% + }{% + \ifboolKV[ClesDistributivite]{Remarquable}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{% + \ifx\bla#4\bla(\Affichage{0}{#2}{#3})^2\else(\Affichage{0}{#2}{#3})(\Affichage{0}{#4}{#5})\fi% + }{} + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{\ifx\bla#4\bla\xintifboolexpr{#3>0}{\xintifboolexpr{#2=1}{}{(\num{#2}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#2=1}{}{)}^2+2\times\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesDistributivite]{Lettre}\times\num{#3}+\num{#3}^2}{\xintifboolexpr{#2=1}{}{(\num{#2}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#2=1}{}{)}^2-2\times\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesDistributivite]{Lettre}\times\num{\fpeval{0-#3}}+\num{\fpeval{0-#3}}^2}\else\xintifboolexpr{#2=1}{}{(\num{#2}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#2=1}{}{)}^2-\num{#3}^2\fi}{} + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{% + %80 + \xintifboolexpr{\theNbCalculDistri>1}{\setcounter{NbCalculDistri}{0}}{}% + \stepcounter{NbCalculDistri}% + % fin 80 + \ifx\bla#4\bla% + \xdef\Multi{\fpeval{#2*#2}}% + \xdef\Multij{\fpeval{#2*#3}}% + \xdef\Multik{\fpeval{#3*#2}}% + \xdef\Multil{\fpeval{#3*#3}}% + %% ils sont redéfinis pour pouvoir envisager la somme de deux + %% expressions à développer + \xdef\Multim{\fpeval{#2*#3+#3*#2}}% + \ifboolKV[ClesDistributivite]{Oppose}{% + \xdef\Multi{\fpeval{-\Multi}}% + \xdef\Multim{\fpeval{-\Multim}}% + \xdef\Multil{\fpeval{-\Multil}}% + \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{(}{}\Affichage{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% + \xintifboolexpr{\Multim=0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\Affichage{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% + \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% + }{% + \Affichage{\Multi}{\Multim}{\Multil}% + } + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+#2*#2}}\xdef\SommeB{\fpeval{\SommeB+#2*#3+#3*#2}}\xdef\SommeC{\fpeval{\SommeC+#3*#3}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-#2*#2}}\xdef\SommeB{\fpeval{\SommeB-#2*#3-#3*#2}}\xdef\SommeC{\fpeval{\SommeC-#3*#3}}}{}% + \else% + \xdef\Multi{\fpeval{#2*#4}}% + \xdef\Multij{\fpeval{#2*#5}}% + \xdef\Multik{\fpeval{#3*#4}}% + \xdef\Multil{\fpeval{#3*#5}}% + %% ils sont redéfinis pour pouvoir envisager la somme de deux + %% expressions à développer + \xdef\Multim{\fpeval{#2*#5+#3*#4}}% + \ifboolKV[ClesDistributivite]{Oppose}{% + \xdef\Multi{\fpeval{-\Multi}}% + \xdef\Multim{\fpeval{-\Multim}}% + \xdef\Multil{\fpeval{-\Multil}}% + \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{(}{}\Affichage{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% + \xintifboolexpr{\Multim=0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\Affichage{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% + \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% + }{% + \Affichage{\Multi}{\Multim}{\Multil}% + } + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+#2*#4}}\xdef\SommeB{\fpeval{\SommeB+#2*#5+#3*#4}}\xdef\SommeC{\fpeval{\SommeC+#3*#5}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-#2*#4}}\xdef\SommeB{\fpeval{\SommeB-#2*#5-#3*#4}}\xdef\SommeC{\fpeval{\SommeC-#3*#5}}}{}% + \fi% + }{}% + }{% + \ifboolKV[ClesDistributivite]{Numerique}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=0}{% + \num{\fpeval{#2+#3}}\times\num{\fpeval{#4+#5}}\multido{\i=2+1}{4}{=\Distri[Numerique,Etape=\i]{#2}{#3}{#4}{#5}}% + }{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=-1}{% + \Distri[Numerique,Etape=3]{#2}{#3}{#4}{#5}\multido{\i=2+-1}{2}{=\Distri[Numerique,Etape=\i]{#2}{#3}{#4}{#5}}=\num{\fpeval{(#2+#3)*(#4+#5)}}% + }{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{\num{\fpeval{#2+#3}}\times\num{\fpeval{#4+#5}}}{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{\num{\fpeval{#2+#3}}\times(\num{#4}\xintifboolexpr{#5>0}{+}{-}\num{\fpeval{abs(#5)}})}{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{\num{#3}\times\num{#4}\xintifboolexpr{#5>0}{+}{-}\num{#3}\times\num{\fpeval{abs(#5)}}}{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=4}{\num{\fpeval{#3*#4}}\xintifboolexpr{#5>0}{+}{-}\num{\fpeval{abs(#3*#5)}}}{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=5}{\num{\fpeval{#3*#4+#3*#5}}}{}% + }% + }% + }{% + \ifboolKV[ClesDistributivite]{All}{% + \xdef\NomLettre{\useKV[ClesDistributivite]{NomExpression}}% + \xdef\NomFin{\useKV[ClesDistributivite]{Fin}}% + \xintFor* ##1 in {\xintSeq {1}{\useKV[ClesDistributivite]{Fin}-1}}\do + {\NomLettre&=\Distri[Etape=##1]{#2}{#3}{#4}{#5}\\}% + \NomLettre&=\Distri[Etape=\NomFin]{#2}{#3}{#4}{#5}% + }{% + % Etape 1 + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{% + \xintifboolexpr{#2=0}{% + }{\xintifboolexpr{#3=0}{}{(}}\Tikzmark{\Affichage[#1]{0}{#2}{0}}% + \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{+(}}{}% + \xintifboolexpr{#3>0}{\xintifboolexpr{#2=0}{}{+}}{\xintifboolexpr{#3<0}{-}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#3)}}}% + \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{)}}{}% + \xintifboolexpr{#2=0}{}{\xintifboolexpr{#3=0}{}{)}}% + % + \ifboolKV[ClesDistributivite]{AideMul}{\times}{}%on aide dans le cas double + \xdef\Multi{\fpeval{#4*#5}}%affichage auto si (a+b)xk + % + \xintifboolexpr{\Multi=0}{\times% + \xintifboolexpr{#4<0}{(}{\xintifboolexpr{#5<0}{(}{}}}{(}% + \Tikzmark{\Affichage[#1]{0}{#4}{0}}% + \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{+(}}{}% + \xintifboolexpr{#5>0}{\xintifboolexpr{#4=0}{}{+}}{\xintifboolexpr{#5<0}{\xintifboolexpr{#4=0}{{-}}{-}}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#5)}}}% + \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{)}}{}% + \xintifboolexpr{\Multi=0}{% + \xintifboolexpr{#4<0}{)}{\xintifboolexpr{#5<0}{)}{}}}{)}% + \ifboolKV[ClesDistributivite]{Fleches}{% + \xdef\Multi{\fpeval{#2*#3*#4*#5}}% + \xintifboolexpr{\Multi=0}{% + \xdef\Multij{\fpeval{#2*#3}}%\relax + \xintifboolexpr{\Multij=0}{\xintifboolexpr{#2=0}{\DrawArrowSimple{1}}{\DrawArrowSimple{0}}}{\xintifboolexpr{#4=0}{\DrawArrowSimpleRenverse{3}}{\DrawArrowSimpleRenverse{2}}}% + }{% + \DrawArrow% + }% + }{}\setcounter{NbDistri}{0}% + }{} + % Etape 2 + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{% + \xdef\Multi{\fpeval{#2*#4}}% + \xintifboolexpr{\Multi=0}{}{% + \xintifboolexpr{#2<0}{(}{}\Affichage[#1]{0}{#2}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\Affichage[#1]{0}{#4}{0}\xintifboolexpr{#4<0}{)}{}% + } + \xdef\Multij{\fpeval{#2*#5}}% + \xintifboolexpr{\Multij=0}{}{% + \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{#2<0}{(}{}\Affichage[#1]{0}{#2}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\Affichage[#1]{0}{0}{#5}\xintifboolexpr{#5<0}{)}{}% + }% + \xdef\Multik{\fpeval{#3*#4}}% + \xintifboolexpr{\Multik=0}{}{% + \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{#3<0}{(}{}\Affichage[#1]{0}{0}{#3}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\Affichage[#1]{0}{#4}{0}\xintifboolexpr{#4<0}{)}{}% + }% + \xdef\Multil{\fpeval{#3*#5}}% + \xintifboolexpr{\Multil=0}{}{+% + \xintifboolexpr{#3<0}{(}{}\Affichage[#1]{0}{0}{#3}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\Affichage[#1]{0}{0}{#5}\xintifboolexpr{#5<0}{)}{}% + }% + }{}% + % Etape 3 + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{% + %80 + \stepcounter{NbCalculDistri}% + % fin 80 + \xdef\Multi{\fpeval{#2*#4}}% + \xdef\Multij{\fpeval{#2*#5}}% + \xdef\Multik{\fpeval{#3*#4}}% + \xdef\Multil{\fpeval{#3*#5}}% + %% ils sont redéfinis pour pouvoir envisager la somme de deux + %% expressions à développer + %80 + \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multi<0}{(\Affichage{\Multi}{0}{0})}{\Affichage{\Multi}{0}{0}}}{\Affichage{\Multi}{0}{0}}% + %fin 80 + \ifboolKV[ClesDistributivite]{Reduction}{\mathunderline{DCReduction}{% + \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multi=0}{}{{}+}\xintifboolexpr{\Multij<0}{(}{}\Affichage{0}{\Multij}{0}\xintifboolexpr{\Multij<0}{)}{}}% + \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multil=0}{\xintifboolexpr{#2=0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\Affichage{0}{\Multik}{0}\xintifboolexpr{\Multik<0}{)}{}}% + }% + }{% + \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multi=0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\Affichage{0}{\Multij}{0}\xintifboolexpr{\Multij<0}{)}{}}% + \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multil=0}{\xintifboolexpr{#2=0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\Affichage{0}{\Multik}{0}\xintifboolexpr{\Multik<0}{)}{}}% + }% + \xintifboolexpr{\Multil=0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}% + }{}% + % Etape 4 + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=4}{% + \xdef\Multi{\fpeval{#2*#4}}% + \xdef\Multij{\fpeval{#2*#5}}% + \xdef\Multik{\fpeval{#3*#4}}% + \xdef\Multil{\fpeval{#3*#5}}% + %% ils sont redéfinis pour pouvoir envisager la somme de deux + %% expressions à développer + \xdef\Multim{\fpeval{#2*#5+#3*#4}}% + %80 + \xintifboolexpr{\theNbCalculDistri>1}{\setcounter{NbCalculDistri}{0}}{}% + \stepcounter{NbCalculDistri}% + %fin 80 + \ifboolKV[ClesDistributivite]{Oppose}{% + \xdef\Multi{\fpeval{-\Multi}}% + \xdef\Multim{\fpeval{-\Multim}}% + \xdef\Multil{\fpeval{-\Multil}}% + \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{(}{}\Affichage{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% + \xintifboolexpr{\Multim=0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\Affichage{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% + \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% + }{% + %80 + \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multi<0}{(\Affichage{\Multi}{0}{0})}{\Affichage{\Multi}{0}{0}}}{\Affichage{\Multi}{0}{0}}% + \xintifboolexpr{\Multim=0}{}{% + \xintifboolexpr{\Multim>0}{+\Affichage{0}{\Multim}{0}}{-\Affichage{0}{\fpeval{-\Multim}}{0}}% + }% + \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil<0}{-\Affichage{0}{0}{\fpeval{-\Multil}}}{+\Affichage{0}{0}{\Multil}}}%\Affichage{\Multi}{\Multim}{\Multil}% + % fin 80 + } + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+#2*#4}}\xdef\SommeB{\fpeval{\SommeB+#2*#5+#3*#4}}\xdef\SommeC{\fpeval{\SommeC+#3*#5}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-#2*#4}}\xdef\SommeB{\fpeval{\SommeB-#2*#5-#3*#4}}\xdef\SommeC{\fpeval{\SommeC-#3*#5}}}{}% + }{}% + }% + }% + }% + }% + }% +}% + +\newcommand{\Resultat}[1][]{% + \setKV[ClesDistributivite]{#1}%On lit les arguments optionnels + \ensuremath{% + \Affichage{\SommeA}{\SommeB}{\SommeC} + } +} + +\newcommand\AffichageEchange[4][]{% + \setKV[ClesDistributivite]{#1}%On lit les arguments optionnels + \def\LETTRE{\useKV[ClesDistributivite]{Lettre}}% + \ensuremath{% + % partie du nombre + \xintifboolexpr{#2=0}{}{\num{#2}}% + % partie du x + \xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{\xintifboolexpr{#2=0}{}{+}\xintifboolexpr{#3=1}{}{\num{#3}}}{% + \xintifboolexpr{#2=0}{\xintifboolexpr{#3=-1}{-}{\num{#3}}}{\xintifboolexpr{#3=-1}{-}{-\num{\fpeval{abs(#3)}}}} + }\LETTRE}% + % partie du x^2 + \xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\xintifboolexpr{#2=0}{\xintifboolexpr{#3=0}{}{+}}{+}\xintifboolexpr{#4=1}{}{\num{#4}}}{% + \xintifboolexpr{#2=0}{\xintifboolexpr{#3=0}{\num{#4}}{-\num{\fpeval{abs(#4)}}}}{-\num{\fpeval{abs(#4)}}}}\LETTRE^2}% + }% +}% + +\newcommand{\DistriEchange}[5][]{% + \ensuremath{% + \useKVdefault[ClesDistributivite]%obligatoire car la macro n'est pas dans un groupe. + \setKV[ClesDistributivite]{#1}%On lit les arguments optionnels + \ifboolKV[ClesDistributivite]{RAZ}{\xdef\SommeA{0}\xdef\SommeB{0}\xdef\SommeC{0}% + % 80 + \setcounter{NbCalculDistri}{0}% + % fin 80 + }{}% + \colorlet{DCAide}{\useKV[ClesDistributivite]{CouleurAide}}% + \colorlet{DCReduction}{\useKV[ClesDistributivite]{CouleurReduction}}% + \colorlet{DCFlechesh}{\useKV[ClesDistributivite]{CouleurFH}}% + \colorlet{DCFlechesb}{\useKV[ClesDistributivite]{CouleurFB}}% + \ifboolKV[ClesDistributivite]{Remarquable}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{\ifx\bla#4\bla(\AffichageEchange{#2}{#3}{0})^2\else(\AffichageEchange{#2}{#3}{0})(\AffichageEchange{#4}{#5}{0})\fi + }{} + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{% + \ifx\bla#4\bla\xintifboolexpr{#3>0}{% + \num{#2}^2+2\times\num{#2}\times\xintifboolexpr{#3=1}{}{\num{#3}}\useKV[ClesDistributivite]{Lettre}+ + \xintifboolexpr{#3=1}{}{(\num{#3}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#3=1}{}{)}^2% + }{% + \num{#2}^2-2\times\num{#2}\times\xintifboolexpr{#3=-1}{}{\num{\fpeval{0-#3}}}\useKV[ClesDistributivite]{Lettre}+ + \xintifboolexpr{#3=-1}{}{(\num{\fpeval{0-#3}}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#3=-1}{}{)}^2% + }% + \else\num{#2}^2-\xintifboolexpr{#3=1}{}{(\num{#3}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#3=1}{}{)}^2% + \fi% + }{} + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{% + % 80 + \xintifboolexpr{\theNbCalculDistri>1}{\setcounter{NbCalculDistri}{0}}{}% + \stepcounter{NbCalculDistri}% + % fin 80 + \ifx\bla#4\bla% + \xdef\Multi{\fpeval{#2*#2}}% + \xdef\Multij{\fpeval{#2*#3}}% + \xdef\Multik{\fpeval{#3*#2}}% + \xdef\Multil{\fpeval{#3*#3}}% + %% ils sont redéfinis pour pouvoir envisager la somme de deux + %% expressions à développer + \xdef\Multim{\fpeval{#2*#3+#3*#2}}% + \ifboolKV[ClesDistributivite]{Oppose}{% + \xdef\Multi{\fpeval{-\Multi}}% + \xdef\Multim{\fpeval{-\Multim}}% + \xdef\Multil{\fpeval{-\Multil}}% + \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{(}{}\AffichageEchange{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% + \xintifboolexpr{\Multim=0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\AffichageEchange{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% + \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\AffichageEchange{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% + }{% + \AffichageEchange{\Multi}{\Multim}{\Multil}% + } + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+#3*#3}}\xdef\SommeB{\fpeval{\SommeB+#2*#3+#3*#2}}\xdef\SommeC{\fpeval{\SommeC+#2*#2}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-#3*#3}}\xdef\SommeB{\fpeval{\SommeB-#2*#3-#3*#2}}\xdef\SommeC{\fpeval{\SommeC-#2*#2}}}{}% + \else% + \xdef\Multi{\fpeval{#2*#4}}% + \xdef\Multij{\fpeval{#2*#5}}% + \xdef\Multik{\fpeval{#3*#4}}% + \xdef\Multil{\fpeval{#3*#5}}% + %% ils sont redéfinis pour pouvoir envisager la somme de deux + %% expressions à développer + \xdef\Multim{\fpeval{#2*#5+#3*#4}}% + \ifboolKV[ClesDistributivite]{Oppose}{% + \xdef\Multi{\fpeval{-\Multi}}% + \xdef\Multim{\fpeval{-\Multim}}% + \xdef\Multil{\fpeval{-\Multil}}% + \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{(}{}\AffichageEchange{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% + \xintifboolexpr{\Multim=0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\AffichageEchange{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% + \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\AffichageEchange{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% + }{% + \AffichageEchange{\Multi}{\Multim}{\Multil}% + } + % à faire + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+#3*#5}}\xdef\SommeB{\fpeval{\SommeB+#2*#5+#3*#4}}\xdef\SommeC{\fpeval{\SommeC+#2*#4}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-#3*#5}}\xdef\SommeB{\fpeval{\SommeB-#2*#5-#3*#4}}\xdef\SommeC{\fpeval{\SommeC-#2*#4}}}{}% + % + \fi% + }{}% + }{% + \ifboolKV[ClesDistributivite]{Numerique}{% + % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=0}{% + % \num{\fpeval{#2+#3}}\times\num{\fpeval{#4+#5}}\multido{\i=2+1}{4}{=\Distri[Numerique,Etape=\i]{#2}{#3}{#4}{#5}}% + % }{% + % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=-1}{% + % \Distri[Numerique,Etape=3]{#2}{#3}{#4}{#5}\multido{\i=2+-1}{2}{=\Distri[Numerique,Etape=\i]{#2}{#3}{#4}{#5}}=\num{\fpeval{(#2+#3)*(#4+#5)}}% + % }{% + % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{\num{\fpeval{#2+#3}}\times\num{\fpeval{#4+#5}}}{}% + % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{\num{\fpeval{#2+#3}}\times(\num{#4}\xintifboolexpr{#5>0}{+}{-}\num{\fpeval{abs(#5)}})}{}% + % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{\num{#3}\times\num{#4}\xintifboolexpr{#5>0}{+}{-}\num{#3}\times\num{\fpeval{abs(#5)}}}{}% + % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=4}{\num{\fpeval{#3*#4}}\xintifboolexpr{#5>0}{+}{-}\num{\fpeval{abs(#3*#5)}}}{}% + % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=5}{\num{\fpeval{#3*#4+#3*#5}}}{}% + % }% + % }% + }{% + \ifboolKV[ClesDistributivite]{All}{% + \xdef\NomLettre{\useKV[ClesDistributivite]{NomExpression}}% + \xdef\NomFin{\useKV[ClesDistributivite]{Fin}}% + \xdef\ValeurEchange{\useKV[ClesDistributivite]{Echange}} + \xintFor* ##1 in {\xintSeq {1}{\useKV[ClesDistributivite]{Fin}-1}}\do + {\NomLettre&=\DistriEchange[Echange=\ValeurEchange,Etape=##1]{#2}{#3}{#4}{#5}\\}% + \NomLettre&=\DistriEchange[Echange=\ValeurEchange,Etape=\NomFin]{#2}{#3}{#4}{#5}% + }{% + % Etape 1 + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=1||\useKV[ClesDistributivite]{Echange}=3}{% + \xintifboolexpr{#2=0}{% + }{\xintifboolexpr{#3=0}{% + }{(}}\Tikzmark{\Affichage[#1]{0}{0}{#2}}% + \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{+(}}{}% + \xintifboolexpr{#3>0}{\xintifboolexpr{#2=0}{}{+}}{\xintifboolexpr{#3<0}{-}{}}\Tikzmark{\Affichage[#1]{0}{\fpeval{abs(#3)}}{0}}% + \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{)}}{}% + \xintifboolexpr{#2=0}{% + }{\xintifboolexpr{#3=0}{% + }{)}}% + }{ + \xintifboolexpr{#2=0}{% + }{\xintifboolexpr{#3=0}{% + }{(}}\Tikzmark{\Affichage[#1]{0}{#2}{0}}% + \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{+(}}{}% + \xintifboolexpr{#3>0}{\xintifboolexpr{#2=0}{}{+}}{\xintifboolexpr{#3<0}{-}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#3)}}}% + \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{)}}{}% + \xintifboolexpr{#2=0}{% + }{\xintifboolexpr{#3=0}{% + }{)}}% + }% + % + \ifboolKV[ClesDistributivite]{AideMul}{\times}{}%on aide dans le cas double + \xdef\Multi{\fpeval{#4*#5}}%affichage auto si (a+b)xk + % + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=2||\useKV[ClesDistributivite]{Echange}=3}{% + \xintifboolexpr{\Multi=0}{\times% + \xintifboolexpr{#4<0}{(}{\xintifboolexpr{#5<0}{(}{}}}{(}% + \Tikzmark{\AffichageEchange[#1]{#4}{0}{0}}% + \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{+(}}{}% + \xintifboolexpr{#5>0}{\xintifboolexpr{#4=0}{}{+}}{\xintifboolexpr{#5<0}{-}{}}\Tikzmark{\AffichageEchange[#1]{0}{\fpeval{abs(#5)}}{0}}% + \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{)}}{}% + \xintifboolexpr{\Multi=0}{% + \xintifboolexpr{#4<0}{)}{\xintifboolexpr{#5<0}{)}{}}}{)}% + }{% + \xintifboolexpr{\Multi=0}{\times% + \xintifboolexpr{#4<0}{(}{\xintifboolexpr{#5<0}{(}{}}}{(}% + \Tikzmark{\Affichage[#1]{0}{#4}{0}}% + \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{+(}}{}% + \xintifboolexpr{#5>0}{\xintifboolexpr{#4=0}{}{+}}{\xintifboolexpr{#5<0}{\xintifboolexpr{#4=0}{{-}}{-}}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#5)}}}% + \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{)}}{}% + \xintifboolexpr{\Multi=0}{% + \xintifboolexpr{#4<0}{)}{\xintifboolexpr{#5<0}{)}{}}}{)}% + }% + \ifboolKV[ClesDistributivite]{Fleches}{% + \xdef\Multi{\fpeval{#2*#3*#4*#5}}% + \xintifboolexpr{\Multi=0}{% + \xdef\Multij{\fpeval{#2*#3}}%\relax + \xintifboolexpr{\Multij=0}{\xintifboolexpr{#2=0}{\DrawArrowSimple{1}}{\DrawArrowSimple{0}}}{\xintifboolexpr{#4=0}{\DrawArrowSimpleRenverse{3}}{\DrawArrowSimpleRenverse{2}}} + }{% + \DrawArrow + }% + }{}\setcounter{NbDistri}{0}% + }{}% + % Etape 2 + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=1}{% + \xdef\Multi{\fpeval{#2*#4}}% + \xintifboolexpr{\Multi=0}{}{% + \xintifboolexpr{#2<0}{(}{}\AffichageEchange[#1]{#2}{0}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\Affichage[#1]{0}{#4}{0}\xintifboolexpr{#4<0}{)}{}% + }% + \xdef\Multij{\fpeval{#2*#5}}% + \xintifboolexpr{\Multij=0}{}{% + \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{#2<0}{(}{}\AffichageEchange[#1]{#2}{0}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\Affichage[#1]{0}{0}{#5}\xintifboolexpr{#5<0}{)}{}% + }% + \xdef\Multik{\fpeval{#3*#4}}% + \xintifboolexpr{\Multik=0}{}{% + \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{#3<0}{(}{}\AffichageEchange[#1]{0}{#3}{0}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\Affichage[#1]{0}{#4}{0}\xintifboolexpr{#4<0}{)}{}% + }% + \xdef\Multil{\fpeval{#3*#5}}% + \xintifboolexpr{\Multil=0}{}{+% + \xintifboolexpr{#3<0}{(}{}\AffichageEchange[#1]{0}{#3}{0}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\Affichage[#1]{0}{0}{#5}\xintifboolexpr{#5<0}{)}{}% + }% + }{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=2}{% + \xdef\Multi{\fpeval{#2*#4}}% + \xintifboolexpr{\Multi=0}{}{% + \xintifboolexpr{#2<0}{(}{}\Affichage[#1]{0}{#2}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\AffichageEchange[#1]{#4}{0}{0}\xintifboolexpr{#4<0}{)}{}% + }% + \xdef\Multij{\fpeval{#2*#5}}% + \xintifboolexpr{\Multij=0}{}{% + \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{#2<0}{(}{}\Affichage[#1]{0}{#2}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\AffichageEchange[#1]{0}{#5}{0}\xintifboolexpr{#5<0}{)}{}% + }% + \xdef\Multik{\fpeval{#3*#4}}% + \xintifboolexpr{\Multik=0}{}{% + \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{#3<0}{(}{}\Affichage[#1]{0}{0}{#3}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\AffichageEchange[#1]{#4}{0}{0}\xintifboolexpr{#4<0}{)}{}% + }% + \xdef\Multil{\fpeval{#3*#5}}% + \xintifboolexpr{\Multil=0}{}{+% + \xintifboolexpr{#3<0}{(}{}\Affichage[#1]{0}{0}{#3}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\AffichageEchange[#1]{0}{#5}{0}\xintifboolexpr{#5<0}{)}{}% + }% + }{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=3}{% + \xdef\Multi{\fpeval{#2*#4}}% + \xintifboolexpr{\Multi=0}{}{% + \xintifboolexpr{#2<0}{(}{}\AffichageEchange[#1]{#2}{0}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\AffichageEchange[#1]{#4}{0}{0}\xintifboolexpr{#4<0}{)}{}% + }% + \xdef\Multij{\fpeval{#2*#5}}% + \xintifboolexpr{\Multij=0}{}{% + \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{#2<0}{(}{}\AffichageEchange[#1]{#2}{0}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\AffichageEchange[#1]{0}{#5}{0}\xintifboolexpr{#5<0}{)}{}% + }% + \xdef\Multik{\fpeval{#3*#4}}% + \xintifboolexpr{\Multik=0}{}{% + \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{#3<0}{(}{}\AffichageEchange[#1]{0}{#3}{0}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\AffichageEchange[#1]{#4}{0}{0}\xintifboolexpr{#4<0}{)}{}% + }% + \xdef\Multil{\fpeval{#3*#5}}% + \xintifboolexpr{\Multil=0}{}{+% + \xintifboolexpr{#3<0}{(}{}\AffichageEchange[#1]{0}{#3}{0}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\AffichageEchange[#1]{0}{#5}{0}\xintifboolexpr{#5<0}{)}{}% + }% + }{} + }{} + % Etape 3 + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{% + % 80 + \stepcounter{NbCalculDistri}% + % fin 80 + \xdef\Multi{\fpeval{#2*#4}}% + \xdef\Multij{\fpeval{#2*#5}}% + \xdef\Multik{\fpeval{#3*#4}}% + \xdef\Multil{\fpeval{#3*#5}}% + %% ils sont redéfinis pour pouvoir envisager la somme de deux + %% expressions à développer + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=1}{% + % 80 + \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multi<0}{(\AffichageEchange{0}{\Multi}{0})}{\AffichageEchange{0}{\Multi}{0}}}{\AffichageEchange{0}{\Multi}{0}}% + %fin 80\AffichageEchange{0}{\Multi}{0}%pas de soulignement de réduction ici + \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multi=0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\AffichageEchange{\Multij}{0}{0}\xintifboolexpr{\Multij<0}{)}{}}% + \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multil=0}{\xintifboolexpr{#2=0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\AffichageEchange{0}{0}{\Multik}\xintifboolexpr{\Multik<0}{)}{}}% + \xintifboolexpr{\Multil=0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\AffichageEchange{0}{\Multil}{0}\xintifboolexpr{\Multil<0}{)}{}% + \xdef\Multim{\fpeval{#2*#4+#3*#5}}% + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multik}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multij}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multik}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multij}}}{}% + }{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=2}{% + % 80 + \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multi<0}{(\AffichageEchange{0}{\Multi}{0})}{\AffichageEchange{0}{\Multi}{0}}}{\AffichageEchange{0}{\Multi}{0}}% + %fin 80\AffichageEchange{0}{\Multi}{0}%pas de soulignement de réduction ici + \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multi=0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\AffichageEchange{0}{0}{\Multij}\xintifboolexpr{\Multij<0}{)}{}}% + \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multil=0}{\xintifboolexpr{#2=0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\AffichageEchange{\Multik}{0}{0}\xintifboolexpr{\Multik<0}{)}{}}% + \xintifboolexpr{\Multil=0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\AffichageEchange{0}{\Multil}{0}\xintifboolexpr{\Multil<0}{)}{}% + \xdef\Multim{\fpeval{#2*#4+#3*#5}}% + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multij}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multik}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multij}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multik}}}{}% + }{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=3}{% + % 80 + \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multi<0}{(\AffichageEchange{\Multi}{0}{0})}{\AffichageEchange{\Multi}{0}{0}}}{\AffichageEchange{\Multi}{0}{0}}% + %fin 80\AffichageEchange{\Multi}{0}{0}%pas de soulignement de réduction ici + \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multi=0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\AffichageEchange{0}{\Multij}{0}\xintifboolexpr{\Multij<0}{)}{}}% + \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multil=0}{\xintifboolexpr{#2=0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\AffichageEchange{0}{\Multik}{0}\xintifboolexpr{\Multik<0}{)}{}}% + \xintifboolexpr{\Multil=0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\AffichageEchange{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}% + \xdef\Multim{\fpeval{#2*#5+#3*#4}}% + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multil}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multi}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multil}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multi}}}{}% + }{}% + }{}%fin etape3 + % Etape 4 + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=4}{% + \xdef\Multi{\fpeval{#2*#4}}% + \xdef\Multij{\fpeval{#2*#5}}% + \xdef\Multik{\fpeval{#3*#4}}% + \xdef\Multil{\fpeval{#3*#5}}% + %% ils sont redéfinis pour pouvoir envisager la somme de deux + %% expressions à développer + % 80 + \xintifboolexpr{\theNbCalculDistri>1}{\setcounter{NbCalculDistri}{0}}{}% + \stepcounter{NbCalculDistri}% + %fin 80 + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=1}{% + \xdef\Multim{\fpeval{#2*#4+#3*#5}}% + \ifboolKV[ClesDistributivite]{Oppose}{% + \xdef\Multiko{\fpeval{-\Multik}}% + \xdef\Multimo{\fpeval{-\Multim}}% + \xdef\Multijo{\fpeval{-\Multij}}% + \xintifboolexpr{\Multiko=0}{}{\xintifboolexpr{\Multiko<0}{(}{}\Affichage{\Multiko}{0}{0}\xintifboolexpr{\Multiko<0}{)}{}}% + \xintifboolexpr{\Multimo=0}{}{\xintifboolexpr{\Multimo>0}{+}{+(}\Affichage{0}{\Multimo}{0}\xintifboolexpr{\Multimo<0}{)}{}}% + \xintifboolexpr{\Multijo=0}{}{\xintifboolexpr{\Multijo>0}{+}{+(}\Affichage{0}{0}{\Multijo}\xintifboolexpr{\Multijo<0}{)}{}}% + }{% + % 80 + \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multik<0}{(\Affichage{\Multik}{0}{0})}{\Affichage{\Multik}{0}{0}}}{\Affichage{\Multik}{0}{0}}% + \xintifboolexpr{\Multim=0}{}{% + \xintifboolexpr{\Multim>0}{+\Affichage{0}{\Multim}{0}}{-\Affichage{0}{\fpeval{-\Multim}}{0}}% + }% + \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multij<0}{-\Affichage{0}{0}{\fpeval{-\Multij}}}{+\Affichage{0}{0}{\Multij}}}% + % fin 80 + }% + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multik}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multij}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multik}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multij}}}{}% + }{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=2}{% + \xdef\Multim{\fpeval{#2*#4+#3*#5}}% + \ifboolKV[ClesDistributivite]{Oppose}{% + \xdef\Multijo{\fpeval{-\Multij}}% + \xdef\Multimo{\fpeval{-\Multim}}% + \xdef\Multiko{\fpeval{-\Multik}}% + \xintifboolexpr{\Multijo=0}{}{\xintifboolexpr{\Multijo<0}{(}{}\Affichage{\Multijo}{0}{0}\xintifboolexpr{\Multijo<0}{)}{}}% + \xintifboolexpr{\Multimo=0}{}{\xintifboolexpr{\Multimo>0}{+}{+(}\Affichage{0}{\Multimo}{0}\xintifboolexpr{\Multimo<0}{)}{}}% + \xintifboolexpr{\Multiko=0}{}{\xintifboolexpr{\Multiko>0}{+}{+(}\Affichage{0}{0}{\Multiko}\xintifboolexpr{\Multiko<0}{)}{}}% + }{% + % 80 + \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multij<0}{(\Affichage{\Multij}{0}{0})}{\Affichage{\Multij}{0}{0}}}{\Affichage{\Multij}{0}{0}}% + \xintifboolexpr{\Multim=0}{}{% + \xintifboolexpr{\Multim>0}{+\Affichage{0}{\Multim}{0}}{-\Affichage{0}{\fpeval{-\Multim}}{0}}% + }% + \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multik<0}{-\Affichage{0}{0}{\fpeval{-\Multik}}}{+\Affichage{0}{0}{\Multik}}}% + % fin 80\Affichage{\Multij}{\Multim}{\Multik}% + }% + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multij}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multik}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multij}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multik}}}{}% + }{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=3}{% + \xdef\Multim{\fpeval{#2*#5+#3*#4}}% + \ifboolKV[ClesDistributivite]{Oppose}{% + \xdef\Multilo{\fpeval{-\Multil}}% + \xdef\Multimo{\fpeval{-\Multim}}% + \xdef\Multio{\fpeval{-\Multi}}% + \xintifboolexpr{\Multilo=0}{}{\xintifboolexpr{\Multilo<0}{(}{}\Affichage{\Multilo}{0}{0}\xintifboolexpr{\Multilo<0}{)}{}}% + \xintifboolexpr{\Multimo=0}{}{\xintifboolexpr{\Multimo>0}{+}{+(}\Affichage{0}{\Multimo}{0}\xintifboolexpr{\Multimo<0}{)}{}}% + \xintifboolexpr{\Multio=0}{}{\xintifboolexpr{\Multio>0}{+}{+(}\Affichage{0}{0}{\Multio}\xintifboolexpr{\Multio<0}{)}{}}% + }{% + % 80 + \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multil<0}{(\Affichage{\Multil}{0}{0})}{\Affichage{\Multil}{0}{0}}}{\Affichage{\Multil}{0}{0}}% + \xintifboolexpr{\Multim=0}{}{% + \xintifboolexpr{\Multim>0}{+\Affichage{0}{\Multim}{0}}{-\Affichage{0}{\fpeval{-\Multim}}{0}}% + }% + \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{-\Affichage{0}{0}{\fpeval{-\Multi}}}{+\Affichage{0}{0}{\Multi}}}% + % fin 80\Affichage{\Multil}{\Multim}{\Multi}% + } + \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multil}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multi}}}{}% + \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multil}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multi}}}{}% + }{}% + }{}% + }% + }% + }% + }% +}% + +%%%%%%%%%%%%%%% +%Nombre Premier +%%%%%%%%%%%%%%% +\setKVdefault[ClesNombrePremier]{Tableau=false,TableauVertical=false,TableauVerticalVide=false,Exposant=false,Longue=false,All=false,Arbre=false,ArbreVide=false,ArbreComplet=false,Diviseurs=false} + +\newcommand\Decomposition[2][]{% + \useKVdefault[ClesNombrePremier]% + \setKV[ClesNombrePremier]{#1}% + \ifboolKV[ClesNombrePremier]{Tableau}{\NombrePremier{#2}}{}% + \ifboolKV[ClesNombrePremier]{TableauVertical}{\NombrePremierVertical{#2}}{}% + \ifboolKV[ClesNombrePremier]{TableauVerticalVide}{\NombrePremierVerticalVide{#2}}{}% + \ifboolKV[ClesNombrePremier]{Exposant}{\PremierExposant{#2}}{}% + \ifboolKV[ClesNombrePremier]{Longue}{\PremierLong{#2}}{}% + \ifboolKV[ClesNombrePremier]{All}{\NombrePremierExposant{#2}}{}% + \ifboolKV[ClesNombrePremier]{Arbre}{\MPArbre{#2}}{}% + \ifboolKV[ClesNombrePremier]{ArbreComplet}{\MPArbreComplet{#2}}{}% + \ifboolKV[ClesNombrePremier]{Diviseurs}{\ListeDiviseur{#2}}{}% + \ifboolKV[ClesNombrePremier]{ArbreVide}{\MPArbreVide{#2}}{}% +} + +\def\MPArbre#1{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + numeric depart; + pair Ancre[]; + numeric decalage; + decalage=10mm; + + vardef PremierSimple(expr NB)= + b:=2; + depart:=NB; + if Estcepremier(depart)=false: + forever: + if (depart mod b)=0: + Ancre[k+1]-Ancre[k]=(-decalage*0.5,-decalage); + Ancre[k+2]-Ancre[k+1]=(decalage,0); + depart:=depart div b; + label(TEX("\num{"&decimal(b)&"}"),Ancre[k+1]); + label(TEX("\num{"&decimal(depart)&"}"),Ancre[k+2]); + draw 1/5[Ancre[k],Ancre[k+1]]--4/5[Ancre[k],Ancre[k+1]]; + draw 1/5[Ancre[k],Ancre[k+2]]--4/5[Ancre[k],Ancre[k+2]]; + k:=k+2; + racine:=depart; + depart:=1; + else: + b:=b+1; + fi; + exitif depart=1; + endfor; + else: + racine:=1; + fi; +enddef; + +vardef Estcepremier(expr NBa)= + boolean $; + c:=2; + departa:=NBa; + test:=1; + $=true; + if departa=1: + $:=false; + else: + forever: + if (departa mod c)=0: + departa:=departa div c; + test:=test+1; + else: + c:=c+1; + fi; + exitif departa=1; + endfor; + fi; + if test=2: + $:=true + else: + $:=false; + fi; + $ + enddef; + k:=0; + Ancre0:=(0,0); + racine:=#1; + + label(btex \num{#1} etex,(0,0)); + forever: + PremierSimple(racine); + exitif racine=1; + endfor; + \end{mplibcode} + \else + \begin{mpost} + numeric depart; + pair Ancre[]; + numeric decalage; + decalage=10mm; + + vardef PremierSimple(expr NB)= + b:=2; + depart:=NB; + if Estcepremier(depart)=false: + forever: + if (depart mod b)=0: + Ancre[k+1]-Ancre[k]=(-decalage*0.5,-decalage); + Ancre[k+2]-Ancre[k+1]=(decalage,0); + depart:=depart div b; + label(LATEX("\num{"&decimal(b)&"}"),Ancre[k+1]); + label(LATEX("\num{"&decimal(depart)&"}"),Ancre[k+2]); + draw 1/5[Ancre[k],Ancre[k+1]]--4/5[Ancre[k],Ancre[k+1]]; + draw 1/5[Ancre[k],Ancre[k+2]]--4/5[Ancre[k],Ancre[k+2]]; + k:=k+2; + racine:=depart; + depart:=1; + else: + b:=b+1; + fi; + exitif depart=1; + endfor; + else: + racine:=1; + fi; +enddef; + +vardef Estcepremier(expr NBa)= + boolean $; + c:=2; + departa:=NBa; + test:=1; + $=true; + if departa=1: + $:=false; + else: + forever: + if (departa mod c)=0: + departa:=departa div c; + test:=test+1; + else: + c:=c+1; + fi; + exitif departa=1; + endfor; + fi; + if test=2: + $:=true + else: + $:=false; + fi; + $ + enddef; + + k:=0; + Ancre0:=(0,0); + racine:=#1; + label(LATEX("\num{"&decimal(racine)&"}"),(0,0)); + forever: + PremierSimple(racine); + exitif racine=1; + endfor; +\end{mpost} +\fi +} + +\def\MPArbreComplet#1{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + beginfig(1); + numeric depart; + pair Ancre[]; + numeric decalage; + decalage=7.5mm; + +vardef NbEtape(expr nb)= + b:=2; + depart:=nb; + etape:=0; + Stock[0][0]=depart; + forever: + if (depart mod b)=0: + etape:=etape+1; + if etape=1: + Stock[etape][0]=b; + Stock[etape][etape]:=depart div b; + else: + for k=0 upto etape-2: + Stock[etape][k]:=Stock[etape-1][k]; + endfor; + Stock[etape][etape-1]:=b; + Stock[etape][etape]:=depart div b; + fi; + depart:=depart div b; + else: + b:=b+1; + fi; + exitif depart=1; + endfor; + etape +enddef; + +dx:=1cm; +dy:=1cm; + +pair N[][]; + +vardef Positions(expr Step)= + for k=0 upto (Step-1): + for l=0 upto k: + N[k][l]=(-k*dx+(l+k*.5)*dx,-k*dy); + label(TEX("\num{"&decimal(Stock[k][l])&"}"),N[k][l]); + endfor; + for l=0 upto k-1: + label(btex $\times$ etex,1/2[N[k][l],N[k][l+1]]); + endfor; + endfor; + for k=0 upto (Step-1): + for l=0 upto (k-1): + draw 1/5[N[k][l],N[k-1][l]]--4/5[N[k][l],N[k-1][l]]; + endfor; + if k>0: + draw 1/5[N[k][k],N[k-1][k-1]]--4/5[N[k][k],N[k-1][k-1]]; + fi; + endfor; + enddef; + + Positions(NbEtape(#1)); + \end{mplibcode} + \else + \begin{mpost} + numeric depart; +pair Ancre[]; +numeric decalage; +decalage=7.5mm; + +vardef NbEtape(expr nb)= + b:=2; + depart:=nb; + etape:=0; + Stock[0][0]=depart; + forever: + if (depart mod b)=0: + etape:=etape+1; + if etape=1: + Stock[etape][0]=b; + Stock[etape][etape]:=depart div b; + else: + for k=0 upto etape-2: + Stock[etape][k]:=Stock[etape-1][k]; + endfor; + Stock[etape][etape-1]:=b; + Stock[etape][etape]:=depart div b; + fi; + depart:=depart div b; + else: + b:=b+1; + fi; + exitif depart=1; + endfor; + etape +enddef; + +dx:=1cm; +dy:=1cm; + +pair N[][]; + +vardef Positions(expr Step)= + for k=0 upto (Step-1): + for l=0 upto k: + N[k][l]=(-k*dx+(l+k*.5)*dx,-k*dy); + label(LATEX("\num{"&decimal(Stock[k][l])&"}"),N[k][l]); + endfor; + for l=0 upto k-1: + label(btex $\times$ etex,1/2[N[k][l],N[k][l+1]]); + endfor; + endfor; + for k=0 upto (Step-1): + for l=0 upto (k-1): + draw 1/5[N[k][l],N[k-1][l]]--4/5[N[k][l],N[k-1][l]]; + endfor; + if k>0: + draw 1/5[N[k][k],N[k-1][k-1]]--4/5[N[k][k],N[k-1][k-1]]; + fi; + endfor; + enddef; + + Positions(NbEtape(#1)); + \end{mpost} + \fi +} + +\def\MPArbreVide#1{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + numeric depart; + pair Ancre[]; + numeric decalage; + decalage=7.5mm; + +vardef NbEtape(expr nb)= + b:=2; + depart:=nb; + etape:=0; + Stock[0][0]=depart; + forever: + if (depart mod b)=0: + etape:=etape+1; + if etape=1: + Stock[etape][0]=b; + Stock[etape][etape]:=depart div b; + else: + for k=0 upto etape-2: + Stock[etape][k]:=Stock[etape-1][k]; + endfor; + Stock[etape][etape-1]:=b; + Stock[etape][etape]:=depart div b; + fi; + depart:=depart div b; + else: + b:=b+1; + fi; + exitif depart=1; + endfor; + etape +enddef; + +dx:=1cm; +dy:=1cm; + +pair N[][]; + +vardef Positions(expr Step)= + + for k=0 upto (Step-1): + for l=0 upto k: + N[k][l]=(-k*dx+(l+k*.5)*dx,-k*dy); + endfor; + for l=0 upto k-1: + label(btex $\times$ etex,1/2[N[k][l],N[k][l+1]]); + endfor; + endfor; + for k=0 upto (Step-1): + for l=0 upto (k-1): + draw 1/5[N[k][l],N[k-1][l]]--4/5[N[k][l],N[k-1][l]]; + endfor; + if k>0: + draw 1/5[N[k][k],N[k-1][k-1]]--4/5[N[k][k],N[k-1][k-1]]; + fi; + endfor; + label(TEX("\num{"&decimal(Stock[0][0])&"}"),N[0][0]); + enddef; + + Positions(NbEtape(#1)); + \end{mplibcode} + \else + \begin{mpost} + numeric depart; + pair Ancre[]; +numeric decalage; +decalage=7.5mm; + +vardef NbEtape(expr nb)= + b:=2; + depart:=nb; + etape:=0; + Stock[0][0]=depart; + forever: + if (depart mod b)=0: + etape:=etape+1; + if etape=1: + Stock[etape][0]=b; + Stock[etape][etape]:=depart div b; + else: + for k=0 upto etape-2: + Stock[etape][k]:=Stock[etape-1][k]; + endfor; + Stock[etape][etape-1]:=b; + Stock[etape][etape]:=depart div b; + fi; + depart:=depart div b; + else: + b:=b+1; + fi; + exitif depart=1; + endfor; + etape +enddef; + +dx:=1cm; +dy:=1cm; + +pair N[][]; + +vardef Positions(expr Step)= + + for k=0 upto (Step-1): + for l=0 upto k: + N[k][l]=(-k*dx+(l+k*.5)*dx,-k*dy); + endfor; + for l=0 upto k-1: + label(btex $\times$ etex,1/2[N[k][l],N[k][l+1]]); + endfor; + endfor; + for k=0 upto (Step-1): + for l=0 upto (k-1): + draw 1/5[N[k][l],N[k-1][l]]--4/5[N[k][l],N[k-1][l]]; + endfor; + if k>0: + draw 1/5[N[k][k],N[k-1][k-1]]--4/5[N[k][k],N[k-1][k-1]]; + fi; + endfor; + label(LATEX("\num{"&decimal(Stock[0][0])&"}"),N[0][0]); + enddef; + + Positions(NbEtape(#1)); + \end{mpost} + \fi +} + +\newcount\premier + +\newcommand{\NombrePremier}[1]{%écrire la décomposition complète + % #1 le nombre premier à tester + \newcount\anp\newcount\bnp\newcount\cnp%\newcount\e\newcount\f% + \anp=#1\relax + \bnp=2\relax + \premier=-1\relax + % Pour déterminer le nombre d'étapes + \whiledo{\anp > 1}{% + \modulo{\the\anp}{\the\bnp} + \ifnum\remainder=0\relax + \global\premier=\numexpr\premier+1\relax + \cnp=\numexpr\anp/\bnp\relax + \anp=\cnp\relax + \else% + \bnp=\numexpr\bnp+1\relax% + \fi% + } + \ifnum\premier=0 + Le nombre \num{#1} est un nombre premier. + \else + \begin{align*} + \xintFor* ##1 in {\xintSeq {1}{\premier}}\do {\num{#1}&=\PremierEtape{#1}{##1}\xintifboolexpr{##1<\premier}{\\}{}}% + \end{align*} + \fi +} + +\newcommand{\NombrePremierVertical}[1]{%écrire la décomposition complète + % #1 le nombre premier à tester + \newcount\anpv\newcount\bnpv\newcount\cnpv%\newcount\e\newcount\f% + \anpv=#1\relax + \bnpv=2\relax + \premier=-1\relax + % Pour déterminer le nombre d'étapes + \whiledo{\anpv > 1}{% + \modulo{\the\anpv}{\the\bnpv} + \ifnum\remainder=0\relax + \global\premier=\numexpr\premier+1\relax + \cnpv=\numexpr\anpv/\bnpv\relax + \anpv=\cnpv\relax + \else% + \bnpv=\numexpr\bnpv+1\relax% + \fi% + } + \ifnum\premier=0 + Le nombre \num{#1} est un nombre premier. + \else + \begin{tabular}{c|c} + \xintFor* ##1 in {\xintSeq {0}{\premier}}\do + {\PremierMultipleVide{#1}{##1}&\xdef\Etape{\fpeval{##1+1}}\PremierDiviseurVide{#1}{\Etape} + \xintifboolexpr{##1<\premier}{\\}{\\1\\}}% + \end{tabular} + \fi +} + +\newcommand{\PremierDiviseurVide}[2]{% + %#1 : le nombre entier à tester + %#2 : le nombre d'étapes à effectuer + \newcount\anpvv\newcount\bnpvv\newcount\cnpvv\newcount\dnpvv% + \ensuremath{% + \anpvv=#1\relax + \bnpvv=2\relax + \dnpvv=0\relax% + \whiledo{\anpvv > 1}{% + \whiledo{\dnpvv < \number#2}{% + \modulo{\the\anpvv}{\the\bnpvv} + \ifnum\remainder=0\relax + \dnpvv=\numexpr\dnpvv+1\relax + \cnpvv=\numexpr\anpvv/\bnpvv\relax + \anpvv=\cnpvv\relax + %\num{\the\bnpvv}% + \else% + \bnpvv=\numexpr\bnpvv+1\relax% + \fi% + } + \num{\the\bnpvv}% + \anpvv=1% + } + } +} + +\newcommand{\PremierMultipleVide}[2]{% + %#1 : le nombre entier à tester + %#2 : le nombre d'étapes à effectuer + \newcount\anpmv\newcount\bnpmv\newcount\cnpmv\newcount\dnpmv% + \ensuremath{% + \anpmv=#1\relax + \bnpmv=2\relax + \dnpmv=0\relax% + \whiledo{\anpmv > 1}{% + \whiledo{\dnpmv < \number#2}{% + \modulo{\the\anpmv}{\the\bnpmv} + \ifnum\remainder=0\relax + \dnpmv=\numexpr\dnpmv+1\relax + \cnpmv=\numexpr\anpmv/\bnpmv\relax + \anpmv=\cnpmv\relax + %\num{\the\bnpmv} + \else% + \bnpmv=\numexpr\bnpmv+1\relax% + \fi% + } + \num{\the\anpmv}% + \anpmv=1% + } + } +} + +\newcommand{\NombrePremierVerticalVide}[1]{%écrire la décomposition complète + % #1 le nombre premier à tester + \newcount\anpv\newcount\bnpv\newcount\cnpv%\newcount\e\newcount\f% + \anpv=#1\relax + \bnpv=2\relax + \premier=-1\relax + % Pour déterminer le nombre d'étapes + \whiledo{\anpv > 1}{% + \modulo{\the\anpv}{\the\bnpv} + \ifnum\remainder=0\relax + \global\premier=\numexpr\premier+1\relax + \cnpv=\numexpr\anpv/\bnpv\relax + \anpv=\cnpv\relax + \else% + \bnpv=\numexpr\bnpv+1\relax% + \fi% + } + \ifnum\premier=0 + Le nombre \num{#1} est un nombre premier. + \else + \renewcommand{\arraystretch}{1.5} + \begin{tabular}{c|c} + \PremierMultipleVide{#1}{0}&\hbox to1cm{\dotfill}\\ + \xintFor* ##1 in {\xintSeq {1}{\premier}}\do + {\hbox to1cm{\dotfill}&\hbox + to1cm{\dotfill}\xintifboolexpr{##1<\premier}{\\}{\\\hbox + to1cm{\dotfill}\\}}% + \end{tabular} + \renewcommand{\arraystretch}{1} + \fi +} + +\newcommand{\NombrePremierExposant}[1]{%écrire la décomposition + % complète + \newcount\anp\newcount\bnp\newcount\cnp%\newcount\e\newcount\f% + % #1 le nombre premier à tester + \anp=#1\relax% + \bnp=2\relax% + \premier=-1\relax% + % Pour déterminer le nombre d'étapes + \whiledo{\anp > 1}{% + \modulo{\the\anp}{\the\bnp} + \ifnum\remainder=0\relax% + \global\premier=\numexpr\premier+1\relax% + \cnp=\numexpr\anp/\bnp\relax% + \anp=\cnp\relax% + \else% + \bnp=\numexpr\bnp+1\relax% + \fi% + } + \ifnum\premier=0% + Le nombre \num{#1} est un nombre premier.% + \else% + \begin{align*} + \xintFor* ##1 in {\xintSeq {1}{\premier}}\do {\num{#1}&=\PremierEtape{#1}{##1}\\}% + \num{#1}&=\PremierExposant{#1}% + \end{align*}% + \fi% +}% + +\newcommand{\PremierEtape}[2]{% + %#1 : le nombre entier à tester + %#2 : le nombre d'étapes à effectuer + \newcount\anp\newcount\bnp\newcount\cnp\newcount\dnp% + \ensuremath{% + \anp=#1\relax + \bnp=2\relax + \dnp=0\relax% + \whiledo{\anp > 1}{% + \whiledo{\dnp < \number#2}{% + \modulo{\the\anp}{\the\bnp} + \ifnum\remainder=0\relax + \dnp=\numexpr\dnp+1\relax + \cnp=\numexpr\anp/\bnp\relax + \anp=\cnp\relax + \num{\the\bnp}\times% + \else% + \bnp=\numexpr\bnp+1\relax% + \fi% + } + \num{\the\anp}% + \anp=1% + } + } +} + +\newcommand{\PremierExposant}[1]{% + %#1 : le nombre entier à tester + \ensuremath{% + \newcount\anp\newcount\bnp\newcount\cnp% + \newcount\pileb\newcount\exposant% + \exposant=0\relax% + \anp=#1\relax% + \bnp=2\relax% + \pileb=2\relax% + \whiledo{\the\anp > 1}{% + \modulo{\the\anp}{\the\bnp} + \ifnum\remainder=0\relax + \cnp=\numexpr\anp/\bnp\relax + \ifnum\pileb=\bnp + \exposant=\numexpr\exposant+1\relax + \fi + \anp=\cnp\relax + \else% + \ifnum\exposant>0\relax + \num{\the\pileb}\ifnum\exposant>1 ^{\num{\the\exposant}}\fi\times% + %\pilea=\anp\relax + \fi + \bnp=\numexpr\bnp+1\relax% + \pileb=\bnp\relax% + \exposant=0\relax + \fi% + } + \num{\the\pileb}\ifnum\exposant>1^{\num{\the\exposant}}\fi% + } +} + +\newcommand{\PremierLong}[1]{% + %#1 : le nombre entier à tester + \ensuremath{% + \newcount\anpl\newcount\bnpl\newcount\cnpl% + \newcount\pilebl + \anpl=#1\relax% + \bnpl=2\relax% + \pilebl=2\relax% + \whiledo{\the\anpl > 1}{% + \modulo{\the\anpl}{\the\bnpl} + \ifnum\remainder=0\relax + \cnpl=\numexpr\anpl/\bnpl\relax + \num{\the\bnpl}\ifnum\anpl>\bnpl\times\fi% + \anpl=\cnpl\relax + \else% + \bnpl=\numexpr\bnpl+1\relax% + \pilebl=\bnpl\relax% + \fi% + } + } +} + +\newcommand{\ListeDiviseur}[1]{%#1 : le nombre entier à tester + \newcount\anp\newcount\bnp% + \anp=#1% + \bnp=2\relax% + 1 % + \whiledo{\bnp<\anp}{% + \modulo{\the\anp}{\the\bnp}{}% + \ifnum\remainder=0% + ; $\num{\the\bnp}$ % + \fi% + \bnp=\numexpr\bnp+1% + }% + et \num{\the\anp}% +} + + +%%%%%%%%%%%%%%%%%%% +% Simplification +%%%%%%%%%%%%%%%%%%% +\makeatletter%by christian Tellechea +% Calcul du PGCD de #1 et #2 +\newcount\cnt@a\newcount\cnt@b\newcount\pgcd +\def\PGCD#1#2{% + \ifnum#1>#2\cnt@a#1\cnt@b#2\else\cnt@a#2\cnt@b#1\relax\fi + \PGCD@i +} +\def\PGCD@i{\edef\PGCD@ii##1{##1{\number\cnt@a}{\number\cnt@b}}\PGCD@ii\PGCD@iii} +\def\PGCD@iii#1#2{% + \cnt@b#1\relax\global\divide\cnt@b#2% + \global\cnt@b\numexpr#1-#2*\cnt@b% + \global\cnt@a#2\global\pgcd\cnt@a% + \ifnum\cnt@b>\z@\expandafter\PGCD@i% + \fi}% +\makeatother + +\def\SSimplifie#1#2{% + % Simplification d'une écriture #1/#2 + \ensuremath{ + \newcount\numerateur\newcount\denominateur\newcount\valabsnum\newcount\valabsdeno + \numerateur=\number#1 + \denominateur=\number#2 + \ifnum\number#1<0\relax + \valabsnum=\numexpr0-\number#1 + \else + \valabsnum=\number#1 + \fi + \ifnum\number#2<0\relax + \valabsdeno=\numexpr0-\number#2 + \else + \valabsdeno=\number#2 + \fi + \ifnum\the\numerateur<0\relax + \ifnum\the\denominateur<0\relax + \numerateur=\valabsnum + \denominateur=\valabsdeno + \fi + \fi + \ifnum\number#2=0\relax + \text{\bfseries(???)} + \else + \ifnum\number#1=0\relax + 0 + \else + \PGCD{\the\valabsnum}{\the\valabsdeno}% + \ifnum\pgcd>1\relax + \ifthenelse{\pgcd=\number#2 \OR \pgcd=\the\valabsdeno}{% + \divide\numerateur by \denominateur\num{\the\numerateur} + }{\divide\numerateur by\pgcd% + \divide\denominateur by\pgcd% + \frac{\num{\the\numerateur}}{\num{\the\denominateur}} + } + \else%%%comme on est avec les négatifs, on doit regarder si la valeur absolue est égale à 1 + \ifnum\valabsdeno=1\relax + \divide\numerateur by \denominateur\num{\the\numerateur} + \else + \frac{\num{\the\numerateur}}{\num{\the\denominateur}} + \fi + \fi% + \fi% + \fi% + }% +} + + +\newcommand{\SSimpli}[2]{% + % Décomposition d'une simplification de #1/#2 + \newcount\numerateur\newcount\denominateur\newcount\valabsnum\newcount\valabsdeno% + \numerateur=\number#1 + \denominateur=\number#2 + \ifnum\number#1<0 + \valabsnum=\numexpr0-\number#1 + \else + \valabsnum=\number#1 + \fi + \ifnum\number#2<0 + \valabsdeno=\numexpr0-\number#2 + \else + \valabsdeno=\number#2 + \fi + \ifnum\number#2=0\relax + \ensuremath{\text{\bfseries(???)}} + \else + \ifnum\number#1=0\relax + 0 + \else + \PGCD{\the\valabsnum}{\the\valabsdeno}% + \ifnum\pgcd>1\relax + \ifthenelse{\pgcd=\number#2 \OR \pgcd=\the\valabsdeno}{% + \divide\numerateur by \denominateur\num{\the\numerateur} + }{%\divide\numerateur by\pgcd% + %\divide\denominateur by\pgcd% + \ensuremath{\frac{\num{\the\numerateur}_{\mbox{\tiny$\div\num{\number\pgcd}$}}}{\num{\the\denominateur}_{\mbox{\tiny$\div\num{\number\pgcd}$}}}} + } + \else + \ifnum\denominateur=1\relax + \ensuremath{\frac{\num{\the\numerateur}_{\mbox{\tiny$\div\num{\number\pgcd}$}}}{\num{\the\denominateur}_{\mbox{\tiny$\div\num{\number\pgcd}$}}}} + \else + \ensuremath{\frac{\num{\the\numerateur}}{\num{\the\denominateur}}} + \fi + \fi + \fi + \fi +} + +\newcommand\DiviseurCommun[2]{% + % #1 : le premier nombre entier + % #2 : le deuxième nombre entier + \newcount\anpdc\newcount\bnpdc\newcount\cnpdc% + \anpdc=#1% + \cnpdc=#2% + \bnpdc=2\relax% + \whiledo{\bnpdc<\anpdc}{% + \modulo{\the\anpdc}{\the\bnpdc}{}% + \ifnum\remainder=0% + \modulo{\the\cnpdc}{\the\bnpdc}{} + \ifnum\remainder=0% + \xdef\DivCom{\the\bnpdc}% + \bnpdc=\anpdc% + \else% + \xdef\DivCom{1}% + \bnpdc=\numexpr\bnpdc+1% + \fi% + \else% + \xdef\DivCom{1}% + \bnpdc=\numexpr\bnpdc+1% + \fi + }% +} + +\newcommand\LongueSimplification[2]{% + \DiviseurCommun{#1}{#2}% + \xdef\NumerateurDiv{#1}% + \xdef\DenominateurDiv{#2}% + \ensuremath{% + \whiledo{\DivCom > 1}{% + \xdef\DivComa{\DivCom}\xdef\MulComa{\fpeval{\NumerateurDiv/\DivComa}} + \xdef\DivComb{\DivCom}\xdef\MulComb{\fpeval{\DenominateurDiv/\DivComb}} + \frac{\num{\DivComa}\times\num{\MulComa}}{\num{\DivComb}\times\num{\MulComb}}=\frac{\num{\MulComa}}{\num{\MulComb}}% + \xdef\NumerateurDiv{\MulComa}% + \xdef\DenominateurDiv{\MulComb}% + \DiviseurCommun{\NumerateurDiv}{\DenominateurDiv}% + \xintifboolexpr{\DivCom>1}{=}{}% + } + } +} + +\setKVdefault[ClesSimplification]{Details=false,All=false,Longue=false,Fleches=false} + +\newcounter{NbFrac}% +\setcounter{NbFrac}{0}% + +\newcommand\Simplification[3][]{% + \stepcounter{NbFrac}% + \useKVdefault[ClesSimplification]% + \setKV[ClesSimplification]{#1}% + \ifboolKV[ClesSimplification]{Fleches}{% + \setsepchar[*]{,*/}%\ignoreemptyitems + \readlist*\Listea{#2}% + \readlist*\Listeb{#3}% + \setbox1=\hbox{\Listea[1,1]{}}% + \setbox2=\hbox{\Listeb[1,1]}% + \setbox3=\hbox{\Listea[1,3]}% + \setbox4=\hbox{\Listeb[1,3]}% + \ensuremath{% + \frac{\tikzmarknode[anchor=north]{A-\theNbFrac}{\Listea[1,1]}{}}{\tikzmarknode[anchor=south]{B-\theNbFrac}{\Listeb[1,1]}{}}=\frac{\tikzmarknode[anchor=north]{C-\theNbFrac}{\Listea[1,3]}{}}{\tikzmarknode[anchor=south]{D-\theNbFrac}{\Listeb[1,3]}{}}% + }% + \begin{tikzpicture}[remember picture,overlay]% + \draw[out=45,in=135,-stealth,transform canvas={yshift=0.25em}] + let + \p1=(pic cs:A-\theNbFrac), + \p2=(pic cs:C-\theNbFrac) + in (pic cs:A-\theNbFrac) to node[midway,above]{\Listea[1,2]}(\x2,\y1); + \draw[out=-45,in=-135,-stealth,transform canvas={yshift=-0.25em}] (pic cs:B-\theNbFrac) to node[midway,below]{\Listeb[1,2]}(pic cs:D-\theNbFrac);% + \end{tikzpicture}% + }{% + \ifboolKV[ClesSimplification]{Longue}{% + \LongueSimplification{#2}{#3}% + }{% + \ifboolKV[ClesSimplification]{Details}{\SSimpli{#2}{#3}}{\ifboolKV[ClesSimplification]{All}{\ensuremath{\SSimpli{#2}{#3}=\SSimplifie{#2}{#3}}}{\SSimplifie{#2}{#3}}}% + }% + }% +}% + +%%%%%%%%%%%%%%%%%%%%% +%%% Thales +%%%%%%%%%%%%%%%%%%%%% +\newcount\ppcm + +\newcommand\PPCM[2]{% + \PGCD{#1}{#2} + \ppcm=\numexpr#1*#2/\pgcd\relax +} + +\setKVdefault[ClesThales]{Calcul=true,Propor=false,Segment=false,Figure=false,Figurecroisee=false,Precision=2,Entier=false,Unite=cm,Reciproque=false,Produit=false,ChoixCalcul=0,Simplification,Redaction=false,Remediation=false} + +%On définit la figure à utiliser +\def\MPFigThales#1#2#3#4#5{ + % #1 Premier sommet + % #2 Deuxième sommet + % #3 Troisième sommet + % #4 point sur le segment #1#2 + % #5 point sur le segment #1#3 + \ifluatex + \mplibcodeinherit{enable} + \mplibforcehmode + \begin{mplibcode} + u:=1cm; + pair A,B,C,M,N,O;% + %On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=u*(1,1); + B-A=u*(4,0); + C=(A--2[A,B rotatedabout(A,45)]) intersectionpoint (B--2[B,A rotatedabout(B,-60)]); + % On définit le centre du cercle circonscrit + O - .5[A,B] = whatever * (B-A) rotated 90; + O - .5[B,C] = whatever * (C-B) rotated 90; + % On tourne pour éventuellement moins de lassitude :) + numeric Angle; + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % On définit le centre du cercle inscrit + %(I-C) rotated ((angle(A-C)-angle(B-C))/2) shifted C=whatever[A,C]; + %(I-B) rotated ((angle(C-B)-angle(A-B))/2) shifted B=whatever[B,C]; + %on dessine à main levée :) + path cotes[]; + cotes1=A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + cotes2=B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + cotes3=C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + M=point(0.4*length cotes1) of cotes1; + N=point(0.6*length cotes3) of cotes3; + cotes4=1.5[N,M]{dir(angle(N-M)+5)}..1.5[M,N]{dir(angle(N-M)+5)}; + path triangle; + triangle=cotes1--cotes2--cotes3--cycle; + draw triangle; + draw cotes4; + %on labelise + label(btex #1 etex,1.15[O,A]); + label(btex #2 etex,1.15[O,B]); + label(btex #3 etex,1.15[O,C]); + label(btex #4 etex,1.1[C,M]); + label(btex #5 etex,1.1[B,N]); + fill (fullcircle scaled 0.75mm) shifted (cotes1 intersectionpoint cotes4); + fill (fullcircle scaled 0.75mm) shifted (cotes3 intersectionpoint cotes4); + pair I,J,K; + I=1/2[M,N]; + J=1/2[B,C]; + K=1/2[I,J]; + path cd; + cd=(fullcircle scaled 6mm) shifted K; + drawoptions(withcolor 0.75*white); + drawarrow reverse((I{dir(210+angle(I-J))}..{dir(150+angle(I-J))}K) cutafter cd); + drawarrow reverse((J{dir(210+angle(J-I))}..{dir(150+angle(J-I))}K) cutafter cd); + draw cd; + label(btex $//$ etex ,K); + drawoptions(); + \end{mplibcode} + \mplibcodeinherit{disable} + \else + \begin{mpost} + u:=1cm; + pair A,B,C,M,N,O;% + %On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=u*(1,1); + B-A=u*(4,0); + C=(A--2[A,B rotatedabout(A,45)]) intersectionpoint (B--2[B,A rotatedabout(B,-60)]); + % On définit le centre du cercle circonscrit + O - .5[A,B] = whatever * (B-A) rotated 90; + O - .5[B,C] = whatever * (C-B) rotated 90; + % On tourne pour éventuellement moins de lassitude :) + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % On définit le centre du cercle inscrit + %(I-C) rotated ((angle(A-C)-angle(B-C))/2) shifted C=whatever[A,C]; + %(I-B) rotated ((angle(C-B)-angle(A-B))/2) shifted B=whatever[B,C]; + %on dessine à main levée :) + path cotes[]; + cotes1=A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + cotes2=B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + cotes3=C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + M=point(0.4*length cotes1) of cotes1; + N=point(0.6*length cotes3) of cotes3; + cotes4=1.5[N,M]{dir(angle(N-M)+5)}..1.5[M,N]{dir(angle(N-M)+5)}; + path triangle; + triangle=cotes1--cotes2--cotes3--cycle; + draw triangle; + draw cotes4; + %on labelise + label(btex #1 etex,1.15[O,A]); + label(btex #2 etex,1.15[O,B]); + label(btex #3 etex,1.15[O,C]); + label(btex #4 etex,1.1[C,M]); + label(btex #5 etex,1.1[B,N]); + fill (fullcircle scaled 0.75mm) shifted (cotes1 intersectionpoint cotes4); + fill (fullcircle scaled 0.75mm) shifted (cotes3 intersectionpoint cotes4); + pair I,J,K; + I=1/2[M,N]; + J=1/2[B,C]; + K=1/2[I,J]; + path cd; + cd=(fullcircle scaled 6mm) shifted K; + drawoptions(withcolor 0.75*white); + drawarrow reverse((I{dir(210+angle(I-J))}..{dir(150+angle(I-J))}K) cutafter cd); + drawarrow reverse((J{dir(210+angle(J-I))}..{dir(150+angle(J-I))}K) cutafter cd); + draw cd; + label(btex $//$ etex ,K); + drawoptions(); + \end{mpost} + \fi +} + +%On définit la figure à utiliser +\def\MPFigReciThales#1#2#3#4#5{ + % #1 Premier sommet + % #2 Deuxième sommet + % #3 Troisième sommet + % #4 point sur le segment #1#2 + % #5 point sur le segment #1#3 + \ifluatex + \mplibcodeinherit{enable} + \mplibforcehmode + \begin{mplibcode} + u:=1cm; + pair A,B,C,M,N,O;% + %On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=u*(1,1); + B-A=u*(4,0); + C=(A--2[A,B rotatedabout(A,45)]) intersectionpoint (B--2[B,A rotatedabout(B,-60)]); + % On définit le centre du cercle circonscrit + O - .5[A,B] = whatever * (B-A) rotated 90; + O - .5[B,C] = whatever * (C-B) rotated 90; + % On tourne pour éventuellement moins de lassitude :) + numeric Angle; + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % On définit le centre du cercle inscrit + %(I-C) rotated ((angle(A-C)-angle(B-C))/2) shifted C=whatever[A,C]; + %(I-B) rotated ((angle(C-B)-angle(A-B))/2) shifted B=whatever[B,C]; + %on dessine à main levée :) + path cotes[]; + cotes1=A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + cotes2=B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + cotes3=C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + M=point(0.4*length cotes1) of cotes1; + N=point(0.6*length cotes3) of cotes3; + cotes4=1.5[N,M]{dir(angle(N-M)+5)}..1.5[M,N]{dir(angle(N-M)+5)}; + path triangle; + triangle=cotes1--cotes2--cotes3--cycle; + draw triangle; + draw cotes4; + %on labelise + label(btex #1 etex,1.15[O,A]); + label(btex #2 etex,1.15[O,B]); + label(btex #3 etex,1.15[O,C]); + label(btex #4 etex,1.1[C,M]); + label(btex #5 etex,1.1[B,N]); + fill (fullcircle scaled 0.75mm) shifted (cotes1 intersectionpoint cotes4); + fill (fullcircle scaled 0.75mm) shifted (cotes3 intersectionpoint cotes4); + \end{mplibcode} + \mplibcodeinherit{disable} + \else + \begin{mpost} + u:=1cm; + pair A,B,C,M,N,O;% + %On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=u*(1,1); + B-A=u*(4,0); + C=(A--2[A,B rotatedabout(A,45)]) intersectionpoint (B--2[B,A rotatedabout(B,-60)]); + % On définit le centre du cercle circonscrit + O - .5[A,B] = whatever * (B-A) rotated 90; + O - .5[B,C] = whatever * (C-B) rotated 90; + % On tourne pour éventuellement moins de lassitude :) + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % On définit le centre du cercle inscrit + %(I-C) rotated ((angle(A-C)-angle(B-C))/2) shifted C=whatever[A,C]; + %(I-B) rotated ((angle(C-B)-angle(A-B))/2) shifted B=whatever[B,C]; + %on dessine à main levée :) + path cotes[]; + cotes1=A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + cotes2=B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + cotes3=C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + M=point(0.4*length cotes1) of cotes1; + N=point(0.6*length cotes3) of cotes3; + cotes4=1.5[N,M]{dir(angle(N-M)+5)}..1.5[M,N]{dir(angle(N-M)+5)}; + path triangle; + triangle=cotes1--cotes2--cotes3--cycle; + draw triangle; + draw cotes4; + %on labelise + label(btex #1 etex,1.15[O,A]); + label(btex #2 etex,1.15[O,B]); + label(btex #3 etex,1.15[O,C]); + label(btex #4 etex,1.1[C,M]); + label(btex #5 etex,1.1[B,N]); + fill (fullcircle scaled 0.75mm) shifted (cotes1 intersectionpoint cotes4); + fill (fullcircle scaled 0.75mm) shifted (cotes3 intersectionpoint cotes4); +% pair I,J,K; +% I=1/2[M,N]; +% J=1/2[B,C]; +% K=1/2[I,J]; +% path cd; +% cd=(fullcircle scaled 6mm) shifted K; +% drawoptions(withcolor 0.75*white); +% drawarrow reverse((I{dir(210+angle(I-J))}..{dir(150+angle(I-J))}K) cutafter cd); +% drawarrow reverse((J{dir(210+angle(J-I))}..{dir(150+angle(J-I))}K) cutafter cd); +% draw cd; +% label(btex $//$ etex ,K); +% drawoptions(); + \end{mpost} + \fi +} + +%On définit la deuxième figure à utiliser +\def\MPFigThalesCroisee#1#2#3#4#5{% + % #1 Premier sommet + % #2 Deuxième sommet + % #3 Troisième sommet + % #4 point sur la droite #1#2 + % #5 point sur la droite #1#3 + \ifluatex + \mplibforcehmode + \mplibcodeinherit{enable} + \begin{mplibcode} + u:=1cm; + pair A,B,C,M,N,O;% + O=(2.5u,2.5u); + path cc; + cc=(fullcircle scaled 3u) shifted O; + %On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=point(0.1*length cc) of cc; + B=A rotatedabout(O,130); + C=(A--2[A,B rotatedabout(A,45)]) intersectionpoint (B--2[B,A rotatedabout(B,-60)]); + % On tourne pour éventuellement moins de lassitude :) + numeric Angle; + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % on dessine à main levée :) + M=1.4[B,A]; + N=1.4[C,A]; + path cotes[]; + cotes1=A{dir(angle(B-A)+5)}..1.15[A,B]{dir(angle(B-A)+5)}; + cotes2=1.15[C,B]{dir(angle(C-B)+5)}..1.15[B,C]{dir(angle(C-B)+5)}; + cotes3=1.15[A,C]{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + cotes4=1.5[N,M]{dir(angle(N-M)+5)}..1.5[M,N]{dir(angle(N-M)+5)}; + cotes5=A{dir(angle(M-A)+5)}..1.15[A,M]{dir(angle(M-A)+5)}; + cotes6=A{dir(angle(N-A)+5)}..1.15[A,N]{dir(angle(N-A)+5)}; + for k=1 upto 6: + draw cotes[k]; + endfor; + pair I; + % On définit le centre du cercle inscrit à AMC + (I-C) rotated ((angle(A-C)-angle(M-C))/2) shifted C=whatever[A,C]; + (I-M) rotated ((angle(C-M)-angle(A-M))/2) shifted M=whatever[M,C]; + %on labelise + %label(btex #1 etex,1.15[1/2[B,C],A]); + label(btex #1 etex,I); + label(btex #2 etex,1.2[M,B]); + label(btex #3 etex,1.2[N,C]); + label(btex #4 etex,1.1[B,M]); + label(btex #5 etex,1.1[C,N]); + fill (fullcircle scaled 0.75mm) shifted (cotes5 intersectionpoint cotes4); + fill (fullcircle scaled 0.75mm) shifted (cotes6 intersectionpoint cotes4); + pair I,J,K; + I=1.1[N,M]; + J=1.1[B,C]; + K=1/2[I,J]; + path cd; + cd=(fullcircle scaled 6mm) shifted K; + drawoptions(withcolor 0.75*white); + drawarrow reverse((I{dir(210+angle(I-J))}..{dir(150+angle(I-J))}K) cutafter cd); + drawarrow reverse((J{dir(210+angle(J-I))}..{dir(150+angle(J-I))}K) cutafter cd); + draw cd; + label(btex $//$ etex ,K); + drawoptions(); + \end{mplibcode} + \mplibcodeinherit{disable} + \else + \begin{mpost} + u:=1cm; + pair A,B,C,M,N,O;% + O=(2.5u,2.5u); + path cc; + cc=(fullcircle scaled 3u) shifted O; + %On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=point(0.1*length cc) of cc; + B=A rotatedabout(O,130); + C=(A--2[A,B rotatedabout(A,45)]) intersectionpoint (B--2[B,A rotatedabout(B,-60)]); + % On tourne pour éventuellement moins de lassitude :) + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % on dessine à main levée :) + M=1.4[B,A]; + N=1.4[C,A]; + path cotes[]; + cotes1=A{dir(angle(B-A)+5)}..1.15[A,B]{dir(angle(B-A)+5)}; + cotes2=1.15[C,B]{dir(angle(C-B)+5)}..1.15[B,C]{dir(angle(C-B)+5)}; + cotes3=1.15[A,C]{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + cotes4=1.5[N,M]{dir(angle(N-M)+5)}..1.5[M,N]{dir(angle(N-M)+5)}; + cotes5=A{dir(angle(M-A)+5)}..1.15[A,M]{dir(angle(M-A)+5)}; + cotes6=A{dir(angle(N-A)+5)}..1.15[A,N]{dir(angle(N-A)+5)}; + for k=1 upto 6: + draw cotes[k]; + endfor; + pair I; + % On définit le centre du cercle inscrit à AMC + (I-C) rotated ((angle(A-C)-angle(M-C))/2) shifted C=whatever[A,C]; + (I-M) rotated ((angle(C-M)-angle(A-M))/2) shifted M=whatever[M,C]; + %on labelise + %label(btex #1 etex,1.15[1/2[B,C],A]); + label(btex #1 etex,I); + label(btex #2 etex,1.2[M,B]); + label(btex #3 etex,1.2[N,C]); + label(btex #4 etex,1.1[B,M]); + label(btex #5 etex,1.1[C,N]); + fill (fullcircle scaled 0.75mm) shifted (cotes5 intersectionpoint cotes4); + fill (fullcircle scaled 0.75mm) shifted (cotes6 intersectionpoint cotes4); + pair I,J,K; + I=1.1[N,M]; + J=1.1[B,C]; + K=1/2[I,J]; + path cd; + cd=(fullcircle scaled 6mm) shifted K; + drawoptions(withcolor 0.75*white); + drawarrow reverse((I{dir(210+angle(I-J))}..{dir(150+angle(I-J))}K) cutafter cd); + drawarrow reverse((J{dir(210+angle(J-I))}..{dir(150+angle(J-I))}K) cutafter cd); + draw cd; + label(btex $//$ etex ,K); + drawoptions(); + \end{mpost} + \fi +} + +%On définit la deuxième figure à utiliser +\def\MPFigReciThalesCroisee#1#2#3#4#5{% + % #1 Premier sommet + % #2 Deuxième sommet + % #3 Troisième sommet + % #4 point sur la droite #1#2 + % #5 point sur la droite #1#3 + \ifluatex + \mplibforcehmode + \mplibcodeinherit{enable} + \begin{mplibcode} + u:=1cm; + pair A,B,C,M,N,O;% + O=(2.5u,2.5u); + path cc; + cc=(fullcircle scaled 3u) shifted O; + %On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=point(0.1*length cc) of cc; + B=A rotatedabout(O,130); + C=(A--2[A,B rotatedabout(A,45)]) intersectionpoint (B--2[B,A rotatedabout(B,-60)]); + % On tourne pour éventuellement moins de lassitude :) + numeric Angle; + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % on dessine à main levée :) + M=1.4[B,A]; + N=1.4[C,A]; + path cotes[]; + cotes1=A{dir(angle(B-A)+5)}..1.15[A,B]{dir(angle(B-A)+5)}; + cotes2=1.15[C,B]{dir(angle(C-B)+5)}..1.15[B,C]{dir(angle(C-B)+5)}; + cotes3=1.15[A,C]{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + cotes4=1.5[N,M]{dir(angle(N-M)+5)}..1.5[M,N]{dir(angle(N-M)+5)}; + cotes5=A{dir(angle(M-A)+5)}..1.15[A,M]{dir(angle(M-A)+5)}; + cotes6=A{dir(angle(N-A)+5)}..1.15[A,N]{dir(angle(N-A)+5)}; + for k=1 upto 6: + draw cotes[k]; + endfor; + pair I; + % On définit le centre du cercle inscrit à AMC + (I-C) rotated ((angle(A-C)-angle(M-C))/2) shifted C=whatever[A,C]; + (I-M) rotated ((angle(C-M)-angle(A-M))/2) shifted M=whatever[M,C]; + %on labelise + %label(btex #1 etex,1.15[1/2[B,C],A]); + label(btex #1 etex,I); + label(btex #2 etex,1.2[M,B]); + label(btex #3 etex,1.2[N,C]); + label(btex #4 etex,1.1[B,M]); + label(btex #5 etex,1.1[C,N]); + fill (fullcircle scaled 0.75mm) shifted (cotes5 intersectionpoint cotes4); + fill (fullcircle scaled 0.75mm) shifted (cotes6 intersectionpoint cotes4); + fill (fullcircle scaled 0.75mm) shifted (cotes1 intersectionpoint cotes2); + fill (fullcircle scaled 0.75mm) shifted (cotes3 intersectionpoint cotes2); + \end{mplibcode} + \mplibcodeinherit{disable} + \else + \begin{mpost} + u:=1cm; + pair A,B,C,M,N,O;% + O=(2.5u,2.5u); + path cc; + cc=(fullcircle scaled 3u) shifted O; + %On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=point(0.1*length cc) of cc; + B=A rotatedabout(O,130); + C=(A--2[A,B rotatedabout(A,45)]) intersectionpoint (B--2[B,A rotatedabout(B,-60)]); + % On tourne pour éventuellement moins de lassitude :) + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % on dessine à main levée :) + M=1.4[B,A]; + N=1.4[C,A]; + path cotes[]; + cotes1=A{dir(angle(B-A)+5)}..1.15[A,B]{dir(angle(B-A)+5)}; + cotes2=1.15[C,B]{dir(angle(C-B)+5)}..1.15[B,C]{dir(angle(C-B)+5)}; + cotes3=1.15[A,C]{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + cotes4=1.5[N,M]{dir(angle(N-M)+5)}..1.5[M,N]{dir(angle(N-M)+5)}; + cotes5=A{dir(angle(M-A)+5)}..1.15[A,M]{dir(angle(M-A)+5)}; + cotes6=A{dir(angle(N-A)+5)}..1.15[A,N]{dir(angle(N-A)+5)}; + for k=1 upto 6: + draw cotes[k]; + endfor; + pair I; + % On définit le centre du cercle inscrit à AMC + (I-C) rotated ((angle(A-C)-angle(M-C))/2) shifted C=whatever[A,C]; + (I-M) rotated ((angle(C-M)-angle(A-M))/2) shifted M=whatever[M,C]; + %on labelise + %label(btex #1 etex,1.15[1/2[B,C],A]); + label(btex #1 etex,I); + label(btex #2 etex,1.2[M,B]); + label(btex #3 etex,1.2[N,C]); + label(btex #4 etex,1.1[B,M]); + label(btex #5 etex,1.1[C,N]); + fill (fullcircle scaled 0.75mm) shifted (cotes5 intersectionpoint cotes4); + fill (fullcircle scaled 0.75mm) shifted (cotes6 intersectionpoint cotes4); + fill (fullcircle scaled 0.75mm) shifted (cotes1 intersectionpoint cotes2); + fill (fullcircle scaled 0.75mm) shifted (cotes3 intersectionpoint cotes2); + \end{mpost} + \fi +} + +%%% +\newcommand{\TTThales}[6][]{% + \useKVdefault[ClesThales]% + \setKV[ClesThales]{#1}% + Dans le triangle \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$#2#3#4$}, \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{$#5$} est un point \ifboolKV[ClesThales]{Segment}{du segment}{de la + droite} \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#2#3)$}, \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{$#6$} est un point \ifboolKV[ClesThales]{Segment}{du segment}{de la droite} \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#2#4)$}.% + \\Comme les droites \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#5#6)$} et \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#3#4)$} sont parallèles, alors \ifboolKV[ClesThales]{Propor}{le tableau% + \[\begin{array}{c|c|c} + \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#5}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#6}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#5#6}\\ + \hline + \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#3}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#4}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#3#4}\\ + \end{array} + \] + est un tableau de proportionnalité d'après le théorème de Thalès.% + }{% + le théorème de Thalès permet d'écrire :% + \[\frac{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#5}}{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#3}}=\frac{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#6}}{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#4}}=\frac{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#5#6}}{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#3#4}}\]% + } +} + +\newcommand{\TThalesCalculsD}[8][]{% + \setKV[ClesThales]{#1}% + \newcount\zzz\newcount\yyy\newcount\xxx%Pour se rappeller des calculs à faire et combien en faire% + \def\Nomx{}% + \def\Nomy{}% + \def\Nomz{}% + \zzz=0\yyy=0\xxx=0% + \TTThales[#1]{\StrMid{#2}{1}{1}}{\StrMid{#2}{2}{2}}{\StrMid{#2}{3}{3}}{\StrMid{#2}{4}{4}}{\StrMid{#2}{5}{5}}\par +\IfDecimal{#3}{% + \IfDecimal{#6}{}{% + \IfDecimal{#4}{% + \IfDecimal{#7}{% + \xxx=5263%#6&=\frac{#3\times#7}{#4}\\ + \edef\Nomx{#6}\opcopy{#3}{valx}\opcopy{#7}{Valx}\opcopy{#4}{denox}% + \xdef\ResultatThalesx{\fpeval{round(#3*#7/#4,\useKV[ClesThales]{Precision})}}% + }{% + \IfDecimal{#8}{\IfDecimal{#5}{\xxx=5274%\[#6=\frac{#3\times#8}{#5}\] + \edef\Nomx{#6}\opcopy{#3}{valx}\opcopy{#8}{Valx}\opcopy{#5}{denox}% + \xdef\ResultatThalesx{\fpeval{round(#3*#8/#5,\useKV[ClesThales]{Precision})}}% + }{}}{} + } + }{\IfDecimal{#8}{\IfDecimal{#5}{\xxx=5274%\[#6=\frac{#3\times#8}{#5}\] + \edef\Nomx{#6}\opcopy{#3}{valx}\opcopy{#8}{Valx}\opcopy{#5}{denox}% + \xdef\ResultatThalesx{\fpeval{round(#3*#8/#5,\useKV[ClesThales]{Precision})}}% + }{}}{} + } + } + }{% + \IfDecimal{#6}{% + \IfDecimal{#4}{% + \IfDecimal{#7}{% + \xxx=2536%\[#3=\frac{#6\times#4}{#7}\]% + \edef\Nomx{#3}\opcopy{#6}{valx}\opcopy{#4}{Valx}\opcopy{#7}{denox}% + \xdef\ResultatThalesx{\fpeval{round(#6*#4/#7,\useKV[ClesThales]{Precision})}}% + }{% + \IfDecimal{#5}{\IfDecimal{#8}{\xxx=2547 + \edef\Nomx{#3}\opcopy{#6}{valx}\opcopy{#5}{Valx}\opcopy{#8}{denox}%\[#3=\frac{#6\times#5}{#8}\] + \xdef\ResultatThalesx{\fpeval{round(#6*#5/#8,\useKV[ClesThales]{Precision})}}% + }{}}{} + } + }{\IfDecimal{#5}{\IfDecimal{#8}{\xxx=2547 + \edef\Nomx{#3}\opcopy{#6}{valx}\opcopy{#5}{Valx}\opcopy{#8}{denox}%\[#3=\frac{#6\times#5}{#8}\] + \xdef\ResultatThalesx{\fpeval{round(#6*#5/#8,\useKV[ClesThales]{Precision})}}% + }{}}{} + } + }{} + }% + % + \IfDecimal{#4}{% + \IfDecimal{#7}{}{% + \IfDecimal{#5}{% + \IfDecimal{#8}{% + \yyy=6374%\[#7=\frac{#4\times#8}{#5}\]% + \edef\Nomy{#7}\opcopy{#4}{valy}\opcopy{#8}{Valy}\opcopy{#5}{denoy}% + \xdef\ResultatThalesy{\fpeval{round(#4*#8/#5,\useKV[ClesThales]{Precision})}}% + }{% + \IfDecimal{#6}{\IfDecimal{#3}{\yyy=6352%\[#7=\frac{#4\times#6}{#3}\] + \edef\Nomy{#7}\opcopy{#4}{valy}\opcopy{#6}{Valy}\opcopy{#3}{denoy}% + \xdef\ResultatThalesy{\fpeval{round(#4*#6/#3,\useKV[ClesThales]{Precision})}}% + }{}}{} + } + }{\IfDecimal{#6}{\IfDecimal{#3}{\yyy=6352%\[#7=\frac{#4\times#6}{#3}\] + \edef\Nomy{#7}\opcopy{#4}{valy}\opcopy{#6}{Valy}\opcopy{#3}{denoy}% + \xdef\ResultatThalesy{\fpeval{round(#4*#6/#3,\useKV[ClesThales]{Precision})}}% + }{}}{} + } + } + }{% + \IfDecimal{#7}{% + \IfDecimal{#5}{% + \IfDecimal{#8}{% + \yyy=3647%\[#4=\frac{#7\times#5}{#8}\]% + \edef\Nomy{#4}\opcopy{#7}{valy}\opcopy{#5}{Valy}\opcopy{#8}{denoy}% + \xdef\ResultatThalesy{\fpeval{round(#7*#5/#8,\useKV[ClesThales]{Precision})}}% + }{% + \IfDecimal{#3}{\IfDecimal{#6}{\yyy=3625%\[#4=\frac{#7\times#3}{#6}\] + \edef\Nomy{#4}\opcopy{#7}{valy}\opcopy{#3}{Valy}\opcopy{#6}{denoy}% + \xdef\ResultatThalesy{\fpeval{round(#7*#3/#6,\useKV[ClesThales]{Precision})}}% + }{}}{} + } + }{\IfDecimal{#3}{\IfDecimal{#6}{\yyy=3625%\[#4=\frac{#7\times#3}{#6}\] + \edef\Nomy{#4}\opcopy{#7}{valy}\opcopy{#3}{Valy}\opcopy{#6}{denoy}% + \xdef\ResultatThalesy{\fpeval{round(#7*#3/#6,\useKV[ClesThales]{Precision})}}% + }{}}{} + }}{}}% + % + \IfDecimal{#5}{% + \IfDecimal{#8}{}{% + \IfDecimal{#4}{ + \IfDecimal{#7}{ + \zzz=7463%\[#8=\frac{#5\times#7}{#4}\]% + \edef\Nomz{#8}\opcopy{#5}{valz}\opcopy{#7}{Valz}\opcopy{#4}{denoz}% + \xdef\ResultatThalesz{\fpeval{round(#5*#7/#4,\useKV[ClesThales]{Precision})}}% + }{% + \IfDecimal{#3}{\IfDecimal{#6}{\zzz=7452%\[#8=\frac{#5\times#6}{#3}\] + \edef\Nomz{#8}\opcopy{#5}{valz}\opcopy{#6}{Valz}\opcopy{#3}{denoz}% + \xdef\ResultatThalesz{\fpeval{round(#5*#6/#3,\useKV[ClesThales]{Precision})}}% + }{}}{} + } + }{\IfDecimal{#3}{\IfDecimal{#6}{\zzz=7452%\[#8=\frac{#5\times#6}{#3}\] + \edef\Nomz{#8}\opcopy{#5}{valz}\opcopy{#6}{Valz}\opcopy{#3}{denoz}% + \xdef\ResultatThalesz{\fpeval{round(#5*#6/#3,\useKV[ClesThales]{Precision})}}% + }{}}{} + } + } + }{% + \IfDecimal{#8}{% + \IfDecimal{#4}{% + \IfDecimal{#7}{% + \zzz=4736% \[#5=\frac{#8\times#4}{#7}\]% + \edef\Nomz{#5}\opcopy{#8}{valz}\opcopy{#4}{Valz}\opcopy{#7}{denoz}% + \xdef\ResultatThalesz{\fpeval{round(#8*#4/#7,\useKV[ClesThales]{Precision})}}% + }{% + \IfDecimal{#3}{\IfDecimal{#6}{\zzz=4725%\[#5=\frac{#8\times#3}{#6}\] + \edef\Nomz{#5}\opcopy{#8}{valz}\opcopy{#3}{Valz}\opcopy{#6}{denoz}% + \xdef\ResultatThalesz{\fpeval{round(#8*#3/#6,\useKV[ClesThales]{Precision})}}% + }{}}{} + } + }{\IfDecimal{#3}{\IfDecimal{#6}{\zzz=4725%\[#5=\frac{#8\times#3}{#6}\] + \edef\Nomz{#5}\opcopy{#8}{valz}\opcopy{#3}{Valz}\opcopy{#6}{denoz}% + \xdef\ResultatThalesz{\fpeval{round(#8*#3/#6,\useKV[ClesThales]{Precision})}}% + }{}}{} + }}{} + }% + %% +\StrMid{\the\zzz}{1}{1}[\cmza]% +\StrMid{\the\yyy}{1}{1}[\cmya]% +\StrMid{\the\xxx}{1}{1}[\cmxa]% +\ifboolKV[ClesThales]{Calcul}{% + %%%%%%%%%%%%%%%%%%%%%%%%%%% + On remplace par les longueurs connues :% + \ifboolKV[ClesThales]{Propor}{% + \[\begin{array}{c|c|c} + \IfDecimal{#3}{\num{#3}}{#3}&\IfDecimal{#4}{\num{#4}}{#4}&\IfDecimal{#5}{\num{#5}}{#5}\\ + \hline + \IfDecimal{#6}{\num{#6}}{#6}&\IfDecimal{#7}{\num{#7}}{#7}&\IfDecimal{#8}{\num{#8}}{#8} + \end{array} + \] + }{% + \[\frac{\IfDecimal{#3}{\num{#3}}{#3}}{\IfDecimal{#6}{\num{#6}}{#6}}=\frac{\IfDecimal{#4}{\num{#4}}{#4}}{\IfDecimal{#7}{\num{#7}}{#7}}=\frac{\IfDecimal{#5}{\num{#5}}{#5}}{\IfDecimal{#8}{\num{#8}}{#8}}\] + }% + % On choisit éventuellement le calcul à faire s'il y en a plusieurs. + \xdef\CompteurCalcul{\useKV[ClesThales]{ChoixCalcul}}% + \xintifboolexpr{\CompteurCalcul>0}{\xintifboolexpr{\CompteurCalcul=1}{\xdef\cmya{0}\xdef\cmza{0}}{\xintifboolexpr{\CompteurCalcul=2}{\xdef\cmxa{0}\xdef\cmza{0}}{\xdef\cmxa{0}\xdef\cmya{0}}}}{}% + %%on fait les calculs +\begin{align*} + %Premier compteur \xxx + \ifnum\cmxa>0 + \Nomx\uppercase{&}=\frac{\opexport{valx}{\valx}\num{\valx}\times\opexport{Valx}{\Valx}\num{\Valx}}{\opexport{denox}{\denox}\num{\denox}}\relax%\global\numx=\numexpr\opprint{valx}*\opprint{Valx}\relax + \fi + % % Deuxième compteur \yyy + \ifnum\cmya>0 + \ifnum\cmxa=0 + \else + \uppercase{&} + \fi% + \Nomy\uppercase{&}=\frac{\opexport{valy}{\valy}\num{\valy}\times\opexport{Valy}{\Valy}\num{\Valy}}{\opexport{denoy}{\denoy}\num{\denoy}}\relax%\global\numy=\numexpr\opprint{valy}*\opprint{Valy}\relax + \fi + % Troisième compteur \zzz + \ifnum\cmza>0 + \ifnum\cmxa=0 + \ifnum\cmya=0 + % + \else + \uppercase{&} + \fi + \Nomz\uppercase{&}=\frac{\opexport{valz}{\valz}\num{\valz}\times\opexport{Valz}{\Valz}\num{\Valz}}{\opexport{denoz}{\denoz}\num{\denoz}}\relax%\global\numz=\numexpr\opprint{valz}*\opprint{Valz}\relax + \else + \uppercase{&}\Nomz\uppercase{&}=\frac{\opexport{valz}{\valz}\num{\valz}\times\opexport{Valz}{\Valz}\num{\Valz}}{\opexport{denoz}{\denoz}\num{\denoz}}\relax%\global\numz=\numexpr\opprint{valz}*\opprint{Valz}\relax + \fi + \fi + \\ +% % 2eme ligne du tableau : calcul des numérateurs +% %Premier compteur \xxx + \ifnum\cmxa>0 + \Nomx\uppercase{&}=\frac{\opmul*{valx}{Valx}{numx}\opexport{numx}{\numx}\num{\numx}}{\opprint{denox}} + \fi + % % Deuxième compteur \yyy + \ifnum\cmya>0 + \ifnum\cmxa=0 + % + \else + \uppercase{&} + \fi + \Nomy\uppercase{&}=\frac{\opmul*{valy}{Valy}{numy}\opexport{numy}{\numy}\num{\numy}}{\opprint{denoy}}% + \fi +% %Troisième compteur \zzz + \ifnum\cmza>0 + \ifnum\cmxa=0 + \ifnum\cmya=0 + % + \else + \uppercase{&} + \fi + \Nomz\uppercase{&}=\frac{\opmul*{valz}{Valz}{numz}\opexport{numz}{\numz}\num{\numz}}{\opprint{denoz}} + \else + \uppercase{&}\Nomz\uppercase{&}=\frac{\opmul*{valz}{Valz}{numz}\opexport{numz}{\numz}\num{\numz}}{\opprint{denoz}} + \fi + \fi + \\ +% % 3eme ligne : Calculs + \ifnum\cmxa>0 + \Nomx\uppercase{&}\opdiv*{numx}{denox}{resultatx}{restex}\opcmp{restex}{0}\ifopeq=\opprint{resultatx}~\text{\useKV[ClesThales]{Unite}}\else\approx\opround{resultatx}{\useKV[ClesThales]{Precision}}{resultatx}\opprint{resultatx}~\text{\useKV[ClesThales]{Unite}}\fi\opexport{resultatx}{\resultatx}%\xdef\ResultatThalesx{\num{\resultatx}}% + \fi + % % Deuxième compteur \yyy + \ifnum\cmya>0 + \ifnum\cmxa=0 + % + \else + \uppercase{&} + \fi + \Nomy\uppercase{&}\opdiv*{numy}{denoy}{resultaty}{restey}\opcmp{restey}{0}\ifopeq=\opprint{resultaty}~\text{\useKV[ClesThales]{Unite}}\else\approx\opround{resultaty}{\useKV[ClesThales]{Precision}}{resultaty}\opprint{resultaty}~\text{\useKV[ClesThales]{Unite}}\fi\opexport{resultaty}{\resultaty}%\xdef\ResultatThalesy{\num{\resultaty}} + \fi +% %Troisième compteur \zzz + \ifnum\cmza>0 + \ifnum\cmxa=0 + \ifnum\cmya=0 + % + \else + \uppercase{&} + \fi + \Nomz\uppercase{&}\opdiv*{numz}{denoz}{resultatz}{restez}\opcmp{restez}{0}\ifopeq=\opprint{resultatz}~\text{\useKV[ClesThales]{Unite}}\else\approx\opround{resultatz}{\useKV[ClesThales]{Precision}}{resultatz}\opprint{resultatz}~\text{\useKV[ClesThales]{Unite}}\fi\opexport{resultatz}{\resultatz}%\xdef\ResultatThalesz{\num{\resultatz}} + \else + \uppercase{&}\Nomz\uppercase{&}\opdiv*{numz}{denoz}{resultatz}{restez}\opcmp{restez}{0}\ifopeq=\opprint{resultatz}~\text{\useKV[ClesThales]{Unite}}\else\approx\opround{resultatz}{\useKV[ClesThales]{Precision}}{resultatz}\opprint{resultatz}~\text{\useKV[ClesThales]{Unite}}\fi\opexport{resultatz}{\resultatz}%\xdef\ResultatThalesz{\num{\resultatz}} + \fi + \fi +\end{align*} +}{} +} + +\newcommand{\TThalesCalculsE}[8][]{% + \setKV[ClesThales]{#1}% + \newcount\zzz\newcount\yyy\newcount\xxx%Pour se rappeller des calculs à faire et combien en faire% + \newcount\valx\newcount\Valx% + \newcount\valy\newcount\Valy% + \newcount\valz\newcount\Valz% + \newcount\numx\newcount\numy\newcount\numz% + \newcount\denox\newcount\denoy\newcount\denoz% + \def\Nomx{}% + \def\Nomy{}% + \def\Nomz{}% + \zzz=0\yyy=0\xxx=0% + \TTThales[#1]{\StrMid{#2}{1}{1}}{\StrMid{#2}{2}{2}}{\StrMid{#2}{3}{3}}{\StrMid{#2}{4}{4}}{\StrMid{#2}{5}{5}}\par% +\IfDecimal{#3}{% + \IfDecimal{#6}{}{% + \IfDecimal{#4}{% + \IfDecimal{#7}{% + \xxx=5263%#6&=\frac{#3\times#7}{#4}\\ + \edef\Nomx{#6}\valx=#3\Valx=#7\denox=#4% + }{% + \IfDecimal{#8}{\IfDecimal{#5}{\xxx=5274%\[#6=\frac{#3\times#8}{#5}\] + \edef\Nomx{#6}\valx=#3\Valx=#8\denox=#5% + }{}}{} + } + }{\IfDecimal{#8}{\IfDecimal{#5}{\xxx=5274%\[#6=\frac{#3\times#8}{#5}\] + \edef\Nomx{#6}\valx=#3\Valx=#8\denox=#5% + }{}}{} + } + } + }{% + \IfDecimal{#6}{% + \IfDecimal{#4}{% + \IfDecimal{#7}{% + \xxx=2536%\[#3=\frac{#6\times#4}{#7}\]% + \edef\Nomx{#3}\valx=#6\Valx=#4\denox=#7% + }{% + \IfDecimal{#5}{\IfDecimal{#8}{\xxx=2547 + \edef\Nomx{#3}\valx=#6\Valx=#5\denox=#8%\[#3=\frac{#6\times#5}{#8}\] + }{}}{} + } + }{\IfDecimal{#5}{\IfDecimal{#8}{\xxx=2547 + \edef\Nomx{#3}\valx=#6\Valx=#5\denox=#8%\[#3=\frac{#6\times#5}{#8}\] + }{}}{} + } + }{} + }% + % + \IfDecimal{#4}{% + \IfDecimal{#7}{}{% + \IfDecimal{#5}{% + \IfDecimal{#8}{% + \yyy=6374%\[#7=\frac{#4\times#8}{#5}\]% + \edef\Nomy{#7}\valy=#4\Valy=#8\denoy=#5% + }{% + \IfDecimal{#6}{\IfDecimal{#3}{\yyy=6352%\[#7=\frac{#4\times#6}{#3}\] + \edef\Nomy{#7}\valy=#4\Valy=#6\denoy=#3% + }{}}{} + } + }{\IfDecimal{#6}{\IfDecimal{#3}{\yyy=6352%\[#7=\frac{#4\times#6}{#3}\] + \edef\Nomy{#7}\valy=#4\Valy=#6\denoy=#3% + }{}}{} + } + } + }{% + \IfDecimal{#7}{% + \IfDecimal{#5}{% + \IfDecimal{#8}{% + \yyy=3647%\[#4=\frac{#7\times#5}{#8}\]% + \edef\Nomy{#4}\valy=#7\Valy=#5\denoy=#8% + }{% + \IfDecimal{#3}{\IfDecimal{#6}{\yyy=3625%\[#4=\frac{#7\times#3}{#6}\] + \edef\Nomy{#4}\valy=#7\Valy=#3\denoy=#6% + }{}}{} + } + }{\IfDecimal{#3}{\IfDecimal{#6}{\yyy=3625%\[#4=\frac{#7\times#3}{#6}\] + \edef\Nomy{#4}\valy=#7\Valy=#3\denoy=#6% + }{}}{} + }}{}}% + % + \IfDecimal{#5}{% + \IfDecimal{#8}{}{% + \IfDecimal{#4}{ + \IfDecimal{#7}{ + \zzz=7463%\[#8=\frac{#5\times#7}{#4}\]% + \edef\Nomz{#8}\valz=#5\Valz=#7\denoz=#4% + }{% + \IfDecimal{#3}{\IfDecimal{#6}{\zzz=7452%\[#8=\frac{#5\times#6}{#3}\] + \edef\Nomz{#8}\valz=#5\Valz=#6\denoz=#3% + }{}}{} + } + }{\IfDecimal{#3}{\IfDecimal{#6}{\zzz=7452%\[#8=\frac{#5\times#6}{#3}\] + \edef\Nomz{#8}\valz=#5\Valz=#6\denoz=#3% + }{}}{} + } + } + }{% + \IfDecimal{#8}{% + \IfDecimal{#4}{% + \IfDecimal{#7}{% + \zzz=4736% \[#5=\frac{#8\times#4}{#7}\]% + \edef\Nomz{#5}\valz=#8\Valz=#4\denoz=#7% + }{% + \IfDecimal{#3}{\IfDecimal{#6}{\zzz=4725%\[#5=\frac{#8\times#3}{#6}\] + \edef\Nomz{#5}\valz=#8\Valz=#3\denoz=#6% + }{}}{} + } + }{\IfDecimal{#3}{\IfDecimal{#6}{\zzz=4725%\[#5=\frac{#8\times#3}{#6}\] + \edef\Nomz{#5}\valz=#8\Valz=#3\denoz=#6% + }{}}{} + }}{} + }% + %% +\StrMid{\the\zzz}{1}{1}[\cmza]% +\StrMid{\the\yyy}{1}{1}[\cmya]% +\StrMid{\the\xxx}{1}{1}[\cmxa]% +\ifboolKV[ClesThales]{Calcul}{% + %%%%%%%%%%%%%%%%%%%%%%%%%%% + On remplace par les longueurs connues : + \ifboolKV[ClesThales]{Propor}{% + \[\begin{array}{c|c|c} + \IfDecimal{#3}{\num{#3}}{#3}&\IfDecimal{#4}{\num{#4}}{#4}&\IfDecimal{#5}{\num{#5}}{#5}\\ + \hline + \IfDecimal{#6}{\num{#6}}{#6}&\IfDecimal{#7}{\num{#7}}{#7}&\IfDecimal{#8}{\num{#8}}{#8}\\ + \end{array} + \] + }{% + \[\frac{\IfDecimal{#3}{\num{#3}}{#3}}{\IfDecimal{#6}{\num{#6}}{#6}}=\frac{\IfDecimal{#4}{\num{#4}}{#4}}{\IfDecimal{#7}{\num{#7}}{#7}}=\frac{\IfDecimal{#5}{\num{#5}}{#5}}{\IfDecimal{#8}{\num{#8}}{#8}}\] + }% + % On choisit éventuellement le calcul à faire s'il y en a plusieurs. + \xdef\CompteurCalcul{\useKV[ClesThales]{ChoixCalcul}}% + \xintifboolexpr{\CompteurCalcul>0}{\xintifboolexpr{\CompteurCalcul=1}{\xdef\cmya{0}\xdef\cmza{0}}{\xintifboolexpr{\CompteurCalcul=2}{\xdef\cmxa{0}\xdef\cmza{0}}{\xdef\cmxa{0}\xdef\cmya{0}}}}% + %%on fait les calculs +\begin{align*} + %Premier compteur \xxx + \ifnum\cmxa>0 + \Nomx\uppercase{&}=\frac{\the\valx\times\the\Valx}{\the\denox}\global\numx=\numexpr\the\valx*\the\Valx\relax + \fi + % % Deuxième compteur \yyy + \ifnum\cmya>0 + \ifnum\cmxa=0 + \else + \uppercase{&} + \fi% + \Nomy\uppercase{&}=\frac{\the\valy\times\the\Valy}{\the\denoy}\global\numy=\numexpr\the\valy*\the\Valy\relax + % \else + % \uppercase{&}\Nomy\uppercase{&}=\frac{\the\valy\times\the\Valy}{\the\denoy}\global\numy=\numexpr\the\valy*\the\Valy\relax + % \fi + \fi + % Troisième compteur \zzz + \ifnum\cmza>0 + \ifnum\cmxa=0 + \ifnum\cmya=0 + %\Nomz\uppercase{&}=\frac{\the\valz\times\the\Valz}{\the\denoz}\global\numz=\numexpr\the\valz*\the\Valz\relax + \else + \uppercase{&}%\Nomz\uppercase{&}=\frac{\the\valz\times\the\Valz}{\the\denoz}\global\numz=\numexpr\the\valz*\the\Valz\relax + \fi + \Nomz\uppercase{&}=\frac{\the\valz\times\the\Valz}{\the\denoz}\global\numz=\numexpr\the\valz*\the\Valz\relax + \else + \uppercase{&}\Nomz\uppercase{&}=\frac{\the\valz\times\the\Valz}{\the\denoz}\global\numz=\numexpr\the\valz*\the\Valz\relax + \fi + \fi + \\ + % 2eme ligne du tableau : calcul des numérateurs + %Premier compteur \xxx + \ifnum\cmxa>0 + \Nomx\uppercase{&}=\frac{\num{\the\numx}}{\num{\the\denox}} + \fi + % % Deuxième compteur \yyy + \ifnum\cmya>0 + \ifnum\cmxa=0 + %\Nomy\uppercase{&}=\frac{\num{\the\numy}}{\num{\the\denoy}} + \else + \uppercase{&}%\Nomy\uppercase{&}=\frac{\num{\the\numy}}{\num{\the\denoy}} + \fi + \Nomy\uppercase{&}=\frac{\num{\the\numy}}{\num{\the\denoy}}% + \fi + %Troisième compteur \zzz + \ifnum\cmza>0 + \ifnum\cmxa=0 + \ifnum\cmya=0 + %\Nomz\uppercase{&}=\frac{\num{\the\numz}}{\num{\the\denoz}} + \else + \uppercase{&}%\Nomz\uppercase{&}=\frac{\num{\the\numz}}{\num{\the\denoz}} + \fi + \Nomz\uppercase{&}=\frac{\num{\the\numz}}{\num{\the\denoz}} + \else + \uppercase{&}\Nomz\uppercase{&}=\frac{\num{\the\numz}}{\num{\the\denoz}} + \fi + \fi + \\ + % 3eme ligne : faire les simplifications ou pas ? + %Premier compteur \xxx + \ifnum\cmxa>0 + \PGCD{\the\numx}{\the\denox} + \ifnum\pgcd>1 + \Nomx\uppercase{&}=\SSimpli{\the\numx}{\the\denox} + \else + \uppercase{&} + \fi + \fi + % % Deuxième compteur \yyy + \ifnum\cmya>0 + \PGCD{\the\numy}{\the\denoy} + \ifnum\cmxa=0 + \ifnum\pgcd>1 + \Nomy\uppercase{&}=\SSimpli{\the\numy}{\the\denoy} + \else + \uppercase{&} + \fi + \else + \ifnum\pgcd>1 + \uppercase{&}\Nomy\uppercase{&}=\SSimpli{\the\numy}{\the\denoy} + \else + \uppercase{&&} + \fi + \fi + \fi + %Troisième compteur \zzz + \ifnum\cmza>0 + \PGCD{\the\numz}{\the\denoz} + \ifnum\cmxa=0 + \ifnum\cmya=0 + \ifnum\pgcd>1 + \Nomz\uppercase{&}=\SSimpli{\the\numz}{\the\denoz} + \else + \uppercase{&} + \fi + \else + \ifnum\pgcd>1 + \uppercase{&}\Nomz\uppercase{&}=\SSimpli{\the\numz}{\the\denoz} + \else + \uppercase{&&} + \fi + \fi + \else + \ifnum\pgcd>1 + \uppercase{&}\Nomz\uppercase{&}=\SSimpli{\the\numz}{\the\denoz} + \else + \uppercase{&&} + \fi + \fi + \fi + \\ + % 4eme ligne : Terminer les simplifications ? + %Premier compteur \xxx + \ifnum\cmxa>0 + \PGCD{\the\numx}{\the\denox} + \ifnum\pgcd>1 + \ifnum\pgcd<\the\denox + \Nomx\uppercase{&}=\SSimplifie{\the\numx}{\the\denox} + \else + \uppercase{&} + \fi + \else + \uppercase{&} + \fi + \fi + % % Deuxième compteur \yyy + \ifnum\cmya>0 + \PGCD{\the\numy}{\the\denoy} + \ifnum\cmxa=0 + \ifnum\pgcd>1 + \ifnum\pgcd<\the\denoy + \Nomy\uppercase{&}=\SSimplifie{\the\numy}{\the\denoy} + \else + \uppercase{&} + \fi + \else + \uppercase{&} + \fi + \else + \ifnum\pgcd>1 + \ifnum\pgcd<\the\denoy + \uppercase{&}\Nomy\uppercase{&}=\SSimplifie{\the\numy}{\the\denoy} + \else + \uppercase{&&} + \fi + \else + \uppercase{&&} + \fi + \fi + \fi + %Troisième compteur \zzz + \ifnum\cmza>0 + \PGCD{\the\numz}{\the\denoz} + \ifnum\cmxa=0 + \ifnum\cmya=0 + \ifnum\pgcd>1 + \ifnum\pgcd<\the\denoz + \Nomz\uppercase{&}=\SSimplifie{\the\numz}{\the\denoz} + \else + \uppercase{&} + \fi + \else + \uppercase{&} + \fi + \else + \ifnum\pgcd>1 + \ifnum\pgcd<\the\denoz + \uppercase{&}\Nomz\uppercase{&}=\SSimplifie{\the\numz}{\the\denoz} + \else + \uppercase{&&} + \fi + \else + \uppercase{&&} + \fi + \fi + \else + \ifnum\pgcd>1 + \ifnum\pgcd<\the\denoz + \uppercase{&}\Nomz\uppercase{&}=\SSimplifie{\the\numz}{\the\denoz} + \else + \uppercase{&&} + \fi + \else + \uppercase{&&} + \fi + \fi + \fi%\\ +\end{align*} +}{}% +} + +\newcommand{\TThales}[8][]{% + \setKV[ClesThales]{#1}% + \ifboolKV[ClesThales]{Figure}{% + \StrMid{#2}{1}{1}[\NomA]\StrMid{#2}{2}{2}[\NomB]\StrMid{#2}{3}{3}[\NomC]\StrMid{#2}{4}{4}[\NomM]\StrMid{#2}{5}{5}[\NomN]% + \begin{multicols}{2}% + {\em La figure est donnée à titre indicatif.}% + \[\MPFigThales\NomA\NomB\NomC\NomM\NomN\]% + \par\columnbreak\par% + \ifboolKV[ClesThales]{Entier}{\TThalesCalculsE[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8}}{\TThalesCalculsD[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8}}% + \end{multicols}% + }{\ifboolKV[ClesThales]{Figurecroisee}{% + \StrMid{#2}{1}{1}[\NomA]\StrMid{#2}{2}{2}[\NomB]\StrMid{#2}{3}{3}[\NomC]\StrMid{#2}{4}{4}[\NomM]\StrMid{#2}{5}{5}[\NomN]% + \begin{multicols}{2}% + {\em La figure est donnée à titre indicatif.}% + \[\MPFigThalesCroisee\NomA\NomB\NomC\NomM\NomN\]% + \par\columnbreak\par% + \ifboolKV[ClesThales]{Entier}{\TThalesCalculsE[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8}}{\TThalesCalculsD[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8}}% + \end{multicols}% + }{\ifboolKV[ClesThales]{Entier}{\TThalesCalculsE[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8}}{\TThalesCalculsD[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8}}}% + }% +}% +%%%% + +\newcommand{\ReciThales}[6][]{% + Dans le triangle $#2#3#4$, $#5$ est un point \ifboolKV[ClesThales]{Segment}{du segment $[#2#3]$}{de la + droite $(#2#3)$}, $#6$ est un point \ifboolKV[ClesThales]{Segment}{du segment $[#2#4]$}{de la droite $(#2#4)$}. + \ifboolKV[ClesThales]{Propor}{Le tableau $\begin{array}{c|c} + #2#5#6\\ + \hline + #2#3#4\\ + \end{array} + $ est-il un tableau de proportionnalité ? + }{% + } +} + +\newcommand{\ReciThalesCalculs}[8][]{% + \StrMid{#2}{1}{1}[\NomA]% + \StrMid{#2}{2}{2}[\NomB]% + \StrMid{#2}{3}{3}[\NomC]% + \StrMid{#2}{4}{4}[\NomM]% + \StrMid{#2}{5}{5}[\NomN]% + \ifboolKV[ClesThales]{Produit}{% + \begin{align*} + \dfrac{\NomA\NomM}{\NomA\NomB}=\dfrac{\num{#3}}{\num{#4}}&&\dfrac{\NomA\NomN}{\NomA\NomC}=\dfrac{\num{#5}}{\num{#6}} + \end{align*} + Effectuons les produits en croix :\xdef\NumA{\fpeval{#3*#6}}\xdef\NumB{\fpeval{#4*#5}} + \begin{align*} + \num{#3}\times\num{#6}&=\num{\fpeval{#3*#6}}&&&\num{#4}\times\num{#5}&=\num{\fpeval{#4*#5}} + \end{align*} + \xintifboolexpr{\NumA = \NumB}{Comme les produits en croix sont + égaux alors + $\dfrac{\NomA\NomM}{\NomA\NomB}=\dfrac{\NomA\NomN}{\NomA\NomC}$.\\[0.5em]% + }{% + Comme les produits en croix sont différents alors + $\dfrac{\NomA\NomM}{\NomA\NomB}\not=\dfrac{\NomA\NomN}{\NomA\NomC}$.\\% + }% + }{% + \[\left. + \begin{array}{l} + \dfrac{\NomA\NomM}{\NomA\NomB}=\dfrac{\num{#3}}{\num{#4}}\ifx\bla#7\bla\ifboolKV[ClesThales]{Simplification}{\PGCD{#3}{#4}\xintifboolexpr{\pgcd=1}{%il faut regarder si on doit continuer avec le PPCM... + \PGCD{#5}{#6}\xintifboolexpr{\pgcd>1}{\xdef\DenomSimpaa{\fpeval{#6/\pgcd}}\PPCM{#4}{\DenomSimpaa}\xintifboolexpr{\ppcm=#4}{}{=\dfrac{#3\times\num{\fpeval{\ppcm/#4}}}{#4\times\num{\fpeval{\ppcm/#4}}}=\dfrac{\num{\fpeval{#3*\ppcm/#4}}}{\num{\fpeval{\ppcm}}}}}{}% + }{=\displaystyle\Simplification[All]{#3}{#4}\PGCD{#3}{#4}\xdef\NumSimp{\fpeval{#3/\pgcd}}\xdef\DenomSimp{\fpeval{#4/\pgcd}}\PGCD{#5}{#6}\xdef\NumSimpa{\fpeval{#5/\pgcd}}\xdef\DenomSimpa{\fpeval{#6/\pgcd}}\PPCM{\DenomSimp}{\DenomSimpa}\xintifboolexpr{\fpeval{\the\ppcm/\DenomSimp}=1}{}{=\dfrac{\num{\NumSimp}\times\num{\fpeval{\the\ppcm/\DenomSimp}}}{\num{\DenomSimp}\times\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\the\ppcm/\DenomSimp}}}=\dfrac{\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\NumSimp*\the\ppcm/\DenomSimp}}}{\PPCM{\DenomSimp}{\DenomSimpa}\num{\the\ppcm}}}}}{\PPCM{#4}{#6}\xintifboolexpr{\fpeval{\the\ppcm/#4}=1}{}{=\dfrac{\num{#3}\times\num{\fpeval{\the\ppcm/#4}}}{\num{#4}\times\PPCM{#4}{#6}\num{\fpeval{\the\ppcm/#4}}}=\dfrac{\PPCM{#4}{#6}\num{\fpeval{#3*\the\ppcm/#4}}}{\PPCM{#4}{#6}\num{\the\ppcm}}}}\xdef\NumA{\fpeval{#3*#6}}\else% + \xintifboolexpr{#7=1}{}{=\dfrac{\num{#3}\times\num{#7}}{\num{#4}\times\num{#7}}=\dfrac{\num{\fpeval{#3*#7}}}{\num{\fpeval{#4*#7}}}}\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\xintifboolexpr{\the\ppcm=\fpeval{#4*#7}}{}{=\dfrac{\num{\fpeval{#3*#7}}\times\num{\fpeval{\the\ppcm/(#4*#7)}}}{\num{\fpeval{#4*#7}}\times\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm/(#4*#7)}}}=\dfrac{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{#3*\the\ppcm/#4}}}{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm}}}}\xdef\NumA{\fpeval{#3*#7*#6*#8}} + \fi + \\ + \\ + \dfrac{\NomA\NomN}{\NomA\NomC}=\dfrac{\num{#5}}{\num{#6}}% + \ifx\bla#8\bla% + \ifboolKV[ClesThales]{Simplification}{\PGCD{#5}{#6}\xintifboolexpr{\pgcd=1}{%il faut regarder si on doit continuer avec le PPCM... + \PGCD{#3}{#4}\xintifboolexpr{\pgcd>1}{\xdef\DenomSimpaa{\fpeval{#4/\pgcd}}\PPCM{#6}{\DenomSimpaa}\xintifboolexpr{\ppcm=#6}{}{=\dfrac{#5\times\num{\fpeval{\ppcm/#6}}}{#6\times\num{\fpeval{\ppcm/#6}}}=\dfrac{\num{\fpeval{#5*\ppcm/#6}}}{\num{\fpeval{\ppcm}}}}}{}% + }{=\displaystyle\Simplification[All]{#5}{#6}\PGCD{#5}{#6}\xdef\NumSimp{\fpeval{#5/\pgcd}}\xdef\DenomSimp{\fpeval{#6/\pgcd}}\PGCD{#3}{#4}\xdef\NumSimpa{\fpeval{#3/\pgcd}}\xdef\DenomSimpa{\fpeval{#4/\pgcd}}\PPCM{\DenomSimp}{\DenomSimpa}\xintifboolexpr{\fpeval{\the\ppcm/\DenomSimp}=1}{}{=\dfrac{\num{\NumSimp}\times\num{\fpeval{\the\ppcm/\DenomSimp}}}{\num{\DenomSimp}\times\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\the\ppcm/\DenomSimp}}}=\dfrac{\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\NumSimp*\the\ppcm/\DenomSimp}}}{\PPCM{\DenomSimp}{\DenomSimpa}\num{\the\ppcm}}}}}{\PPCM{#4}{#6}\xintifboolexpr{\fpeval{\the\ppcm/#6}=1}{}{=\dfrac{\num{#5}\times\num{\fpeval{\the\ppcm/#6}}}{\num{#6}\times\PPCM{#4}{#6}\num{\fpeval{\the\ppcm/#6}}}=\dfrac{\PPCM{#4}{#6}\num{\fpeval{#5*\the\ppcm/#6}}}{\PPCM{#4}{#6}\num{\the\ppcm}}}}\xdef\NumB{\fpeval{#5*#4}}% + \else% + \xintifboolexpr{#8=1}{}{=\dfrac{\num{#5}\times\num{#8}}{\num{#6}\times\num{#8}}=\dfrac{\num{\fpeval{#5*#8}}}{\num{\fpeval{#6*#8}}}}\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\xintifboolexpr{\the\ppcm=\fpeval{#6*#8}}{}{=\dfrac{\num{\fpeval{#5*#8}}\times\num{\fpeval{\the\ppcm/(#6*#8)}}}{\num{\fpeval{#6*#8}}\times\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm/(#6*#8)}}}=\dfrac{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{#5*\the\ppcm/#6}}}{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm}}} + }\xdef\NumB{\fpeval{#5*#8*#4*#7}} + \fi\\ + \end{array} + \right\}\ifnum\NumA=\NumB \dfrac{\NomA\NomM}{\NomA\NomB}=\dfrac{\NomA\NomN}{\NomA\NomC}\else\dfrac{\NomA\NomM}{\NomA\NomB}\not=\dfrac{\NomA\NomN}{\NomA\NomC}\fi + \] + } + \ifboolKV[ClesThales]{Propor}{% + \ifnum\NumA=\NumB Donc le tableau $\begin{array}{c|c} + \NomA\NomM&\NomA\NomN\\ + \hline + \NomA\NomB&\NomA\NomC\\ + \end{array} + $ est bien un tableau de proportionnalité.\\De plus, les points + $\NomA$, $\NomM$, $\NomB$ sont alignés dans le même ordre que les + points $\NomA$, $\NomN$, $\NomC$. Donc les droites $(\NomM\NomN)$ + et $(\NomB\NomC)$ sont parallèles d'après la réciproque du + théorème de Thalès.\else% + Donc les droites $(\NomM\NomN)$ et $(\NomB\NomC)$ ne sont pas parallèles.\fi + }{% + \xintifboolexpr{\NumA=\NumB}{% + De plus, les points $\NomA$, $\NomM$, $\NomB$ sont alignés dans + le même ordre que les points $\NomA$, $\NomN$, $\NomC$. Donc les + droites $(\NomM\NomN)$ et $(\NomB\NomC)$ sont parallèles d'après + la réciproque du théorème de Thalès.}{% + Donc les droites $(\NomM\NomN)$ et $(\NomB\NomC)$ ne sont pas + parallèles.} + } +} + +\newcommand\ReciproqueThales[8][]{% + % #1 Clés + % #2 NomTriangle + Points ABCEF pour droite (BC)//(EF) + % #3 longueur AE + % #4 longueur AB + % #5 longueur AF + % #6 longueur AC + \ifboolKV[ClesThales]{Figure}{% + \StrMid{#2}{1}{1}[\NomA]\StrMid{#2}{2}{2}[\NomB]\StrMid{#2}{3}{3}[\NomC]\StrMid{#2}{4}{4}[\NomM]\StrMid{#2}{5}{5}[\NomN]% + \begin{multicols}{2} + {\em La figure est donnée à titre indicatif.} + \[\MPFigReciThales{\NomA}{\NomB}{\NomC}{\NomM}{\NomN}\] + \par\columnbreak\par + \ReciThales[#1]{\StrMid{#2}{1}{1}}{\StrMid{#2}{2}{2}}{\StrMid{#2}{3}{3}}{\StrMid{#2}{4}{4}}{\StrMid{#2}{5}{5}}\par + \ReciThalesCalculs[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8} + \end{multicols} + }{\ifboolKV[ClesThales]{Figurecroisee}{% + \StrMid{#2}{1}{1}[\NomA]\StrMid{#2}{2}{2}[\NomB]\StrMid{#2}{3}{3}[\NomC]\StrMid{#2}{4}{4}[\NomM]\StrMid{#2}{5}{5}[\NomN] + \begin{minipage}{0.4\linewidth} + {\em La figure est donnée à titre indicatif.} + \[\MPFigReciThalesCroisee{\NomA}{\NomB}{\NomC}{\NomM}{\NomN}\] + \end{minipage} + \hfill + \begin{minipage}{0.55\linewidth} + \ReciThales[#1]{\StrMid{#2}{1}{1}}{\StrMid{#2}{2}{2}}{\StrMid{#2}{3}{3}}{\StrMid{#2}{4}{4}}{\StrMid{#2}{5}{5}}\par + \ReciThalesCalculs[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8} + \end{minipage}\\% + }{\ReciThales[#1]{\StrMid{#2}{1}{1}}{\StrMid{#2}{2}{2}}{\StrMid{#2}{3}{3}}{\StrMid{#2}{4}{4}}{\StrMid{#2}{5}{5}}\par + \ReciThalesCalculs[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8} + } + } +} + +\newcommand{\Thales}[8][]{% + \useKVdefault[ClesThales]% + \setKV[ClesThales]{#1}% + \ifboolKV[ClesThales]{Reciproque}{% + \ReciproqueThales[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8}% + }{% + \ifboolKV[ClesThales]{Redaction}{% + \TTThales[#1]{\StrMid{#2}{1}{1}}{\StrMid{#2}{2}{2}}{\StrMid{#2}{3}{3}}{\StrMid{#2}{4}{4}}{\StrMid{#2}{5}{5}}% + }{% + \TThales[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8}% + } + }% +}% + +%%%%%%%%%%%%%%%% +%% Trigonométrie +%%%%%%%%%%%%%%%% +\def\MPFigTrigo#1#2#3#4#5#6#7{% + \ifluatex + \mplibcodeinherit{enable} + \mplibforcehmode + \begin{mplibcode} + u:=1cm; + pair A,B,C,O,I,D,E,F;% + % On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=u*(1,1); + B-A=u*(3,0); + C=(A--2[A,B rotatedabout(A,50)]) intersectionpoint (B--2[B,A rotatedabout(B,-90)]); + % On définit le centre du cercle circonscrit + O - .5[A,B] = whatever * (B-A) rotated 90; + O - .5[B,C] = whatever * (C-B) rotated 90; + % On tourne pour éventuellement moins de lassitude :) + numeric Angle; + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % On définit le centre du cercle inscrit + (I-C) rotated ((angle(A-C)-angle(B-C))/2) shifted C=whatever[A,C]; + (I-B) rotated ((angle(C-B)-angle(A-B))/2) shifted B=whatever[B,C]; + % on dessine à main levée :) + path triangle; + triangle=A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}--B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}--C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}--cycle; + % on définit l'angle droit + D-B=7*unitvector(C-B); + F-B=7*unitvector(A-B); + E-D=F-B; + draw D{dir(angle(E-D)+5)}..E{dir(angle(E-D)+5)}--E{dir(angle(F-E)+5)}..F{dir(angle(F-E)+5)}; + % L'angle :) + path cc; + cc=fullcircle scaled 1u; + % on marque les angles + picture MAngle; + MAngle=image( + draw (cc shifted A); + % draw (cc shifted B); + % draw (cc shifted C); + ); + draw MAngle; + clip currentpicture to triangle; + draw A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + % on labelise + picture z; + label(btex #1 etex,1.15[O,A]); + label(btex #2 etex,1.15[O,B]); + label(btex #3 etex,1.15[O,C]); + label(btex \ang{#7} etex,A+0.95u*unitvector(I-A)); + decalage:=3mm; + if #6<0: + else: + if angle(1/2[A,C]-B)>0: + if #6=0: + label(btex ? etex rotated angle(C-A),1.1[B,1/2[A,C]]); + else: + label(btex \num{#6} etex rotated angle(C-A),1.1[B,1/2[A,C]]); + fi; + else: + if #6=0: + label(btex ? etex rotated angle(A-C),1.1[B,1/2[A,C]]); + else: + label(btex \num{#6} etex rotated angle(A-C),1.1[B,1/2[A,C]]); + fi; + fi; + fi; + if #4<0: + else: + if angle(1/2[B,C]-A)>0: + if #4=0: + label(btex ? etex rotated(angle(B-C)),1/2[B,C]-decalage*(unitvector(A-B))); + else: + label(btex \num{#4} etex rotated(angle(B-C)),1/2[B,C]-decalage*(unitvector(A-B))); + fi; + else: + if #4=0: + label(btex ? etex rotated(angle(C-B)),1/2[B,C]-decalage*(unitvector(A-B))); + else: + label(btex \num{#4} etex rotated(angle(C-B)),1/2[B,C]-decalage*(unitvector(A-B))); + fi; + fi; + fi; + if #5<0: + else: + if angle(1/2[A,B]-C)>0: + if #5=0: + label(btex ? etex rotated angle(A-B),1/2[A,B]-decalage*(unitvector(C-B))); + else: + label(btex \num{#5} etex rotated angle(A-B),1/2[A,B]-decalage*(unitvector(C-B))); + fi; + else: + if #5=0: + label(btex ? etex rotated angle(B-A),1/2[A,B]-decalage*(unitvector(C-B))); + else: + label(btex \num{#5} etex rotated angle(B-A),1/2[A,B]-decalage*(unitvector(C-B))); + fi; + fi; + fi; + \end{mplibcode} + \mplibcodeinherit{disable} + \else + \begin{mpost} + u:=1cm; + pair A,B,C,O,I,D,E,F;% + % On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=u*(1,1); + B-A=u*(3,0); + C=(A--2[A,B rotatedabout(A,50)]) intersectionpoint (B--2[B,A rotatedabout(B,-90)]); + % On définit le centre du cercle circonscrit + O - .5[A,B] = whatever * (B-A) rotated 90; + O - .5[B,C] = whatever * (C-B) rotated 90; + % On tourne pour éventuellement moins de lassitude :) + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % On définit le centre du cercle inscrit + (I-C) rotated ((angle(A-C)-angle(B-C))/2) shifted C=whatever[A,C]; + (I-B) rotated ((angle(C-B)-angle(A-B))/2) shifted B=whatever[B,C]; + % on dessine à main levée :) + path triangle; + triangle=A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}--B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}--C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}--cycle; + % on définit l'angle droit + D-B=7*unitvector(C-B); + F-B=7*unitvector(A-B); + E-D=F-B; + draw D{dir(angle(E-D)+5)}..E{dir(angle(E-D)+5)}--E{dir(angle(F-E)+5)}..F{dir(angle(F-E)+5)}; + % L'angle :) + path cc; + cc=fullcircle scaled 1u; + % on marque les angles + picture MAngle; + MAngle=image( + draw (cc shifted A); + % draw (cc shifted B); + % draw (cc shifted C); + ); + draw MAngle; + clip currentpicture to triangle; + draw A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + % on labelise + picture z; + label(btex #1 etex,1.15[O,A]); + label(btex #2 etex,1.15[O,B]); + label(btex #3 etex,1.15[O,C]); + label(btex \ang{#7} etex,A+0.95u*unitvector(I-A)); + decalage:=3mm; + if #6<0: + else: + if angle(1/2[A,C]-B)>0: + if #6=0: + label(btex ? etex rotated angle(C-A),1.1[B,1/2[A,C]]); + else: + label(btex \num{#6} etex rotated angle(C-A),1.1[B,1/2[A,C]]); + fi; + else: + if #6=0: + label(btex ? etex rotated angle(A-C),1.1[B,1/2[A,C]]); + else: + label(btex \num{#6} etex rotated angle(A-C),1.1[B,1/2[A,C]]); + fi; + fi; + fi; + if #4<0: + else: + if angle(1/2[B,C]-A)>0: + if #4=0: + label(btex ? etex rotated(angle(B-C)),1/2[B,C]-decalage*(unitvector(A-B))); + else: + label(btex \num{#4} etex rotated(angle(B-C)),1/2[B,C]-decalage*(unitvector(A-B))); + fi; + else: + if #4=0: + label(btex ? etex rotated(angle(C-B)),1/2[B,C]-decalage*(unitvector(A-B))); + else: + label(btex \num{#4} etex rotated(angle(C-B)),1/2[B,C]-decalage*(unitvector(A-B))); + fi; + fi; + fi; + if #5<0: + else: + if angle(1/2[A,B]-C)>0: + if #5=0: + label(btex ? etex rotated angle(A-B),1/2[A,B]-decalage*(unitvector(C-B))); + else: + label(btex \num{#5} etex rotated angle(A-B),1/2[A,B]-decalage*(unitvector(C-B))); + fi; + else: + if #5=0: + label(btex ? etex rotated angle(B-A),1/2[A,B]-decalage*(unitvector(C-B))); + else: + label(btex \num{#5} etex rotated angle(B-A),1/2[A,B]-decalage*(unitvector(C-B))); + fi; + fi; + fi; +\end{mpost} +\fi +} + +\def\MPFigTrigoAngle#1#2#3#4#5#6{% + % #1 A + % #2 B + % #3 C + % #4 opp + % #5 adj + % #6 hyp + \ifluatex + \mplibcodeinherit{enable} + \mplibforcehmode + \begin{mplibcode} + u:=1cm; + pair A,B,C,O,I,D,E,F;% + % On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=u*(1,1); + B-A=u*(3,0); + C=(A--2[A,B rotatedabout(A,50)]) intersectionpoint (B--2[B,A rotatedabout(B,-90)]); + % On définit le centre du cercle circonscrit + O - .5[A,B] = whatever * (B-A) rotated 90; + O - .5[B,C] = whatever * (C-B) rotated 90; + % On tourne pour éventuellement moins de lassitude :) + numeric Anglelua; + Anglelua=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Anglelua); + B:=B rotatedabout(O,Anglelua); + C:=C rotatedabout(O,Anglelua); + % On définit le centre du cercle inscrit + (I-C) rotated ((angle(A-C)-angle(B-C))/2) shifted C=whatever[A,C]; + (I-B) rotated ((angle(C-B)-angle(A-B))/2) shifted B=whatever[B,C]; + %on dessine à main levée :) + path triangle; + triangle=A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}--B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}--C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}--cycle; + %on définit l'angle droit + D-B=7*unitvector(C-B); + F-B=7*unitvector(A-B); + E-D=F-B; + draw D{dir(angle(E-D)+5)}..E{dir(angle(E-D)+5)}--E{dir(angle(F-E)+5)}..F{dir(angle(F-E)+5)}; + %L'angle :) + path cc; + cc=fullcircle scaled 1u; + % on marque les angles + picture MAngle; + MAngle=image( + draw (cc shifted A); +% draw (cc shifted B); +% draw (cc shifted C); + ); + draw MAngle; + clip currentpicture to triangle; + draw A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + %on labelise + label(btex #1 etex,1.15[O,A]); + label(btex #2 etex,1.15[O,B]); + label(btex #3 etex,1.15[O,C]); + label(btex ? etex,A+0.95u*unitvector(I-A)); + decalage:=3mm; + if angle(1/2[A,C]-B)>0: + label(btex \num{#6} etex rotated angle(C-A),1.1[B,1/2[A,C]]); + else: + label(btex \num{#6} etex rotated angle(A-C),1.1[B,1/2[A,C]]); + fi; + if angle(1/2[B,C]-A)>0: + label(btex \num{#4} etex rotated(angle(B-C)),1/2[B,C]-decalage*(unitvector(A-B))); + else: + label(btex \num{#4} etex rotated(angle(C-B)),1/2[B,C]-decalage*(unitvector(A-B))); + fi; + if angle(1/2[A,B]-C)>0: + label(btex \num{#5} etex rotated angle(A-B),1/2[A,B]-decalage*(unitvector(C-B))); + else: + label(btex \num{#5} etex rotated angle(B-A),1/2[A,B]-decalage*(unitvector(C-B))); + fi; +\end{mplibcode} +\mplibcodeinherit{disable} + \else + \begin{mpost} + u:=1cm; + pair A,B,C,O,I,D,E,F;% + %On place les points A,B,C sur le cercle de manière à faciliter la rotation de la figure + A=u*(1,1); + B-A=u*(3,0); + C=(A--2[A,B rotatedabout(A,50)]) intersectionpoint (B--2[B,A rotatedabout(B,-90)]); + % On définit le centre du cercle circonscrit + O - .5[A,B] = whatever * (B-A) rotated 90; + O - .5[B,C] = whatever * (C-B) rotated 90; + % On tourne pour éventuellement moins de lassitude :) + Angle=uniformdeviate(180);%Caractère aléatoire + A:=A rotatedabout(O,Angle); + B:=B rotatedabout(O,Angle); + C:=C rotatedabout(O,Angle); + % On définit le centre du cercle inscrit + (I-C) rotated ((angle(A-C)-angle(B-C))/2) shifted C=whatever[A,C]; + (I-B) rotated ((angle(C-B)-angle(A-B))/2) shifted B=whatever[B,C]; + %on dessine à main levée :) + path triangle; + triangle=A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}--B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}--C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}--cycle; + %on définit l'angle droit + D-B=7*unitvector(C-B); + F-B=7*unitvector(A-B); + E-D=F-B; + draw D{dir(angle(E-D)+5)}..E{dir(angle(E-D)+5)}--E{dir(angle(F-E)+5)}..F{dir(angle(F-E)+5)}; + %L'angle :) + path cc; + cc=fullcircle scaled 1u; + % on marque les angles + picture MAngle; + MAngle=image( + draw (cc shifted A); +% draw (cc shifted B); +% draw (cc shifted C); + ); + draw MAngle; + clip currentpicture to triangle; + draw A{dir(angle(B-A)+5)}..B{dir(angle(B-A)+5)}; + draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)}; + draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)}; + %on labelise + label(btex #1 etex,1.15[O,A]); + label(btex #2 etex,1.15[O,B]); + label(btex #3 etex,1.15[O,C]); + label(btex ? etex,A+0.95u*unitvector(I-A)); + decalage:=3mm; + if angle(1/2[A,C]-B)>0: + label(btex \num{#6} etex rotated angle(C-A),1.1[B,1/2[A,C]]); + else: + label(btex \num{#6} etex rotated angle(A-C),1.1[B,1/2[A,C]]); + fi; + if angle(1/2[B,C]-A)>0: + label(btex \num{#4} etex rotated(angle(B-C)),1/2[B,C]-decalage*(unitvector(A-B))); + else: + label(btex \num{#4} etex rotated(angle(C-B)),1/2[B,C]-decalage*(unitvector(A-B))); + fi; + if angle(1/2[A,B]-C)>0: + label(btex \num{#5} etex rotated angle(A-B),1/2[A,B]-decalage*(unitvector(C-B))); + else: + label(btex \num{#5} etex rotated angle(B-A),1/2[A,B]-decalage*(unitvector(C-B))); + fi; +\end{mpost} +\fi +} + +\setKVdefault[ClesTrigo]{Angle=false,Propor=false,Figure=false,Precision=2,Unite=cm,Sinus=false,Cosinus=false,Tangente=false}% + +\newcommand\TrigoCalculs[5][]{% + \setKV[ClesTrigo]{#1}% + % #1 Clés + % #2 Nom du triangle ABC, rectangle en B, angle connu ou pas : BAC + % #3 Longueur + % #4 Longueur + %#5 angle + % On définit les points + \StrMid{#2}{1}{1}[\NomA]% + \StrMid{#2}{2}{2}[\NomB]% + \StrMid{#2}{3}{3}[\NomC]% + Dans le triangle $\NomA\NomB\NomC$, rectangle en $\NomB$, on a : + \ifboolKV[ClesTrigo]{Cosinus}{% + \ifx\bla#3\bla%on calcule le côté adjacent + \ifboolKV[ClesTrigo]{Propor}{% + \begin{align*} + \NomA\NomC\times\cos(\widehat{\NomB\NomA\NomC})&=\NomA\NomB\\ + \num{#4}\times\cos(\ang{#5})&=\NomA\NomB\\ + \num{\fpeval{round(\fpeval{#4*cosd(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}&\IfInteger{\fpeval{round(\fpeval{#4*cosd(#5)},2)}}{=}{\approx}\NomA\NomB% + \end{align*}% + }{% + \begin{align*} + \cos(\widehat{\NomB\NomA\NomC})&=\frac{\NomA\NomB}{\NomA\NomC}\\ + \cos(\ang{#5})&=\frac{\NomA\NomB}{\num{#4}}\\ + \num{#4}\times\cos(\ang{#5})&=\NomA\NomB\\ + \num{\fpeval{round(\fpeval{#4*cosd(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}&\IfInteger{\fpeval{round(\fpeval{#4*cosd(#5)},2)}}{=}{\approx}\NomA\NomB% + \end{align*}% + }% + \xdef\ResultatTrigo{\fpeval{round(\fpeval{#4*cosd(#5)},\useKV[ClesTrigo]{Precision})}}% + \else + \ifx\bla#4\bla%on calcule l'hypothénuse + \ifboolKV[ClesTrigo]{Propor}{% + \begin{align*} + \NomA\NomC\times\cos(\widehat{\NomB\NomA\NomC})&=\NomA\NomB\\ + \NomA\NomC\times\cos(\ang{#5})&=\num{#3}\\ + \NomA\NomC&=\frac{\num{#3}}{\cos(\ang{#5})}\\ + \NomA\NomC&\IfInteger{\fpeval{round(\fpeval{#3/cosd(#5)},2)}}{=}{\approx}\num{\fpeval{round(\fpeval{#3/cosd(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}% + \end{align*} + }{% + \begin{align*} + \cos(\widehat{\NomB\NomA\NomC})&=\frac{\NomA\NomB}{\NomA\NomC}\\ + \cos(\ang{#5})&=\frac{\num{#3}}{\NomA\NomC}\\ + \NomA\NomC&=\frac{\num{#3}}{\cos(\ang{#5})}\\ + \NomA\NomC&\IfInteger{\fpeval{round(\fpeval{#3/cosd(#5)},2)}}{=}{\approx}\num{\fpeval{round(\fpeval{#3/cosd(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}% + \end{align*} + } + \xdef\ResultatTrigo{\fpeval{round(\fpeval{#3/cosd(#5)},\useKV[ClesTrigo]{Precision})}}% + \else%on calcule l'angle + \ifboolKV[ClesTrigo]{Propor}{% + \begin{align*} + \NomA\NomC\times\cos(\widehat{\NomB\NomA\NomC})&=\NomA\NomB\\ + \num{#4}\times\cos(\widehat{\NomB\NomA\NomC})&=\num{#3}\\ + \cos(\widehat{\NomB\NomA\NomC})&=\frac{\num{#3}}{\num{#4}}\\ + \widehat{\NomB\NomA\NomC}&\IfInteger{\fpeval{round(\fpeval{acosd(#3/#4)},2)}}{=}{\approx}\ang{\fpeval{round(\fpeval{acosd(#3/#4)})}}% + \end{align*}% + }{% + \begin{align*} + \cos(\widehat{\NomB\NomA\NomC})&=\frac{\NomA\NomB}{\NomA\NomC}\\ + \cos(\widehat{\NomB\NomA\NomC})&=\frac{\num{#3}}{\num{#4}}\\ + \widehat{\NomB\NomA\NomC}&\IfInteger{\fpeval{round(\fpeval{acosd(#3/#4)},2)}}{=}{\approx}\ang{\fpeval{round(\fpeval{acosd(#3/#4)})}}% + \end{align*}% + }% + \xdef\ResultatTrigo{\fpeval{round(\fpeval{acosd(#3/#4)})}}% + \fi + \fi + }{} + \ifboolKV[ClesTrigo]{Sinus}{% + \ifx\bla#3\bla%on calcule le côté opposé + \ifboolKV[ClesTrigo]{Propor}{% + \begin{align*} + \NomA\NomC\times\sin(\widehat{\NomB\NomA\NomC})&=\NomB\NomC\\ + \num{#4}\times\sin(\ang{#5})&=\NomB\NomC\\ + \num{\fpeval{round(\fpeval{#4*sind(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}&\IfInteger{\fpeval{round(\fpeval{#4*sind(#5)},2)}}{=}{\approx}\NomB\NomC% + \end{align*}% + }{% + \begin{align*} + \sin(\widehat{\NomB\NomA\NomC})&=\frac{\NomB\NomC}{\NomA\NomC}\\ + \sin(\ang{#5})&=\frac{\NomB\NomC}{\num{#4}}\\ + \num{#4}\times\sin(\ang{#5})&=\NomB\NomC\\ + \num{\fpeval{round(\fpeval{#4*sind(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}&\IfInteger{\fpeval{round(\fpeval{#4*sind(#5)},2)}}{=}{\approx}\NomB\NomC% + \end{align*}% + }% + \xdef\ResultatTrigo{\fpeval{round(\fpeval{#4*sind(#5)},\useKV[ClesTrigo]{Precision})}}% + \else + \ifx\bla#4\bla%on calcule l'hypothénuse + \ifboolKV[ClesTrigo]{Propor}{% + \begin{align*} + \NomA\NomC\times\sin(\widehat{\NomB\NomA\NomC})&=\NomB\NomC\\ + \NomA\NomC\times\sin(\ang{#5})&=\num{#3}\\ + \NomA\NomC&=\frac{\num{#3}}{\sin(\ang{#5})}\\ + \NomA\NomC&\IfInteger{\fpeval{round(\fpeval{#3/sind(#5)},2)}}{=}{\approx}\num{\fpeval{round(\fpeval{#3/sind(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}% + \end{align*}% + }{ + \begin{align*} + \sin(\widehat{\NomB\NomA\NomC})&=\frac{\NomB\NomC}{\NomA\NomC}\\ + \sin(\ang{#5})&=\frac{\num{#3}}{\NomA\NomC}\\ + \NomA\NomC&=\frac{\num{#3}}{\sin(\ang{#5})}\\ + \NomA\NomC&\IfInteger{\fpeval{round(\fpeval{#3/sind(#5)},2)}}{=}{\approx}\num{\fpeval{round(\fpeval{#3/sind(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}% + \end{align*}% + }% + \xdef\ResultatTrigo{\fpeval{round(\fpeval{#3/sind(#5)},\useKV[ClesTrigo]{Precision})}}% + \else%on calcule l'angle + \ifboolKV[ClesTrigo]{Propor}{% + \begin{align*} + \NomA\NomC\times\sin(\widehat{\NomB\NomA\NomC})&=\NomB\NomC\\ + \num{#4}\times\sin(\widehat{\NomB\NomA\NomC})&=\num{#3}\\ + \sin(\widehat{\NomB\NomA\NomC})&=\frac{\num{#3}}{\num{#4}}\\ + \widehat{\NomB\NomA\NomC}&\IfInteger{\fpeval{round(\fpeval{asind(#3/#4)},2)}}{=}{\approx}\ang{\fpeval{round(\fpeval{asind(#3/#4)})}}% + \end{align*}% + }{ + \begin{align*} + \sin(\widehat{\NomB\NomA\NomC})&=\frac{\NomB\NomC}{\NomA\NomC}\\ + \sin(\widehat{\NomB\NomA\NomC})&=\frac{\num{#3}}{\num{#4}}\\ + \widehat{\NomB\NomA\NomC}&\IfInteger{\fpeval{round(\fpeval{asind(#3/#4)},2)}}{=}{\approx}\ang{\fpeval{round(\fpeval{asind(#3/#4)})}}% + \end{align*}% + }% + \xdef\ResultatTrigo{\fpeval{round(\fpeval{asind(#3/#4)})}}% + \fi + \fi + }{} + \ifboolKV[ClesTrigo]{Tangente}{% + \ifx\bla#3\bla%on calcule le côté opposé + \ifboolKV[ClesTrigo]{Propor}{% + \begin{align*} + \NomA\NomB\times\tan(\widehat{\NomB\NomA\NomC})&=\NomB\NomC\\% + \num{#4}\times\tan(\ang{#5})&=\NomB\NomC\\% + \num{\fpeval{round(\fpeval{#4*tand(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}&\IfInteger{\fpeval{round(\fpeval{#4*tand(#5)},2)}}{=}{\approx}\NomB\NomC% + \end{align*}% + }{% + \begin{align*} + \tan(\widehat{\NomB\NomA\NomC})&=\frac{\NomB\NomC}{\NomA\NomB}\\ + \tan(\ang{#5})&=\frac{\NomB\NomC}{\num{#4}}\\ + \num{#4}\times\tan(\ang{#5})&=\NomB\NomC\\ + \num{\fpeval{round(\fpeval{#4*tand(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}&\IfInteger{\fpeval{round(\fpeval{#4*tand(#5)},2)}}{=}{\approx}\NomB\NomC% + \end{align*}% + }% + \xdef\ResultatTrigo{\fpeval{round(\fpeval{#4*tand(#5)},\useKV[ClesTrigo]{Precision})}}% + \else + \ifx\bla#4\bla%on calcule l'adjacent + \ifboolKV[ClesTrigo]{Propor}{% + \begin{align*} + \NomA\NomB\times\tan(\widehat{\NomB\NomA\NomC})&=\NomB\NomC\\ + \NomA\NomB\times\tan(\ang{#5})&=\num{#3}\\ + \NomA\NomB&=\frac{\num{#3}}{\tan(\ang{#5})}\\ + \NomA\NomB&\IfInteger{\fpeval{round(\fpeval{#3/tand(#5)},2)}}{=}{\approx}\num{\fpeval{round(\fpeval{#3/tand(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}% + \end{align*}% + }{ + \begin{align*} + \tan(\widehat{\NomB\NomA\NomC})&=\frac{\NomB\NomC}{\NomA\NomB}\\ + \tan(\ang{#5})&=\frac{\num{#3}}{\NomA\NomB}\\ + \NomA\NomB&=\frac{\num{#3}}{\tan(\ang{#5})}\\ + \NomA\NomB&\IfInteger{\fpeval{round(\fpeval{#3/tand(#5)},2)}}{=}{\approx}\num{\fpeval{round(\fpeval{#3/tand(#5)},\useKV[ClesTrigo]{Precision})}}~\text{\useKV[ClesTrigo]{Unite}}% + \end{align*}% + }% + \xdef\ResultatTrigo{\fpeval{round(\fpeval{#3/tand(#5)},\useKV[ClesTrigo]{Precision})}}% + \else%on calcule l'angle + \ifboolKV[ClesTrigo]{Propor}{% + \begin{align*} + \NomA\NomB\times\tan(\widehat{\NomB\NomA\NomC})&=\NomB\NomC\\ + \num{#4}\times\tan(\widehat{\NomB\NomA\NomC})&=\num{#3}\\ + \tan(\widehat{\NomB\NomA\NomC})&=\frac{\num{#3}}{\num{#4}}\\ + \widehat{\NomB\NomA\NomC}&\IfInteger{\fpeval{round(\fpeval{atand(#3/#4)},2)}}{=}{\approx}\ang{\fpeval{round(\fpeval{atand(#3/#4)})}}% + \end{align*}% + }{ + \begin{align*} + \tan(\widehat{\NomB\NomA\NomC})&=\frac{\NomB\NomC}{\NomA\NomB}\\ + \tan(\widehat{\NomB\NomA\NomC})&=\frac{\num{#3}}{\num{#4}}\\ + \widehat{\NomB\NomA\NomC}&\IfInteger{\fpeval{round(\fpeval{atand(#3/#4)},2)}}{=}{\approx}\ang{\fpeval{round(\fpeval{atand(#3/#4)})}}% + \end{align*}% + }% + \xdef\ResultatTrigo{\fpeval{round(\fpeval{atand(#3/#4)})}}% + \fi + \fi + }{} +} + +\newcommand\Trigo[5][]{% + \useKVdefault[ClesTrigo]% + \setKV[ClesTrigo]{#1}% + % #1 Clés + % #2 Nom du triangle ABC, rectangle en B, angle connu ou pas : BAC + % #3 Longueur + % #4 Longueur ou angle en fonction du calcul à faire. Si longueur, #3<#4 + % On définit les points + \StrMid{#2}{1}{1}[\NomA]% + \StrMid{#2}{2}{2}[\NomB]% + \StrMid{#2}{3}{3}[\NomC]% + % On rédige + \ifboolKV[ClesTrigo]{Figure}{% + \begin{multicols}{2}% + {\em La figure est donnée à titre indicatif.}% + \ifboolKV[ClesTrigo]{Angle}{%figure pour calculer un angle + \ifboolKV[ClesTrigo]{Cosinus}{% + \begin{center} + \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{}{#3}{#4} + \end{center} + }{}% + \ifboolKV[ClesTrigo]{Sinus}{% + \begin{center} + \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{#3}{}{#4} + \end{center} + }{}% + \ifboolKV[ClesTrigo]{Tangente}{% + \begin{center} + \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{#3}{#4}{} + \end{center} + }{}% + }{%figure pour calculer une longueur + \ifboolKV[ClesTrigo]{Cosinus}{% + \ifx#3\bla\bla%adjacent inconnu + \begin{center} + \MPFigTrigo{\NomA}{\NomB}{\NomC}{-1}{0}{#4}{#5} + \end{center} + \else + \begin{center} + \MPFigTrigo{\NomA}{\NomB}{\NomC}{-1}{#3}{0}{#5} + \end{center} + \fi + }{}% + \ifboolKV[ClesTrigo]{Sinus}{% + \ifx#3\bla\bla%adjacent inconnu + \begin{center} + \MPFigTrigo{\NomA}{\NomB}{\NomC}{0}{-1}{#4}{#5} + \end{center} + \else + \begin{center} + \MPFigTrigo{\NomA}{\NomB}{\NomC}{#3}{-1}{0}{#5} + \end{center} + \fi + }{}% + \ifboolKV[ClesTrigo]{Tangente}{% + \ifx#3\bla\bla%adjacent inconnu + \begin{center} + \MPFigTrigo{\NomA}{\NomB}{\NomC}{0}{#4}{-1}{#5} + \end{center} + \else% + \begin{center} + \MPFigTrigo{\NomA}{\NomB}{\NomC}{#3}{0}{-1}{#5} + \end{center} + \fi% + }{}% + }% + \par\columnbreak\par + \TrigoCalculs{#2}{#3}{#4}{#5}% + \end{multicols} + }{% + \TrigoCalculs{#2}{#3}{#4}{#5}% + }% +}% + +%%%%%%%%%%%%%%% +%% Statistiques +%%%%%%%%%%%%%%% +\newcommand\NbDonnees{} +\newcommand\SommeDonnees{}% +\newcommand\EffectifTotal{}% +\newcommand\Moyenne{}% +\newcommand\Etendue{}% +\newcommand\Mediane{}% +\newcommand\DonneeMax{}% +\newcommand\DonneeMin{}% +\newcommand\EffectifMax{}% + +\setKVdefault[ClesStat]{Tableau=false,Frequence=false,EffectifTotal=false,Etendue=false,Moyenne=false,SET=false,Mediane=false,Total=false,Concret=false,Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif(s),Origine=0,Angle=false,SemiAngle=false,Qualitatif=false,TableauVide=false,Graphique=false,Batons=true,Unitex=0.5,Unitey=0.5,Rayon=3cm,AffichageAngle=false,Liste=false,ECC=false,Coupure=10} + +% La construction du tableau +\def\addtotok#1#2{#1\expandafter{\the#1#2}} +\newtoks\tabtoksa\newtoks\tabtoksb\newtoks\tabtoksc +\def\updatetoks#1/#2\nil{\addtotok\tabtoksa{&\num{#1}}\addtotok\tabtoksb{&\num{#2}}} +\def\buildtab{% + \tabtoksa{\useKV[ClesStat]{Donnee}}\tabtoksb{\useKV[ClesStat]{Effectif}}% + \foreachitem\compteur\in\ListeComplete{\expandafter\updatetoks\compteur\nil}% + \[% + \begin{tabular}{|>{\columncolor{gray!15}}c|*{\number\numexpr\ListeCompletelen}{>{\centering\arraybackslash}p{\useKV[ClesStat]{Largeur}}|}}% + \hline% + \rowcolor{gray!15}\the\tabtoksa\\\hline% + \the\tabtoksb\\\hline% + \ifboolKV[ClesStat]{Frequence}{Fréquence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculFrequence{##1}}}\\\hline}{}% + \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculAngle{##1}}}\\\hline}{}% + \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\CalculSemiAngle{##1}}\\\hline}{}% + \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculECC{##1}}}\\\hline}{}% + \end{tabular} + \] +} + +\def\buildtabt{% + \tabtoksa{\useKV[ClesStat]{Donnee}}\tabtoksb{\useKV[ClesStat]{Effectif}}% + \foreachitem\compteur\in\ListeComplete{\expandafter\updatetoks\compteur\nil}% + \[% + \begin{tabular}{|>{\columncolor{gray!15}}c|*{\number\numexpr\ListeCompletelen+1}{>{\centering\arraybackslash}p{\useKV[ClesStat]{Largeur}}|}}% + \hline% + \rowcolor{gray!15}\the\tabtoksa&Total\\\hline% + \the\tabtoksb&\ifboolKV[ClesStat]{TableauVide}{}{\num{\EffectifTotal}}% + \\\hline% + \ifboolKV[ClesStat]{Frequence}{Fréquence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculFrequence{##1}}}&\ifboolKV[ClesStat]{TableauVide}{}{100}\\\hline}{}% + \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculAngle{##1}}}&\ifboolKV[ClesStat]{TableauVide}{}{360}\\\hline}{}% + \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculSemiAngle{##1}}}&\ifboolKV[ClesStat]{TableauVide}{}{180}\\\hline}{}% + \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculECC{##1}}}&\ifboolKV[ClesStat]{TableauVide}{}{\num{\EffectifTotal}}\\\hline}{}% + \end{tabular} + \] +} + +\def\updatetoksq#1/#2\nil{\addtotok\tabtoksa{}\addtotok\tabtoksb{&\num{#2}}} +\def\buildtabq{% + \tabtoksa{\useKV[ClesStat]{Donnee}}\tabtoksb{\useKV[ClesStat]{Effectif}}% + \foreachitem\compteur\in\ListeComplete{\expandafter\updatetoksq\compteur\nil}% + \[% + \begin{tabular}{|>{\columncolor{gray!15}}c|*{\number\numexpr\ListeCompletelen}{>{\centering\arraybackslash}p{\useKV[ClesStat]{Largeur}}|}}% + \hline% + \rowcolor{gray!15}\the\tabtoksa\\\hline% + \the\tabtoksb\\\hline% + \ifboolKV[ClesStat]{Frequence}{Fréquence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculFrequence{##1}}}\\\hline}{}% + \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculAngle{##1}}}\\\hline}{}% + \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculSemiAngle{##1}}}\\\hline}{}% + \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculECC{##1}}}\\\hline}{}% + \end{tabular} + \] +} + +\def\buildtabqt{% + \tabtoksa{\useKV[ClesStat]{Donnee}}\tabtoksb{\useKV[ClesStat]{Effectif}}% + \foreachitem\compteur\in\ListeComplete{\expandafter\updatetoksq\compteur\nil}% + \[% + \begin{tabular}{|>{\columncolor{gray!15}}c|*{\number\numexpr\ListeCompletelen+1}{>{\centering\arraybackslash}p{\useKV[ClesStat]{Largeur}}|}}% + \hline% + \rowcolor{gray!15}\the\tabtoksa&Total\\\hline% + \the\tabtoksb&\num{\EffectifTotal}\\\hline% + \ifboolKV[ClesStat]{Frequence}{Fréquence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculFrequence{##1}}}&\ifboolKV[ClesStat]{TableauVide}{}{100}\\\hline}{}% + \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculAngle{##1}}}&\ifboolKV[ClesStat]{TableauVide}{}{360}\\\hline}{}% + \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculSemiAngle{##1}}}&\ifboolKV[ClesStat]{TableauVide}{}{180}\\\hline}{}% + \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\CalculECC{##1}}}&\ifboolKV[ClesStat]{TableauVide}{}{\num{\EffectifTotal}}\\\hline}{}% + \end{tabular} + \] +} + +% Pour construire le diagramme en bâtons +\def\Updatetoks#1/#2\nil{\addtotok\toklistepoint{(#1,#2),}} +\def\buildgraph{% + \newtoks\toklistepoint + \foreachitem\compteur\in\ListeComplete{\expandafter\Updatetoks\compteur\nil}% + \[\MPStat{\useKV[ClesStat]{Unitex}}{\useKV[ClesStat]{Unitey}}{\the\toklistepoint}{\useKV[ClesStat]{Donnee}}{\useKV[ClesStat]{Effectif}}{\useKV[ClesStat]{Origine}}\]% +}% + +% Pour construire le diagramme en bâtons qualitatif +\def\Updatetoksq#1/#2\nil{\addtotok\toklistepointq{"#1",#2,}} +\def\buildgraphq{% + \newtoks\toklistepointq + \toklistepointq{} + \foreachitem\compteur\in\ListeComplete{\expandafter\Updatetoksq\compteur\nil} + \[\MPStatQ{2*\useKV[ClesStat]{Unitex}}{0.5*\useKV[ClesStat]{Unitey}}{\the\toklistepointq}{\useKV[ClesStat]{Donnee}}{\useKV[ClesStat]{Effectif}}{\useKV[ClesStat]{Origine}}\] +} + +% Pour construire le diagramme circulaire qualitatif +\def\buildgraphcq#1{% + \newtoks\toklistepointq% + \toklistepointq{}% + \foreachitem\compteur\in\ListeComplete{\expandafter\Updatetoksq\compteur\nil}% + \ifboolKV[ClesStat]{AffichageAngle}{% + \[\MPStatCirculaireQ{\useKV[ClesStat]{Rayon}}{\the\toklistepointq}{#1}{1}\]% + }{% + \[\MPStatCirculaireQ{\useKV[ClesStat]{Rayon}}{\the\toklistepointq}{#1}{0}\]% + }% +}% + +%% calcul des fréquences +\newcommand\CalculFrequence[1]{% + \fpeval{round(\ListeComplete[#1,2]*100/\EffectifTotal,0)} +} + +%% calcul des angles +\newcommand\CalculAngle[1]{% + \fpeval{round(\ListeComplete[#1,2]*360/\EffectifTotal,0)} +} +\newcommand\CalculSemiAngle[1]{% + \fpeval{round(\ListeComplete[#1,2]*180/\EffectifTotal,0)} +} + +%% calcul des ECC +\newcount\CompteurECC% +\newcount\CompteurECCTotal% + +\newcommand\CalculECC[1]{% + \xdef\TotalECC{0}% + \CompteurECC=1% + \CompteurECCTotal=\numexpr#1+1% + \whiledo{\CompteurECC < \CompteurECCTotal}{ + \xdef\TotalECC{\fpeval{\TotalECC+\ListeComplete[\the\CompteurECC,2]}}% + \CompteurECC=\numexpr\CompteurECC+1% + }% + \num{\TotalECC}% +} + +% la construction du graphique +\def\MPStat#1#2#3#4#5#6{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + maxx:=0; + maxy:=0; + unitex:=#1*cm; + unitey:=#2*cm; + pair A[],B[],P[]; + n:=0; + vardef toto(text t)= + for p_=t: + if pair p_: + n:=n+1; + P[n]=((xpart(p_)-(#6))*unitex,ypart(p_)*unitey); + if xpart(p_)>maxx: + maxx:=xpart(p_)-(#6); + fi; + if ypart(p_)>maxy: + maxy:=ypart(p_); + fi; + A[n]=unitex*(xpart(p_)-(#6),0); + B[n]=unitey*(0,ypart(p_)); + label.bot(TEX("\num{"&decimal(xpart(p_))&"}"),A[n]); + label.lft(TEX("\num{"&decimal(ypart(p_))&"}"),B[n]); + fi; + endfor; + enddef; + toto(#3); + for k=1 upto n: + draw A[k]--P[k] withpen pencircle scaled 2bp; + draw B[k]--P[k] dashed evenly; + endfor; + drawarrow (0,0)--unitex*(maxx+1,0); + drawarrow (0,0)--unitey*(0,maxy+1); + label.lrt(btex #4 etex,unitex*(maxx+1,0)); + label.urt(btex #5 etex,unitey*(0,maxy+1)); + \end{mplibcode} + \else + \begin{mpost} + maxx:=0; + maxy:=0; + unitex:=#1*cm; + unitey:=#2*cm; + pair A[],B[],P[]; + n:=0; + vardef toto(text t)= + for p_=t: + if pair p_: + n:=n+1; + P[n]=((xpart(p_)-(#6))*unitex,ypart(p_)*unitey); + if xpart(p_)>maxx: + maxx:=xpart(p_)-(#6); + fi; + if ypart(p_)>maxy: + maxy:=ypart(p_); + fi; + A[n]=unitex*(xpart(p_)-(#6),0); + B[n]=unitey*(0,ypart(p_)); + label.bot(LATEX("\num{"&decimal(xpart(p_))&"}"),A[n]); + label.lft(LATEX("\num{"&decimal(ypart(p_))&"}"),B[n]); + fi; + endfor; + enddef; + toto(#3); + for k=1 upto n: + draw A[k]--P[k] withpen pencircle scaled 2bp; + draw B[k]--P[k] dashed evenly; + endfor; + drawarrow (0,0)--unitex*(maxx+1,0); + drawarrow (0,0)--unitey*(0,maxy+1); + label.lrt(btex #4 etex,unitex*(maxx+1,0)); + label.urt(btex #5 etex,unitey*(0,maxy+1)); + \end{mpost} + \fi +} + +% la construction du graphique qualitatif +\def\MPStatQ#1#2#3#4#5#6{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + maxy:=0; + unitex:=#1*cm; + unitey:=#2*cm; + pair A[],B[],P[]; + n:=0; + vardef toto(text t)= + for p_=t: + if numeric p_: + P[n]=((n+1)*unitex,unitey*p_); + B[n]=(0,unitey*p_); + label.lft(TEX("\num{"&decimal(p_)&"}"),B[n]); + if p_>maxy: + maxy:=p_; + fi; + n:=n+1; + else: + A[n]=unitex*(n+1,0); + label.bot(TEX(p_) rotated 90,A[n]); + fi; + endfor; + enddef; + toto(#3); + for k=0 upto n-1: + draw A[k]--P[k] withpen pencircle scaled 2bp; + draw B[k]--P[k] dashed evenly; + endfor; + drawarrow (0,0)--unitex*(n+1,0); + drawarrow (0,0)--unitey*(0,maxy+1); + label.lrt(btex #4 etex,unitex*(n+1,0)); + label.urt(btex #5 etex,unitey*(0,maxy+1)); + \end{mplibcode} + \else + \begin{mpost} + maxy:=0; + unitex:=#1*cm; + unitey:=#2*cm; + pair A[],B[],P[]; + n:=0; + vardef toto(text t)= + for p_=t: + if numeric p_: + P[n]=((n+1)*unitex,unitey*p_); + B[n]=(0,unitey*p_); + label.lft(LATEX("\num{"&decimal(p_)&"}"),B[n]); + if p_>maxy: + maxy:=p_; + fi; + n:=n+1; + else: + A[n]=unitex*(n+1,0); + label.bot(LATEX(p_) rotated 90,A[n]); + fi; + endfor; + enddef; + toto(#3); + for k=0 upto n-1: + draw A[k]--P[k] withpen pencircle scaled 2bp; + draw B[k]--P[k] dashed evenly; + endfor; + drawarrow (0,0)--unitex*(n+1,0); + drawarrow (0,0)--unitey*(0,maxy+1); + label.lrt(btex #4 etex,unitex*(n+1,0)); + label.urt(btex #5 etex,unitey*(0,maxy+1)); + \end{mpost} + \fi +} + +% la construction du graphique qualitatif +\def\MPStatCirculaireQ#1#2#3#4{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + pair A[],O,B[],C[],D[]; + O=(0,0); + n:=0; + numeric total[],ang[]; + total[0]=0; + ang[0]:=0; + path cc; + cc=(fullcircle scaled (2*#1)); + if #3=360: + draw cc; + else: + draw (subpath(0,length cc/2) of cc)--cycle; + fi; + A[0]=point(0) of cc; + vardef toto(text t)= + for p_=t: + if numeric p_: + n:=n+1; + total[n]:=total[n-1]+p_; + fi; + endfor; + N=n; + for k=1 upto N: + ang[k]=(#3/total[N])*total[k]; + endfor; + n:=0; + for p_=t: + if numeric p_: + n:=n+1; + A[n]=A[n-1] rotatedabout(O,p_*(#3/total[N])); + draw A[n-1]--O--A[n]; + % Affichage des angles associés + if #4=1: + if round(p_*(#3/total[N]))>15: + if (n mod 2)=0: + marque_a:=0.9*20 + else: + marque_a:=1.1*20/0.9 + fi; + draw Codeangle(A[n-1],O,A[n],0,(((TEX("\ang{"&decimal(round(p_*(#3/total[N])))&"}")) scaled 0.5))); + fi; + fi; + % + fi; + endfor; + n:=0; + path cd[]; + for p_=t: + if string p_: + n:=n+1; + C[n]=A[n-1] rotatedabout(O,(ang[n]-ang[n-1])/2); + draw 0.95[O,C[n]]--1.05[O,C[n]]; + C[n]:=1.05[O,C[n]]; + if (xpart(C[n])>xpart(O)) and (ypart(C[n])>ypart(O)): + D[n]=C[n]+(0.5cm,0); + draw C[n]--D[n]; + label.urt(TEX(p_),D[n]); + fi; + if (xpart(C[n])<xpart(O)) and (ypart(C[n])>ypart(O)): + D[n]=C[n]-(0.5cm,0); + draw C[n]--D[n]; + label.ulft(TEX(p_),D[n]); + fi; + if (xpart(C[n])<xpart(O)) and (ypart(C[n])<ypart(O)): + D[n]=C[n]-(0.5cm,0); + draw C[n]--D[n]; + label.llft(TEX(p_),D[n]); + fi; + if (xpart(C[n])>xpart(O)) and (ypart(C[n])<ypart(O)): + D[n]=C[n]+(0.5cm,0); + draw C[n]--D[n]; + label.lrt(TEX(p_),D[n]); + fi; + fi; + endfor; + enddef; + Figure(-10u,-10u,10u,10u); + toto(#2); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + pair A[],O,B[],C[],D[]; + O=(0,0); + n:=0; + numeric total[],ang[]; + total[0]=0; + ang[0]:=0; + path cc; + cc=(fullcircle scaled (2*#1)); + if #3=360: + draw cc; + else: + draw (subpath(0,length cc/2) of cc)--cycle; + fi; + A[0]=point(0) of cc; + vardef toto(text t)= + for p_=t: + if numeric p_: + n:=n+1; + total[n]:=total[n-1]+p_; + fi; + endfor; + N=n; + for k=1 upto N: + ang[k]=(#3/total[N])*total[k]; + endfor; + n:=0; + for p_=t: + if numeric p_: + n:=n+1; + A[n]=A[n-1] rotatedabout(O,p_*(#3/total[N])); + draw A[n-1]--O--A[n]; + % Affichage des angles associés + if #4=1: + if round(p_*(#3/total[N]))>15: + if (n mod 2)=0: + marque_a:=0.9*20 + else: + marque_a:=1.1*20/0.9 + fi; + draw Codeangle(A[n-1],O,A[n],0,(((LATEX("\ang{"&decimal(round(p_*(#3/total[N])))&"}")) scaled 0.5))); + fi; + fi; + % + fi; + endfor; + n:=0; + path cd[]; + for p_=t: + if string p_: + n:=n+1; + C[n]=A[n-1] rotatedabout(O,(ang[n]-ang[n-1])/2); + draw 0.95[O,C[n]]--1.05[O,C[n]]; + C[n]:=1.05[O,C[n]]; + if (xpart(C[n])>xpart(O)) and (ypart(C[n])>ypart(O)): + D[n]=C[n]+(0.5cm,0); + draw C[n]--D[n]; + label.urt(LATEX(p_),D[n]); + fi; + if (xpart(C[n])<xpart(O)) and (ypart(C[n])>ypart(O)): + D[n]=C[n]-(0.5cm,0); + draw C[n]--D[n]; + label.ulft(LATEX(p_),D[n]); + fi; + if (xpart(C[n])<xpart(O)) and (ypart(C[n])<ypart(O)): + D[n]=C[n]-(0.5cm,0); + draw C[n]--D[n]; + label.llft(LATEX(p_),D[n]); + fi; + if (xpart(C[n])>xpart(O)) and (ypart(C[n])<ypart(O)): + D[n]=C[n]+(0.5cm,0); + draw C[n]--D[n]; + label.lrt(LATEX(p_),D[n]); + fi; + fi; + endfor; + enddef; + Figure(-10u,-10u,10u,10u); + toto(#2); + \end{mpost} + \fi +} + +%Pour la médiane. +\DTLgnewdb{mtdb}% +\dtlexpandnewvalue% +\newcount\nbdonnees% + + +\newcommand\Stat[2][]{% + \useKVdefault[ClesStat]% + \setKV[ClesStat]{#1}% + \ifboolKV[ClesStat]{Liste}{% + \setsepchar{,}\ignoreemptyitems% + \readlist*\Liste{#2}% + \xdef\foo{}% + \setsepchar[*]{,*/}\ignoreemptyitems% + \xintFor* ##1 in {\xintSeq {1}{\Listelen}}\do{% + \xdef\foo{\foo 1/\Liste[##1],}% + }% + \readlist*\ListeComplete{\foo}% + \setKV[ClesStat]{Qualitatif}% + }{% + % % on lit la liste écrite sous la forme valeur/effectif + \setsepchar[*]{,*/}\ignoreemptyitems% + \readlist*\ListeComplete{#2}% + } + % on crée la base de données des valeurs dans le cas qualitatif + \DTLcleardb{mtdb}% + % on les trie pour la médiane dans le cas qualitatif % Touhami / Texnique.fr + \foreachitem\x\in\ListeComplete{% + \DTLnewrow{mtdb}% + \itemtomacro\ListeComplete[\xcnt,2]\y% + \DTLnewdbentry{mtdb}{Numeric}{\y}% + }% + \dtlsort{Numeric}{mtdb}{\dtlicompare}% + % % on réinitialise les valeurs des critères de position et de + % dispersion + \renewcommand\NbDonnees{} + \renewcommand\SommeDonnees{}% + \renewcommand\EffectifTotal{}% + \renewcommand\Moyenne{}% + \renewcommand\Etendue{}% + \renewcommand\Mediane{}% + \renewcommand\DonneeMax{0}% + \renewcommand\EffectifMax{0}% + \renewcommand\DonneeMin{999999999}% + \ifboolKV[ClesStat]{Qualitatif}{%Début qualitatif + % Calculs + % %% celui de la somme des données + \foreachitem\don\in\ListeComplete{\xdef\SommeDonnees{\fpeval{\SommeDonnees+\ListeComplete[\doncnt,2]}}}% + % %% celui de l'effectif total + \xdef\EffectifTotal{\SommeDonnees}% + \ifboolKV[ClesStat]{EffectifTotal}{% + L'effectif total est \num{\ListeCompletelen}.\par + }{} + % %% celui de la moyenne + \xdef\Moyenne{\fpeval{\SommeDonnees/\ListeCompletelen}}% + \ifboolKV[ClesStat]{Moyenne}{% + La somme des données est :% + \xintifboolexpr{\ListeCompletelen<\useKV[ClesStat]{Coupure}}{% + \[ + \num{\ListeComplete[1,2]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{% + +\num{\ListeComplete[##1,2]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{} + }=\num{\SommeDonnees}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}% + \]}{% + \[ + \num{\ListeComplete[1,2]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}\xintFor* ##1 in {\xintSeq {2}{3}}\do{% + +\num{\ListeComplete[##1,2]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}}+\dots\xintFor* ##1 in {\xintSeq {\ListeCompletelen-1}{\ListeCompletelen}}\do{% + +\num{\ListeComplete[##1,2]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{} + }=\num{\SommeDonnees}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}% + \]% + }% + \ifboolKV[ClesStat]{SET}{}{L'effectif total est \num{\ListeCompletelen}.\\}% + Donc la moyenne est égale à :% + \[\frac{\num{\SommeDonnees}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}}{\num{\ListeCompletelen}}%\IfInteger{\fpeval{round(\fpeval{\SommeDonnees/\ListeCompletelen},\useKV[ClesStat]{Precision})}}{=}{\approx} + \opdiv*{\SommeDonnees}{\ListeCompletelen}{resultatmoy}{restemoy}% + \opround{resultatmoy}{\useKV[ClesStat]{Precision}}{resultatmoy1}% + \opcmp{resultatmoy}{resultatmoy1}\ifopeq=\else\approx\fi% + \num{\fpeval{round(\fpeval{\SommeDonnees/\ListeCompletelen},\useKV[ClesStat]{Precision})}}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}.}{.}% + \]% + }{}% + % % %% celui de l'étendue + \xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{% + \xintifboolexpr{\ListeComplete[##1,2]>\DonneeMax}{% + \xdef\DonneeMax{\ListeComplete[##1,2]}% + }{}% + \xintifboolexpr{\ListeComplete[##1,2]<\DonneeMin}{% + \xdef\DonneeMin{\ListeComplete[##1,2]}% + }{}% + }% + \xdef\EffectifMax{\DonneeMax}% + \xdef\Etendue{\fpeval{\DonneeMax-\DonneeMin}}% + \ifboolKV[ClesStat]{Etendue}{L'étendue est égale à $\num{\DonneeMax}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}-\num{\DonneeMin}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}=\num{\Etendue}$\ifboolKV[ClesStat]{Concret}{~\useKV[ClesStat]{Unite}.}{.}% + }{}% + \ifboolKV[ClesStat]{Mediane}{% + %%%%%%%%%%%%%%%%%%%%%%%% + + On range les données par ordre croissant :% + \nbdonnees=0% + \xintifboolexpr{\ListeCompletelen<\useKV[ClesStat]{Coupure}}{% + \[\DTLforeach{mtdb}{\numeroDonnee=Numeric}{\num{\numeroDonnee}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}\DTLiflastrow{.}{;}}\]% + }{% + \medskip% + \begin{center} + \begin{minipage}{0.9\linewidth} + \DTLforeach*{mtdb}{\numeroDonnee=Numeric}{\num{\numeroDonnee}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}\DTLiflastrow{.}{; + }\nbdonnees=\fpeval{\nbdonnees+1}\modulo{\nbdonnees}{\useKV[ClesStat]{Coupure}}\xintifboolexpr{\remainder=0}{\\}{}} + \end{minipage} + \end{center}% + \medskip% + }% + \newcount\med% + \newcount\meda% + \ifodd\number\ListeCompletelen%odd impair + \med=\fpeval{(\ListeCompletelen+1)/2}\relax% + L'effectif total est \num{\ListeCompletelen}. Or, $\num{\ListeCompletelen}=\num{\fpeval{\med-1}}+1+\num{\fpeval{\med-1}}$.\\ + \else% pair + \med=\fpeval{\ListeCompletelen/2}\relax + \meda=\numexpr\med+1\relax + L'effectif total est \num{\ListeCompletelen}. Or, $\num{\ListeCompletelen}=\num{\the\med}+\num{\the\med}$.\\ + \fi% + \newcount\k% + \k=0% + \DTLforeach{mtdb}{\numeroDonnee=Numeric}{\k=\numexpr\k+1\relax% + \ifnum\k=\med %La médiane vaut \numeroDonnee\fi + \ifodd\number\ListeCompletelen% + La médiane est la \the\med\ieme{} donnée.\\Donc la médiane est \num{\numeroDonnee}\ifboolKV[ClesStat]{Concret}{~\useKV[ClesStat]{Unite}.}{.}% + \else% + La \the\med\ieme{} donnée est \num{\numeroDonnee}\ifboolKV[ClesStat]{Concret}{~\useKV[ClesStat]{Unite}.}{.}\xdef\Mediane{\numeroDonnee} % + \fi + \fi + \ifnum\k=\meda + La \the\meda\ieme{} donnée est \num{\numeroDonnee}\ifboolKV[ClesStat]{Concret}{~\useKV[ClesStat]{Unite}.}{.} Donc la médiane est \xdef\Mediane{\fpeval{(\Mediane+\numeroDonnee)/2}}\num{\Mediane}\ifboolKV[ClesStat]{Concret}{~\useKV[ClesStat]{Unite}.}{.} + \fi + } + %%%%%%%%%%%%%%%%%%%%%%%% + }{} + % construction du tableau + \ifboolKV[ClesStat]{Tableau}{\ifboolKV[ClesStat]{Total}{\buildtabqt}{\buildtabq}}{} + % Construction du graphique ?? + \ifboolKV[ClesStat]{Graphique}{% + \ifboolKV[ClesStat]{Angle}{\buildgraphcq{360}}{\ifboolKV[ClesStat]{SemiAngle}{\buildgraphcq{180}}{}} + \ifboolKV[ClesStat]{Batons}{\buildgraphq}{} + }{} + }{%%%%%%%%%%%%%%%%%%%%%Début quantitatif + % % on effectue les calculs + % %% celui de la somme des données + \foreachitem\don\in\ListeComplete{\xdef\SommeDonnees{\fpeval{\SommeDonnees+\ListeComplete[\doncnt,1]*\ListeComplete[\doncnt,2]}}}% + % %% celui de l'effectif total + \foreachitem\don\in\ListeComplete{\xdef\EffectifTotal{\fpeval{\EffectifTotal+\ListeComplete[\doncnt,2]}}}% + % %% celui de l'étendue + \xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{% + \xintifboolexpr{\ListeComplete[##1,1]>\DonneeMax}{% + \xdef\DonneeMax{\ListeComplete[##1,1]}% + }{}% + \xintifboolexpr{\ListeComplete[##1,1]<\DonneeMin}{% + \xdef\DonneeMin{\ListeComplete[##1,1]}% + }{}% + }% +% \xdef\EffectifMax{\DonneeMax}% + \xdef\Etendue{\fpeval{\DonneeMax-\DonneeMin}}%% + % %% celui de la moyenne + \xdef\Moyenne{\fpeval{\SommeDonnees/\EffectifTotal}}% + \ifboolKV[ClesStat]{EffectifTotal}{% + L'effectif total est : \[\ListeComplete[1,2]\xintFor* ##1 in + {\xintSeq {2}{\ListeCompletelen}}\do{% + +\ListeComplete[##1,2]}=\num{\EffectifTotal}\] + }{}% + \ifboolKV[ClesStat]{Moyenne}{% + La somme des données est :% + \xintifboolexpr{\ListeCompletelen<\useKV[ClesStat]{Coupure}}{% + \[ + \ifnum\ListeComplete[1,2]=1\else\num{\ListeComplete[1,2]}\times\fi\num{\ListeComplete[1,1]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{% + +\ifnum\ListeComplete[##1,2]=1\else\num{\ListeComplete[##1,2]}\times\fi\num{\ListeComplete[##1,1]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{} + }=\num{\SommeDonnees}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{} + \] + }{% + \[ + \ifnum\ListeComplete[1,2]=1\else\num{\ListeComplete[1,2]}\times\fi\num{\ListeComplete[1,1]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}\xintFor* ##1 in {\xintSeq {2}{2}}\do{% + +\ifnum\ListeComplete[##1,2]=1\else\num{\ListeComplete[##1,2]}\times\fi\num{\ListeComplete[##1,1]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{} + }+\dots\xintFor* ##1 in {\xintSeq {\ListeCompletelen-1}{\ListeCompletelen}}\do{% + +\ifnum\ListeComplete[##1,2]=1\else\num{\ListeComplete[##1,2]}\times\fi\num{\ListeComplete[##1,1]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{} + }=\num{\SommeDonnees}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{} + \] + } + \ifboolKV[ClesStat]{SET}{}{L'effectif total est :% + \ifboolKV[ClesStat]{Liste}{ \num{\EffectifTotal}\\}{% + \[\num{\ListeComplete[1,2]}\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{% + +\num{\ListeComplete[##1,2]} + }=\num{\EffectifTotal} + \]% + }% + } + Donc la moyenne est égale à :% + \[\frac{\num{\SommeDonnees}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}}{\num{\EffectifTotal}}% + \opdiv*{\SommeDonnees}{\EffectifTotal}{resultatmoy}{restemoy}% + \opround{resultatmoy}{\useKV[ClesStat]{Precision}}{resultatmoy1}% + % Moy=\opprint{resultatmoy}--Moy1=\opprint{resultatmoy1} + \opcmp{resultatmoy}{resultatmoy1}\ifopeq=\else\approx\fi% + \num{\fpeval{round(\SommeDonnees/\EffectifTotal,\useKV[ClesStat]{Precision})}}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}.}{.} + \]% + }{}% + % % Affichage des réponses. + % %% pour l'étendue + \ifboolKV[ClesStat]{Etendue}{L'étendue est égale à $\num{\ListeComplete[\ListeCompletelen,1]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}-\num{\ListeComplete[1,1]}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}=\num{\Etendue}$\ifboolKV[ClesStat]{Concret}{~\useKV[ClesStat]{Unite}.}{.}}{}% + % %% pour la médiane + \ifboolKV[ClesStat]{Mediane}{% + + \newcount\med% + \newcount\meda% + \ifodd\number\EffectifTotal%odd impair + \med=\fpeval{(\EffectifTotal+1)/2}\relax% + L'effectif total est \num{\EffectifTotal}. Or, $\num{\EffectifTotal}=\num{\fpeval{\med-1}}+1+\num{\fpeval{\med-1}}$. % + \else% pair + \med=\fpeval{\EffectifTotal/2}\relax% + \meda=\numexpr\med+1\relax% + L'effectif total est \num{\EffectifTotal}. Or, $\num{\EffectifTotal}=\num{\fpeval{\med}}+\num{\fpeval{\med}}$. % + \fi% + \newcount\k% + \k=0% + \xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{% + \xintFor* ##2 in {\xintSeq {1}{\ListeComplete[##1,2]}}\do{% + \k=\numexpr\k+1\relax% + \ifnum\k=\med% + \ifodd\number\EffectifTotal% + La médiane est la \the\med\ieme{} donnée. Donc la médiane est \num{\ListeComplete[##1,1]}\ifboolKV[ClesStat]{Concret}{~\useKV[ClesStat]{Unite}.}{.}% + \else% + La \the\med\ieme{} donnée est \num{\ListeComplete[##1,1]}\ifboolKV[ClesStat]{Concret}{~\useKV[ClesStat]{Unite}. }{. }\xdef\Mediane{\ListeComplete[##1,1]}% + \fi% + \fi% + \ifnum\k=\meda% + La \the\meda\ieme{} valeur est \num{\ListeComplete[##1,1]}\ifboolKV[ClesStat]{Concret}{~\useKV[ClesStat]{Unite}.}{.}\\Donc la médiane est \xdef\Mediane{\fpeval{(\Mediane+\ListeComplete[##1,1])/2}}\num{\Mediane}\ifboolKV[ClesStat]{Concret}{~\useKV[ClesStat]{Unite}.}{.}% + \fi% + }% + }% + }{}% + % Construction de tableau + \ifboolKV[ClesStat]{Tableau}{\ifboolKV[ClesStat]{Total}{\buildtabt}{\buildtab}}{}% + % Construction du graphique ?? + \ifboolKV[ClesStat]{Graphique}{\buildgraph}{}% + }% +}% + +%%%%%%%%%%%%% +%%% Radar +%%%%%%%%%%%%% +\setKVdefault[ClesRadar]{Rayon=3cm,Reference=20,MoyenneClasse=false,Disciplines=false,Pas=5} + +\newtoks\toklisteradara%pour la moyenne de l'élève +\newtoks\toklisteradarb%pour la discipline +\newtoks\toklisteradarc%pour la moyenne de classe + +\def\UpdateRadara#1/#2/#3\nil{\addtotok\toklisteradara{#1,}} +\def\UpdateRadarb#1/#2/#3\nil{\addtotok\toklisteradarb{"#2",}} +\def\UpdateRadarc#1/#2/#3\nil{\addtotok\toklisteradarc{#3,}} + +\newcommand\MPRadar[6]{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + pair O; + O=(0,0); + path cc; + cc=cercles(O,#1); + %%etiquettage des disciplines + n:=0;%compter le nombre de disciplines + for p_=#2: + n:=n+1; + endfor; + for k=1 upto n: + N[k]=k*(360/n); + trace segment(O,pointarc(cc,N[k]));% dashed evenly; + endfor; + p:=0; + for p_=#2: + p:=p+1; + if N[p]>180: + label(TEX(p_) + rotated(90+N[p]),1.15[O,pointarc(cc,N[p])]); + else: + label(TEX(p_) + rotated(-90+N[p]),1.15[O,pointarc(cc,N[p])]); + fi; + endfor; + % tracé des pas: + pas=#4/#3; + for k=1 upto pas-1: + trace (k/pas)[O,pointarc(cc,N[1])] for l=2 upto n: --(k/pas)[O,pointarc(cc,N[l])] endfor + --cycle dashed evenly withcolor 0.5white; + endfor; + trace pointarc(cc,N[1]) for l=2 upto n: --pointarc(cc,N[l]) endfor + --cycle; + % etiquettage des pas + dotlabel.top(btex \tiny #4 etex rotated -90,pointarc(cc,0)); + dotlabel.urt(btex \tiny #3 etex,(1/pas)[O,pointarc(cc,0)]); + % tracé des résultats élèves + pair El[]; + el=0; + for p_=#5: + el:=el+1; + El[el]=(p_/#4)[O,pointarc(cc,N[el])]; + endfor; + trace El[1] for p=2 upto n:--El[p] endfor --cycle withpen + pencircle scaled 1.5 withcolor blue; + % tracé des résultats classe + pair Cl[]; + cl=0; + for p_=#6: + cl:=cl+1; + Cl[cl]=(p_/#4)[O,pointarc(cc,N[cl])]; + endfor; + trace Cl[1] for p=2 upto n:--Cl[p] endfor --cycle withcolor rouge; + \end{mplibcode} + \else + \begin{mpost} + pair O; + O=(0,0); + path cc; + cc=cercles(O,#1); + %%etiquettage des disciplines + n:=0;%compter le nombre de disciplines + for p_=#2: + n:=n+1; + endfor; + for k=1 upto n: + N[k]=k*(360/n); + trace segment(O,pointarc(cc,N[k]));% dashed evenly; + endfor; + p:=0; + for p_=#2: + p:=p+1; + if N[p]>180: + label(LATEX(p_) + rotated(90+N[p]),1.15[O,pointarc(cc,N[p])]); + else: + label(LATEX(p_) + rotated(-90+N[p]),1.15[O,pointarc(cc,N[p])]); + fi; + endfor; + % tracé des pas: + pas=#4/#3; + for k=1 upto pas-1: + trace (k/pas)[O,pointarc(cc,N[1])] for l=2 upto n: --(k/pas)[O,pointarc(cc,N[l])] endfor + --cycle dashed evenly withcolor 0.5white; + endfor; + trace pointarc(cc,N[1]) for l=2 upto n: --pointarc(cc,N[l]) endfor + --cycle; + % etiquettage des pas + dotlabel.top(LATEX("\noexpand\tiny"&decimal(#4)&"") rotated -90,pointarc(cc,0)); + dotlabel.urt(LATEX("\noexpand\tiny"&decimal(#3)&""),(1/pas)[O,pointarc(cc,0)]); + % tracé des résultats élèves + pair El[]; + el=0; + for p_=#5: + el:=el+1; + El[el]=(p_/#4)[O,pointarc(cc,N[el])]; + endfor; + trace El[1] for p=2 upto n:--El[p] endfor --cycle withpen + pencircle scaled 1.5 withcolor blue; + % tracé des résultats classe + pair Cl[]; + cl=0; + for p_=#6: + cl:=cl+1; + Cl[cl]=(p_/#4)[O,pointarc(cc,N[cl])]; + endfor; + trace Cl[1] for p=2 upto n:--Cl[p] endfor --cycle withcolor rouge; + \end{mpost} + \fi +} + +\newcommand\Radar[2][]{% + % 1 les paramètres + % 2 la répartition des notes + \useKVdefault[ClesRadar]% + \setKV[ClesRadar]{#1}% + \ignoreemptyitems% + \readlist*\ListeRadar{#2}% + \toklisteradara{}% + \foreachitem\compteur\in\ListeRadar{\expandafter\UpdateRadara\compteur\nil}% + \ifboolKV[ClesRadar]{Disciplines}{}{% + \toklisteradarb{}% + \foreachitem\compteur\in\ListeRadar{\expandafter\UpdateRadarb\compteur\nil}% + } + \ifboolKV[ClesRadar]{MoyenneClasse}{}{% + \toklisteradarc{}% + \foreachitem\compteur\in\ListeRadar{\expandafter\UpdateRadarc\compteur\nil}% + } + \MPRadar{\useKV[ClesRadar]{Rayon}}{\the\toklisteradarb}{\useKV[ClesRadar]{Pas}}{\useKV[ClesRadar]{Reference}}{\the\toklisteradara}{\the\toklisteradarc}% +} + +%%%%%%%%%%%% +% Barres de niveaux +%%%%%%%%%%%% +\setKVdefault[ClesBarre]{Niveau=false,LimiteI=25,LimiteF=50,LimiteS=75,TexteOrigine=0,TexteReference=100,CouleurGraduation=white,CouleurFond=gray!50,CouleurBarre=black,Graduation=false,Nom=Défaut,Pas=10,CouleurI=red,CouleurF=orange,CouleurS=yellow,CouleurM=green} + +\newlength{\barrewidth} + +\newcommand\Jauge[2][]{% + \setlength{\barrewidth}{\linewidth-2\fboxsep}% + \useKVdefault[ClesBarre]% + \setKV[ClesBarre]{#1}% + \xdef\NomComp{\useKV[ClesBarre]{Nom}}% + \xdef\TexteOrigine{\useKV[ClesBarre]{Origine}} + \xdef\TexteReference{\useKV[ClesBarre]{Reference}} + \xdef\CouleurFond{\useKV[ClesBarre]{CouleurFond}}% + \xdef\CouleurGrad{\useKV[ClesBarre]{CouleurGraduation}}% + \xdef\CouleurBarre{\useKV[ClesBarre]{CouleurBarre}}% + \xdef\CouleurI{\useKV[ClesBarre]{CouleurI}}% + \xdef\CouleurF{\useKV[ClesBarre]{CouleurF}}% + \xdef\CouleurS{\useKV[ClesBarre]{CouleurS}}% + \xdef\CouleurM{\useKV[ClesBarre]{CouleurM}}% + \ifboolKV[ClesBarre]{Niveau}{% + \begin{tikzpicture}[rounded corners=2pt,very thin] + \fill [gray!50] (0,0) rectangle (\barrewidth, 0.15); + \xintifboolexpr{#2<\useKV[ClesBarre]{LimiteI}}{% + \fill [\CouleurI] (0,0) rectangle (#2/100*\barrewidth, 0.15); + }{\xintifboolexpr{#2<\useKV[ClesBarre]{LimiteF}}{% + \fill [\CouleurF] (0,0) rectangle (#2/100*\barrewidth, 0.15); + }{\xintifboolexpr{#2<\useKV[ClesBarre]{LimiteS}}{% + \fill [\CouleurS] (0,0) rectangle (#2/100*\barrewidth, 0.15); + }{\fill [\CouleurM] (0,0) rectangle (#2/100*\barrewidth, 0.15);} + } + } + \node[anchor=south west] at (0,0.5em) {\NomComp};% + \node[anchor=north] at (0,-0.25em) {\TexteOrigine}; + \node[anchor=north] at (\barrewidth,-0.25em) {\TexteReference}; + \ifboolKV[ClesBarre]{Graduation}{% + \foreach \s in {1,...,\fpeval{\useKV[ClesBarre]{Pas}-1}}% + { + \draw[\CouleurGrad] (\s/\useKV[ClesBarre]{Pas}*\barrewidth,0)--(\s/\useKV[ClesBarre]{Pas}*\barrewidth,0.15); + } + }{} + \foreach \s in {\useKV[ClesBarre]{LimiteI},\useKV[ClesBarre]{LimiteF},\useKV[ClesBarre]{LimiteS}}% + { + \draw[black] (\s/100*\barrewidth,-0.1)--(\s/100*\barrewidth,0.2);% + } + \end{tikzpicture}% + }{% + \begin{tikzpicture}[rounded corners=2pt,very thin] + \fill [\CouleurFond] (0,0) rectangle (\barrewidth, 0.15);% + \fill [\CouleurBarre] (0,0) rectangle (#2/100*\barrewidth, 0.15);% + \node[anchor=south west] at (0,0.5em) {\NomComp};% + \node[anchor=north] at (0,-0.25em) {\useKV[ClesBarre]{TexteOrigine}};% + \node[anchor=north] at (\barrewidth,-0.25em) {\useKV[ClesBarre]{TexteReference}};% + \ifboolKV[ClesBarre]{Graduation}{% + \foreach \s in {1,...,\fpeval{\useKV[ClesBarre]{Pas}-1}}% + { + \draw[\CouleurGrad] (\s/\useKV[ClesBarre]{Pas}*\barrewidth,0)--(\s/\useKV[ClesBarre]{Pas}*\barrewidth,0.15); + }}{}% + \end{tikzpicture}% + } +} + +%%%%%%%%%%%%%%% +%%% Equations +%%%%%%%%%%%%%%% +\setKVdefault[ClesEquation]{Ecart=0.5,Fleches=false,FlecheDiv=false,Laurent=false,Decomposition=false,Terme=false,Composition=false,Symbole=false,Entier=false,Lettre=x,Solution=false,Bloc=false,Simplification=false,CouleurTerme=black,CouleurCompo=black,CouleurSous=red,CouleurSymbole=orange,Verification=false,Nombre=0,Egalite=false,Produit=false,Facteurs=false,Carre=false,Pose=false,Equivalence=false} + + +\newcommand\rightcomment[4]% + {\begin{tikzpicture}[remember picture,overlay] + \draw[Cfleches,-stealth] + ($({pic cs:#3}|-{pic cs:#1})+(\useKV[ClesEquation]{Ecart},0)$) + .. controls +(0.2,-0.05) and +(0.2,0.1) .. + node[right,align=left]{#4} + ($({pic cs:#3}|-{pic cs:#2})+(\useKV[ClesEquation]{Ecart},0.1)$); + \end{tikzpicture}% + } + + + \newcommand\leftcomment[4]% + {\begin{tikzpicture}[remember picture,overlay] + \draw[Cfleches,-stealth] + ($({pic cs:#3}|-{pic cs:#1})-(\useKV[ClesEquation]{Ecart},0)$) + .. controls +(-0.2,-0.05) and +(-0.2,0.1) .. + node[left,align=right]{#4} + ($({pic cs:#3}|-{pic cs:#2})-(\useKV[ClesEquation]{Ecart},-0.1)$); + \end{tikzpicture}% + } + + \newcommand\Rightcomment[4]% + {\begin{tikzpicture}[remember picture,overlay] + \draw[Cfleches,-stealth] + ($({pic cs:#3}|-{pic cs:#1})+(\useKV[ClesEquation]{Ecart},0)$) + .. controls +(0.2,-0.05) and +(0.2,0.1) .. + node[right,align=left]{#4} + ($({pic cs:#3}|-{pic cs:#2})+(\useKV[ClesEquation]{Ecart},0.1)$); + \end{tikzpicture}% + } + \newcommand\Leftcomment[4]% + {\begin{tikzpicture}[remember picture,overlay] + \draw[Cfleches,-stealth] + ($({pic cs:#3}|-{pic cs:#1})-(\useKV[ClesEquation]{Ecart},0)$) + .. controls +(-0.2,-0.05) and +(-0.2,0.1) .. + node[left,align=right]{#4} + ($({pic cs:#3}|-{pic cs:#2})-(\useKV[ClesEquation]{Ecart},-0.1)$); + \end{tikzpicture}% + } + + % Pour "oublier" les tikzmarks. En cas de plusieurs utilisations de la macro \ResolEquation +\newcounter{Nbequa} +\setcounter{Nbequa}{0} + +%CT +\newdimen\fdashwidth \fdashwidth = 0.8pt % épaisseur traits +\newdimen\fdashlength \fdashlength = 0.5mm % longueur des pointillés et séparation entre pointillés +\newdimen\fdashsep \fdashsep = 3pt % séparateur entre contenu et traits + +\def\fdash#1{% + \leavevmode\begingroup% + \setbox0\hbox{#1}% + \def\hdash{\vrule height\fdashwidth width\fdashlength\relax}% + \def\vdash{\hrule height\fdashlength width\fdashwidth\relax}% + \def\dashblank{\kern\fdashlength}% + \ifdim\fdashsep>0pt + \setbox0\hbox{\vrule width0pt height\dimexpr\ht0+\fdashsep depth\dimexpr\dp0+\fdashsep\kern\fdashsep\unhbox0 \kern\fdashsep}% + \fi + \edef\hdash{\hbox to\the\wd0{\noexpand\color{Csymbole}\hdash\kern.5\fdashlength\xleaders\hbox{\hdash\dashblank}\hfil\hdash}}% + \edef\vdash{\vbox to\the\dimexpr\ht0+\dp0+2\fdashwidth{\noexpand\color{Csymbole}\vdash\kern.5\fdashlength\xleaders\vbox{\vdash\dashblank}\vfil\vdash}}% + \hbox{% + \vdash + \vtop{\vbox{\offinterlineskip\hdash\hbox{\unhbox0 }\hdash}}% + \vdash}% + \endgroup +} +% fin CT +\def\Fdash#1{\raisebox{-2\fdashsep+\fdashwidth}{\fdash{#1}}} + +%Une simplification de a/b est possible ou non ? +\newboolean{Simplification} + +\newcommand{\SSimpliTest}[2]{% + % Test d'une simplification possible ou pas de #1/#2 + \newcount\numerateur\newcount\denominateur\newcount\valabsnum\newcount\valabsdeno% + \numerateur=\number#1 + \denominateur=\number#2 + \ifnum\number#1<0 + \valabsnum=\numexpr0-\number#1 + \else + \valabsnum=\number#1 + \fi + \ifnum\number#2<0 + \valabsdeno=\numexpr0-\number#2 + \else + \valabsdeno=\number#2 + \fi + \ifnum\the\valabsnum=0 + \setboolean{Simplification}{true} + \else + \PGCD{\the\valabsnum}{\the\valabsdeno} + \ifnum\pgcd>1 + \setboolean{Simplification}{true} + \else + \ifnum\the\numerateur<0 + \ifnum\the\denominateur<0 + \setboolean{Simplification}{true} + \else + \ifnum\valabsdeno=1\relax + \setboolean{Simplification}{true} + \else + \setboolean{Simplification}{false} + \fi + \fi + \else + \ifnum\valabsdeno=1\relax + \setboolean{Simplification}{true} + \else + \setboolean{Simplification}{false} + \fi + \fi + \fi + \fi +} + +\definecolor{Cfleches}{RGB}{100,100,100}% + +\input{PfC-EquationSoustraction1}% +\input{PfC-EquationTerme1}% +\input{PfC-EquationComposition1}% +\input{PfC-EquationPose1}% +\input{PfC-EquationSymbole1}% +\input{PfC-EquationLaurent1} + +\newcommand{\ResolEquation}[5][]{% + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}% + \colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}% + \colorlet{Csymbole}{\useKV[ClesEquation]{CouleurSymbole}}% + \colorlet{Cdecomp}{\useKV[ClesEquation]{CouleurSous}}% + \ifboolKV[ClesEquation]{Carre}{% + \ResolEquationCarre[#1]{#2}% + }{% + \ifboolKV[ClesEquation]{Produit}{% + \ResolEquationProduit[#1]{#2}{#3}{#4}{#5}% + }{% + \ifboolKV[ClesEquation]{Verification}{% + \Verification[#1]{#2}{#3}{#4}{#5}% + }{% + \ifboolKV[ClesEquation]{Symbole}{% + \ResolEquationSymbole[#1]{#2}{#3}{#4}{#5}% + }{% + \ifboolKV[ClesEquation]{Laurent}{% + \ResolEquationLaurent[#1]{#2}{#3}{#4}{#5}% + }{% + \ifboolKV[ClesEquation]{Terme}{% + \ResolEquationTerme[#1]{#2}{#3}{#4}{#5}% + }{\ifboolKV[ClesEquation]{Composition}{% + \ResolEquationComposition[#1]{#2}{#3}{#4}{#5}% + }{\ifboolKV[ClesEquation]{Pose}{% + \ResolEquationL[#1]{#2}{#3}{#4}{#5}% + }{% + \ResolEquationSoustraction[#1]{#2}{#3}{#4}{#5}% + }% + }% + }% + }% + }% + }% + }% + }% +}% + +\newcommand\ResolEquationCarre[2][]{% + \setKV[ClesEquation]{#1}% + \xintifboolexpr{#2<0}{% + Comme $\num{#2}$ est négatif, alors l'équation $\useKV[ClesEquation]{Lettre}^2=\num{#2}$ n'a aucune solution.% + }{\xintifboolexpr{#2=0}{% + L'équation $\useKV[ClesEquation]{Lettre}^2=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.% + }{% + Comme \num{#2} est positif, alors l'équation $\useKV[ClesEquation]{Lettre}^2=\num{#2}$ a deux solutions :% + \begin{align*} + \useKV[ClesEquation]{Lettre}&=\sqrt{\num{#2}}&&\text{et}&\useKV[ClesEquation]{Lettre}&=-\sqrt{\num{#2}}%\\ + \ifboolKV[ClesEquation]{Entier}{\\% + \useKV[ClesEquation]{Lettre}&=\num{\fpeval{sqrt(#2)}}&&\text{et}&\useKV[ClesEquation]{Lettre}&=-\num{\fpeval{sqrt(#2)}}}{}% + \end{align*} + } + } +} + +\newcommand\ResolEquationProduit[5][]{% + \setKV[ClesEquation]{#1}% + \ifboolKV[ClesEquation]{Equivalence}{}{C'est un produit nul donc \ifboolKV[ClesEquation]{Facteurs}{l'un au + moins des facteurs est nul}{} :}% + \ifboolKV[ClesEquation]{Equivalence}{% + \[\Distri{#2}{#3}{#4}{#5}=0\] + \begin{align*}% + &\makebox[0pt]{$\Longleftrightarrow$}&\xintifboolexpr{#3=0}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=0&\quad&\makebox[0pt]{ou}\quad&\xintifboolexpr{#5=0}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=0\\ + &\makebox[0pt]{$\Longleftrightarrow$}&\xintifboolexpr{#3=0}{\xdef\Coeffa{1}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{#2=1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}}&&&\xintifboolexpr{#5=0}{\xdef\Coeffc{1}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{#4=1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffc{#4}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{\Coeffc=1}{}{\num{\Coeffc}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffd}}%\\ + \xintifboolexpr{\Coeffa=1 'and' \Coeffc=1}{}{\\%\ifnum\cmtd>1 + &\makebox[0pt]{$\Longleftrightarrow$}&\xintifboolexpr{\Coeffa=1}{&}{\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}}\xintifboolexpr{\Coeffc=1}{}{&&&\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffd}}{\num{\Coeffc}}} + % accolade%\\ + %%%% + \ifboolKV[ClesEquation]{Entier}{% + \xdef\TSimp{}% + \SSimpliTest{\Coeffb}{\Coeffa}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#3=0}{\xdef\TSimp{0}}{\xdef\TSimp{1}}}{\xdef\TSimp{0}} + \SSimpliTest{\Coeffd}{\Coeffc}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#5=0}{}{\xdef\TSimp{\fpeval{\TSimp+1}}}}{} + \xintifboolexpr{\TSimp=0}{}{\\ + \ifboolKV[ClesEquation]{Simplification}{% + &\makebox[0pt]{$\Longleftrightarrow$}&\SSimpliTest{\Coeffb}{\Coeffa}\xintifboolexpr{\Coeffa=1}{&}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{&}%\\ + } + }{} + &&&\ifboolKV[ClesEquation]{Simplification}{% + \SSimpliTest{\Coeffd}{\Coeffc}% + \xintifboolexpr{\Coeffc=1}{}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffd}{\Coeffc}}{}%\\ + } + }{} + } + }{} + } + \end{align*} + }{% + \begin{align*} + \xintifboolexpr{#3=0}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=0&&\text{ou}&\xintifboolexpr{#5=0}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=0\\ + \xintifboolexpr{#3=0}{\xdef\Coeffa{1}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{#2=1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}}&&&\xintifboolexpr{#5=0}{\xdef\Coeffc{1}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{#4=1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffc{#4}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{\Coeffc=1}{}{\num{\Coeffc}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffd}}%\\ + \xintifboolexpr{\Coeffa=1 'and' \Coeffc=1}{}{\\%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa=1}{&}{\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}}\xintifboolexpr{\Coeffc=1}{}{&&&\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffd}}{\num{\Coeffc}}} + %accolade%\\ + %%%% + \ifboolKV[ClesEquation]{Entier}{% + \xdef\TSimp{} + \SSimpliTest{\Coeffb}{\Coeffa}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#3=0}{\xdef\TSimp{0}}{\xdef\TSimp{1}}}{\xdef\TSimp{0}} + \SSimpliTest{\Coeffd}{\Coeffc}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#5=0}{}{\xdef\TSimp{\fpeval{\TSimp+1}}}}{} + \xintifboolexpr{\TSimp=0}{}{\\ + \ifboolKV[ClesEquation]{Simplification}{% + \SSimpliTest{\Coeffb}{\Coeffa} + \xintifboolexpr{\Coeffa=1}{&}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{&}%\\ + } + }{} + &&&\ifboolKV[ClesEquation]{Simplification}{% + \SSimpliTest{\Coeffd}{\Coeffc}% + \xintifboolexpr{\Coeffc=1}{}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffd}{\Coeffc}}{}%\\ + } + }{} + } + }{} + } + \end{align*} + }% + + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#3=0}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}{(\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}})}\xintifboolexpr{#5=0}{\times\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}{(\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}})}=0$ a deux solutions : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$ et \opdiv*{\Coeffd}{\Coeffc}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffd}{\Coeffc}}{\frac{\num{\Coeffd}}{\num{\Coeffc}}}\fi$. + }{} +} + +\newcommand\Verification[5][]{% + \setKV[ClesEquation]{#1} + \xdef\ValeurTest{\useKV[ClesEquation]{Nombre}} + Testons la valeur $\useKV[ClesEquation]{Lettre}=\num{\ValeurTest}$ : + \begin{align*} + \xintifboolexpr{#2=0}{\num{#3}}{\num{#2}\times\xintifboolexpr{\ValeurTest<0}{(\num{\ValeurTest})}{\num{\ValeurTest}}\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{\num{#3}}}}&&\xintifboolexpr{#4=0}{\num{#5}}{\num{#4}\times\xintifboolexpr{\ValeurTest<0}{(\num{\ValeurTest})}{\num{\ValeurTest}}\xintifboolexpr{#5=0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{\num{#5}}}}\\ + \xintifboolexpr{#2=0}{}{\num{\fpeval{#2*\useKV[ClesEquation]{Nombre}}}\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{\num{#3}}}}&&\xintifboolexpr{#4=0}{}{\num{\fpeval{#4*\useKV[ClesEquation]{Nombre}}}\xintifboolexpr{#5=0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{\num{#5}}}}\\ + \xintifboolexpr{#2=0}{}{\num{\fpeval{#2*\useKV[ClesEquation]{Nombre}+#3}}}&&\xintifboolexpr{#4=0}{}{\num{\fpeval{#4*\useKV[ClesEquation]{Nombre}+#5}}} + \end{align*} + \xdef\Testa{\fpeval{#2*\useKV[ClesEquation]{Nombre}+#3}}\xdef\Testb{\fpeval{#4*\useKV[ClesEquation]{Nombre}+#5}} + \ifboolKV[ClesEquation]{Egalite}{% + Comme \xintifboolexpr{\Testa=\Testb}{$\num{\Testa}=\num{\Testb}$}{$\num{\Testa}\not=\num{\Testb}$}, alors l'égalité $\xintifboolexpr{#2=0}{\num{#3}}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}}=\xintifboolexpr{#4=0}{\num{#5}}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5=0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}}$ \xintifboolexpr{\Testa=\Testb}{ est vérifiée }{ n'est pas vérifiée } pour $\useKV[ClesEquation]{Lettre}=\num{\useKV[ClesEquation]{Nombre}}$.% + }{\xintifboolexpr{\Testa=\Testb}{Comme $\num{\Testa}=\num{\Testb}$, alors $\useKV[ClesEquation]{Lettre}=\num{\useKV[ClesEquation]{Nombre}}$ est bien }{Comme $\num{\Testa}\not=\num{\Testb}$, alors $\useKV[ClesEquation]{Lettre}=\num{\useKV[ClesEquation]{Nombre}}$ n'est pas }une solution de l'équation $\xintifboolexpr{#2=0}{\num{#3}}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}}=\xintifboolexpr{#4=0}{\num{#5}}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5=0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}}$.} +} + +%%%%%%%%%%%%%%%%%%%% +%%% Proportionnalité +%%%%%%%%%%%%%%%%%%%% +\setKVdefault[ClesPropor]{GrandeurA=Grandeur A,GrandeurB=Grandeur + B,Largeur=1cm,Math=false,Stretch=1,ColorFill=white}%Tableau=false : + %inutile ? + +\def\Updatetoksmath#1/#2\nil{\addtotok\tabtoksa{}\addtotok\tabtoksb{}}% + +\def\buildtabpropor{% + \tabtoksa{}\tabtoksb{}% + \tabtoksa{\useKV[ClesPropor]{GrandeurA}}\tabtoksb{\useKV[ClesPropor]{GrandeurB}}% + \ifboolKV[ClesPropor]{Math}{% + \foreachitem\compteur\in\ListeValeur{\expandafter\Updatetoksmath\compteur\nil}% + }{\foreachitem\compteur\in\ListeValeur{\expandafter\updatetoks\compteur\nil}% + }% + \xdef\LongListe{\ListeValeurlen}% + \renewcommand{\arraystretch}{\useKV[ClesPropor]{Stretch}}% + \begin{tabular}{|>{\columncolor{gray!15}}c|*{\number\numexpr\ListeValeurlen}{>{\centering\arraybackslash}p{\useKV[ClesPropor]{Largeur}}|}}% + \multicolumn{1}{c}{\TikzPHD\setcounter{NbPropor}{1}}\xintFor* ##1 in {\xintSeq {1}{\ListeValeurlen}}\do{&\multicolumn{1}{c}{\TikzPH}}\\% + \hhline{*{\number\numexpr\ListeValeurlen+1}{-}}% + \the\tabtoksa\\% + \hhline{*{\number\numexpr\ListeValeurlen+1}{-}}% + \the\tabtoksb\\% + \hhline{*{\number\numexpr\ListeValeurlen+1}{-}}% + \multicolumn{1}{c}{\TikzPBD\setcounter{NbPropor}{1}}\xintFor* ##1 in {\xintSeq {1}{\ListeValeurlen}}\do{&\multicolumn{1}{c}{\TikzPB}}\\% + \end{tabular}% +}% + +\newcounter{NbPropor} + +\newcommand{\TikzPH}{% + \tikz[remember picture,overlay]{% + \coordinate[name=ProporH-\theNbPropor,yshift=-\the\dp\strutbox*\arraystretch];}% + \stepcounter{NbPropor}% + }% + + \newcommand{\TikzPHD}{% + \setbox1=\hbox{\useKV[ClesPropor]{GrandeurA}} + \tikz[remember picture,overlay]{% + \coordinate[name=ProporHD,xshift=-0.5*\the\wd1,yshift=-\the\dp\strutbox*\arraystretch];}% + }% + + \newcommand{\TikzPB}{% + \tikz[remember picture, overlay]{% + \coordinate[name=ProporB-\theNbPropor,yshift=\the\ht\strutbox*\arraystretch];}% + \stepcounter{NbPropor}% + }% + + \newcommand{\TikzPBD}{% + \setbox1=\hbox{\useKV[ClesPropor]{GrandeurA}} + \tikz[remember picture, overlay]{% + \coordinate[name=ProporBD,xshift=-0.5*\the\wd1,yshift=\the\ht\strutbox*\arraystretch];}% + \stepcounter{NbPropor}% + }% + + \newcommand\FlechesPH[3]{% + \ifnum#1<#2\relax% + \begin{tikzpicture}[remember picture,overlay]% + \draw[-stealth,out=50,in=130] (ProporH-#1) to node[inner sep=0pt, inner xsep=1pt,fill=\colorfill, pos=0.65, sloped]{#3}(ProporH-#2);% + \end{tikzpicture}% + \else% +\begin{tikzpicture}[remember picture,overlay]% + \draw[-stealth,out=130,in=50] (ProporH-#1) to node[inner sep=0pt, inner xsep=1pt,fill=\colorfill, pos=0.65, sloped]{#3}(ProporH-#2);% + \end{tikzpicture}% + \fi% +}% + +\newcommand\FlechesPB[3]{% + \ifnum\number#1<\number#2\relax% + \begin{tikzpicture}[remember picture,overlay]% + \draw[-stealth,out=-50,in=-130] (ProporB-#1) to node[inner sep=0pt, inner xsep=1pt,fill=\colorfill, pos=0.65, sloped]{#3}(ProporB-#2);% + \end{tikzpicture}% + \else% + \begin{tikzpicture}[remember picture,overlay]% + \draw[-stealth,out=-130,in=-50] (ProporB-#1) to node[inner sep=0pt, inner xsep=1pt,fill=\colorfill, pos=0.65, sloped]{#3}(ProporB-#2);% + \end{tikzpicture}% + \fi% +} + +\newcommand\Propor[2][]{% + \useKVdefault[ClesPropor]% + \setKV[ClesPropor]{#1}% + \xdef\colorfill{\useKV[ClesPropor]{ColorFill}}% + \xdef\EcartLargeur{\useKV[ClesPropor]{Largeur}} +% %on lit la liste écrite sous la forme valeur/effectif + \setsepchar[*]{,*/}\ignoreemptyitems% + \readlist*\ListeValeur{#2}% + \buildtabpropor% +} + +\newcommand\FlecheCoef[2][\EcartLargeur]{% + \begin{tikzpicture}[remember picture, overlay]% + \node[] (Point1) at ($(ProporH-\LongListe)!0.1!(ProporB-\LongListe)$) {};% + \node[] (Point2) at ($(ProporH-\LongListe)!0.9!(ProporB-\LongListe)$) {};% + \coordinate[right of=Point1,node distance=0.5*#1+\tabcolsep] (point1);% + \coordinate[right of=Point2,node distance=0.5*#1+\tabcolsep] (point2);% + \draw[-stealth,out=-20,in=20] (point1) to node[midway,right,inner sep=1pt]{#2}(point2);% +\end{tikzpicture}% +}% + +\newcommand\FlecheCoefDebut[2][1.25\tabcolsep]{% + \begin{tikzpicture}[remember picture, overlay]% + \node[] (Noeud1) at ($(ProporHD)!0.1!(ProporBD)$) {};% + \node[] (Noeud2) at ($(ProporHD)!0.9!(ProporBD)$) {};% + \coordinate[left of=Noeud1,node distance=#1] (noeud1);% + \coordinate[left of=Noeud2,node distance=#1] (noeud2);% + \draw[-stealth,out=160,in=-160] (noeud2) to node[midway,left,inner sep=1pt]{#2}(noeud1);% + %\draw[red](ProporHD) to (ProporBD); +\end{tikzpicture}% +}% + +\newcommand\FlecheCoefInv[2][1cm]{% + \begin{tikzpicture}[remember picture, overlay]% + \node[] (Point1) at ($(ProporH-\LongListe)!0.1!(ProporB-\LongListe)$) {};% + \node[] (Point2) at ($(ProporH-\LongListe)!0.9!(ProporB-\LongListe)$) {};% + \coordinate[right of=Point1,node distance=0.5*#1+\tabcolsep] (point1);% + \coordinate[right of=Point2,node distance=0.5*#1+\tabcolsep] (point2);% + \draw[-stealth,out=20,in=-20] (point2) to node[midway,right,inner sep=1pt]{#2}(point1);% +\end{tikzpicture}% +}% + +\newcommand\FlecheLineaireH[4]{% + \begin{tikzpicture}[remember picture,overlay,node distance=\ht\strutbox] + \node[inner sep=0pt] (MilieuH) at ($(ProporH-#1)!0.5!(ProporH-#2)$) {}; + \node[circle,draw,inner sep=0pt] [above of=MilieuH] (aux) {#4} ; + \coordinate[above of=aux] (aux1); + \draw[-stealth] (ProporH-#1) |- (aux); + \draw[-stealth] (ProporH-#2) |- (aux); + \draw[-stealth] (aux) -- (aux1) -| (ProporH-#3); +\end{tikzpicture} +} + +\newcommand\FlecheLineaireB[4]{% + \begin{tikzpicture}[remember picture,overlay,node distance=3mm] + \node[inner sep=0pt] (MilieuB) at ($(ProporB-#1)!0.5!(ProporB-#2)$) {}; + \node[circle,draw,inner sep=0pt] [below of=MilieuB] (aux) {#4} ; + \coordinate[below of=aux,node distance=3mm] (aux1); + \draw[-stealth] (ProporB-#1) |- (aux); + \draw[-stealth] (ProporB-#2) |- (aux); + \draw[-stealth] (aux) -- (aux1) -| (ProporB-#3); +\end{tikzpicture} +} + +%%%%%%%%%%% +%% Application : pourcentage +%%%%%%%%%%% +\setKVdefault[ClesPourcentage]{Appliquer,Calculer=false,Augmenter=false,Reduire=false,Fractionnaire=false,Decimal,Formule=false,Unite=g,Concret=false,GrandeurA=Grandeur A,GrandeurB=Total,MotReduction=diminution,AideTableau=false,ColorFill=white} + +\newcommand\Pourcentage[3][]{% + \useKVdefault[ClesPourcentage]% + \setKV[ClesPourcentage]{#1}% + \ifboolKV[ClesPourcentage]{Reduire}{% + \ifboolKV[ClesPourcentage]{Formule}{% + Réduire une quantité de \num{#2}~\%, cela revient à multiplier cette quantitié par $1-\dfrac{\num{#2}}{100}$. Par conséquent, si on réduit \num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{} de \num{#2}~\%, cela donne : + \[\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\times\left(1-\frac{\num{#2}}{100}\right)=\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\times(1-\num{\fpeval{#2/100}})=\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\times\num{\fpeval{(1-#2/100)}}=\num{\fpeval{#3*(1-#2/100)}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\] + }{% + Calculons ce que représente la \useKV[ClesPourcentage]{MotReduction} de \num{#2}~\%. + \ifboolKV[ClesPourcentage]{AideTableau}{% + \xdef\NomA{\useKV[ClesPourcentage]{GrandeurA}} + \xdef\NomB{\useKV[ClesPourcentage]{GrandeurB}} + \begin{center} + \Propor[GrandeurA=\NomA,GrandeurB=\NomB]{/#3,#2/100} + \end{center} + \FlecheCoefInv{\tiny$\times\num{\fpeval{#2/100}}$}% + On obtient une \useKV[ClesPourcentage]{MotReduction} de $\num{\fpeval{#2/100}}\times\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\num{\fpeval{#3*#2/100}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}. Donc un total de $\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}-\num{\fpeval{#3*#2/100}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\num{\fpeval{#3*(1-#2/100)}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}.% + }{Pour calculer \num{#2}~\% de \num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}, on effectue le calcul : + \[\ifboolKV[ClesPourcentage]{Fractionnaire}{\frac{\num{#2}}{100}}{\num{\fpeval{#2/100}}}\times\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\ifboolKV[ClesPourcentage]{Fractionnaire}{\frac{\num{\fpeval{#2*#3}}}{100}}{\num{\fpeval{#2*#3/100}}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\ifboolKV[ClesPourcentage]{Fractionnaire}{=\num{\fpeval{#2*#3/100}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}}{}\]% + On obtient une \useKV[ClesPourcentage]{MotReduction} de $\num{\fpeval{#3*#2/100}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}.\\Donc un total de $\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}-\num{\fpeval{#3*#2/100}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\num{\fpeval{#3*(1-#2/100)}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}.} + } + }{% + \ifboolKV[ClesPourcentage]{Augmenter}{% + \ifboolKV[ClesPourcentage]{Formule}{% + Augmenter de \num{#2}~\% une quantité, cela revient à multiplier cette quantitié par $1+\dfrac{\num{#2}}{100}$. Par conséquent, si on augmente \num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{} de \num{#2}~\%, cela donne : + \[\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\times\left(1+\frac{\num{#2}}{100}\right)=\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\times(1+\num{\fpeval{#2/100}})=\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\times\num{\fpeval{(1+#2/100)}}=\num{\fpeval{#3*(1+#2/100)}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\] + }{% + Calculons ce que représente l'augmentation de \num{#2}~\%. % + \ifboolKV[ClesPourcentage]{AideTableau}{% + \xdef\NomA{\useKV[ClesPourcentage]{GrandeurA}}% + \xdef\NomB{\useKV[ClesPourcentage]{GrandeurB}}% + \begin{center}% + \Propor[GrandeurA=\NomA,GrandeurB=\NomB]{/#3,#2/100}% + \end{center}% + \FlecheCoefInv{\tiny$\times\num{\fpeval{#2/100}}$}% + On obtient une augmentation de $\num{\fpeval{#2/100}}\times\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\num{\fpeval{#3*#2/100}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}.\\Donc un total de $\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}+\num{\fpeval{#3*#2/100}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\num{\fpeval{#3*(1+#2/100)}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}.% + }{Pour calculer \num{#2}~\% de \num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}, on effectue le calcul : + \[\ifboolKV[ClesPourcentage]{Fractionnaire}{\frac{\num{#2}}{100}}{\num{\fpeval{#2/100}}}\times\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\ifboolKV[ClesPourcentage]{Fractionnaire}{\frac{\num{\fpeval{#2*#3}}}{100}}{\num{\fpeval{#2*#3/100}}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\ifboolKV[ClesPourcentage]{Fractionnaire}{=\num{\fpeval{#2*#3/100}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}}{}\]% + On obtient une augmentation de $\num{\fpeval{#3*#2/100}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}.\\Donc un total de $\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}+\num{\fpeval{#3*#2/100}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\num{\fpeval{#3*(1+#2/100)}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}.} + } + }{% + \ifboolKV[ClesPourcentage]{Calculer}{% + \xdef\NomA{\useKV[ClesPourcentage]{GrandeurA}} + \xdef\NomB{\useKV[ClesPourcentage]{GrandeurB}} + \Propor[GrandeurA=\NomA,GrandeurB=\NomB]{#2/#3,/100}% + \xdef\colorfill{\useKV[ClesPourcentage]{ColorFill}}% + \FlechesPB{2}{1}{\scriptsize$\times\num{\fpeval{#3/100}}$}% + \FlechesPH{1}{2}{\scriptsize$\div\num{\fpeval{#3/100}}$}% + \xdef\ResultatPourcentage{\fpeval{#2*100/#3}}% + }{% + Pour calculer \num{#2}~\% de \num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}, on effectue le calcul :% + \[\ifboolKV[ClesPourcentage]{Fractionnaire}{\frac{\num{#2}}{100}}{\num{\fpeval{#2/100}}}\times\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\ifboolKV[ClesPourcentage]{Fractionnaire}{\frac{\num{\fpeval{#2*#3}}}{100}}{\num{\fpeval{#2*#3/100}}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}\ifboolKV[ClesPourcentage]{Fractionnaire}{=\num{\fpeval{#2*#3/100}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}}{}\]% + }% + }% + }% +}% + +%%%%%%%%%%%%% +%Lien : ratio +%%%%%%%%%%%%% +\setKVdefault[ClesRatio]{Figure=false,Longueur=5cm,TexteTotal=quantité,TextePart=part,Tableau=false,GrandeurA=Grandeur A,GrandeurB=Part(s),Largeur=1cm,Stretch=1,Nom=false,CouleurUn=gris,CouleurDeux=0.5gris+0.5blanc,CouleurTrois=white,NombreUn} + +\newcommand\MPTest[9][]{% + % #2 : Longueur de la barre unité + % #3 : premier nombre + % #4 : deuxième nombre + % #5 : troisième nombre + % #6 : Valeurs du ratio + % #7 à #9: Couleurs de remplissage + \ifluatex + \mplibforcehmode + \begin{mplibcode} + vardef RatioTrois(expr long)(text t)=%longueur de la barre / quantité à partager / textepart :) / t le ratio + pair A,B,C,D; + A=u*(1,1); + B-A=(long,0); + C-B=u*(0,0.5); + D-C=A-B; + n:=0;%n pour savoir si le ratio est a:b ou a:b:c + numeric N[];%Pour sauvegarder les éléments du ratio + for p_=t: + n:=n+1; + N[n]=p_; + endfor; + % on fait la somme totale "du ratio" + somme=0; + somme:=somme for k=1 upto n:+N[k] endfor; + Figure(0,0,long+2u,3u); + remplis polygone(A,(N[1]/somme)[A,B],(N[1]/somme)[D,C],D) + withcolor #7; + remplis polygone(B,(N[1]/somme)[A,B],(N[1]/somme)[D,C],C) + withcolor #8; + if n>2: + remplis + polygone((N[1]/somme)[A,B],((N[1]+N[2])/somme)[A,B],((N[1]+N[2])/somme)[D,C],(N[1]/somme)[D,C]) + withcolor #8; + remplis + polygone(B,((N[1]+N[2])/somme)[A,B],((N[1]+N[2])/somme)[D,C],C) + withcolor #9; + fi; + drawoptions(withpen pencircle scaled1.5bp); + draw polygone(A,B,C,D); + for k=1 upto somme-1: + draw segment((k/somme)[A,B],(k/somme)[D,C]); + endfor; + drawoptions(); + % accolades + labeloffset:=labeloffset/2; + label.top(TEX("\footnotesize$\overbrace{\hbox + to"&decimal(abs(A-B))&"pt{}}$"),iso(D,C)); + labeloffset:=labeloffset*2; + label.bot(TEX("\footnotesize$\underbrace{\hbox + to"&decimal(abs((N[1]/somme)[A,B]-A))&"pt{}}$"),iso(A,(N[1]/somme)[A,B])); + label.bot(TEX("\footnotesize$\underbrace{\hbox + to"&decimal(abs((N[1]/somme)[A,B]-((N[1]+N[2])/somme)[A,B]))&"pt{}}$"),iso(((N[1]+N[2])/somme)[A,B],(N[1]/somme)[A,B])); + if n>2: + label.bot(TEX("\footnotesize$\underbrace{\hbox + to"&decimal(abs(((N[1]+N[2])/somme)[A,B]-B))&"pt{}}$"),iso(B,((N[1]+N[2])/somme)[A,B])); + fi; + enddef; + RatioTrois(#2)(#6); + %etiquettage + labeloffset:=labeloffset*3; + label.top(btex \useKV[ClesRatio]{TexteTotal} etex,iso(D,C)); + if #3>1: + label.bot(btex #3~\useKV[ClesRatio]{TextePart}s + etex,iso(A,(N[1]/somme)[A,B])); + else: + label.bot(btex #3~\useKV[ClesRatio]{TextePart} etex,iso(A,(N[1]/somme)[A,B])); + fi; + if #4>1: + label.bot(btex #4~\useKV[ClesRatio]{TextePart}s etex,iso(((N[1]+N[2])/somme)[A,B],(N[1]/somme)[A,B])); + else: + label.bot(btex #4~\useKV[ClesRatio]{TextePart} + etex,iso(((N[1]+N[2])/somme)[A,B],(N[1]/somme)[A,B])); + fi; + if n>2: + if #5>1: + label.bot(btex #5~\useKV[ClesRatio]{TextePart}s etex,iso(B,((N[1]+N[2])/somme)[A,B])); + else: + label.bot(btex #5~\useKV[ClesRatio]{TextePart} etex,iso(B,((N[1]+N[2])/somme)[A,B])); + fi; + fi; + \end{mplibcode} + \else + \usempxpackage{simplekv} + \mpxcommands{% + \setKVdefault[ClesRatio]{TexteTotal=quantité,TextePart=part} + \setKV[ClesRatio]{#1} + } + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + vardef RatioTrois(expr long)(text t)=%longueur de la barre / quantité à partager / textepart :) / t le ratio + pair A,B,C,D; + A=u*(1,1); + B-A=(long,0); + C-B=u*(0,0.5); + D-C=A-B; + n:=0;%n pour savoir si le ratio est a:b ou a:b:c + numeric N[];%Pour sauvegarder les éléments du ratio + for p_=t: + n:=n+1; + N[n]=p_; + endfor; + % on fait la somme totale "du ratio" + somme=0; + somme:=somme for k=1 upto n:+N[k] endfor; + Figure(0,0,long+2u,3u); + remplis polygone(A,(N[1]/somme)[A,B],(N[1]/somme)[D,C],D) + withcolor #7; + remplis polygone(B,(N[1]/somme)[A,B],(N[1]/somme)[D,C],C) + withcolor #8; + if n>2: + remplis + polygone((N[1]/somme)[A,B],((N[1]+N[2])/somme)[A,B],((N[1]+N[2])/somme)[D,C],(N[1]/somme)[D,C]) + withcolor #8; + remplis + polygone(B,((N[1]+N[2])/somme)[A,B],((N[1]+N[2])/somme)[D,C],C) + withcolor #9; + fi; + drawoptions(withpen pencircle scaled1.5bp); + draw polygone(A,B,C,D); + for k=1 upto somme-1: + draw segment((k/somme)[A,B],(k/somme)[D,C]); + endfor; + drawoptions(); + %accolades + label.top(LATEX("\noexpand\footnotesize$\noexpand\overbrace{\noexpand\hbox + to"&decimal(abs(A-B))&"pt{}}$"),iso(D,C)); + label.bot(LATEX("\noexpand\footnotesize$\noexpand\underbrace{\noexpand\hbox + to"&decimal(abs((N[1]/somme)[A,B]-A))&"pt{}}$"),iso(A,(N[1]/somme)[A,B])); + label.bot(LATEX("\noexpand\footnotesize$\noexpand\underbrace{\noexpand\hbox + to"&decimal(abs((N[1]/somme)[A,B]-((N[1]+N[2])/somme)[A,B]))&"pt{}}$"),iso(((N[1]+N[2])/somme)[A,B],(N[1]/somme)[A,B])); + if n>2: + label.bot(LATEX("\noexpand\footnotesize$\noexpand\underbrace{\noexpand\hbox + to"&decimal(abs(((N[1]+N[2])/somme)[A,B]-B))&"pt{}}$"),iso(B,((N[1]+N[2])/somme)[A,B])); + fi; + enddef; + RatioTrois(#2)(#6); + %etiquettage + labeloffset:=labeloffset*3; + label.top(\btex \useKV[ClesRatio]{TexteTotal} etex,iso(D,C)); + if #3>1: + label.bot(btex #3\unexpanded{~\useKV[ClesRatio]{TextePart}}s + etex,iso(A,(N[1]/somme)[A,B])); + else: + label.bot(btex #3\unexpanded{~\useKV[ClesRatio]{TextePart}} etex,iso(A,(N[1]/somme)[A,B])); + fi; + if #4>1: + label.bot(btex #4\unexpanded{~\useKV[ClesRatio]{TextePart}}s etex,iso(((N[1]+N[2])/somme)[A,B],(N[1]/somme)[A,B])); + else: + label.bot(btex #4\unexpanded{~\useKV[ClesRatio]{TextePart}} + etex,iso(((N[1]+N[2])/somme)[A,B],(N[1]/somme)[A,B])); + fi; + if n>2: + if #5>1: + label.bot(btex #5\unexpanded{~\useKV[ClesRatio]{TextePart}}s etex,iso(B,((N[1]+N[2])/somme)[A,B])); + else: + label.bot(btex #5\unexpanded{~\useKV[ClesRatio]{TextePart}} etex,iso(B,((N[1]+N[2])/somme)[A,B])); + fi; + fi; + \end{mpost} + \fi +} + +\newtoks\toklisteratio +\def\UpdateRatio#1\nil{\addtotok\toklisteratio{#1,}} + +\def\updateratiotoks#1/#2/#3\nil{\addtotok\tabtoksa{&\num{#2}}\addtotok\tabtoksb{&\num{#3}}\addtotok\tabtoksc{}} + + +\def\buildtabratio{% + \tabtoksa{}\tabtoksb{}\tabtoksc{}% + \tabtoksa{\useKV[ClesRatio]{GrandeurA}}\tabtoksb{\useKV[ClesRatio]{GrandeurB}} + \foreachitem\compteur\in\ListeRatio{\expandafter\updateratiotoks\compteur\nil}% + \xdef\LongListe{\ListeRatiolen}% + \renewcommand{\arraystretch}{\useKV[ClesRatio]{Stretch}}% + \begin{tabular}{|>{\columncolor{gray!15}}c|*{\number\numexpr\ListeRatiolen}{>{\centering\arraybackslash}p{\useKV[ClesRatio]{Largeur}}|}l} + \ifboolKV[ClesRatio]{Nom}{% + \hhline{~*{\number\numexpr\ListeRatiolen}{-}} + \multicolumn{1}{c|}{}\the\tabtoksc\\ + }{} + \hhline{*{\number\numexpr\ListeRatiolen+1}{-}}% + \the\tabtoksa&\setcounter{NbPropor}{1}\TikzRH\\% + \hhline{*{\number\numexpr\ListeRatiolen+1}{-}}% + \the\tabtoksb&\setcounter{NbPropor}{1}\TikzRB\\% + \hhline{*{\number\numexpr\ListeRatiolen+1}{-}}% + \end{tabular}% +}% + +\newcommand{\TikzRH}{% + \tikz[remember picture,overlay]{% + \coordinate[name=ProporH-\theNbPropor,yshift=\the\ht\strutbox*\arraystretch];}% + \stepcounter{NbPropor}% + }% + + \newcommand{\TikzRB}{% + \tikz[remember picture, overlay]{% + \coordinate[name=ProporB-\theNbPropor,yshift=-\the\dp\strutbox*\arraystretch];}% + \stepcounter{NbPropor}% + }% + +\newcommand\FlecheRatio[2][\EcartLargeur]{% + \begin{tikzpicture}[remember picture, overlay]% + \node[] (Point1) at ($(ProporH-1)!0.1!(ProporB-1)$) {};% + \node[] (Point2) at ($(ProporH-1)!0.9!(ProporB-1)$) {};% + \coordinate[right of=Point1,node distance=0*#1-\tabcolsep] (point1);% + \coordinate[right of=Point2,node distance=0*#1-\tabcolsep] (point2);% + \draw[-stealth,out=-20,in=20] (point1) to node[midway,right,inner sep=1pt]{#2}(point2);% +\end{tikzpicture}% +}% + +\newcommand\FlecheInvRatio[2][\EcartLargeur]{% + \begin{tikzpicture}[remember picture, overlay]% + \node[] (Point1) at ($(ProporH-1)!0.1!(ProporB-1)$) {};% + \node[] (Point2) at ($(ProporH-1)!0.9!(ProporB-1)$) {};% + \coordinate[right of=Point1,node distance=0*#1-\tabcolsep] (point1);% + \coordinate[right of=Point2,node distance=0*#1-\tabcolsep] (point2);% + \draw[-stealth,out=20,in=-20] (point2) to node[midway,right,inner sep=1pt]{#2}(point1);% +\end{tikzpicture}% +}% + +\newcommand\Ratio[2][]{% + \useKVdefault[ClesRatio]% + \setKV[ClesRatio]{#1}% + \xdef\EcartLargeur{\useKV[ClesRatio]{Largeur}}% + \ifboolKV[ClesRatio]{Figure}{% + \ignoreemptyitems% + \readlist*\ListeRatio{#2}% + \toklisteratio{}% + \foreachitem\compteur\in\ListeRatio{\expandafter\UpdateRatio\compteur\nil}% + \itemtomacro\ListeRatio[1]\NbUn + \itemtomacro\ListeRatio[2]\NbDeux + \xintifboolexpr{\ListeRatiolen>2}{\itemtomacro\ListeRatio[3]\NbTrois}{\newcommand\NbTrois{}} + \MPTest[#1]{\useKV[ClesRatio]{Longueur}}{\NbUn}{\NbDeux}{\NbTrois}{\the\toklisteratio}{\useKV[ClesRatio]{CouleurUn}}{\useKV[ClesRatio]{CouleurDeux}}{\useKV[ClesRatio]{CouleurTrois}}% + }{}% + \ifboolKV[ClesRatio]{Tableau}{% + \setsepchar[*]{,*/}\ignoreemptyitems% + \readlist*\ListeRatio{#2}% + \buildtabratio% + }{}% +}% + +%%%%%%%%%%%%%%% +%% Cartes Mentales +%%%%%%%%%%%%%%% +\setKVdefault[ClesMentales]{Nom={Bulle}, Largeur=5cm, Ancre={0,0},Pointilles=false,CTrace=black,CFond=white,Epaisseur=1pt,Rayon=1}% +\newenvironment{Mind}{\begin{tikzpicture}}{\end{tikzpicture}}% + +\newlength{\RoundedBoxWidth}% + +\NewEnviron{Bulle}[1][]{% + \setKV[ClesMentales]{#1}% + \setlength{\RoundedBoxWidth}{\useKV[ClesMentales]{Largeur}}% + \xdef\Pointilles{\ifboolKV[ClesMentales]{Pointilles}{dashed}{}}% + \xdef\CouleurTrace{\useKV[ClesMentales]{CTrace}}% + \xdef\CouleurFond{\useKV[ClesMentales]{CFond}}% + \xdef\EpaisseurLigne{\useKV[ClesMentales]{Epaisseur}}% + \xdef\RayonCoin{\useKV[ClesMentales]{Rayon}}% + \node(\useKV[ClesMentales]{Nom}) [align=justify,draw=\CouleurTrace,line width=\EpaisseurLigne,\Pointilles,fill=\CouleurFond,rounded corners=\RayonCoin,text width=\RoundedBoxWidth] at (\useKV[ClesMentales]{Ancre}) {\begin{minipage}{\RoundedBoxWidth}\BODY\end{minipage}};% + \multido{\i=1+1}{9}{% + \xdef\x{\fpeval{\i/10}} + \coordinate (\useKV[ClesMentales]{Nom}-H-\i) at ($(\useKV[ClesMentales]{Nom}.north west)!\x!(\useKV[ClesMentales]{Nom}.north east)$); + \coordinate (\useKV[ClesMentales]{Nom}-D-\i) at ($(\useKV[ClesMentales]{Nom}.north east)!\x!(\useKV[ClesMentales]{Nom}.south east)$); + \coordinate (\useKV[ClesMentales]{Nom}-B-\i) at ($(\useKV[ClesMentales]{Nom}.south east)!\x!(\useKV[ClesMentales]{Nom}.south west)$); + \coordinate (\useKV[ClesMentales]{Nom}-G-\i) at ($(\useKV[ClesMentales]{Nom}.south west)!\x!(\useKV[ClesMentales]{Nom}.north west)$); + } +} + +%%%%%%%%%%%% +% Pptés des droites (6eme) +%%%%%%%%%%% +\setKVdefault[ClesDroites]{Brouillon=false,CitePropriete=false,Num=1,Figure=false,Remediation=false} + +\newcommand\Redaction[4][]{% + \ifboolKV[ClesDroites]{Remediation}{% + \xintifboolexpr{\useKV[ClesDroites]{Num}=1}{% + \ifboolKV[ClesDroites]{CitePropriete}{% + Les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont parallèles. Les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont parallèles.% + + Or, si deux droites sont parallèles, alors toute droite parallèle à l'une est parallèle à l'autre.% + + Donc les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont parallèles.% + }{% + Comme les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont toutes les deux parallèles à la même droite $(\hbox to2em{\dotfill})$, alors les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont parallèles.% + } + }{\xintifboolexpr{\useKV[ClesDroites]{Num}=2}{% + \ifboolKV[ClesDroites]{CitePropriete}{% + Les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont perpendiculaires. Les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont perpendiculaires.% + + Or, si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles.% + + Donc les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont perpendiculaires. + }{% + Comme les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont toutes les deux perpendiculaires à la même droite $(\hbox to2em{\dotfill})$, alors les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont parallèles. + } + }{% + \ifboolKV[ClesDroites]{CitePropriete}{% + Les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont parallèles. Les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont perpendiculaires.% + + Or, si deux droites sont parallèles, alors toute droite droite perpendiculaire à l'une est perpendiculaire à l'autre.% + + Donc les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont perpendiculaires. + }{% + Comme les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont parallèles, alors la droite $(\hbox to2em{\dotfill})$ qui est perpendiculaire à $(\hbox to2em{\dotfill})$ est également perpendiculaire à la droite $(\hbox to2em{\dotfill})$. + } + } + }%%%%%%%%%%%%%%%%%%%%% + }{% + \xintifboolexpr{\useKV[ClesDroites]{Num}=1}{% + \ifboolKV[ClesDroites]{CitePropriete}{% + Les droites $(#2)$ et $(#4)$ sont parallèles. Les droites $(#3)$ et $(#4)$ sont parallèles.% + + Or, si deux droites sont parallèles, alors toute droite parallèle à l'une est parallèle à l'autre.% + + Donc les droites $(#2)$ et $(#3)$ sont parallèles. + }{% + Comme les droites $(#2)$ et $(#3)$ sont toutes les deux parallèles à la même droite $(#4)$, alors les droites $(#2)$ et $(#3)$ sont parallèles. + } + }{\xintifboolexpr{\useKV[ClesDroites]{Num}=2}{% + \ifboolKV[ClesDroites]{CitePropriete}{% + Les droites $(#2)$ et $(#4)$ sont perpendiculaires. Les droites $(#3)$ et $(#4)$ sont perpendiculaires.% + + Or, si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles.% + + Donc les droites $(#2)$ et $(#3)$ sont perpendiculaires. + }{% + Comme les droites $(#2)$ et $(#3)$ sont toutes les deux perpendiculaires à la même droite $(#4)$, alors les droites $(#2)$ et $(#3)$ sont parallèles. + } + }{% + \ifboolKV[ClesDroites]{CitePropriete}{% + Les droites $(#2)$ et $(#4)$ sont parallèles. Les droites $(#3)$ et $(#4)$ sont perpendiculaires.% + + Or, si deux droites sont parallèles, alors toute droite droite perpendiculaire à l'une est perpendiculaire à l'autre.% + + Donc les droites $(#2)$ et $(#3)$ sont perpendiculaires. + }{% + Comme les droites $(#2)$ et $(#4)$ sont parallèles, alors la droite $(#3)$ qui est perpendiculaire à $(#4)$ est également perpendiculaire à la droite $(#2)$. + } + } + } + } +} + +\newcommand\Brouillon[4][]{% + \setlength{\abovedisplayskip}{0pt} + \ifboolKV[ClesDroites]{Remediation}{% + \xintifboolexpr{\useKV[ClesDroites]{Num}=1}{% + \[\left. + \begin{array}{l} + (\hbox to2em{\dotfill})//(\hbox to2em{\dotfill})\\ + \\ + (\hbox to2em{\dotfill})//(\hbox to2em{\dotfill}) + \end{array} + \right\}(\hbox to2em{\dotfill})//(\hbox to2em{\dotfill}) + \] + }{\xintifboolexpr{\useKV[ClesDroites]{Num}=2}{% + \[\left. + \begin{array}{l} + (\hbox to2em{\dotfill})\perp(\hbox to2em{\dotfill})\\ + \\ + (\hbox to2em{\dotfill})\perp(\hbox to2em{\dotfill})\\ + \end{array} + \right\}(\hbox to2em{\dotfill})//(\hbox to2em{\dotfill}) + \] + }{% + \[\left. + \begin{array}{l} + (\hbox to2em{\dotfill})//(\hbox to2em{\dotfill})\\ + \\ + (\hbox to2em{\dotfill})\perp(\hbox to2em{\dotfill})\\ + \end{array} + \right\}(\hbox to2em{\dotfill})\perp(\hbox to2em{\dotfill}) + \] + } + } + }{ + \xintifboolexpr{\useKV[ClesDroites]{Num}=1}{% + \[\left. + \begin{array}{l} + (#2)//(#4)\\ + \\ + (#3)//(#4) + \end{array} + \right\}(#2)//(#3) + \] + }{\xintifboolexpr{\useKV[ClesDroites]{Num}=2}{% + \[\left. + \begin{array}{l} + (#2)\perp(#4)\\ + \\ + (#3)\perp(#4)\\ + \end{array} + \right\}(#2)//(#3) + \] + }{% + \[\left. + \begin{array}{l} + (#2)//(#4)\\ + \\ + (#3)\perp(#4)\\ + \end{array} + \right\}(#2)\perp(#3) + \] + } + } + } +} + +\def\MPFigureDroite#1#2{% + \ifluatex + \mplibcodeinherit{enable} + \mplibforcehmode + \begin{mplibcode} + pair A,B,C,D,E,F,G,H,I,J,K; + u:=7.5mm; + A=u*(1,3); + B-A=u*(3,2); + C-A=u*(2,-1); + E-C=u*(1,-1.5); + G-E=u*(1.5,0); + I-A=whatever*(B-A); + I-G=whatever*((B-A) rotated 90); + D-B=C-A; + F-D=E-C; + H=1.1[G,I]; + J=(C--D) intersectionpoint (G--H); + K=(E--F) intersectionpoint (G--H); + path Codeperp[]; + pair M[]; + M1-I=7*unitvector(B-I); + M3-I=7*unitvector(J-I); + M2-M3=M1-I; + Codeperp1=M1--M2--M3; + Codeperp2=Codeperp1 shifted(J-I); + picture Codepara[]; + pair R,S,T; + path cd; + Codepara1=image( + R=1/3[A,B]; + T=1/3[E,F]; + S=1/3[R,T]; + cd=(fullcircle scaled 6mm) shifted S; + drawoptions(withcolor 0.75*white); + drawarrow reverse((R{dir(210+angle(R-T))}..{dir(150+angle(R-T))}S) cutafter cd); + drawarrow reverse((T{dir(210+angle(T-R))}..{dir(150+angle(T-R))}S) cutafter cd); + draw cd; + label(btex $//$ etex ,S); + drawoptions(); + ); + Codepara2=image( + R:=1/2[C,D]; + T:=1/2[E,F]; + S:=1/2[R,T]; + cd:=(fullcircle scaled 6mm) shifted S; + drawoptions(withcolor 0.75*white); + drawarrow reverse((R{dir(210+angle(R-T))}..{dir(150+angle(R-T))}S) cutafter cd); + drawarrow reverse((T{dir(210+angle(T-R))}..{dir(150+angle(T-R))}S) cutafter cd); + draw cd; + label(btex $//$ etex ,S); + drawoptions(); + ); + path d[]; + d1=A--B; + d2=C--D; + d3=E--F; + d4=G--H; + picture reste; + reste=image( + %tracés des droites + draw d1; + if #1=2: + draw d2; + elseif #1=3: + draw d3; + fi; + if #2=3: + draw d3; + elseif #2=4: + draw d4; + fi; + % tracés des codes + if (#1=2) and (#2=3): + draw Codepara1; draw Codepara2; + fi; + if (#1=2) and (#2=4): + draw Codeperp1; draw Codeperp2; + fi; + if (#1=3) and (#2=4): + draw Codepara1; draw Codeperp1; + fi; + ); + reste:=reste rotatedabout(u*(3,3),-90+uniformdeviate(180)); + draw reste; + \end{mplibcode} + \mplibcodeinherit{disable} + \else + \begin{mpost} + pair A,B,C,D,E,F,G,H,I,J,K; + u:=7.5mm; + A=u*(1,3); + B-A=u*(3,2); + C-A=u*(2,-1); + E-C=u*(1,-1.5); + G-E=u*(1.5,0); + I-A=whatever*(B-A); + I-G=whatever*((B-A) rotated 90); + D-B=C-A; + F-D=E-C; + H=1.1[G,I]; + J=(C--D) intersectionpoint (G--H); + K=(E--F) intersectionpoint (G--H); + path Codeperp[]; + pair M[]; + M1-I=7*unitvector(B-I); + M3-I=7*unitvector(J-I); + M2-M3=M1-I; + Codeperp1=M1--M2--M3; + Codeperp2=Codeperp1 shifted(J-I); + picture Codepara[]; + pair R,S,T; + path cd; + Codepara1=image( + R=1/3[A,B]; + T=1/3[E,F]; + S=1/3[R,T]; + cd=(fullcircle scaled 6mm) shifted S; + drawoptions(withcolor 0.75*white); + drawarrow reverse((R{dir(210+angle(R-T))}..{dir(150+angle(R-T))}S) cutafter cd); + drawarrow reverse((T{dir(210+angle(T-R))}..{dir(150+angle(T-R))}S) cutafter cd); + draw cd; + label(btex $//$ etex ,S); + drawoptions(); + ); + Codepara2=image( + R:=1/2[C,D]; + T:=1/2[E,F]; + S:=1/2[R,T]; + cd:=(fullcircle scaled 6mm) shifted S; + drawoptions(withcolor 0.75*white); + drawarrow reverse((R{dir(210+angle(R-T))}..{dir(150+angle(R-T))}S) cutafter cd); + drawarrow reverse((T{dir(210+angle(T-R))}..{dir(150+angle(T-R))}S) cutafter cd); + draw cd; + label(btex $//$ etex ,S); + drawoptions(); + ); + path d[]; + d1=A--B; + d2=C--D; + d3=E--F; + d4=G--H; + picture reste; + reste=image( + %tracés des droites + draw d1; + if #1=2: + draw d2; + elseif #1=3: + draw d3; + fi; + if #2=3: + draw d3; + elseif #2=4: + draw d4; + fi; + % tracés des codes + if (#1=2) and (#2=3): + draw Codepara1; draw Codepara2; + fi; + if (#1=2) and (#2=4): + draw Codeperp1; draw Codeperp2; + fi; + if (#1=3) and (#2=4): + draw Codepara1; draw Codeperp1; + fi; + ); + reste:=reste rotatedabout(u*(3,3),-90+uniformdeviate(180)); + draw reste; + \end{mpost} + \fi +} + +\newcommand\FaireFigure[4][]{% + \setlength{\abovedisplayskip}{0pt} + \xintifboolexpr{\useKV[ClesDroites]{Num}=1}{% + \MPFigureDroite{2}{3}% + }{\xintifboolexpr{\useKV[ClesDroites]{Num}=2}{% + \MPFigureDroite{2}{4}% + }{% + \MPFigureDroite{3}{4}% + }% + }% +}% + +\newcommand\ProprieteDroites[4][]{% + \useKVdefault[ClesDroites]% + \setKV[ClesDroites]{#1}% + \ifboolKV[ClesDroites]{Figure}{% + \begin{multicols}{2}% + \begin{center}% + \FaireFigure[#1]{#2}{#3}{#4}% + \end{center}% + \columnbreak + \ifboolKV[ClesDroites]{Brouillon}{\Brouillon[#1]{#2}{#3}{#4}}{}% + \Redaction[#1]{#2}{#3}{#4}% + \par% + \end{multicols} + }{% + \ifboolKV[ClesDroites]{Brouillon}{\Brouillon[#1]{#2}{#3}{#4}}{}% + \Redaction[#1]{#2}{#3}{#4}% + }% +}% + +%%%%%%%%%%%%%%%%%%%% +%%% Fonction Affine +%%%%%%%%%%%%%%%%%%%% +\setKVdefault[ClesAffine]{Nom=f,Variable=x,Ligne=false,Image=false,Antecedent=false,Graphique=false,Retrouve=false,ProgCalcul=false,Unitex=1,Unitey=1,VoirCoef=false,ACoef=0,Redaction=false,Ecriture=false,Definition=false}%ACoefficient=false + %: inutile ? + +\newcommand\FonctionAffine[5][]{% + % #1 nombre ou abscisse premier point + % #2 a ou ordonnée premier point + % #3 b ou abscisse deuxième point + % #4 {} ou ordonnée deuxième point + \useKVdefault[ClesAffine]%A supprimer car appel récursif avec Redaction + \setKV[ClesAffine]{#1}% + \ifboolKV[ClesAffine]{Image}{% + \ifboolKV[ClesAffine]{Ligne}{% + \ensuremath{\useKV[ClesAffine]{Nom}(\num{#2})=\num{#3}\times\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}=\num{\fpeval{#2*#3}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}\xintifboolexpr{#4=0}{}{=\num{\fpeval{#2*#3+#4}}}}% + }{% + \ifboolKV[ClesAffine]{ProgCalcul}{% + \begin{align*} + \useKV[ClesAffine]{Nom}&:\useKV[ClesAffine]{Variable}\stackrel{\times\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longrightarrow}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\stackrel{+\num{#4}}{\longrightarrow}}{\stackrel{\num{#4}}{\longrightarrow}}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}}\\ + \useKV[ClesAffine]{Nom}&:\num{#2}\stackrel{\times\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longrightarrow}\num{\fpeval{#3*#2}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\stackrel{+\num{#4}}{\longrightarrow}}{\stackrel{\num{#4}}{\longrightarrow}}\num{\fpeval{#3*#2+#4}}} + \end{align*} + }{% + \begin{align*} + \useKV[ClesAffine]{Nom}(\num{#2})&=\num{#3}\times\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}\\ + \useKV[ClesAffine]{Nom}(\num{#2})&=\num{\fpeval{#3*#2}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}%\\ + \xintifboolexpr{#4=0}{}{\\ + \useKV[ClesAffine]{Nom}(\num{#2})&=\num{\fpeval{#3*#2+#4}}%\\ + } + \end{align*} + }% + }% + }{\ifboolKV[ClesAffine]{Antecedent}{% + \ifboolKV[ClesAffine]{ProgCalcul}{% + La fonction affine $\useKV[ClesAffine]{Nom}$ est définie par : + \begin{align*} + \useKV[ClesAffine]{Nom}&:\useKV[ClesAffine]{Variable}\stackrel{\times\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longrightarrow}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\stackrel{+\num{#4}}{\longrightarrow}}{\stackrel{\num{#4}}{\longrightarrow}}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}} + \end{align*} + Nous cherchons le nombre $\useKV[ClesAffine]{Variable}$ tel que son image par la fonction $\useKV[ClesAffine]{Nom}$ soit $\num{#2}$. Donc on obtient : + \begin{align*} + \useKV[ClesAffine]{Nom}&:\frac{\num{\fpeval{#2-#4}}}{\num{#3}}\stackrel{\div\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longleftarrow}\num{\fpeval{#2-#4}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\stackrel{-\num{#4}}{\longleftarrow}}{\stackrel{+\num{\fpeval{0-#4}}}{\longleftarrow}}\num{#2}} + \end{align*} + }{% + On cherche l'antécédent de $\num{#2}$ par la fonction $\useKV[ClesAffine]{Nom}$, c'est-à-dire le nombre $\useKV[ClesAffine]{Variable}$ tel que $\useKV[ClesAffine]{Nom}(\useKV[ClesAffine]{Variable})=\num{#2}$. Or, la fonction $\useKV[ClesAffine]{Nom}$ est définie par : + \begin{align*} + \useKV[ClesAffine]{Nom}&:\useKV[ClesAffine]{Variable}\stackrel{\times\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longrightarrow}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\stackrel{+\num{#4}}{\longrightarrow}}{\stackrel{\num{#4}}{\longrightarrow}}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}} + \end{align*} + Par conséquent, on a : + \begin{align*} + \num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}&=\num{#2}\\ + \xintifboolexpr{#4=0}{\useKV[ClesAffine]{Variable}\uppercase{&}=\frac{\num{#2}}{\num{#3}} + }{\num{#3}\useKV[ClesAffine]{Variable}&=\num{\fpeval{#2-#4}}\\ + \useKV[ClesAffine]{Variable}&=\frac{\num{\fpeval{#2-#4}}}{\num{#3}} + } + \end{align*} + }% + }{% + \ifboolKV[ClesAffine]{Retrouve}{% + On sait que $\useKV[ClesAffine]{Nom}$ est une fonction affine. Donc elle s'écrit sous la forme : \[\useKV[ClesAffine]{Nom}(\useKV[ClesAffine]{Variable})=a\useKV[ClesAffine]{Variable}+b\] + Or, $\useKV[ClesAffine]{Nom}(\num{#2})=\num{#3}$ et $\useKV[ClesAffine]{Nom}(\num{#4})=\num{#5}$. Par conséquent, d'après la propriété des accroissements : + \begin{align*} + a&=\frac{\useKV[ClesAffine]{Nom}(\num{#2})-\useKV[ClesAffine]{Nom}(\num{#4})}{\num{#2}-\xintifboolexpr{#4<0}{(\num{#4})}{\num{#4}}}\\ + a&=\frac{\num{#3}-\xintifboolexpr{#5<0}{(\num{#5})}{\num{#5}}}{\num{\fpeval{#2-#4}}}\\ + a&=\frac{\num{\fpeval{#3-#5}}}{\num{\fpeval{#2-#4}}}%\\ + \SSimpliTest{\fpeval{#3-#5}}{\fpeval{#2-#4}}\ifthenelse{\boolean{Simplification}}{\\a&=\SSimplifie{\fpeval{#3-#5}}{\fpeval{#2-#4}}}{}% + \end{align*} + La fonction $\useKV[ClesAffine]{Nom}$ s'écrit alors sous la forme $\displaystyle\useKV[ClesAffine]{Nom}(\useKV[ClesAffine]{Variable})=\SSimplifie{\fpeval{#3-#5}}{\fpeval{#2-#4}}\useKV[ClesAffine]{Variable}+b$. + \\De plus, comme $\useKV[ClesAffine]{Nom}(\num{#2})=\num{#3}$, alors : + \begin{align*} + \SSimplifie{\fpeval{#3-#5}}{\fpeval{#2-#4}}\times\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}+b&=\num{#3}\\ + \SSimplifie{\fpeval{(#3-#5)*#2}}{\fpeval{#2-#4}}+b&=\num{#3}\\ + b&=\num{\fpeval{#3-(#3-#5)*#2/(#2-#4)}} + \end{align*} + \xdef\OrdOrigine{\fpeval{#3-(#3-#5)*#2/(#2-#4)}} + La fonction affine $\useKV[ClesAffine]{Nom}$ cherchée est : + \[\useKV[ClesAffine]{Nom}:\useKV[ClesAffine]{Variable}\mapsto\SSimplifie{\fpeval{#3-#5}}{\fpeval{#2-#4}}\useKV[ClesAffine]{Variable}\xintifboolexpr{\OrdOrigine=0}{}{\xintifboolexpr{\OrdOrigine>0}{+\num{\OrdOrigine}}{-\num{\fpeval{0-\OrdOrigine}}}}\] + }{% + % + }% + }% + }% + \ifboolKV[ClesAffine]{Graphique}{% + \ifboolKV[ClesAffine]{VoirCoef}{% + \MPFonctionAffine{\useKV[ClesAffine]{Unitex}}{\useKV[ClesAffine]{Unitey}}{#2}{#3}{#4}{#5}{\useKV[ClesAffine]{ACoef}}% + }{% + \MPFonctionAffine{\useKV[ClesAffine]{Unitex}}{\useKV[ClesAffine]{Unitey}}{#2}{#3}{#4}{#5}{""}}{}% + }{}% + \ifboolKV[ClesAffine]{Redaction}{% + \xintifboolexpr{#2=0}{Comme la fonction $\useKV[ClesAffine]{Nom}$ + est une fonction constante, alors sa représentation graphique est une droite parallèle à l'axe des abscisses passant par le point de coordonnées $(0;\num{#3})$.}% + {\xintifboolexpr{#3=0}{Comme la fonction + $\useKV[ClesAffine]{Nom}$ est une fonction linéaire, alors sa représentation graphique est une droite passant par l'origine du repère.\\Je choisis $\useKV[ClesAffine]{Variable}=\num{#4}$. Son image est \xdef\NomFonctionA{\useKV[ClesAffine]{Nom}}\FonctionAffine[Nom=\NomFonctionA,Image,Ligne]{#4}{#2}{#3}{#5}. On place le point de coordonnées $(\num{#4};\num{\fpeval{#2*#4+#3}})$. + }{% + Comme $\useKV[ClesAffine]{Nom}$ est une fonction affine, alors sa représentation graphique est une droite.\\Je choisis $\useKV[ClesAffine]{Variable}=\num{#4}$. Son image est \xdef\NomFonction{\useKV[ClesAffine]{Nom}}\FonctionAffine[Nom=\NomFonction,Image,Ligne]{#4}{#2}{#3}{#5}. On place le point de coordonnées $(\num{#4};\num{\fpeval{#2*#4+#3}})$.\\Je choisis $\useKV[ClesAffine]{Variable}=\num{#5}$. Son image est \FonctionAffine[Nom=\NomFonction,Image,Ligne]{#5}{#2}{#3}{#4}. On place le point de coordonnées $(\num{#5};\num{\fpeval{#2*#5+#3}})$.% + }% + }% + }% + {}% + \ifboolKV[ClesAffine]{Ecriture}{\ensuremath{\useKV[ClesAffine]{Nom}(\useKV[ClesAffine]{Variable})=\xintifboolexpr{#2=0}{}{\num{#2}\useKV[ClesAffine]{Variable}}\xintifboolexpr{#2=0}{\num{#3}}{\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{\num{#3}}}}}}{}% + \ifboolKV[ClesAffine]{Definition}{\ensuremath{\useKV[ClesAffine]{Nom}:\useKV[ClesAffine]{Variable}\mapsto\xintifboolexpr{#2=0}{}{\num{#2}\useKV[ClesAffine]{Variable}}\xintifboolexpr{#2=0}{\num{#3}}{\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{\num{#3}}}}}}{}% +}% + +\def\MPFonctionAffine#1#2#3#4#5#6#7{% + % #1 Unitex #2 Unitey + % #2 a pour f1 - #4 b pour f1 + % #5 abscisse du premier point + % #6 abscisse du deuxième point + \ifluatex + \mplibforcehmode + \begin{mplibcode} + XMin=-2; + XMax=2; + if #5<XMin: + XMin:=#5; + fi; + if #6<XMin: + XMin:=#6; + fi; + if #5>XMax: + XMax:=#5; + fi; + if #6>XMax: + XMax:=#6; + fi; + YMax=2; + YMin=-2; + if (#5*#3+(#4))>YMax: + YMax:=(#5*#3+(#4)); + fi; + if (#6*#3+(#4))>YMax: + YMax:=(#6*#3+(#4)); + fi; + if (#5*#3+(#4))<YMin: + YMin:=(#5*#3+(#4)); + fi; + if (#6*#3+(#4))<YMin: + YMin:=(#6*#3+(#4)); + fi; + unitex:=#1*cm; + unitey:=#2*cm; + XMax:=XMax+2; + XMin:=XMin-2; + YMax:=YMax+2; + YMin:=YMin-2; + %On trace la grille + drawoptions(withcolor 0.95white); + for k=0 upto (XMax-XMin): + draw ((XMin+k)*unitex,YMin*unitey)--((XMin+k)*unitex,YMax*unitey); + endfor; + for k=0 upto (YMax-YMin): + draw (XMin*unitex,(YMin+k)*unitey)--(XMax*unitex,(YMin+k)*unitey); + endfor; + drawoptions(); + %On trace les axes + drawarrow (XMin*unitex,0)--(XMax*unitex,0); + drawarrow (0,YMin*unitey)--(0,YMax*unitey); + label.llft(btex O etex,(0,0)); + dotlabel.bot(btex 1 etex,(unitex,0)); + dotlabel.lft(btex 1 etex,(0,unitey)); + % On trace la droite + pair A[]; + A1=(#5*unitex,(#5*#3+(#4))*unitey); + A2=(#6*unitex,(#6*#3+(#4))*unitey); + draw 2[A1,A2]--2[A2,A1]; + clip currentpicture to ((XMin*unitex,YMin*unitey)--(XMax*unitex,YMin*unitey)--(XMax*unitex,YMax*unitey)--(XMin*unitex,YMax*unitey)--cycle); + %On labellise les points + fill (fullcircle scaled 1mm) shifted A1; + fill (fullcircle scaled 1mm) shifted A2; + draw (xpart(A1),0)--A1--(0,ypart(A1)) dashed evenly; + draw (xpart(A2),0)--A2--(0,ypart(A2)) dashed evenly; + if (#5*#3+(#4))=0: + else: + if (#5*#3+(#4))<0: + label.top(TEX("\num{"&decimal(#5)&"}"),(xpart(A1),0)); + else: + label.bot(TEX("\num{"&decimal(#5)&"}"),(xpart(A1),0)); + fi; + fi; + if (#6*#3+(#4))=0: + else: + if (#6*#3+(#4))<0: + label.top(TEX("\num{"&decimal(#6)&"}"),(xpart(A2),0)); + else: + label.bot(TEX("\num{"&decimal(#6)&"}"),(xpart(A2),0)); + fi; + fi; + if #3=0: + label.urt(TEX("\num{"&decimal(#5*#3+(#4))&"}"),(0,ypart(A1))); + else: + if #3>0: + if (#5*#3+(#4))=0: + else: + if (#5*#3+(#4))<0: + label.rt(TEX("\num{"&decimal(#5*#3+(#4))&"}"),(0,ypart(A1))); + else: + label.lft(TEX("\num{"&decimal(#5*#3+(#4))&"}"),(0,ypart(A1))); + fi; + fi; + if (#6*#3+(#4))=0: + else: + if (#6*#3+(#4))<0: + label.rt(TEX("\num{"&decimal(#6*#3+(#4))&"}"),(0,ypart(A2))); + else: + label.lft(TEX("\num{"&decimal(#6*#3+(#4))&"}"),(0,ypart(A2))); + fi; + fi; + else: + if (#5*#3+(#4))=0: + else: + if (#5*#3+(#4))<0: + label.lft(TEX("\num{"&decimal(#5*#3+(#4))&"}"),(0,ypart(A1))); + else: + label.rt(TEX("\num{"&decimal(#5*#3+(#4))&"}"),(0,ypart(A1))); + fi; + fi; + if (#6*#3+(#4))=0: + else: + if (#6*#3+(#4))<0: + label.lft(TEX("\num{"&decimal(#6*#3+(#4))&"}"),(0,ypart(A2))); + else: + label.rt(TEX("\num{"&decimal(#6*#3+(#4))&"}"),(0,ypart(A2))); + fi; + fi; + fi; + fi; + % On affiche ou pas "la marche" du coef directeur + for p_=#7: + if numeric p_: + draw ((#7*unitex,(#7*#3+(#4))*unitey)--((#7+1)*unitex,(#7*#3+(#4))*unitey)--((#7+1)*unitex,((#7+1)*#3+(#4))*unitey)) withcolor red; + fi; + endfor; + \end{mplibcode} + \else + \begin{mpost} + % On définit les constantes + XMin=-2; + XMax=2; + if #5<XMin: + XMin:=#5; + fi; + if #6<XMin: + XMin:=#6; + fi; + if #5>XMax: + XMax:=#5; + fi; + if #6>XMax: + XMax:=#6; + fi; + YMax=2; + YMin=-2; + if (#5*#3+(#4))>YMax: + YMax:=(#5*#3+(#4)); + fi; + if (#6*#3+(#4))>YMax: + YMax:=(#6*#3+(#4)); + fi; + if (#5*#3+(#4))<YMin: + YMin:=(#5*#3+(#4)); + fi; + if (#6*#3+(#4))<YMin: + YMin:=(#6*#3+(#4)); + fi; + unitex:=#1*cm; + unitey:=#2*cm; + XMax:=XMax+2; + XMin:=XMin-2; + YMax:=YMax+2; + YMin:=YMin-2; + %On trace la grille + drawoptions(withcolor 0.95white); + for k=0 upto (XMax-XMin): + draw ((XMin+k)*unitex,YMin*unitey)--((XMin+k)*unitex,YMax*unitey); + endfor; + for k=0 upto (YMax-YMin): + draw (XMin*unitex,(YMin+k)*unitey)--(XMax*unitex,(YMin+k)*unitey); + endfor; + drawoptions(); + %On trace les axes + drawarrow (XMin*unitex,0)--(XMax*unitex,0); + drawarrow (0,YMin*unitey)--(0,YMax*unitey); + label.llft(btex O etex,(0,0)); + dotlabel.bot(btex 1 etex,(unitex,0)); + dotlabel.lft(btex 1 etex,(0,unitey)); + % On trace la droite + pair A[]; + A1=(#5*unitex,(#5*#3+(#4))*unitey); + A2=(#6*unitex,(#6*#3+(#4))*unitey); + draw 2[A1,A2]--2[A2,A1]; + clip currentpicture to ((XMin*unitex,YMin*unitey)--(XMax*unitex,YMin*unitey)--(XMax*unitex,YMax*unitey)--(XMin*unitex,YMax*unitey)--cycle); + %On labellise les points + fill (fullcircle scaled 1mm) shifted A1; + fill (fullcircle scaled 1mm) shifted A2; + draw (xpart(A1),0)--A1--(0,ypart(A1)) dashed evenly; + draw (xpart(A2),0)--A2--(0,ypart(A2)) dashed evenly; + if (#5*#3+(#4))=0: + else: + if (#5*#3+(#4))<0: + label.top(LATEX("\num{"&decimal(#5)&"}"),(xpart(A1),0)); + else: + label.bot(LATEX("\num{"&decimal(#5)&"}"),(xpart(A1),0)); + fi; + fi; + if (#6*#3+(#4))=0: + else: + if (#6*#3+(#4))<0: + label.top(LATEX("\num{"&decimal(#6)&"}"),(xpart(A2),0)); + else: + label.bot(LATEX("\num{"&decimal(#6)&"}"),(xpart(A2),0)); + fi; + fi; + if #3=0: + label.urt(LATEX("\num{"&decimal(#5*#3+(#4))&"}"),(0,ypart(A1))); + else: + if #3>0: + if (#5*#3+(#4))=0: + else: + if (#5*#3+(#4))<0: + label.rt(LATEX("\num{"&decimal(#5*#3+(#4))&"}"),(0,ypart(A1))); + else: + label.lft(LATEX("\num{"&decimal(#5*#3+(#4))&"}"),(0,ypart(A1))); + fi; + fi; + if (#6*#3+(#4))=0: + else: + if (#6*#3+(#4))<0: + label.rt(LATEX("\num{"&decimal(#6*#3+(#4))&"}"),(0,ypart(A2))); + else: + label.lft(LATEX("\num{"&decimal(#6*#3+(#4))&"}"),(0,ypart(A2))); + fi; + fi; + else: + if (#5*#3+(#4))=0: + else: + if (#5*#3+(#4))<0: + label.lft(LATEX("\num{"&decimal(#5*#3+(#4))&"}"),(0,ypart(A1))); + else: + label.rt(LATEX("\num{"&decimal(#5*#3+(#4))&"}"),(0,ypart(A1))); + fi; + fi; + if (#6*#3+(#4))=0: + else: + if (#6*#3+(#4))<0: + label.lft(LATEX("\num{"&decimal(#6*#3+(#4))&"}"),(0,ypart(A2))); + else: + label.rt(LATEX("\num{"&decimal(#6*#3+(#4))&"}"),(0,ypart(A2))); + fi; + fi; + fi; + fi; + % On affiche ou pas "la marche" du coef directeur + for p_=#7: + if numeric p_: + draw ((#7*unitex,(#7*#3+(#4))*unitey)--((#7+1)*unitex,(#7*#3+(#4))*unitey)--((#7+1)*unitex,((#7+1)*#3+(#4))*unitey)) withcolor red; + fi; + endfor; + \end{mpost} + \fi +} + + +%%%%%%%%%%%%%%% +% Fonction +%%%%%%%%%%%%%%% +\setKVdefault[ClesFonction]{Nom=f,Variable=x,Calcul=x,Tableau=false,Largeur=5mm,Ecriture=false,Definition=false} + +\newcommand{\Fonction}[2][]{% + \useKVdefault[ClesFonction] + \setKV[ClesFonction]{#1} + \ignoreemptyitems% + \readlist*\ListeFonction{#2} + \StrSubstitute{\useKV[ClesFonction]{Calcul}}{\useKV[ClesFonction]{Variable}}{\i}[\temp]% + + \StrSubstitute{\useKV[ClesFonction]{Calcul}}{**}{^}[\tempa]% + \StrSubstitute{\tempa}{*}{}[\tempab]% + \ifboolKV[ClesFonction]{Ecriture}{% + \ensuremath{\useKV[ClesFonction]{Nom}(\useKV[ClesFonction]{Variable})=\tempab} + }{}% + \ifboolKV[ClesFonction]{Definition}{% + \ensuremath{\useKV[ClesFonction]{Nom}:\useKV[ClesFonction]{Variable}\mapsto\tempab} + }{}% + \ifboolKV[ClesFonction]{Tableau}{% + \buildtabfonction% + }{} +} + +\def\buildtabfonction{%\\ + \[% + \begin{array}{|>{\columncolor{gray!15}}c|*{\number\numexpr\ListeFonctionlen}{>{\centering\arraybackslash}p{\useKV[ClesFonction]{Largeur}}|}}% + \hline + \useKV[ClesFonction]{Variable}\xintFor* ##1 in {\xintSeq {1}{\ListeFonctionlen}}\do{&\num{\ListeFonction[##1]}}\\ + \hline + \useKV[ClesFonction]{Nom}(\useKV[ClesFonction]{Variable})\xintFor* ##1 in {\xintSeq {1}{\ListeFonctionlen}}\do{& \StrSubstitute{\useKV[ClesFonction]{Calcul}}{\useKV[ClesFonction]{Variable}}{\ListeFonction[##1]}[\tempab]\num{\fpeval{\tempab}}} + \\\hline + \end{array} + \] +} + +%%%%%%% +%% Formules +%%%%%% +\setKVdefault[ClesFormule]{Perimetre=false,Aire=false,Volume=false,Surface=carré,Solide=pavé droit,Figure=false,Angle=0,Ancre={(0,0)},Largeur=5cm} + +\def\MPFigureCarre{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + pair A,B,C,D; + A=u*(1,1); + B-A=u*(2,0); + C=rotation(A,B,-90); + D-C=A-B; + draw polygone(A,B,C,D); + draw codeperp(A,B,C,5); + draw codeperp(B,C,D,5); + draw codeperp(C,D,A,5); + draw codeperp(D,A,B,5); + marque_s:=marque_s/3; + draw Codelongueur(A,B,B,C,C,D,D,A,2); + marque_s:=marque_s*3; + draw appelation(A,B,-3mm,btex $c$ etex); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + pair A,B,C,D; + A=u*(1,1); + B-A=u*(2,0); + C=rotation(A,B,-90); + D-C=A-B; + draw polygone(A,B,C,D); + draw codeperp(A,B,C,5); + draw codeperp(B,C,D,5); + draw codeperp(C,D,A,5); + draw codeperp(D,A,B,5); + marque_s:=marque_s/3; + draw Codelongueur(A,B,B,C,C,D,D,A,2); + marque_s:=marque_s*3; + draw appelation(A,B,-3mm,btex $c$ etex); + \end{mpost} + \fi +} + +\def\MPFigurePolygone{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + pair A,B,C,D,E,F; + A=u*(1,1); + B-A=u*(2,0); + C=3/5[B,rotation(A,B,-120)]; + D-C=u*(0,1); + E-D=u*(-1.25,-1); + F-E=u*(-1,1); + draw polygone(A,B,C,D,E,F); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + pair A,B,C,D,E,F; + A=u*(1,1); + B-A=u*(2,0); + C=3/5[B,rotation(A,B,-120)]; + D-C=u*(0,1); + E-D=u*(-1.25,-1); + F-E=u*(-1,1); + draw polygone(A,B,C,D,E,F); + \end{mpost} + \fi +} + +\def\MPFigureParallelogramme{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + Figure(-5u,-5u,5u,5u); + pair A,B,C,D; + A=u*(1,1); + B-A=u*(2.25,0.25); + D=4/5[A,rotation(B,A,40)]; + C-D=B-A; + draw polygone(A,B,C,D); + drawoptions(withcolor gris); + draw marque_para(droite(A,B),droite(C,D),0.455); + draw marque_para(droite(B,C),droite(A,D),0.43); + draw segment(B,2.5[C,B]) dashed evenly; + draw segment(A,1.5[D,A]) dashed evenly; + draw segment(A,1.55[B,A]) dashed evenly; + draw segment(D,2[C,D]) dashed evenly; + drawoptions(); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + Figure(-5u,-5u,5u,5u); + pair A,B,C,D; + A=u*(1,1); + B-A=u*(2.25,0.25); + D=4/5[A,rotation(B,A,40)]; + C-D=B-A; + draw polygone(A,B,C,D); + drawoptions(withcolor gris); + draw marque_para(droite(A,B),droite(C,D),0.455); + draw marque_para(droite(B,C),droite(A,D),0.43); + draw segment(B,2.5[C,B]) dashed evenly; + draw segment(A,1.5[D,A]) dashed evenly; + draw segment(A,1.55[B,A]) dashed evenly; + draw segment(D,2[C,D]) dashed evenly; + drawoptions(); + \end{mpost} + \fi +} + +\def\MPFigureParallelogrammeAire{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + Figure(-5u,-5u,10u,5u); + pair A,B,C,D,I,J; + A=u*(1,1); + B-A=u*(2,0.5); + D=3/5[A,rotation(B,A,40)]; + C-D=B-A; + I=projection(D,A,B); + draw polygone(A,B,C,D) withcolor gris; + draw segment(A,B); + draw segment(D,I); + draw codeperp(D,I,B,5); + A:=A+3*u*(1,0); + B:=A+u*(2,0.5); + D:=3/5[A,rotation(B,A,40)]; + C:=D+B-A; + J=projection(B,A,D); + draw polygone(A,B,C,D) withcolor gris; + draw segment(D,1.5[A,D]) dashed evenly withcolor gris; + draw segment(A,D); + draw segment(B,J); + draw codeperp(B,J,A,5); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + Figure(-5u,-5u,10u,5u); + pair A,B,C,D,I,J; + A=u*(1,1); + B-A=u*(2,0.5); + D=3/5[A,rotation(B,A,40)]; + C-D=B-A; + I=projection(D,A,B); + draw polygone(A,B,C,D) withcolor gris; + draw segment(A,B); + draw segment(D,I); + draw codeperp(D,I,B,5); + A:=A+3*u*(1,0); + B:=A+u*(2,0.5); + D:=3/5[A,rotation(B,A,40)]; + C:=D+B-A; + J=projection(B,A,D); + draw polygone(A,B,C,D) withcolor gris; + draw segment(D,1.5[A,D]) dashed evenly withcolor gris; + draw segment(A,D); + draw segment(B,J); + draw codeperp(B,J,A,5); + \end{mpost} + \fi +} + +\def\MPFigureSphere{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + typetrace:="3D"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,0,10,500); + color O,A,B,C; + O=(0,0,0); + A-O=(0,1/2,0); + C-O=(-1/2,0,0); + B-O=(0,0,1/2); + path cc,cd; + cc=cercles(O,A,O,A,C); + cd=cercles(O,A,O,A,B); + draw cd; + draw (subpath(0,length cc/2) of cc) dashed evenly; + draw subpath(length cc/2,length cc) of cc; + draw cotationmil(O,A,0,18,btex rayon $r$ etex); + marque_p:="plein"; + pointe(O); + marque_p:="non"; + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + typetrace:="3D"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,0,10,500); + color O,A,B,C; + O=(0,0,0); + A-O=(0,1/2,0); + C-O=(-1/2,0,0); + B-O=(0,0,1/2); + path cc,cd; + cc=cercles(O,A,O,A,C); + cd=cercles(O,A,O,A,B); + draw cd; + draw (subpath(0,length cc/2) of cc) dashed evenly; + draw subpath(length cc/2,length cc) of cc; + draw cotationmil(O,A,0,18,btex rayon $r$ etex); + marque_p:="plein"; + pointe(O); + marque_p:="non"; + \end{mpost} + \fi +} + +\def\MPFigurePave{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + typetrace:="3D"; + typerepre:="persp"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,30,20,115); + color A,B,C,D,E,F,G,H; + draw Pave(A,B,C,D,E,F,G,H)(0.5,1,1/3) withcolor gris; + draw segment(A,B); + draw segment(E,F); + draw segment(A,F); + draw appelation(A,B,-2mm,\btex $\ell$ etex); + draw appelation(F,E,2mm,\btex $p$ etex); + draw appelation(A,F,2mm,\btex $h$ etex); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + typetrace:="3D"; + typerepre:="persp"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,30,20,115); + color A,B,C,D,E,F,G,H; + draw Pave(A,B,C,D,E,F,G,H)(0.5,1,1/3) withcolor gris; + draw segment(A,B); + draw segment(E,F); + draw segment(A,F); + draw appelation(A,B,-2mm,\btex $\ell$ etex); + draw appelation(F,E,2mm,\btex $p$ etex); + draw appelation(A,F,2mm,\btex $h$ etex); + \end{mpost} + \fi +} + +\def\MPFigurePrisme{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + typetrace:="3D"; + typerepre:="persp"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,30,20,115); + color A,B,C,D,E,F,G,H; + D=(0.75,0,0); + G=(0,1,0); + H=(0,0,0); + A-D=(0,0,0.5); + C-D=G-H; + E-H=A-D; + F-E=(0,0.6,0); + B-A=F-E; + NbS:=8; + Sommet1:=A; + Sommet2:=B; + Sommet3:=C; + Sommet4:=D; + Sommet5:=E; + Sommet6:=F; + Sommet7:=G; + Sommet8:=H; + NF:=6; + Fc[100]:=4;Fc[101]:=1;Fc[102]:=4;Fc[103]:=3;Fc[104]:=2; + Fc[200]:=4;Fc[201]:=4;Fc[202]:=1;Fc[203]:=5;Fc[204]:=8; + Fc[300]:=4;Fc[301]:=4;Fc[302]:=8;Fc[303]:=7;Fc[304]:=3; + Fc[400]:=4;Fc[401]:=8;Fc[402]:=5;Fc[403]:=6;Fc[404]:=7; + Fc[500]:=4;Fc[501]:=1;Fc[502]:=2;Fc[503]:=6;Fc[504]:=5; + Fc[600]:=4;Fc[601]:=2;Fc[602]:=3;Fc[603]:=7;Fc[604]:=6; + CoulTrace:=gris; + DessineObjet; + drawoptions(withcolor gris); + draw codeperp(B,A,E,5); + draw codeperp(A,B,F,5); + draw codeperp(H,D,C,5); + draw codeperp(D,C,G,5); + drawoptions(); + draw polygone(A,B,C,D); + draw hachurage(polygone(A,B,C,D),60,0.3,0); + draw segment(A,E); + draw appelation(A,E,3mm,btex hauteur etex); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + typetrace:="3D"; + typerepre:="persp"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,30,20,115); + color A,B,C,D,E,F,G,H; + D=(0.75,0,0); + G=(0,1,0); + H=(0,0,0); + A-D=(0,0,0.5); + C-D=G-H; + E-H=A-D; + F-E=(0,0.6,0); + B-A=F-E; + NbS:=8; + Sommet1:=A; + Sommet2:=B; + Sommet3:=C; + Sommet4:=D; + Sommet5:=E; + Sommet6:=F; + Sommet7:=G; + Sommet8:=H; + NF:=6; + Fc[100]:=4;Fc[101]:=1;Fc[102]:=4;Fc[103]:=3;Fc[104]:=2; + Fc[200]:=4;Fc[201]:=4;Fc[202]:=1;Fc[203]:=5;Fc[204]:=8; + Fc[300]:=4;Fc[301]:=4;Fc[302]:=8;Fc[303]:=7;Fc[304]:=3; + Fc[400]:=4;Fc[401]:=8;Fc[402]:=5;Fc[403]:=6;Fc[404]:=7; + Fc[500]:=4;Fc[501]:=1;Fc[502]:=2;Fc[503]:=6;Fc[504]:=5; + Fc[600]:=4;Fc[601]:=2;Fc[602]:=3;Fc[603]:=7;Fc[604]:=6; + CoulTrace:=gris; + DessineObjet; + drawoptions(withcolor gris); + draw codeperp(B,A,E,5); + draw codeperp(A,B,F,5); + draw codeperp(H,D,C,5); + draw codeperp(D,C,G,5); + drawoptions(); + draw polygone(A,B,C,D); + draw hachurage(polygone(A,B,C,D),60,0.3,0); + draw segment(A,E); + draw appelation(A,E,3mm,btex hauteur etex); + \end{mpost} + \fi +} + +\def\MPFigureCylindre{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + typetrace:="3D"; + typerepre:="persp"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,0,20,70); + color O,O',A,A',B,B',C,C'; + O=(0,0,0); + O'-O=(0,0,1); + A-O=(0,1,0); + A'-A=O'-O; + C=symetrie(A,O); + C'-C=O'-O; + B-O=(-1/2,0,0); + B'-B=O'-O; + path cc,cd; + cc=cercles(O,A,O,A,B); + cd=cercles(O',A',O',A',B'); + draw cd; + draw segment(C,C'); + draw segment(A,A'); + draw (subpath(0,length cc/2) of cc) dashed evenly; + draw subpath(length cc/2,length cc) of cc; + draw segment(O,A); + draw cotationmil(C,C',3mm,25,btex hauteur $h$ etex); + draw appelation(O,A,2mm,btex rayon $r$ etex); + marque_p:="croix"; + pointe(O); + marque_p:="non"; + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + typetrace:="3D"; + typerepre:="persp"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,0,20,70); + color O,O',A,A',B,B',C,C'; + O=(0,0,0); + O'-O=(0,0,1); + A-O=(0,1,0); + A'-A=O'-O; + C=symetrie(A,O); + C'-C=O'-O; + B-O=(-1/2,0,0); + B'-B=O'-O; + path cc,cd; + cc=cercles(O,A,O,A,B); + cd=cercles(O',A',O',A',B'); + draw cd; + draw segment(C,C'); + draw segment(A,A'); + draw (subpath(0,length cc/2) of cc) dashed evenly; + draw subpath(length cc/2,length cc) of cc; + draw segment(O,A); + draw cotationmil(C,C',3mm,25,btex hauteur $h$ etex); + draw appelation(O,A,2mm,btex rayon $r$ etex); + marque_p:="croix"; + pointe(O); + marque_p:="non"; + \end{mpost} + \fi +} + +\def\MPFigureCone{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + typetrace:="3D"; + typerepre:="persp"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,0,10,70); + color O,O',A,B,C; + O=(0,0,0); + O'-O=(0,0,1.5); + A-O=(0,1,0); + C=symetrie(A,O); + B-O=(-1/2,0,0); + path cc; + cc=cercles(O,A,O,A,B); + draw chemin(C,O',A); + draw (subpath(0,length cc/2) of cc) dashed evenly; + draw subpath(length cc/2,length cc) of cc; + draw chemin(O',O,A); + draw appelation(O,O',2mm,btex hauteur etex); + draw appelation(O,A,1mm,btex rayon $r$ etex); + marque_p:="croix"; + pointe(O); + marque_p:="non"; + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + typetrace:="3D"; + typerepre:="persp"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,0,10,70); + color O,O',A,B,C; + O=(0,0,0); + O'-O=(0,0,1.5); + A-O=(0,1,0); + C=symetrie(A,O); + B-O=(-1/2,0,0); + path cc; + cc=cercles(O,A,O,A,B); + draw chemin(C,O',A); + draw (subpath(0,length cc/2) of cc) dashed evenly; + draw subpath(length cc/2,length cc) of cc; + draw chemin(O',O,A); + draw appelation(O,O',2mm,btex hauteur etex); + draw appelation(O,A,1mm,btex rayon $r$ etex); + marque_p:="croix"; + pointe(O); + marque_p:="non"; + \end{mpost} + \fi +} + +\def\MPFigurePyramide{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + % Figure(-10u,-10u,10u,10u); + u:=0.5cm; + z0=(-0.5,0)*u; + z1=(2.5,0.5)*u; + z2=(4,2)*u; + z3=(-0.5,2.75)*u; + z4=(-3,1.5)*u; + z5=(0.5,6)*u; + z6=(0.5,1.5)*u; + z7=z6 shifted (5u,0); + draw z5--z0 withcolor gris; + draw z5--z1 withcolor gris; + draw z5--z2 withcolor gris; + draw z5--z4 withcolor gris; + draw z5--z3 dashed evenly withcolor gris; + draw hachurage(polygone(z4,z0,z1,z2,z3,z4),60,0.4,0); + remplis codeperp(z7,z6,z5,8)--z6--cycle withcolor white; + draw z4--z0--z1--z2; + draw z2--z3--z4 dashed evenly; + draw z5--z6 dashed evenly; + draw codeperp(z7,z6,z5,8); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + Figure(-10u,-10u,10u,10u); + u:=0.5cm; + z0=(-0.5,0)*u; + z1=(2.5,0.5)*u; + z2=(4,2)*u; + z3=(-0.5,2.75)*u; + z4=(-3,1.5)*u; + z5=(0.5,6)*u; + z6=(0.5,1.5)*u; + z7=z6 shifted (5u,0); + draw z5--z0 withcolor gris; + draw z5--z1 withcolor gris; + draw z5--z2 withcolor gris; + draw z5--z4 withcolor gris; + draw z5--z3 dashed evenly withcolor gris; + draw hachurage(polygone(z4,z0,z1,z2,z3,z4),60,0.4,0); + remplis codeperp(z7,z6,z5,8)--z6--cycle withcolor white; + draw z4--z0--z1--z2; + draw z2--z3--z4 dashed evenly; + draw z5--z6 dashed evenly; + draw codeperp(z7,z6,z5,8); + \end{mpost} + \fi +} + +\def\MPFigureCube{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + typetrace:="3D"; + typerepre:="persp"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,30,20,80); + color A,B,C,D,E,F,G,H; + draw Cube(A,B,C,D,E,F,G,H) withcolor gris; + draw segment(E,H); + draw appelation(E,H,2mm,btex $a$ etex); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + typetrace:="3D"; + typerepre:="persp"; + Figure(-10u,-10u,10u,10u); + Initialisation(5,30,20,80); + color A,B,C,D,E,F,G,H; + draw Cube(A,B,C,D,E,F,G,H) withcolor gris; + draw segment(E,H); + draw appelation(E,H,2mm,btex $a$ etex); + \end{mpost} + \fi +} + +\def\MPFigureLosange{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + Figure(-5u,-5u,5u,5u); + pair A,B,C,D; + A=u*(1,1); + B-A=u*(2,0.5); + D=rotation(B,A,40); + C-D=B-A; + draw polygone(A,B,C,D); + marque_s:=marque_s/3; + draw Codelongueur(A,B,B,C,C,D,D,A,2); + marque_s:=marque_s*3; + draw appelation(A,B,-3mm,btex $c$ etex); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + Figure(-5u,-5u,5u,5u); + pair A,B,C,D; + A=u*(1,1); + B-A=u*(2,0.5); + D=rotation(B,A,40); + C-D=B-A; + draw polygone(A,B,C,D); + marque_s:=marque_s/3; + draw Codelongueur(A,B,B,C,C,D,D,A,2); + marque_s:=marque_s*3; + draw appelation(A,B,-3mm,btex $c$ etex); + \end{mpost} + \fi +} + +\def\MPFigureLosangeAire{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + Figure(-5u,-5u,5u,5u); + pair A,B,C,D; + A=u*(1,1); + B-A=u*(2,0.5); + D=rotation(B,A,40); + C-D=B-A; + draw polygone(A,B,C,D) withcolor gris; + draw segment(A,C); + draw segment(B,D); + marque_s:=marque_s/3; + draw Codelongueur(A,B,B,C,C,D,D,A,2); + marque_s:=marque_s*3; + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + Figure(-5u,-5u,5u,5u); + pair A,B,C,D; + A=u*(1,1); + B-A=u*(2,0.5); + D=rotation(B,A,40); + C-D=B-A; + draw polygone(A,B,C,D) withcolor gris; + draw segment(A,C); + draw segment(B,D); + marque_s:=marque_s/3; + draw Codelongueur(A,B,B,C,C,D,D,A,2); + marque_s:=marque_s*3; + \end{mpost} + \fi +} + +\def\MPFigureRectangle{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + pair A,B,C,D; + A=u*(1,1); + B-A=u*(3,0); + C=2/3[B,rotation(A,B,-90)]; + D-C=A-B; + draw polygone(A,B,C,D); + draw codeperp(A,B,C,5); + draw codeperp(B,C,D,5); + draw codeperp(C,D,A,5); + draw codeperp(D,A,B,5); + marque_s:=marque_s/3; + draw Codelongueur(A,B,C,D,2); + draw Codelongueur(A,D,C,B,5); + marque_s:=marque_s*3; + draw appelation(A,B,-3mm,btex $L$ etex); + label.lft(btex $\ell$ etex,iso(A,D)); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + pair A,B,C,D; + A=u*(1,1); + B-A=u*(3,0); + C=2/3[B,rotation(A,B,-90)]; + D-C=A-B; + draw polygone(A,B,C,D); + draw codeperp(A,B,C,5); + draw codeperp(B,C,D,5); + draw codeperp(C,D,A,5); + draw codeperp(D,A,B,5); + marque_s:=marque_s/3; + draw Codelongueur(A,B,C,D,2); + draw Codelongueur(A,D,C,B,5); + marque_s:=marque_s*3; + draw appelation(A,B,-3mm,btex $L$ etex); + label.lft(btex $\ell$ etex,iso(A,D)); + \end{mpost} + \fi +} + +\def\MPFigureTriangle{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + Figure(-5u,-5u,5u,5u); + pair A,B,C; + A=u*(1,1); + B-A=u*(3,0); + C=demidroite(A,rotation(B,A,60)) intersectionpoint demidroite(B,rotation(A,B,-45)); + draw polygone(A,B,C); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + Figure(-5u,-5u,5u,5u); + pair A,B,C; + A=u*(1,1); + B-A=u*(3,0); + C=demidroite(A,rotation(B,A,60)) intersectionpoint demidroite(B,rotation(A,B,-45)); + draw polygone(A,B,C); + \end{mpost} + \fi +} + +\def\MPFigureCercle{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + Figure(-5u,-5u,5u,5u); + pair A,B,C; + A=u*(2.5,2.5); + path cc; + cc=cercles(A,1.25u); + B=pointarc(cc,195); + C=symetrie(B,A); + draw cc withcolor gris; + draw segment(B,C); + marque_p:="croix"; + pointe(A); + draw appelation(B,C,3mm,\btex diamètre etex); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + Figure(-5u,-5u,5u,5u); + pair A,B,C; + A=u*(2.5,2.5); + path cc; + cc=cercles(A,1.25u); + B=pointarc(cc,195); + C=symetrie(B,A); + draw cc withcolor gris; + draw segment(B,C); + marque_p:="croix"; + pointe(A); + draw appelation(B,C,3mm,\btex diamètre etex); + \end{mpost} + \fi +} + +\def\MPFigureDisque{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + Figure(-5u,-5u,5u,5u); + pair A,B,C; + A=u*(2.5,2.5); + path cc; + cc=cercles(A,1.25u); + B=pointarc(cc,195); + C=symetrie(B,A); + draw cc withcolor gris; + draw segment(A,C); + marque_p:="croix"; + pointe(A); + draw appelation(A,C,3mm,\btex rayon $r$ etex); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + Figure(-5u,-5u,5u,5u); + pair A,B,C; + A=u*(2.5,2.5); + path cc; + cc=cercles(A,1.25u); + B=pointarc(cc,195); + C=symetrie(B,A); + draw cc withcolor gris; + draw segment(A,C); + marque_p:="croix"; + pointe(A); + draw appelation(A,C,3mm,\btex rayon $r$ etex); + \end{mpost} + \fi +} + +\def\MPFigureTriangleAire{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + drawoptions( dashed dashpattern(on1cm)); + % Figure(-5u,-5u,5u,5u); + pair A,B,C,H,I,J; + A=u*(0.5,1); + B-A=u*(1.4,0); + C=demidroite(A,rotation(B,A,60)) intersectionpoint demidroite(B,rotation(A,B,-45)); + H=projection(C,A,B); + I=projection(A,B,C); + J=projection(B,C,A); + draw polygone(A,B,C) withcolor gris; + drawoptions(); + draw segment(C,H); + draw segment(A,B); + draw codeperp(C,H,B,5); + drawoptions(); + A:=A+u*(2.5,0); + B:=A+u*(1.4,0); + C:=demidroite(A,rotation(B,A,60)) intersectionpoint demidroite(B,rotation(A,B,-45)); + I:=projection(A,B,C); + J:=projection(B,C,A); + draw polygone(A,B,C) withcolor gris; + drawoptions(); + draw segment(A,I); + draw segment(C,B); + draw codeperp(A,I,B,5); + drawoptions(); + A:=A-u*(1.25,1); + B:=A+u*(1.4,0); + C:=demidroite(A,rotation(B,A,60)) intersectionpoint demidroite(B,rotation(A,B,-45)); + J:=projection(B,C,A); + draw polygone(A,B,C) withcolor gris; + drawoptions(); + draw segment(B,J); + draw segment(C,A); + draw codeperp(B,J,C,5); + drawoptions(); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + Figure(-5u,-5u,5u,5u); + pair A,B,C,H,I,J; + A=u*(0.5,1); + B-A=u*(1.4,0); + C=demidroite(A,rotation(B,A,60)) intersectionpoint demidroite(B,rotation(A,B,-45)); + H=projection(C,A,B); + I=projection(A,B,C); + J=projection(B,C,A); + draw polygone(A,B,C) withcolor gris; + drawoptions(); + draw segment(C,H); + draw segment(A,B); + draw codeperp(C,H,B,5); + drawoptions(); + A:=A+u*(2.5,0); + B:=A+u*(1.4,0); + C:=demidroite(A,rotation(B,A,60)) intersectionpoint demidroite(B,rotation(A,B,-45)); + I:=projection(A,B,C); + J:=projection(B,C,A); + draw polygone(A,B,C) withcolor gris; + drawoptions(); + draw segment(A,I); + draw segment(C,B); + draw codeperp(A,I,B,5); + drawoptions(); + A:=A-u*(1.25,1); + B:=A+u*(1.4,0); + C:=demidroite(A,rotation(B,A,60)) intersectionpoint demidroite(B,rotation(A,B,-45)); + J:=projection(B,C,A); + draw polygone(A,B,C) withcolor gris; + drawoptions(); + draw segment(B,J); + draw segment(C,A); + draw codeperp(B,J,C,5); + drawoptions(); + \end{mpost} + \fi +} + +\newcommand\Formule[1][]{% + \useKVdefault[ClesFormule] + \setKV[ClesFormule]{#1} + \setlength{\RoundedBoxWidth}{\useKV[ClesFormule]{Largeur}} + \ifboolKV[ClesFormule]{Perimetre}{% + \begin{tikzpicture}[remember picture, overlay] + \node[draw,dashed,rounded corners,rotate={\useKV[ClesFormule]{Angle}}] (test) at \useKV[ClesFormule]{Ancre} {\begin{minipage}{\RoundedBoxWidth}% + \IfStrEqCase{\useKV[ClesFormule]{Surface}}{% + {carré}{\begin{center} + \MPFigureCarre\par + Périmètre d'un carré :\par$4\times c$ + \end{center}}% + {polygone}{% + \begin{center} + \MPFigurePolygone\par + Périmètre d'un polygone : \par$\text{Somme des côtés}$ + \end{center} + }% + {rectangle}{ + \begin{center} + \MPFigureRectangle\par + Périmètre d'un rectangle : \par$2\times(L+\ell)$ + \end{center} + }% + {losange}{% + \begin{center} + \MPFigureLosange\par + Périmètre d'un losange : \par$4\times c$ + \end{center} + }% + {triangle}{% + \begin{center} + \MPFigureTriangle\par + Périmètre d'un triangle : \par Somme des côtés + \end{center} + }% + {cercle}{% + \begin{center} + \MPFigureCercle\par + Périmètre d'un cercle : \par$\pi\times\text{diamètre}$ + \end{center} + }% + {parallélogramme}{ + \begin{center} + \MPFigureParallelogramme\par + Périmètre d'un parallélogramme : \par Somme des côtés + \end{center} + }} + \end{minipage}}; + \end{tikzpicture} + }{\ifboolKV[ClesFormule]{Aire}{% + \begin{tikzpicture}[remember picture, overlay] + \node[draw,dashed,rounded corners=2,rotate={\useKV[ClesFormule]{Angle}}] (test) at \useKV[ClesFormule]{Ancre} {\begin{minipage}{\RoundedBoxWidth}% + \IfStrEqCase{\useKV[ClesFormule]{Surface}}{% + {carré}{\begin{center} + \MPFigureCarre\par + Aire d'un carré :\par$c\times c$ + \end{center}}% + {rectangle}{% + \begin{center} + \MPFigureRectangle\par + Aire d'un rectangle :\par$L\times\ell$ + \end{center} + }% + {losange}{% + \begin{center} + \MPFigureLosangeAire\par + Aire d'un losange :\par$\dfrac{\text{grande diagonale}\times\text{petite diagonale}}{2}$ + \end{center} + }% + {triangle}{% + \begin{center} + \MPFigureTriangleAire\par\vspace{1em}\par + Aire d'un triangle : $\displaystyle\frac{\text{côté}\times\text{hauteur relative à ce côté}}{2}$ + \end{center} + }% + {disque}{% + \begin{center} + \MPFigureDisque\par + Aire d'un disque :\par$\pi\times r\times r$ + \end{center} + }% + {parallélogramme}{% + \begin{center} + \MPFigureParallelogrammeAire\par + Aire d'un parallélogramme : $\text{côté}\times\text{hauteur relative à ce côté}$ + \end{center} + } + {sphère}{% + \begin{center} + \MPFigureSphere\par + Aire d'une sphère : $4\times\pi\times r^2$ + \end{center} + }} + \end{minipage}}; + \end{tikzpicture} + }{%Volume + \begin{tikzpicture}[remember picture, overlay] + \node[draw,dashed,rounded corners=2,rotate={\useKV[ClesFormule]{Angle}}] (test) at \useKV[ClesFormule]{Ancre} {\begin{minipage}{\RoundedBoxWidth}% + \IfStrEqCase{\useKV[ClesFormule]{Solide}}{% + {boule}{\begin{center} + \MPFigureSphere\par + Volume d'une boule : $\dfrac{4\times\pi\times r^3}{3}$ + \end{center}}% + {cube}{% + \begin{center} + \MPFigureCube\par + Volume d'une cube : $a^3\quad(a\times a\times a)$ + \end{center} + }% + {pavé}{% + \begin{center} + \MPFigurePave\par + Volume d'un pavé droit : $\ell\times h\times p$ + \end{center} + } + {prisme}{% + \begin{center} + \MPFigurePrisme\par + Volume d'un prisme droit : $\text{Aire de la base}\times\mbox{hauteur}$ + \end{center} + } + {cylindre}{% + \begin{center} + \MPFigureCylindre\par + Volume d'un cylindre de révolution : $\pi\times r^2\times h$ + \end{center} + } + {pyramide}{% + \begin{center} + \MPFigurePyramide\par + Volume d'une pyramide : $\dfrac{\text{Aire de la base}\times\text{hauteur}}{3}$ + \end{center} + } + {cône}{% + \begin{center} + \MPFigureCone\par + Volume d'un cône de révolution : $\displaystyle\dfrac{\pi\times r^2\times h}{3}$ + \end{center} + } + } + \end{minipage}}; + \end{tikzpicture} + } + } +} + +%%%%%%%%%% +%%% Proba +%%%%%%%%%% +\setKVdefault[ClesProba]{Echelle=false,Arbre=false,Branche=2,Angle=60,Rayon=0.25,LongueurEchelle=5,Affichage=0,Grille=0} + +\def\Updatetoksproba#1/#2\nil{\addtotok\toklistepointproba{"#1","\footnotesize #2",}} +\def\Updatetoksprobaechelle#1/#2/#3\nil{\addtotok\toklistepointproba{#1,#2,"#3",}} + +\newtoks\toklistepointproba + +% Pour construire l'arbre de probabilité +\def\buildarbreproba{% + \toklistepointproba{}% + \foreachitem\compteur\in\ListeProba{\expandafter\Updatetoksproba\compteur\nil}% + \MPArbreProba{\useKV[ClesProba]{Branche}}{\useKV[ClesProba]{Angle}}{\the\toklistepointproba}{\useKV[ClesProba]{Rayon}}% +} + +% Pour construire l'échelle de probabilité +\def\buildechelleproba{% + \toklistepointproba{}% + \foreachitem\compteur\in\ListeProba{\expandafter\Updatetoksprobaechelle\compteur\nil}% + \MPEchelleProbaUn{\useKV[ClesProba]{LongueurEchelle}}{\the\toklistepointproba}{\useKV[ClesProba]{Affichage}}{\useKV[ClesProba]{Grille}}% +} + +\def\MPEchelleProbaUn#1#2#3#4{% + % #1:longueur du segment représentant l'échelle + % #2:Liste des évènements/proba + % #3: pour l'affichage des labels (0 : rien, 1: fleches, 2 : fleches+evènements, 3: fleches+proba, 4 : tout) + % #4 : dimension de "la grille" associée + \ifluatex + \begin{mplibcode} + pair A,B,C[],D[];%les noeuds de l'arbre + Figure(-10u,-10u,10u,10u); + A=u*(1,1); + B-A=u*(#1,0); + draw segment(A,B); + draw marquesegment(A,B); + marque_s:=marque_s/2; + if #4>1: + for k=0 upto (#4-1): + D[k]=(k/#4)[A,B]; + endfor; + if (#4 mod 2)=0: + for k=0 step 2 until (#4-1): + draw marquesegment(D[k],D[k+1]); + endfor; + else: + for k=1 step 2 until (#4-1): + draw marquesegment(D[k],D[k+1]); + endfor; + fi; + fi; + marque_s:=marque_s*2; + labeloffset:=labeloffset*3; + label.bot(btex 0 etex,A); + label.bot(btex 1 etex,B); + labeloffset:=labeloffset/3; + n:=1;%compter les informations + k:=1;% compter les informations noeud pour les placer + vardef toto(text t)= + for p_=t: + if (n mod 3)=1: + num:=p_; + fi; + if (n mod 3)=2: + deno:=p_; + fi; + if (n mod 3=0): + C[k]=(num/deno)[A,B]; + if (#3>0): + drawarrow (C[k]-u*(0,0.5))--(C[k]-u*(0,0.15)); + fi; + if (#3=2) or (#3=4): + dotlabel.top(TEX(p_),C[k]); + fi; + if (#3=1) or (#3=3): + dotlabel.top("",C[k]); + fi; + if (#3>2): + label.bot(TEX("$\frac{"&decimal(num)&"}{"&decimal(deno)&"}$"),C[k]-u*(0,0.5));%Le \noexpand est nécessaire pour éviter un problème à la compilation, dû à l'expansion du \frac par gmp. + fi; + k:=k+1; + fi; + n:=n+1; + endfor; + enddef; + toto(#2); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + pair A,B,C[],D[];%les noeuds de l'arbre + Figure(-10u,-10u,10u,10u); + A=u*(1,1); + B-A=u*(#1,0); + draw segment(A,B); + draw marquesegment(A,B); + marque_s:=marque_s/2; + if #4>1: + for k=0 upto (#4-1): + D[k]=(k/#4)[A,B]; + endfor; + if (#4 mod 2)=0: + for k=0 step 2 until (#4-1): + draw marquesegment(D[k],D[k+1]); + endfor; + else: + for k=1 step 2 until (#4-1): + draw marquesegment(D[k],D[k+1]); + endfor; + fi; + fi; + marque_s:=marque_s*2; + labeloffset:=labeloffset*3; + label.bot(btex 0 etex,A); + label.bot(btex 1 etex,B); + labeloffset:=labeloffset/3; + n:=1;%compter les informations + k:=1;% compter les informations noeud pour les placer + vardef toto(text t)= + for p_=t: + if (n mod 3)=1: + num:=p_; + fi; + if (n mod 3)=2: + deno:=p_; + fi; + if (n mod 3=0): + C[k]=(num/deno)[A,B]; + if (#3>0): + drawarrow (C[k]-u*(0,0.5))--(C[k]-u*(0,0.15)); + fi; + if (#3=2) or (#3=4): + dotlabel.top(LATEX(p_),C[k]); + fi; + if (#3=1) or (#3=3): + dotlabel.top("",C[k]); + fi; + if (#3>2): + label.bot(LATEX("$\noexpand\frac{"&decimal(num)&"}{"&decimal(deno)&"}$"),C[k]-u*(0,0.5));%Le \noexpand est nécessaire pour éviter un problème à la compilation, dû à l'expansion du \frac par gmp. + fi; + k:=k+1; + fi; + n:=n+1; + endfor; + enddef; + toto(#2); + \end{mpost} + \fi +} + +\def\MPArbreProba#1#2#3#4{% + % #1:longueur d'une branche + % #2:angle entre deux branches de même origine + % #3:Liste des évènements/proba + \ifluatex + \begin{mplibcode} + pair A[],B[];%les noeuds de l'arbre + Figure(-10u,-10u,10u,10u); + A0=u*(1,1); + B0-A0=u*(#1,0); + A1=rotation(B0,A0,#2/2); + A2=rotation(B0,A0,-#2/2); + B1-A1=B0-A0; + A3=rotation(B1,A1,#2/3); + A4=rotation(B1,A1,-#2/3); + B2-A2=B0-A0; + A5=rotation(B2,A2,#2/3); + A6=rotation(B2,A2,-#2/3); + draw segment(A4,A1); + draw segment(A5,A2); + draw chemin(A3,A1,A0,A2,A6); + for k=1 upto 6: + fill cercles(A[k],#4*cm) withcolor white; + endfor; + n:=1;%compter les informations + k:=1;% compter les informations noeud pour les placer + l:=1;% compter les informations "numériques" + vardef toto(text t)= + for p_=t: + if (n mod 2)=1: + if p_<>"": + label(TEX(p_),A[k]); + fi; + k:=k+1; + else: + if (l mod 2)=1: + if p_<>"": + draw appelation(A[(l-1) div 2],A[l],4mm,TEX(p_)); + fi; + else: + if p_<>"": + draw appelation(A[(l-1) div 2],A[l],-4mm,TEX(p_)); + fi; + fi; + l:=l+1; + fi; + n:=n+1; + endfor; + enddef; + toto(#3); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + pair A[],B[];%les noeuds de l'arbre + Figure(-10u,-10u,10u,10u); + A0=u*(1,1); + B0-A0=u*(#1,0); + A1=rotation(B0,A0,#2/2); + A2=rotation(B0,A0,-#2/2); + B1-A1=B0-A0; + A3=rotation(B1,A1,#2/3); + A4=rotation(B1,A1,-#2/3); + B2-A2=B0-A0; + A5=rotation(B2,A2,#2/3); + A6=rotation(B2,A2,-#2/3); + draw segment(A4,A1); + draw segment(A5,A2); + draw chemin(A3,A1,A0,A2,A6); + for k=1 upto 6: + fill cercles(A[k],#4*cm) withcolor white; + endfor; + n:=1;%compter les informations + k:=1;% compter les informations noeud pour les placer + l:=1;% compter les informations "numériques" + vardef toto(text t)= + for p_=t: + if (n mod 2)=1: + label(LATEX(p_),A[k]); + k:=k+1; + else: + if (l mod 2)=1: + draw appelation(A[(l-1) div 2],A[l],4mm,LATEX(p_)); + else: + draw appelation(A[(l-1) div 2],A[l],-4mm,LATEX(p_)); + fi; + l:=l+1; + fi; + n:=n+1; + endfor; + enddef; + toto(#3); + \end{mpost} + \fi +} + +\newcommand\Proba[2][]{% + \useKVdefault[ClesProba]% + \setKV[ClesProba]{#1}% + % On liste les différents éléments sous la forme Evènement/proba + \setsepchar[*]{,*/}\ignoreemptyitems% + \readlist*\ListeProba{#2} + \ifboolKV[ClesProba]{Echelle}{% + \buildechelleproba% + }{\ifboolKV[ClesProba]{Arbre}{% + \buildarbreproba% + }{} + } +} + +%%%%%%%%%%%%%% +%%%Reperage +%%%%%%%%%%%%%% +\setKVdefault[ClesReperage]{Unitex=1,Pasx=1,Unitey=1,Pasy=1,Unitez=1,Pasz=1,DemiDroite=false,Droite=false,Plan=false,Trace=false,ListeSegment={},Espace=false,Sphere=false,AffichageNom=false,AffichageCoord=false,ValeurUnitex=1,ValeurUnitey=1,ValeurOrigine=0,EchelleEspace=50,CouleurCoord=black} +% ValeurOrigine permet de faire des morceaux de demi-droite graduée en passant par droite :) + +\def\Updatetoksdroite#1/#2\nil{\addtotok\toklistepointdroite{#1,"#2",}} +\def\Updatetoksrepere#1/#2/#3\nil{\addtotok\toklistepointrepere{#1,#2,"#3",}} +\def\Updatetoksespace#1/#2/#3/#4\nil{\addtotok\toklistepointespace{#1,#2,#3,"#4",}} + +\newtoks\toklistepointrepere +\newtoks\toklistepointdroite +\newtoks\toklistepointespace + +% Pour construire le repère de l'espace +\def\buildespace{% + \toklistepointespace{}% + \ifboolKV[ClesReperage]{Sphere}{% + \foreachitem\compteur\in\ListePointEspace{\expandafter\Updatetoksrepere\compteur\nil}% + }{% + \foreachitem\compteur\in\ListePointEspace{\expandafter\Updatetoksespace\compteur\nil}% + } + \ifboolKV[ClesReperage]{AffichageNom}{% + \ifboolKV[ClesReperage]{AffichageCoord}{% + \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{3}{\useKV[ClesReperage]{EchelleEspace}}\]% + }{% + \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{2}{\useKV[ClesReperage]{EchelleEspace}}\]% + } + }{% + \ifboolKV[ClesReperage]{AffichageCoord}{% + \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{1}{\useKV[ClesReperage]{EchelleEspace}}\]% + }{% + \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{0}{\useKV[ClesReperage]{EchelleEspace}}\]% + } + }% +}% + +\def\MPEspacePave#1#2#3#4#5#6#7#8#9{% + \ifluatex + \begin{mplibcode} + typetrace:="3D"; + typerepre:="persp"; + Figure(-20u,-20u,20u,20u); + Initialisation(1500,30,20,abs(#9)); + %marque_r:=marque_r/2; + marque_p:="plein"; + color A,B,C,D,E,F,G,H,M[],N[]; + draw Pave(A,B,C,D,E,F,G,H)(#1,#3,#5); + if #9>0: + drawarrow Projette(A)--Projette(1.5[D,A]); + drawarrow Projette(C)--Projette(1.5[D,C]); + drawarrow Projette(E)--Projette(1.5[D,E]); + label.ulft(btex 1 etex,Projette((1/#2)[D,A])); + label.bot(btex 1 etex,Projette((1/#4)[D,C])); + label.lft(btex 1 etex,Projette((1/#6)[D,E])); + for k=1 upto (#2): + pointe((k/#2)[D,A]); + endfor; + for k=1 upto (#4): + pointe((k/#4)[D,C]); + endfor; + for k=1 upto (#6): + pointe((k/#6)[D,E]); + endfor; + else: + drawarrow Projette(D)--Projette(1.5[A,D]) dashed evenly; + drawarrow Projette(B)--Projette(1.5[A,B]); + drawarrow Projette(F)--Projette(1.5[A,F]); + label.ulft(btex 1 etex,Projette((1/#2)[A,D])); + label.bot(btex 1 etex,Projette((1/#4)[A,B])); + label.lft(btex 1 etex,Projette((1/#6)[A,F])); + for k=1 upto (#2): + pointe((k/#2)[A,D]); + endfor; + for k=1 upto (#4): + pointe((k/#4)[A,B]); + endfor; + for k=1 upto (#6): + pointe((k/#6)[A,F]); + endfor; + fi; + vardef tata(text t)= + n:=1;%pour compter combien de points + k:=0;%pour garder l'abscisse + l:=0;%pour garder l'ordonnée + m:=0;%pour garder l'altitude + if #8>0: + for p_=t: + if (n mod 4)=1: + k:=p_; + fi; + if (n mod 4)=2: + l:=p_; + fi; + if (n mod 4)=3: + m:=p_; + fi; + if (n mod 4)=0: + M[n]=(k/#2)[D,A]+(l/#4)*(C-D)+(m/#6)*(E-D); + N[n]=(k/#2)[D,A]+(l/#4)*(C-D); + if (#8>1): + label.top(TEX(p_),Projette(M[n])); + pointe(M[n]); + fi; + if (#8=1) or (#8=3) : + drawoptions(dashed evenly withcolor gris); + draw segment(M[n],(0,0,bluepart(M[n]))); + draw segment(M[n],N[n]); + draw segment(N[n],(redpart(M[n]),0,0)); + draw segment(N[n],(0,greenpart(M[n]),0)); + drawoptions(); + fi; + fi; + n:=n+1; + endfor; + fi; + enddef; + vardef toto(text t)= + n:=1;%pour compter combien de points + k:=0;%pour garder l'abscisse + l:=0;%pour garder l'ordonnée + m:=0;%pour garder l'altitude + if #8>0: + for p_=t: + if (n mod 4)=1: + k:=p_; + fi; + if (n mod 4)=2: + l:=p_; + fi; + if (n mod 4)=3: + m:=p_; + fi; + if (n mod 4)=0: + % message("je suis ici : "&p_); + M[n]=(k/#2)[A,D]+(l/#4)*(B-A)+(m/#6)*(F-A); + N[n]=(k/#2)[A,D]+(l/#4)*(B-A); + if (#8>1): + label.top(TEX(p_),Projette(M[n])); + pointe(M[n]); + fi; + if (#8=1) or (#8=3) : + drawoptions(dashed evenly withcolor gris); + draw segment(M[n],A+(0,0,bluepart(M[n]))); + draw segment(M[n],N[n]); + draw segment(N[n],A+(l/#4)*(B-A)); + draw segment(N[n],A+(k/#2)*(D-A)); + drawoptions(); + fi; + fi; + n:=n+1; + endfor; + fi; + enddef; + if #9>0: + tata(#7); + else: + toto(#7); + fi; + draw Pave(A,B,C,D,E,F,G,H)(#1,#3,#5); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + typetrace:="3D"; + typerepre:="persp"; + Figure(-20u,-20u,20u,20u); + Initialisation(1500,30,20,abs(#9)); + %marque_r:=marque_r/2; + marque_p:="plein"; + color A,B,C,D,E,F,G,H,M[],N[]; + draw Pave(A,B,C,D,E,F,G,H)(#1,#3,#5); + if #9>0: + drawarrow Projette(A)--Projette(1.5[D,A]); + drawarrow Projette(C)--Projette(1.5[D,C]); + drawarrow Projette(E)--Projette(1.5[D,E]); + label.ulft(btex 1 etex,Projette((1/#2)[D,A])); + label.bot(btex 1 etex,Projette((1/#4)[D,C])); + label.lft(btex 1 etex,Projette((1/#6)[D,E])); + for k=1 upto (#2): + pointe((k/#2)[D,A]); + endfor; + for k=1 upto (#4): + pointe((k/#4)[D,C]); + endfor; + for k=1 upto (#6): + pointe((k/#6)[D,E]); + endfor; + else: + drawarrow Projette(D)--Projette(1.5[A,D]) dashed evenly; + drawarrow Projette(B)--Projette(1.5[A,B]); + drawarrow Projette(F)--Projette(1.5[A,F]); + label.ulft(btex 1 etex,Projette((1/#2)[A,D])); + label.bot(btex 1 etex,Projette((1/#4)[A,B])); + label.lft(btex 1 etex,Projette((1/#6)[A,F])); + for k=1 upto (#2): + pointe((k/#2)[A,D]); + endfor; + for k=1 upto (#4): + pointe((k/#4)[A,B]); + endfor; + for k=1 upto (#6): + pointe((k/#6)[A,F]); + endfor; + fi; + vardef tata(text t)= + n:=1;%pour compter combien de points + k:=0;%pour garder l'abscisse + l:=0;%pour garder l'ordonnée + m:=0;%pour garder l'altitude + if #8>0: + for p_=t: + if (n mod 4)=1: + k:=p_; + fi; + if (n mod 4)=2: + l:=p_; + fi; + if (n mod 4)=3: + m:=p_; + fi; + if (n mod 4)=0: + M[n]=(k/#2)[D,A]+(l/#4)*(C-D)+(m/#6)*(E-D); + N[n]=(k/#2)[D,A]+(l/#4)*(C-D); + if (#8>1): + label.top(LATEX(p_),Projette(M[n])); + pointe(M[n]); + fi; + if (#8=1) or (#8=3) : + drawoptions(dashed evenly withcolor gris); + draw segment(M[n],(0,0,bluepart(M[n]))); + draw segment(M[n],N[n]); + draw segment(N[n],(redpart(M[n]),0,0)); + draw segment(N[n],(0,greenpart(M[n]),0)); + drawoptions(); + fi; + fi; + n:=n+1; + endfor; + fi; + enddef; + vardef toto(text t)= + n:=1;%pour compter combien de points + k:=0;%pour garder l'abscisse + l:=0;%pour garder l'ordonnée + m:=0;%pour garder l'altitude + if #8>0: + for p_=t: + if (n mod 4)=1: + k:=p_; + fi; + if (n mod 4)=2: + l:=p_; + fi; + if (n mod 4)=3: + m:=p_; + fi; + if (n mod 4)=0: + % message("je suis ici : "&p_); + M[n]=(k/#2)[A,D]+(l/#4)*(B-A)+(m/#6)*(F-A); + N[n]=(k/#2)[A,D]+(l/#4)*(B-A); + if (#8>1): + label.top(LATEX(p_),Projette(M[n])); + pointe(M[n]); + fi; + if (#8=1) or (#8=3) : + drawoptions(dashed evenly withcolor gris); + draw segment(M[n],A+(0,0,bluepart(M[n]))); + draw segment(M[n],N[n]); + draw segment(N[n],A+(l/#4)*(B-A)); + draw segment(N[n],A+(k/#2)*(D-A)); + drawoptions(); + fi; + fi; + n:=n+1; + endfor; + fi; + enddef; + if #9>0: + tata(#7); + else: + toto(#7); + fi; + draw Pave(A,B,C,D,E,F,G,H)(#1,#3,#5); + \end{mpost} + \fi +}% + +% Pour construire le repère du plan +\def\buildrepere{% + \toklistepointrepere{}% + \foreachitem\compteur\in\ListePointRepere{\expandafter\Updatetoksrepere\compteur\nil}% + \ifboolKV[ClesReperage]{Trace}{% + \[\MPPlanTrace{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\the\toklistepointrepere}{2}{\useKV[ClesReperage]{ValeurUnitex}}{\useKV[ClesReperage]{ValeurUnitey}}{\useKV[ClesReperage]{ListeSegment}}\]% + }{% + \ifboolKV[ClesReperage]{AffichageNom}{% + \ifboolKV[ClesReperage]{AffichageCoord}{% + \[\MPPlan{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\the\toklistepointrepere}{3}{\useKV[ClesReperage]{ValeurUnitex}}{\useKV[ClesReperage]{ValeurUnitey}}\]% + }{% + \[\MPPlan{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\the\toklistepointrepere}{2}{\useKV[ClesReperage]{ValeurUnitex}}{\useKV[ClesReperage]{ValeurUnitey}}\]% + } + }{% + \ifboolKV[ClesReperage]{AffichageCoord}{% + \[\MPPlan{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\the\toklistepointrepere}{1}{\useKV[ClesReperage]{ValeurUnitex}}{\useKV[ClesReperage]{ValeurUnitey}}\]% + }{% + \[\MPPlan{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\the\toklistepointrepere}{0}{\useKV[ClesReperage]{ValeurUnitex}}{\useKV[ClesReperage]{ValeurUnitey}}\]% + } + }% + }% +} + +\def\MPPlan#1#2#3#4#5#6#7#8{% + \ifluatex + \begin{mplibcode} + maxx:=-4000; + minx=4000; + unitex:=#1*cm; + pasx=#2; + unitpx:=unitex/pasx; + maxy:=-4000; + miny:=4000; + unitey:=#3*cm; + pasy:=#4; + unitpy:=unitey/pasy; + n:=1; + vardef toto(text t)= + for p_=t: + if (n mod 3)=1: + if p_>maxx: + maxx:=p_; + fi; + if p_<minx: + minx:=p_; + fi; + fi; + if (n mod 3)=2: + if p_>maxy: + maxy:=p_; + fi; + if p_<miny: + miny:=p_; + fi; + fi; + n:=n+1; + endfor; + maxx:=maxx+1; + minx:=minx-1; + if maxx<(#2+1): + maxx:=#2+1; + fi; + if minx>(-#2-1): + minx:=-#2-1; + fi; + maxy:=maxy+1; + miny:=miny-1; + if maxy<(#4+1): + maxy:=#2+1; + fi; + if miny>(-#4-1): + miny:=-#4-1; + fi; + enddef; + toto(#5); + Figure((minx-1)*unitpx,(miny-1)*unitpy,(maxx+1)*unitpx,(maxy+1)*unitpy); + pair A,B,C,D,E; + A=(0,0); + B=(minx*unitpx,0); + C=(maxx*unitpx,0); + D=(0,miny*unitpy); + E=(0,maxy*unitpy); + for k=0 upto (maxx-minx): + draw ((xpart(B),ypart(D)-0.75*unitpy)--(xpart(B),ypart(E)+0.75*unitpy)) shifted (k*unitpx,0) withcolor gris; + endfor; + for k=0 upto (maxy-miny): + draw ((xpart(B)-0.75*unitpx,ypart(D))--(xpart(C)+0.75*unitpx,ypart(D))) shifted (0,k*unitpy) withcolor gris; + endfor; + drawarrow (B+(-0.75*unitpx,0))--(C+(0.75*unitpx,0)); + drawarrow (D+(0,-0.75*unitpy))--(E+(0,0.75*unitpy)); + dotlabel.bot(TEX("\footnotesize\num{"&decimal(#7)&"}"),(unitex,0)); + dotlabel.lft(TEX("\footnotesize\num{"&decimal(#8)&"}"),(0,unitey)); + label.llft(btex 0 etex,A); + % apparition du nom des points ou pas + m_c:=m_c*3; + marque_p:="croix"; + vardef tata(text t)=%on place les points + if #6>0: + n:=1; + k:=0;%pour retenir la coordonnée en x + l:=0;%pour retenir la coordonnée en y + for p_=t: + if (n mod 3)=1: + if numeric p_: + k:=p_; + fi; + fi; + if (n mod 3)=2: + if numeric p_: + l:=p_; + fi; + fi; + if (n mod 3)=0: + if #6>1: + message("p = "&p_); + % if p_<>"": + if (k>0) and (l>0): + label.urt(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k=0) and (l>0): + label.urt(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k>0) and (l=0): + label.urt(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l>0): + label.ulft(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k=0) and (l<0): + label.llft(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l<0): + label.llft(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l=0): + label.llft(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k>0) and (l<0): + label.lrt(TEX(p_),(k*unitpx,l*unitpy)); + fi; + pointe((k*unitpx,l*unitpy)); + % fi; + fi; + if (#6=1) or (#6=3): + draw (0,l*unitpy)--(k*unitpx,l*unitpy)--(k*unitpx,0) dashed evenly; + fi; + fi; + n:=n+1; + endfor; + fi; + enddef; + tata(#5); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + maxx:=-4000; + minx=4000; + unitex:=#1*cm; + pasx=#2; + unitpx:=unitex/pasx; + maxy:=-4000; + miny:=4000; + unitey:=#3*cm; + pasy:=#4; + unitpy:=unitey/pasy; + n:=1; + vardef toto(text t)= + for p_=t: + if (n mod 3)=1: + if p_>maxx: + maxx:=p_; + fi; + if p_<minx: + minx:=p_; + fi; + fi; + if (n mod 3)=2: + if p_>maxy: + maxy:=p_; + fi; + if p_<miny: + miny:=p_; + fi; + fi; + n:=n+1; + endfor; + maxx:=maxx+1; + minx:=minx-1; + if maxx<(#2+1): + maxx:=#2+1; + fi; + if minx>(-#2-1): + minx:=-#2-1; + fi; + maxy:=maxy+1; + miny:=miny-1; + if maxy<(#4+1): + maxy:=#2+1; + fi; + if miny>(-#4-1): + miny:=-#4-1; + fi; + enddef; + toto(#5); + Figure((minx-1)*unitpx,(miny-1)*unitpy,(maxx+1)*unitpx,(maxy+1)*unitpy); + pair A,B,C,D,E; + A=(0,0); + B=(minx*unitpx,0); + C=(maxx*unitpx,0); + D=(0,miny*unitpy); + E=(0,maxy*unitpy); + for k=0 upto (maxx-minx): + draw ((xpart(B),ypart(D)-0.75*unitpy)--(xpart(B),ypart(E)+0.75*unitpy)) shifted (k*unitpx,0) withcolor gris; + endfor; + for k=0 upto (maxy-miny): + draw ((xpart(B)-0.75*unitpx,ypart(D))--(xpart(C)+0.75*unitpx,ypart(D))) shifted (0,k*unitpy) withcolor gris; + endfor; + drawarrow (B+(-0.75*unitpx,0))--(C+(0.75*unitpx,0)); + drawarrow (D+(0,-0.75*unitpy))--(E+(0,0.75*unitpy)); + dotlabel.bot(LATEX("\noexpand\footnotesize\num{"&decimal(#7)&"}"),(unitex,0)); + dotlabel.lft(LATEX("\noexpand\footnotesize\num{"&decimal(#8)&"}"),(0,unitey)); + label.llft(btex 0 etex,A); + % apparition du nom des points ou pas + m_c:=m_c*3; + marque_p:="croix"; + vardef tata(text t)=%on place les points + if #6>0: + n:=1; + k:=0;%pour retenir la coordonnée en x + l:=0;%pour retenir la coordonnée en y + for p_=t: + if (n mod 3)=1: + if numeric p_: + k:=p_; + fi; + fi; + if (n mod 3)=2: + if numeric p_: + l:=p_; + fi; + fi; + if (n mod 3)=0: + if #6>1: + if (k>0) and (l>0): + label.urt(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k=0) and (l>0): + label.urt(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k>0) and (l=0): + label.urt(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l>0): + label.ulft(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k=0) and (l<0): + label.llft(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l<0): + label.llft(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l=0): + label.llft(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k>0) and (l<0): + label.lrt(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + pointe((k*unitpx,l*unitpy)); + fi; + if (#6=1) or (#6=3): + draw (0,l*unitpy)--(k*unitpx,l*unitpy)--(k*unitpx,0) dashed evenly; + fi; + fi; + n:=n+1; + endfor; + fi; + enddef; + tata(#5); + \end{mpost} + \fi +} + +\def\MPPlanTrace#1#2#3#4#5#6#7#8#9{% + \ifluatex + \begin{mplibcode} + maxx:=-4000; + minx=4000; + unitex:=#1*cm; + pasx=#2; + unitpx:=unitex/pasx; + maxy:=-4000; + miny:=4000; + unitey:=#3*cm; + pasy:=#4; + unitpy:=unitey/pasy; + n:=1; + vardef toto(text t)= + for p_=t: + if (n mod 3)=1: + if p_>maxx: + maxx:=p_; + fi; + if p_<minx: + minx:=p_; + fi; + fi; + if (n mod 3)=2: + if p_>maxy: + maxy:=p_; + fi; + if p_<miny: + miny:=p_; + fi; + fi; + n:=n+1; + endfor; + maxx:=maxx+1; + minx:=minx-1; + if maxx<(#2+1): + maxx:=#2+1; + fi; + if minx>(-#2-1): + minx:=-#2-1; + fi; + maxy:=maxy+1; + miny:=miny-1; + if maxy<(#4+1): + maxy:=#2+1; + fi; + if miny>(-#4-1): + miny:=-#4-1; + fi; + enddef; + toto(#5); + Figure((minx-1)*unitpx,(miny-1)*unitpy,(maxx+1)*unitpx,(maxy+1)*unitpy); + pair A,B,C,D,E; + A=(0,0); + B=(minx*unitpx,0); + C=(maxx*unitpx,0); + D=(0,miny*unitpy); + E=(0,maxy*unitpy); + for k=0 upto (maxx-minx): + draw ((xpart(B),ypart(D)-0.75*unitpy)--(xpart(B),ypart(E)+0.75*unitpy)) shifted (k*unitpx,0) withcolor gris; + endfor; + for k=0 upto (maxy-miny): + draw ((xpart(B)-0.75*unitpx,ypart(D))--(xpart(C)+0.75*unitpx,ypart(D))) shifted (0,k*unitpy) withcolor gris; + endfor; + drawarrow (B+(-0.75*unitpx,0))--(C+(0.75*unitpx,0)); + drawarrow (D+(0,-0.75*unitpy))--(E+(0,0.75*unitpy)); + dotlabel.bot(TEX("\footnotesize\num{"&decimal(#7)&"}"),(unitex,0)); + dotlabel.lft(TEX("\footnotesize\num{"&decimal(#8)&"}"),(0,unitey)); + label.llft(btex 0 etex,A); + % apparition du nom des points ou pas + m_c:=m_c*3; + marque_p:="croix"; + vardef tata(text t)=%on place les points + if #6>0: + n:=1; + k:=0;%pour retenir la coordonnée en x + l:=0;%pour retenir la coordonnée en y + for p_=t: + if (n mod 3)=1: + if numeric p_: + k:=p_; + fi; + fi; + if (n mod 3)=2: + if numeric p_: + l:=p_; + fi; + fi; + if (n mod 3)=0: + if #6>1: + if (k>0) and (l>0): + label.urt(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k=0) and (l>0): + label.urt(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k>0) and (l=0): + label.urt(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l>0): + label.ulft(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k=0) and (l<0): + label.llft(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l<0): + label.llft(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l=0): + label.llft(TEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k>0) and (l<0): + label.lrt(TEX(p_),(k*unitpx,l*unitpy)); + fi; + pointe((k*unitpx,l*unitpy)); + fi; + if (#6=1) or (#6=3): + draw (0,l*unitpy)--(k*unitpx,l*unitpy)--(k*unitpx,0) dashed evenly; + fi; + fi; + n:=n+1; + endfor; + fi; + enddef; + vardef Tracage(text t)(text ls)=%on trace les segments + pair A[]; + n:=0;%pour parcourir la liste + m:=0;%pour lister les points par leur nombre + for p_=t: + n:=n+1; + if (n mod 3)=1: + k:=p_; + fi; + if (n mod 3)=2: + l:=p_; + fi; + if (n mod 3)=0: + m:=m+1; + A[m]=(k*unitpx,l*unitpy); + fi; + endfor; + for p_=ls: + draw segment(A[p_ div 10],A[p_ mod 10]); + endfor; + enddef; + tata(#5); + Tracage(#5)(#9); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + maxx:=-4000; + minx=4000; + unitex:=#1*cm; + pasx=#2; + unitpx:=unitex/pasx; + maxy:=-4000; + miny:=4000; + unitey:=#3*cm; + pasy:=#4; + unitpy:=unitey/pasy; + n:=1; + vardef toto(text t)= + for p_=t: + if (n mod 3)=1: + if p_>maxx: + maxx:=p_; + fi; + if p_<minx: + minx:=p_; + fi; + fi; + if (n mod 3)=2: + if p_>maxy: + maxy:=p_; + fi; + if p_<miny: + miny:=p_; + fi; + fi; + n:=n+1; + endfor; + maxx:=maxx+1; + minx:=minx-1; + if maxx<(#2+1): + maxx:=#2+1; + fi; + if minx>(-#2-1): + minx:=-#2-1; + fi; + maxy:=maxy+1; + miny:=miny-1; + if maxy<(#4+1): + maxy:=#2+1; + fi; + if miny>(-#4-1): + miny:=-#4-1; + fi; + enddef; + toto(#5); + Figure((minx-1)*unitpx,(miny-1)*unitpy,(maxx+1)*unitpx,(maxy+1)*unitpy); + pair A,B,C,D,E; + A=(0,0); + B=(minx*unitpx,0); + C=(maxx*unitpx,0); + D=(0,miny*unitpy); + E=(0,maxy*unitpy); + for k=0 upto (maxx-minx): + draw ((xpart(B),ypart(D)-0.75*unitpy)--(xpart(B),ypart(E)+0.75*unitpy)) shifted (k*unitpx,0) withcolor gris; + endfor; + for k=0 upto (maxy-miny): + draw ((xpart(B)-0.75*unitpx,ypart(D))--(xpart(C)+0.75*unitpx,ypart(D))) shifted (0,k*unitpy) withcolor gris; + endfor; + drawarrow (B+(-0.75*unitpx,0))--(C+(0.75*unitpx,0)); + drawarrow (D+(0,-0.75*unitpy))--(E+(0,0.75*unitpy)); + dotlabel.bot(LATEX("\noexpand\footnotesize\num{"&decimal(#7)&"}"),(unitex,0)); + dotlabel.lft(LATEX("\noexpand\footnotesize\num{"&decimal(#8)&"}"),(0,unitey)); + label.llft(btex 0 etex,A); + % apparition du nom des points ou pas + m_c:=m_c*3; + marque_p:="croix"; + vardef tata(text t)=%on place les points + if #6>0: + n:=1; + k:=0;%pour retenir la coordonnée en x + l:=0;%pour retenir la coordonnée en y + for p_=t: + if (n mod 3)=1: + if numeric p_: + k:=p_; + fi; + fi; + if (n mod 3)=2: + if numeric p_: + l:=p_; + fi; + fi; + if (n mod 3)=0: + if #6>1: + if (k>0) and (l>0): + label.urt(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k=0) and (l>0): + label.urt(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k>0) and (l=0): + label.urt(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l>0): + label.ulft(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k=0) and (l<0): + label.llft(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l<0): + label.llft(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k<0) and (l=0): + label.llft(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + if (k>0) and (l<0): + label.lrt(LATEX(p_),(k*unitpx,l*unitpy)); + fi; + pointe((k*unitpx,l*unitpy)); + fi; + if (#6=1) or (#6=3): + draw (0,l*unitpy)--(k*unitpx,l*unitpy)--(k*unitpx,0) dashed evenly; + fi; + fi; + n:=n+1; + endfor; + fi; + enddef; + vardef Tracage(text t)(text ls)=%on trace les segments + pair A[]; + n:=0;%pour parcourir la liste + m:=0;%pour lister les points par leur nombre + for p_=t: + n:=n+1; + if (n mod 3)=1: + k:=p_; + fi; + if (n mod 3)=2: + l:=p_; + fi; + if (n mod 3)=0: + m:=m+1; + A[m]=(k*unitpx,l*unitpy); + fi; + endfor; + for p_=ls: + draw segment(A[p_ div 10],A[p_ mod 10]); + endfor; + enddef; + tata(#5); + Tracage(#5)(#9); + \end{mpost} + \fi +} + +% Pour construire la demi-droite graduée +\def\builddemidroite{% + \toklistepointdroite{}% + \foreachitem\compteur\in\ListePointDroite{\expandafter\Updatetoksdroite\compteur\nil}% + \ifboolKV[ClesReperage]{DemiDroite}{% + \ifboolKV[ClesReperage]{AffichageNom}{% + \[\MPDemiGraduee{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\the\toklistepointdroite}{1}{\useKV[ClesReperage]{ValeurUnitex}}{\useKV[ClesReperage]{ValeurOrigine}}\]% + }{% + \[\MPDemiGraduee{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\the\toklistepointdroite}{0}{\useKV[ClesReperage]{ValeurUnitex}}{\useKV[ClesReperage]{ValeurOrigine}}\]% + } + }{% + \ifboolKV[ClesReperage]{AffichageNom}{% + \[\MPDroiteGraduee{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\the\toklistepointdroite}{1}{\useKV[ClesReperage]{ValeurUnitex}}{\useKV[ClesReperage]{ValeurOrigine}}\]% + }{% + \[\MPDroiteGraduee{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\the\toklistepointdroite}{0}{\useKV[ClesReperage]{ValeurUnitex}}{\useKV[ClesReperage]{ValeurOrigine}}\]% + }% + }% +}% + +\def\MPDemiGraduee#1#2#3#4#5#6{% + % #1 : unite + % #2 : pas + % #3 : liste des points à placer en pas. pour gérer le cas des repérages fractionnaires + % #4 : on affiche le nom des points ou pas + % #5 : quelle est la valeur de la longueur unité ? + % #6 : la valeur de l'unité (ne sert à rien ici, mais en prévision + % de Droite) + \ifluatex + \begin{mplibcode} + maxx:=0; + unitex:=#1*cm; + pasx:=#2; + unitp:=unitex/pasx;%unité de déplacement + vardef toto(text t)=%On détermine le nombre "d'unités" à placer + for p_=t: + if numeric p_: + if p_>maxx: + maxx:=p_; + fi; + fi; + endfor; + maxx:=maxx+1; + if maxx<(#2+1): + maxx:=#2+1; + fi; + enddef; + toto(#3); + Figure(-u,-u,(maxx+0.75)*unitp,u); + pair A,B; + A=(0,0); + B=unitp*(maxx,0); + drawarrow A--(B+(0.75*unitp,0)); + %marquage secondaire + marque_s:=marque_s/3; + for k=0 step 2 until (maxx): + draw marquesegment((k/maxx)[A,B],((k+1)/maxx)[A,B]); + endfor; + drawoptions(); + % marquage primaire + marque_s:=marque_s*3; + for k=0 step pasx until (maxx-1): + draw marquesegment((k/maxx)[A,B],((k+pasx)/maxx)[A,B]); + endfor; + % marquage des points + m_c:=m_c*3; + marque_p:="croix"; + labeloffset:=labeloffset*2; + dotlabel.bot(TEX("\footnotesize\num{"&decimal(#5)&"}"),unitex*(1,0)); + label.bot(TEX("\footnotesize\num{"&decimal(#6)&"}"),A); + vardef tata(text t)=%on place les points + if #4>0: + for p_=t: + if numeric p_: + label("",unitp*(p_,0)); + k:=p_; + fi; + if string p_: + if p_<>"": + label.top(TEX(p_),unitp*(k,0)); + pointe(unitp*(k,0)); + fi; + fi; + endfor; + fi; + enddef; + tata(#3); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + maxx:=0; + unitex:=#1*cm; + pasx:=#2; + unitp:=unitex/pasx;%unité de déplacement + vardef toto(text t)=%On détermine le nombre "d'unités" à placer + for p_=t: + if numeric p_: + if p_>maxx: + maxx:=p_; + fi; + fi; + endfor; + maxx:=maxx+1; + if maxx<(#2+1): + maxx:=#2+1; + fi; + enddef; + toto(#3); + Figure(-u,-u,(maxx+0.75)*unitp,u); + pair A,B; + A=(0,0); + B=unitp*(maxx,0); + drawarrow A--(B+(0.75*unitp,0)); + %marquage secondaire + marque_s:=marque_s/3; + for k=0 step 2 until (maxx): + draw marquesegment((k/maxx)[A,B],((k+1)/maxx)[A,B]); + endfor; + drawoptions(); + % marquage primaire + marque_s:=marque_s*3; + for k=0 step pasx until (maxx-1): + draw marquesegment((k/maxx)[A,B],((k+pasx)/maxx)[A,B]); + endfor; + % marquage des points + m_c:=m_c*3; + marque_p:="croix"; + labeloffset:=labeloffset*2; + dotlabel.bot(LATEX("\noexpand\footnotesize\num{"&decimal(#5)&"}"),unitex*(1,0)); + label.bot(LATEX("\noexpand\footnotesize\num{"&decimal(#6)&"}"),A); + vardef tata(text t)=%on place les points + if #4>0: + for p_=t: + if numeric p_: + label("",unitp*(p_,0)); + k:=p_; + fi; + if string p_: + label.top(LATEX(p_),unitp*(k,0)); + if p_<>"": + pointe(unitp*(k,0)); + fi; + fi; + endfor; + fi; + enddef; + tata(#3); +\end{mpost} +\fi +} + +\def\MPDroiteGraduee#1#2#3#4#5#6{% + % #1 : unite + % #2 : pas + % #3 : liste des points à placer en pas. pour gérer le cas des repérages fractionnaires + % #4 : on affiche le nom des points ou pas + % #5 : quelle est la valeur de la longueur unité ? + \ifluatex + \begin{mplibcode} + maxx:=0; + minx:=4000; + unitex:=#1*cm; + pasx:=#2; + unitp:=unitex/pasx;%unité de déplacement + vardef toto(text t)=%On détermine le nombre "d'unités" à placer + for p_=t: + if numeric p_: + if p_>maxx: + maxx:=p_; + fi; + if p_<minx: + minx:=p_; + fi; + fi; + endfor; + maxx:=maxx+1; + minx:=minx-1; + if maxx<(#2+1): + maxx:=#2+1; + fi; + if minx>(-#2-1): + minx:=-#2-1; + fi; + enddef; + toto(#3); + Figure((minx-1)*u,-u,(maxx+1)*unitp,u); + pair A,B,C; + A=(0,0); + B=unitp*(maxx,0); + C=unitp*(minx,0); + drawarrow (C+unitp*(-0.75,0))--(B+unitp*(0.75,0)); + marque_s:=marque_s/3; + labeloffset:=labeloffset*2; + if ((maxx-minx) mod 2)=0: +% show maxx; show minx; + for k=(minx+1) step 2 until (maxx-1): + draw marquedemidroite(C,B); + draw marquesegment((k/maxx)[A,B],((k+1)/maxx)[A,B]); + endfor; + else: + % show maxx; show minx; + for k=(minx) step 2 until (maxx-1): + draw marquesegment((k/maxx)[A,B],((k+1)/maxx)[A,B]); + endfor; + fi; + % marquage primaire%%%%%%%%%%%%%%%%%%%%%%%% + marque_s:=marque_s*3; + for k=0 step pasx until (maxx-pasx): + draw marquesegment((k/maxx)[A,B],((k+pasx)/maxx)[A,B]); + endfor; + for k=0 step -pasx until (minx+pasx): + draw marquesegment((k/maxx)[A,B],((k-pasx)/maxx)[A,B]); + endfor; + m_c:=m_c*3; + marque_p:="croix"; + dotlabel.bot(TEX("\footnotesize\num{"&decimal(#5)&"}"),unitex*(1,0)); + label.bot(TEX("\footnotesize\num{"&decimal(#6)&"}"),A); + if #5=1: + label.top(TEX("I"),unitex*(1,0)); + fi; + label.top(TEX("O"),A); + vardef tata(text t)=%on place les points + if #4>0: + for p_=t: + if numeric p_: + label("",unitp*(p_,0)); + k:=p_; + fi; + if string p_: + if p_<>"": + label.top(TEX(p_),unitp*(k,0)); + pointe(unitp*(k,0)); + fi; + fi; + endfor; + fi; + enddef; + tata(#3); + \end{mplibcode} + \else + \begin{mpost}[mpsettings={input PfC-Geometrie;}] + maxx:=0; + minx:=4000; + unitex:=#1*cm; + pasx:=#2; + unitp:=unitex/pasx;%unité de déplacement + vardef toto(text t)=%On détermine le nombre "d'unités" à placer + for p_=t: + if numeric p_: + if p_>maxx: + maxx:=p_; + fi; + if p_<minx: + minx:=p_; + fi; + fi; + endfor; + maxx:=maxx+1; + minx:=minx-1; + if maxx<(#2+1): + maxx:=#2+1; + fi; + if minx>(-#2-1): + minx:=-#2-1; + fi; + enddef; + toto(#3); + Figure((minx-1)*u,-u,(maxx+1)*unitp,u); + pair A,B,C; + A=(0,0); + B=unitp*(maxx,0); + C=unitp*(minx,0); + drawarrow (C+unitp*(-0.75,0))--(B+unitp*(0.75,0)); + marque_s:=marque_s/3; + labeloffset:=labeloffset*2; + if ((maxx-minx) mod 2)=0: +% show maxx; show minx; + for k=(minx+1) step 2 until (maxx-1): + draw marquedemidroite(C,B); + draw marquesegment((k/maxx)[A,B],((k+1)/maxx)[A,B]); + endfor; + else: + % show maxx; show minx; + for k=(minx) step 2 until (maxx-1): + draw marquesegment((k/maxx)[A,B],((k+1)/maxx)[A,B]); + endfor; + fi; + % marquage primaire%%%%%%%%%%%%%%%%%%%%%%%% + marque_s:=marque_s*3; + for k=0 step pasx until (maxx-pasx): + draw marquesegment((k/maxx)[A,B],((k+pasx)/maxx)[A,B]); + endfor; + for k=0 step -pasx until (minx+pasx): + draw marquesegment((k/maxx)[A,B],((k-pasx)/maxx)[A,B]); + endfor; + m_c:=m_c*3; + marque_p:="croix"; + dotlabel.bot(LATEX("\noexpand\footnotesize\num{"&decimal(#5)&"}"),unitex*(1,0)); + label.bot(LATEX("\noexpand\footnotesize\num{"&decimal(#6)&"}"),A); + if #5=1: + label.top(LATEX("I"),unitex*(1,0)); + fi; + label.top(LATEX("O"),A); + vardef tata(text t)=%on place les points + if #4>0: + for p_=t: + if numeric p_: + label("",unitp*(p_,0)); + k:=p_; + fi; + if string p_: + label.top(LATEX(p_),unitp*(k,0)); + if p_<>"": + pointe(unitp*(k,0)); + fi; + fi; + endfor; + fi; + enddef; + tata(#3); + \end{mpost} + \fi +} + +\newcommand\Reperage[2][]{% + \useKVdefault[ClesReperage]% + \setKV[ClesReperage]{#1}% + \ifboolKV[ClesReperage]{Espace}{% + \setKV[ClesReperage]{Unitex=2,Unitey=2.5,Unitez=1.5}% + \setKV[ClesReperage]{#1}% + \setsepchar[*]{,*/}\ignoreemptyitems% + \readlist*\ListePointEspace{#2}% + \buildespace% + }{\ifboolKV[ClesReperage]{Plan}{% + \setsepchar[*]{,*/}\ignoreemptyitems% + \readlist*\ListePointRepere{#2}% + \buildrepere% + }{\ifboolKV[ClesReperage]{Droite}{% + \setsepchar[*]{,*/}\ignoreemptyitems% + \readlist*\ListePointDroite{#2}% + \builddemidroite% + }{% + \setsepchar[*]{,*/}\ignoreemptyitems% + \readlist*\ListePointDroite{#2}% + \builddemidroite% + }% + }% + }% +}% + + +%%%%%%%% +%% Puissances +%%%%%% +\newcommand\Puissances[2]{% + \ensuremath{ + \xintifboolexpr{#2=0}{1}{\xintifboolexpr{#2>0}{\xdef\total{\fpeval{#2-1}}#1\multido{\i=1+1}{\total}{\times#1}}{\xdef\total{\fpeval{-#2-1}}\frac{1}{#1\multido{\i=1+1}{\total}{\times#1}}}}% + } +} + +%%%%%%%%% +%% Tableaux d'unités +%%%%%%%%% +\setKVdefault[ClesTableaux]{Decimaux=false,Partie=false,CouleurG=gray!15,CouleurM=gray!15,Couleurm=gray!15,Couleuru=gray!15,Classes=false,Nombres=false,Metre=false,Carre=false,Cube=false,Litre=false,Gramme=false,Fleches=false,Colonnes=false} + +\newcommand\Tableau[1][]{% + \useKVdefault[ClesTableaux] + \setKV[ClesTableaux]{#1} + \ifboolKV[ClesTableaux]{Decimaux}{% + \setlength{\tabcolsep}{0.01\tabcolsep} + \begin{center} + \begin{tabular}{|*{12}{>{\centering\arraybackslash}m{4.75em}|}>{\columncolor{gray!15},}{c}|*{3}{>{\centering\arraybackslash}m{4.75em}|}} + \ifboolKV[ClesTableaux]{Partie}{\multicolumn{12}{c}{\bfseries Partie Entière}&\multicolumn{1}{c}{\cellcolor{gray!15},}&\multicolumn{3}{c}{\bfseries Partie décimale}\\}{} + \ifboolKV[ClesTableaux]{Classes}{\hline\multicolumn{3}{|c|}{\cellcolor{\useKV[ClesTableaux]{CouleurG}}Classe des milliards}&\multicolumn{3}{c|}{\cellcolor{\useKV[ClesTableaux]{CouleurM}}Classe des millions}&\multicolumn{3}{c|}{\cellcolor{\useKV[ClesTableaux]{Couleurm}}Classe des milliers}&\multicolumn{3}{c|}{\cellcolor{\useKV[ClesTableaux]{Couleuru}}Classe des unités}&&&&\\}{} + \hline + \fontsize{4.5}{4.5}\selectfont centaines de milliards% + &\fontsize{4.5}{4.5}\selectfont dizaines de milliards% + &\fontsize{4.5}{4.5}\selectfont unités de milliards% + &\fontsize{4.5}{4.5}\selectfont centaines de millions% + &\fontsize{4.5}{4.5}\selectfont dizaines de millions% + &\fontsize{4.5}{4.5}\selectfont unités de millions% + &\fontsize{4.5}{4.5}\selectfont centaines de milliers% + &\fontsize{4.5}{4.5}\selectfont dizaines de milliers% + &\fontsize{4.5}{4.5}\selectfont unités de milliers% + &\fontsize{4.5}{4.5}\selectfont centaines% + &\fontsize{4.5}{4.5}\selectfont dizaines% + &\fontsize{4.5}{4.5}\selectfont unités% + &% + &\fontsize{4.5}{4.5}\selectfont dixièmes% + &\fontsize{4.5}{4.5}\selectfont centièmes% + &\fontsize{4.5}{4.5}\selectfont millièmes\\ + \ifboolKV[ClesTableaux]{Nombres}{% + \fontsize{4.5}{4.5}\selectfont \num{100000000000}% + &\fontsize{4.5}{4.5}\selectfont \num{10000000000}% + &\fontsize{4.5}{4.5}\selectfont \num{1000000000}% + &\fontsize{4.5}{4.5}\selectfont \num{100000000}% + &\fontsize{4.5}{4.5}\selectfont \num{10000000}% + &\fontsize{4.5}{4.5}\selectfont \num{1000000}% + &\fontsize{4.5}{4.5}\selectfont \num{100000}% + &\fontsize{4.5}{4.5}\selectfont \num{10000}% + &\fontsize{4.5}{4.5}\selectfont \num{1000}% + &\fontsize{4.5}{4.5}\selectfont \num{100}% + &\fontsize{4.5}{4.5}\selectfont \num{10}% + &\fontsize{4.5}{4.5}\selectfont \num{1}% + &% + &\fontsize{4.5}{4.5}\selectfont \num{0,1} ou $\dfrac{\strut1}{\strut10}$% + &\fontsize{4.5}{4.5}\selectfont \num{0,01} ou $\dfrac{\strut1}{\strut100}$% + &\fontsize{4.5}{4.5}\selectfont \num{0,001} ou $\dfrac{\strut1}{\strut\num{1000}}$% + \\ + }{} + \hline + &&&&&&&&&&&&&&&\\ + &&&&&&&&&&&&&&&\\ + \end{tabular} + \end{center} + \setlength{\tabcolsep}{100\tabcolsep} + }{} + \ifboolKV[ClesTableaux]{Metre}{% + \[\renewcommand{\arraystretch}{1.15}% + \begin{tabular}{|*{7}{p{7.5mm}|}}% + \multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (A);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (B);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (C);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (D);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (E);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (F);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (G);}}\\% + \hline + \multicolumn{1}{|c|}{km}&\multicolumn{1}{c|}{hm}&\multicolumn{1}{c|}{dam}&\multicolumn{1}{c|}{m}&\multicolumn{1}{c|}{dm}&\multicolumn{1}{c|}{cm}&\multicolumn{1}{c|}{mm}\\ + \hline + &&&&&&\\ + \multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (G1);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (F1);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (E1);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (D1);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (C1);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (B1);}}% + &\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (A1);}}\\% + \end{tabular} + \] + \ifboolKV[ClesTableaux]{Fleches}{% + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (A) to node[above, midway]{\small$\times\mbox{10}$}(B);} + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (B) to node[above, midway]{\small$\times\mbox{10}$}(C);} + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (C) to node[above, midway]{\small$\times\mbox{10}$}(D);} + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (D) to node[above, midway]{\small$\times\mbox{10}$}(E);} + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (E) to node[above, midway]{\small$\times\mbox{10}$}(F);} + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (F) to node[above, midway]{\small$\times\mbox{10}$}(G);} + % bas + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (A1) to node[below, midway]{\small$\div\mbox{10}$}(B1);} + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (B1) to node[below, midway]{\small$\div\mbox{10}$}(C1);} + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (C1) to node[below, midway]{\small$\div\mbox{10}$}(D1);} + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (D1) to node[below, midway]{\small$\div\mbox{10}$}(E1);} + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (E1) to node[below, midway]{\small$\div\mbox{10}$}(F1);} + \tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (F1) to node[below, midway]{\small$\div\mbox{10}$}(G1);} + }{} + } + {} + \ifboolKV[ClesTableaux]{Carre}{% + \[\renewcommand{\arraystretch}{1.15}\ifboolKV[ClesTableaux]{Colonnes}{\begin{tabular}{|*{7}{p{2.5mm}!{\color{gray!50}\vrule}p{2.5mm}|}}}{\begin{tabular}{|*{7}{p{2.5mm}p{2.5mm}|}}} +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate (A);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate + (B);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate + (C);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate + (D);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate + (E);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate + (F);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate (G);}}\\% +\hline +\multicolumn{2}{|c|}{km$^2$}&\multicolumn{2}{c|}{hm$^2$}&\multicolumn{2}{c|}{dam$^2$}&\multicolumn{2}{c|}{m$^2$}&\multicolumn{2}{c|}{dm$^2$}&\multicolumn{2}{c|}{cm$^2$}&\multicolumn{2}{c|}{mm$^2$}\\ +\hline +&&&&&&&&&&&&&\\ +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=0.6em] (G1);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=0.6em] + (F1);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=0.6em] + (E1);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=0.6em] + (D1);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=0.6em] + (C1);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=0.6em] + (B1);}}&% +\multicolumn{2}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=0.6em] (A1);}}\\% +\end{tabular} +\] +\ifboolKV[ClesTableaux]{Fleches}{% +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (A) to node[above, midway]{\small$\times\mbox{100}$}(B);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (B) to node[above, midway]{\small$\times\mbox{100}$}(C);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (C) to node[above, midway]{\small$\times\mbox{100}$}(D);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (D) to node[above, midway]{\small$\times\mbox{100}$}(E);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (E) to node[above, midway]{\small$\times\mbox{100}$}(F);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (F) to node[above, midway]{\small$\times\mbox{100}$}(G);} +%bas +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (A1) to node[below, midway]{\small$\div\mbox{100}$}(B1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (B1) to node[below, midway]{\small$\div\mbox{100}$}(C1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (C1) to node[below, midway]{\small$\div\mbox{100}$}(D1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (D1) to node[below, midway]{\small$\div\mbox{100}$}(E1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (E1) to node[below, midway]{\small$\div\mbox{100}$}(F1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (F1) to node[below, midway]{\small$\div\mbox{100}$}(G1);} +}{} + } + {} + \ifboolKV[ClesTableaux]{Cube}{% + {\setlength{\tabcolsep}{0.625\tabcolsep} +\[\renewcommand{\arraystretch}{1.15}\ifboolKV[ClesTableaux]{Colonnes}{\begin{tabular}{|*{7}{p{2.5mm}!{\color{gray!50}\vrule}p{2.5mm}!{\color{gray!50}\vrule}p{2.5mm}|}}}{\begin{tabular}{|*{7}{p{2.5mm}p{2.5mm}p{2.5mm}|}}} +\multicolumn{3}{c}{\tikz[remember picture,overlay]{\coordinate (A);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay]{\coordinate + (B);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay]{\coordinate + (C);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay]{\coordinate + (D);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay]{\coordinate + (E);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay]{\coordinate + (F);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay]{\coordinate (G);}}\\% +\hline +\multicolumn{3}{|c|}{km$^3$}&\multicolumn{3}{c|}{hm$^3$}&\multicolumn{3}{c|}{dam$^3$}&\multicolumn{3}{c|}{m$^3$}&\multicolumn{3}{c|}{dm$^3$}&\multicolumn{3}{c|}{cm$^3$}&\multicolumn{3}{c|}{mm$^3$}\\ +\hline +&&&&&&&&&&&&&&&&&&&&\\ +\multicolumn{3}{c}{\tikz[remember picture,overlay,yshift=\ht\strutbox]{\coordinate (G1);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay,yshift=\ht\strutbox]{\coordinate + (F1);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay,yshift=\ht\strutbox]{\coordinate + (E1);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay,yshift=\ht\strutbox]{\coordinate + (D1);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay,yshift=\ht\strutbox]{\coordinate + (C1);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay,yshift=\ht\strutbox]{\coordinate + (B1);}}&% +\multicolumn{3}{c}{\tikz[remember picture,overlay,yshift=\ht\strutbox]{\coordinate (A1);}}\\% +\end{tabular} +\] +\setlength{\tabcolsep}{1.6\tabcolsep}} +\ifboolKV[ClesTableaux]{Fleches}{% +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] + (A) to node[above, midway]{$\times\mbox{\num{1000}}$}(B);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (B) to + node[above, midway]{$\times\mbox{\num{1000}}$}(C);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (C) to + node[above, midway]{$\times\mbox{\num{1000}}$}(D);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (D) to + node[above, midway]{$\times\mbox{\num{1000}}$}(E);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (E) to + node[above, midway]{$\times\mbox{\num{1000}}$}(F);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (F) to + node[above, midway]{$\times\mbox{\num{1000}}$}(G);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (A1) to + node[below, midway]{$\div\mbox{\num{1000}}$}(B1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (B1) to + node[below, midway]{$\div\mbox{\num{1000}}$}(C1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (C1) to + node[below, midway]{$\div\mbox{\num{1000}}$}(D1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (D1) to + node[below, midway]{$\div\mbox{\num{1000}}$}(E1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (E1) to + node[below, midway]{$\div\mbox{\num{1000}}$}(F1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (F1) to + node[below, midway]{$\div\mbox{\num{1000}}$}(G1);} +}{} + } + {} + \ifboolKV[ClesTableaux]{Litre}{% + \[\renewcommand{\arraystretch}{1.15}\begin{tabular}{|*{7}{p{7.5mm}|}} +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (A);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate + (B);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate + (C);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate + (D);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate + (E);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate + (F);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (G);}}\\% +\hline +\multicolumn{1}{|c|}{kL}&\multicolumn{1}{c|}{hL}&\multicolumn{1}{c|}{daL}&\multicolumn{1}{c|}{L}&\multicolumn{1}{c|}{dL}&\multicolumn{1}{c|}{cL}&\multicolumn{1}{c|}{mL}\\ +\hline +&&&&&&\\ +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (G1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] + (F1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] + (E1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] + (D1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] + (C1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] + (B1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (A1);}}\\% +\end{tabular} +\] +\ifboolKV[ClesTableaux]{Fleches}{% +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (A) to node[above, midway]{\small$\times\mbox{10}$}(B);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (B) to node[above, midway]{\small$\times\mbox{10}$}(C);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (C) to node[above, midway]{\small$\times\mbox{10}$}(D);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (D) to node[above, midway]{\small$\times\mbox{10}$}(E);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (E) to node[above, midway]{\small$\times\mbox{10}$}(F);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (F) to node[above, midway]{\small$\times\mbox{10}$}(G);} +%bas +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (A1) to node[below, midway]{\small$\div\mbox{10}$}(B1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (B1) to node[below, midway]{\small$\div\mbox{10}$}(C1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (C1) to node[below, midway]{\small$\div\mbox{10}$}(D1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (D1) to node[below, midway]{\small$\div\mbox{10}$}(E1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (E1) to node[below, midway]{\small$\div\mbox{10}$}(F1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (F1) to node[below, midway]{\small$\div\mbox{10}$}(G1);} +}{} + } + {} + \ifboolKV[ClesTableaux]{Gramme}{% + \[\renewcommand{\arraystretch}{1.15}\begin{tabular}{|*{7}{p{7.5mm}|}} +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (A);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate + (B);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate + (C);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate + (D);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate + (E);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate + (F);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate (G);}}\\% +\hline +\multicolumn{1}{|c|}{kg}&\multicolumn{1}{c|}{hg}&\multicolumn{1}{c|}{dag}&\multicolumn{1}{c|}{g}&\multicolumn{1}{c|}{dg}&\multicolumn{1}{c|}{cg}&\multicolumn{1}{c|}{mg}\\ +\hline +&&&&&&\\ +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (G1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] + (F1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] + (E1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] + (D1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] + (C1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] + (B1);}}&% +\multicolumn{1}{c}{\tikz[remember picture,overlay]{\coordinate[yshift=1em] (A1);}}\\% +\end{tabular} +\] +\ifboolKV[ClesTableaux]{Fleches}{% +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (A) to node[above, midway]{\small$\times\mbox{10}$}(B);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (B) to node[above, midway]{\small$\times\mbox{10}$}(C);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (C) to node[above, midway]{\small$\times\mbox{10}$}(D);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (D) to node[above, midway]{\small$\times\mbox{10}$}(E);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (E) to node[above, midway]{\small$\times\mbox{10}$}(F);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=30,in=150] (F) to node[above, midway]{\small$\times\mbox{10}$}(G);} +%bas +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (A1) to node[below, midway]{\small$\div\mbox{10}$}(B1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (B1) to node[below, midway]{\small$\div\mbox{10}$}(C1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (C1) to node[below, midway]{\small$\div\mbox{10}$}(D1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (D1) to node[below, midway]{\small$\div\mbox{10}$}(E1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (E1) to node[below, midway]{\small$\div\mbox{10}$}(F1);} +\tikz[remember picture, overlay]{\draw[gray,->,>=latex,out=-150,in=-30] (F1) to node[below, midway]{\small$\div\mbox{10}$}(G1);} +}{}% + }% + {}% +}%
\ No newline at end of file diff --git a/Master/tlpkg/bin/tlpkg-ctan-check b/Master/tlpkg/bin/tlpkg-ctan-check index fbb626c771b..96a72a4cf30 100755 --- a/Master/tlpkg/bin/tlpkg-ctan-check +++ b/Master/tlpkg/bin/tlpkg-ctan-check @@ -600,7 +600,7 @@ my @TLP_working = qw( prelim2e preprint prerex present pressrelease prettyref preview prftree principia printlen proba probsoln procIAGssymp - prodint productbox program + prodint productbox profcollege program progress progressbar proof-at-the-end proofread prooftrees proposal properties prosper protex protocol prtec przechlewski-book diff --git a/Master/tlpkg/libexec/ctan2tds b/Master/tlpkg/libexec/ctan2tds index 30a16d0a4a1..a8ea6838022 100755 --- a/Master/tlpkg/libexec/ctan2tds +++ b/Master/tlpkg/libexec/ctan2tds @@ -1024,6 +1024,7 @@ chomp (my $ctan_root = `tlpkginfo --ctan-root`); 'presentations', "die 'skipping, author request'", 'presentations-en', "die 'skipping, author request'", 'preview-latex', "die 'skipping, use preview'", + 'profcollege', "&MAKEflatten", 'progkeys', "die 'skipping, noinfo license, author unfindable'", 'proofs', "die 'skipping, nosell license'", 'ps2eps', "die 'skipping, must go into sources'", @@ -2092,6 +2093,7 @@ $standardtex 'pdfx', '\.(def|dfu|icc|xmp)$|(glyph|Profiles).*tex|pdfx\.sty|ICC_LIC', 'pdfxup', '(template\.tex|\.xup)$', 'petri-nets', 'pnets\.tex|pntext\.tex|\.sty|pndraw\.tex|pnversion\.tex|\.sty|pndraw\.tex', + 'profcollege', 'PfC-.*\.tex|' . $standardtex, 'pgf-blur', 'tikzlibraryshadows.blur.code.tex', 'pgf-spectra', 'spectra.data.tex|' . $standardtex, 'pgfmolbio', 'pgfmolbio\..*\.|' . $standardtex, # .lua+.tex submodules diff --git a/Master/tlpkg/tlpsrc/collection-langfrench.tlpsrc b/Master/tlpkg/tlpsrc/collection-langfrench.tlpsrc index 3ee50eaea95..93f83cf78d2 100644 --- a/Master/tlpkg/tlpsrc/collection-langfrench.tlpsrc +++ b/Master/tlpkg/tlpsrc/collection-langfrench.tlpsrc @@ -32,6 +32,7 @@ depend l2tabu-french depend latex2e-help-texinfo-fr depend lshort-french depend mafr +depend profcollege depend tabvar depend tdsfrmath depend texlive-fr diff --git a/Master/tlpkg/tlpsrc/profcollege.tlpsrc b/Master/tlpkg/tlpsrc/profcollege.tlpsrc new file mode 100644 index 00000000000..e69de29bb2d --- /dev/null +++ b/Master/tlpkg/tlpsrc/profcollege.tlpsrc |