1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
%% options
copyright owner = Dirk Krause
copyright year = 2014-xxxx
license = bsd
%% header
/** @file dk3mad.h Mathematical operations on double numbers.
Note: You should not use dk3ma_d_add_ok(), dk3ma_d_sub_ok(),
dk3ma_d_mul_ok(), dk3ma_d_div_ok() and dk3ma_d_div_ok()
for new programs.
Perform the calculations traditionally and use the
functions from the dk3mafpe module to check for floating point exceptions.
*/
#include <dk3conf.h>
#include <stdio.h>
#if DK3_HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#if DK3_HAVE_STDINT
#include <stdint.h>
#endif
#if DK3_HAVE_INTTYPES_H
#include <inttypes.h>
#endif
#if DK3_HAVE_LIMITS_H
#include <limits.h>
#endif
#if DK3_HAVE_MATH_H
#include <math.h>
#endif
#if DK3_HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/** Absolute value.
@param x Original value.
@return Absolute value of x.
*/
double
dk3ma_d_abs(double x);
/** Rounding to next integer.
@param x Double value.
@return Value rounded to nearest integer.
*/
double
dk3ma_d_rint(double x);
/** Addition.
@param a Left operand.
@param b Right operand.
@param ec Pointer to error code variable, may be NULL.
The variable may be set to DK3_ERROR_MATH_OVERFLOW when returning.
@return Summary of a and b.
*/
double
dk3ma_d_add_ok(double a, double b, int *ec);
/** Substraction.
@param a Left operand.
@param b Right operand.
@param ec Pointer to error code variable, may be NULL.
The variable may be set to DK3_ERROR_MATH_OVERFLOW when returning.
@return Difference of a and b.
*/
double
dk3ma_d_sub_ok(double a, double b, int *ec);
/** Multiplication.
@param a Left operand.
@param b Right operand.
@param ec Pointer to error code variable, may be NULL.
The variable may be set to DK3_ERROR_MATH_OVERFLOW when returning.
@return Product of a and b.
*/
double
dk3ma_d_mul_ok(double a, double b, int *ec);
/** Division.
@param a Left operand (nominator).
@param b Right operand (denominator).
@param ec Pointer to error code variable, may be NULL.
The variable may be set to DK3_ERROR_MATH_OVERFLOW or
DK3_ERROR_MATH_DIVZERO when returning.
@return Fraction of a and b.
*/
double
dk3ma_d_div_ok(double a, double b, int *ec);
/** Square root.
@param x Original value.
@param ec Pointer to error code variable, may be NULL.
The variable may be set to DK3_ERROR_MATH_OUT_OF_RANGE
if the input is negative.
@return Square root of x.
*/
double
dk3ma_d_square_ok(double x, int *ec);
/** Equality check.
@param a Left operand.
@param b Right operand.
@param epsilon Maximum allowed difference between a and b.
@return 1 for equal values, 0 for unequal values.
*/
int
dk3ma_d_equal(double a, double b, double epsilon);
/** Arcus tangens for two lengths.
@param y Y length (height).
@param x X length (width).
@return Angle alpha for y/x = tan(alpha).
*/
double
dk3ma_d_atan2(double y, double x);
/** Restrict number of digits following the decimal dot.
@param x Original value.
@param n Number of digits after decimal dot.
@return Rounded result.
*/
double
dk3ma_d_restrict_digits(double x, size_t n);
/** Restrict number of digits following the decimal dot,
round downwards.
@param x Original value.
@param n Number of digits after decimal dot.
@return Rounded result.
*/
double
dk3ma_d_restrict_digits_floor(double x, size_t n);
/** Restrict number of digits following the decimal dot,
round upwards.
@param x Original value.
@param n Number of digits after decimal dot.
@return Rounded result.
*/
double
dk3ma_d_restrict_digits_ceil(double x, size_t n);
#ifdef __cplusplus
}
#endif
%% module
#include "dk3ma.h"
#include "dk3const.h"
$!trace-include
#if (DK3_SIZEOF_DOUBLE == 8) && (DK3_HAVE_IEEE_754_DOUBLE)
/** Type to construct double value from binary (hex) data.
*/
typedef union {
unsigned char c[sizeof(double)]; /**< Bytes to specify hex. */
double d; /**< Double value to retrieve. */
} __dk3ma_max_double_t;
/** Maximum double value.
*/
__dk3ma_max_double_t const __dk3ma_max_double = {
#if DK3_WORDS_BIGENDIAN
{ 0x7F, 0xEF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }
#else
{ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xEF, 0x7F }
#endif
};
/** Maximum double value for internal use.
*/
#define dk3ma_i_max_double __dk3ma_max_double.d
#else
#ifndef DK3_MAX_DOUBLE
#define DK3_MAX_DOUBLE 1.7e308
#endif
/** Maximum double value for internal use.
*/
#define dk3ma_i_max_double DK3_MAX_DOUBLE
#endif
double
dk3ma_d_abs(double x)
{
#if DK3_HAVE_FABS
return (fabs(x));
#else
return ((0.0 <= x) ? x : (0.0 - x));
#endif
}
double
dk3ma_d_rint(double x)
{
#if DK3_HAVE_RINT
return (rint(x));
#else
return (floor(x + 0.5));
#endif
}
double
dk3ma_d_add_ok(double a, double b, int *ec)
{
$? "+ dk3ma_d_add_ok %lg %lg", a, b
if (NULL != ec) {
if ((0.0 < a) && (0.0 < b)) {
if ((dk3ma_i_max_double - a) < b) {
$? "! overflow"
*ec = DK3_ERROR_MATH_OVERFLOW;
}
} else {
if ((0.0 > a) && (0.0 > b)) {
if ( ( (-1.0 * dk3ma_i_max_double) - a ) > b ) {
$? "! overflow"
*ec = DK3_ERROR_MATH_OVERFLOW;
}
}
}
} $? "- dk3ma_d_add_ok %lg", (a + b)
return (a + b);
}
double
dk3ma_d_sub_ok(double a, double b, int *ec)
{
$? "+ dk3ma_d_sub_ok %lg %lg", a, b
if (NULL != ec) {
if ((0.0 < a) && (0.0 > b)) {
if( (dk3ma_i_max_double + b) < a ) {
$? "! overflow"
*ec = DK3_ERROR_MATH_OVERFLOW;
}
} else {
if ((0.0 > a) && (0.0 < b)) {
if ( ( (-1.0 * dk3ma_i_max_double) + b ) > a ) {
$? "! overflow"
*ec = DK3_ERROR_MATH_OVERFLOW;
}
}
}
} $? "- dk3ma_d_sub_ok %lg", (a - b)
return (a - b);
}
double
dk3ma_d_mul_ok(double a, double b, int *ec)
{
$? "+ dk3ma_d_mul_ok %lg %lg", a, b
if (ec) {
if (dk3ma_d_abs(a) > 1.0) {
if ( (dk3ma_i_max_double / dk3ma_d_abs(a)) < dk3ma_d_abs(b) ) {
$? "! overflow"
*ec = DK3_ERROR_MATH_OVERFLOW;
}
}
} $? "- dk3ma_d_mul_ok %lg", (a * b)
return (a * b);
}
double
dk3ma_d_div_ok(double a, double b, int *ec)
{
#if DK3_HAVE_FPCLASSIFY && defined(FP_ZERO)
if (FP_ZERO == fpclassify(b)) {
if (NULL != ec) { *ec = DK3_ERROR_MATH_DIVZERO; }
if (FP_ZERO == fpclassify(a)) {
return (NAN);
} else {
if (0.0 <= a) {
return (INFINITY);
} else {
return (-INFINITY);
}
}
} else {
if (dk3ma_d_abs(b) >= 1.0) {
return (a / b);
} else {
if ((dk3ma_i_max_double * dk3ma_d_abs(b)) < dk3ma_d_abs(a)) {
if (ec) { $? "= ! division overflow"
*ec = DK3_ERROR_MATH_OVERFLOW;
}
if (((0.0 <= a) && (0.0 <= b)) || ((0.0 > a) && (0.0 > b))) {
return (INFINITY);
} else {
return (-INFINITY);
}
} else {
return (a / b);
}
}
}
#else
#if DK3_ON_WINDOWS
switch(_fpclass(b)) {
case _FPCLASS_NZ:
case _FPCLASS_PZ: {
if (ec) { $? "= ! division zero"
*ec = DK3_ERROR_MATH_DIVZERO;
}
switch(_fpclass(a)) {
case _FPCLASS_NZ:
case _FPCLASS_PZ: {
#if defined(NAN)
return (NAN);
#else
return (dk3ma_i_max_double);
#endif
} break;
default: {
if (0.0 <= a) {
return (HUGE_VAL);
} else {
return (-HUGE_VAL);
}
} break;
}
} break;
default: {
if (dk3ma_d_abs(b) >= 1.0) {
return (a / b);
} else {
if ((dk3ma_i_max_double * dk3ma_d_abs(b)) < dk3ma_d_abs(a)) {
if (ec) { $? "= ! division overflow"
*ec = DK3_ERROR_MATH_OVERFLOW;
}
if (((0.0 <= a) && (0.0 <= b)) || ((0.0 > a) && (0.0 > b))) {
return (HUGE_VAL);
} else {
return (-HUGE_VAL);
}
} else {
return (a / b);
}
}
} break;
}
#else
if (dk3ma_d_abs(b) >= 1.0) {
return (a / b);
} else {
if ((dk3ma_i_max_double * dk3ma_d_abs(b)) < dk3ma_d_abs(a)) {
if (ec) { $? "= ! division overflow"
*ec = DK3_ERROR_MATH_OVERFLOW;
}
if (((0.0 <= a) && (0.0 <= b)) || ((0.0 > a) && (0.0 > b))) {
#ifdef INFINITY
return (INFINITY);
#else
#ifdef HUGE_VAL
return (HUGE_VAL);
#else
return (dk3ma_i_max_double);
#endif
#endif
} else {
#ifdef INFINITY
return (-INFINITY);
#else
#ifdef HUGE_VAL
return (-HUGE_VAL);
#else
return (-1.0 * dk3ma_i_max_double);
#endif
#endif
}
} else {
return (a / b);
}
}
#endif
#endif
}
double
dk3ma_d_square_ok(double x, int *ec)
{
#if 0
double back = -1.0;
$? "+ dk3ma_d_square_ok"
if (0.0 <= x) {
back = sqrt(x);
} else {
if (NULL != ec) { $? "! out of range"
*ec = DK3_ERROR_MATH_OUT_OF_RANGE;
}
} $? "- dk3ma_d_square_ok %lg", back
return back;
#else
return (dk3ma_d_mul_ok(x, x, ec));
#endif
}
int
dk3ma_d_equal(double a, double b, double epsilon)
{
int back = 0;
int ec = 0;
if (dk3ma_d_abs(dk3ma_d_sub_ok(a, b, &ec)) < epsilon) {
if (0 == ec) {
back = 1;
}
}
return back;
}
double
dk3ma_d_atan2(double y, double x)
{
#if DK3_HAVE_ATAN2
double back;
$? "+ dk3ma_atan2_ok y=%lg x=%lg", y, x
back = atan2(y, x); $? ". back = %lg", back
while (back < 0.0) { back += (2.0 * M_PI); }
while (back > (2.0 * M_PI)) { back -= (2.0 * M_PI); }
$? "- dk3ma_atan2_ok (atan2) %lg", back
return back;
#else
double back = -5.0 * M_PI;
double v;
$? "+ dk3ma_atan2_ok y=%lg x=%lg", y, x
v = dk3ma_d_div_ok(y, x, &mec);
if (mec) { $? "! division error"
if(y < 0.0) { $? ". negative y"
back = 1.5 * M_PI;
} else { $? ". positive y"
back = 0.5 * M_PI;
}
} else { $? ". use atan"
back = atan(v);
if (x < 0.0) { $? ". add pi"
back += M_PI;
}
} $? ". back = %lg", back
while (back < 0.0) { back += (2.0 * M_PI); }
while (back > (2.0 * M_PI)) { back -= (2.0 * M_PI); }
$? "- dk3ma_atan2_ok (atan) %lg", back
return back;
#endif
}
double
dk3ma_d_restrict_digits(double x, size_t n)
{
double back;
double newval;
size_t i;
size_t mult;
int ec = 0;
back = x;
mult = 0;
/* Multiplications
*/
for (i = 0; ((0 == ec) && (i < n)); i++) {
newval = dk3ma_d_mul_ok(back, 10.0, &ec);
if (0 == ec) {
back = newval;
mult++;
}
}
/* Rounding
*/
back = dk3ma_d_rint(back);
/* Divisions
*/
for (i = 0; i < mult; i++) {
back = back / 10.0;
}
return back;
}
double
dk3ma_d_restrict_digits_ceil(double x, size_t n)
{
double back;
double newval;
size_t i;
size_t mult;
int ec = 0;
back = x;
mult = 0;
/* Multiplications
*/
for (i = 0; ((0 == ec) && (i < n)); i++) {
newval = dk3ma_d_mul_ok(back, 10.0, &ec);
if (0 == ec) {
back = newval;
mult++;
}
}
/* Rounding
*/
back = ceil(back);
/* Divisions
*/
for (i = 0; i < mult; i++) {
back = back / 10.0;
}
return back;
}
double
dk3ma_d_restrict_digits_floor(double x, size_t n)
{
double back;
double newval;
size_t i;
size_t mult;
int ec = 0;
back = x;
mult = 0;
/* Multiplications
*/
for (i = 0; ((0 == ec) && (i < n)); i++) {
newval = dk3ma_d_mul_ok(back, 10.0, &ec);
if (0 == ec) {
back = newval;
mult++;
}
}
/* Rounding
*/
back = floor(back);
/* Divisions
*/
for (i = 0; i < mult; i++) {
back = back / 10.0;
}
return back;
}
|