1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
% luaset package
% version 1.0
% Authors: Chetan Shirore and Ajit Kumar
% Licensed under LaTeX Project Public License v1.3c or later. The complete license text is available at http://www.latex-project.org/lppl.txt.
\ProvidesPackage{luaset}[1.0]
\RequirePackage{xkeyval}
\RequirePackage{amsmath}
\RequirePackage{luacode}
\RequirePackage{luamaths}
\begin{luacode*}
sets = {}
Set = {}
local mt = {
__tostring = function(self)
return "\\{" .. table.concat(table.sortedkeys(self), ", ") .. "\\}"
end
}
function Set.new(str)
str = str or ""
local set = {}
for v in utilities.parsers.iterator(str) do
set[v] = true
end
return setmetatable(set, mt)
end
function Set.union (a, b)
local union = {}
for k in pairs(a) do union[k] = true end
for k in pairs(b) do union[k] = true end
return setmetatable(union, mt)
end
function Set.intersection (a, b)
local intersection = {}
for k in pairs(a) do
intersection[k] = b[k]
end
return setmetatable(intersection, mt)
end
function Set.difference (a, b)
local difference = {}
for k in pairs(a) do
if b[k]~= true then
difference[k] = true
end
end
setmetatable(difference, mt)
return difference
end
function Set.cardinal (a)
local len = 0
for k in pairs(a) do
len = len + 1
end
return len
end
function Set.subseteq(a, b)
for k in pairs(a) do
if not b[k] then return false end
end
return true
end
function Set.subset (a, b)
return Set.subseteq(a, b) and not (Set.subseteq(b, a) )
end
function Set.equal (a, b)
return Set.subseteq(a, b) and (Set.subseteq(b, a) )
end
function Set.belongsto (x, s)
if s[x] then
return true
else
return false
end
end
\end{luacode*}
\newcommand\luaSetNew[2]{%
\directlua{%
sets[\luastringN{#1}] = Set.new(\luastringN{#2})
}%
}
\newcommand\luaSetUnion[3]{%
\directlua{%
sets[\luastringN{#1}] = Set.union(sets[\luastringN{#2}],
sets[\luastringN{#3}])
}%
}
\newcommand\luaSetIntersection[3]{%
\directlua{%
sets[\luastringN{#1}] = Set.intersection(sets[\luastringN{#2}],
sets[\luastringN{#3}])
}%
}
\newcommand\luaSetDifference[3]{%
\directlua{%
sets[\luastringN{#1}] = Set.difference(sets[\luastringN{#2}],
sets[\luastringN{#3}])
}%
}
\newcommand\luaSetPrint[1]{%
\directlua{tex.sprint(tostring(sets[\luastringN{#1}]))}%
}
\newcommand\luaSetCardinal[1]{%
\directlua{tex.sprint(tostring(Set.cardinal(sets[\luastringN{#1}])))}%
}
\newcommand\luaSetSubseteq[2]{%
\directlua{tex.sprint(tostring(Set.subseteq(sets[\luastringN{#1}],sets[\luastringN{#2}])))}%
}
\newcommand\luaSetSubset[2]{%
\directlua{tex.sprint(tostring(Set.subset(sets[\luastringN{#1}],sets[\luastringN{#2}])))}%
}
\newcommand\luaSetEqual[2]{%
\directlua{tex.sprint(tostring(Set.equal(sets[\luastringN{#1}],sets[\luastringN{#2}])))}%
}
\newcommand\luaSetBelongsto[2]{%
\directlua{tex.sprint(tostring(Set.belongsto("#1",sets[\luastringN{#2}])))}%
}
\endinput
|