1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
--Version=1.4, Date=04-Aug-2023
-- provides module for complex numbers
--Contains a modified version of the file complex.lua. It is availalbe on the link https://github.com/davidm/lua-matrix/blob/master/lua/complex.lua. This is licensed under the same terms as Lua itself. This license allows to freely copy, modify and distribute the file for any purpose and without any restrictions.
--This file is also licensed under the same terms as Lua itself. This license allows to freely copy, modify and distribute the file for any purpose and without any restrictions.
frac= require("luamaths-fractions")
complex = {}
complex_meta = {}
local function parse_scalar(s, pos0)
local x, n, pos = s:match('^([+-]?[%d%.]+)(.?)()', pos0)
if not x then return end
if n == 'e' or n == 'E' then
local x2, n2, pos2 = s:match('^([+-]?%d+)(.?)()', pos)
if not x2 then error 'number format error' end
x = tonumber(x..n..x2)
if not x then error 'number format error' end
return x, n2, pos2
else
x = tonumber(x)
if not x then error 'number format error' end
return x, n, pos
end
end
local function parse_component(s, pos0)
local x, n, pos = parse_scalar(s, pos0)
if not x then
local x2, n2, pos2 = s:match('^([+-]?)(i)()$', pos0)
if not x2 then error 'number format error' end
return (x2=='-' and -1 or 1), n2, pos2
end
if n == '/' then
local x2, n2, pos2 = parse_scalar(s, pos)
x = x / x2
return x, n2, pos2
end
return x, n, pos
end
local function parse_complex(s)
local x, n, pos = parse_component(s, 1)
if n == '+' or n == '-' then
local x2, n2, pos2 = parse_component(s, pos)
if n2 ~= 'i' or pos2 ~= #s+1 then error 'number format error' end
if n == '-' then x2 = - x2 end
return x, x2
elseif n == '' then
return x, 0
elseif n == 'i' then
if pos ~= #s+1 then error 'number format error' end
return 0, x
else
error 'number format error'
end
end
function complex.to( num )
-- check for table type
if type( num ) == "table" then
-- check for a complex number
if getmetatable( num ) == complex_meta then
return num
end
if getmetatable( num) == frac_mt then
return setmetatable( { num, 0 }, complex_meta )
end
local real,imag = tonumber( num[1] ),tonumber( num[2] )
if real and imag then
return setmetatable( { real,imag }, complex_meta )
end
return
end
local isnum = tonumber( num )
if isnum then
return setmetatable( { isnum,0 }, complex_meta )
end
if type( num ) == "string" then
local real, imag = parse_complex(num)
return setmetatable( { real, imag }, complex_meta )
end
end
setmetatable( complex, { __call = function( _,num ) return complex.to( num ) end } )
function complex.new( x,y)
return setmetatable( {x,y}, complex_meta )
end
lcomplex = complex.new
function complex.type( arg )
if getmetatable( arg ) == complex_meta then
return "complex"
end
end
function complex.convpolar( radius, phi )
return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta )
end
function complex.convpolardeg( radius, phi )
phi = phi/180 * math.pi
return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta )
end
function complex.tostring( cx,formatstr )
imunit = "\\imUnit"
local real,imag = cx[1],cx[2]
if type(cx[1]) ~= "table" and type(cx[2]) ~= "table" then
if imag == 0 and math.floor(real)==real then
return math.floor(real)
end
if real == 0 and math.floor(imag)==imag and math.abs(math.floor(imag))~=1 then
return math.floor(imag)..imunit
end
if imag == 0 then
return real
elseif real == 0 then
return ((imag==1 and "") or (imag==-1 and "-") or imag)..imunit
elseif imag > 0 then
return real.."+"..(imag==1 and "" or imag)..imunit
end
return real..(imag==-1 and "-" or imag)..imunit
end
if type(cx[1]) == "table" and type(cx[2]) ~= "table" then
if cx[2] == 0 then
return frac.tostring(cx[1])
end
if cx[2] > 0 then
return frac.tostring(cx[1]).. "+"..(imag==1 and "" or imag)..imunit
end
if cx[2] < 0 then
return frac.tostring(cx[1])..(imag==-1 and "-" or imag)..imunit
end
end
if type(cx[1]) ~= "table" and type(cx[2]) == "table" then
if frac.toFnumber(cx[2])==0 then return cx[1] end
return cx[1].."+"..frac.tostring(cx[2])..imunit
end
if type(cx[1]) == "table" and type(cx[2]) == "table" then
if frac.toFnumber(cx[1]) == 0 and frac.toFnumber(cx[2]) ~= 0 then
return frac.tostring(cx[2])..imunit
end
if frac.toFnumber(cx[2]) == 0 then
return frac.tostring(cx[1] + 0)
end
if cx[2].d == 1 then
if cx[2].n > 0 then
return frac.tostring(cx[1]).. "+"..(cx[2].n==1 and "" or math.floor(cx[2].n))..imunit
end
if cx[2].n < 0 then
return frac.tostring(cx[1])..(cx[2].n==-1 and "-" or math.floor(cx[2].n))..imunit
end
end
end
return frac.tostring(cx[1]).. "+"..frac.tostring(cx[2])..imunit
end
function complex.print( ... )
print( complex.tostring( ... ) )
end
function complex.polar( cx )
return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] )
end
function complex.polardeg( cx )
return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] ) / math.pi * 180
end
function complex.norm2( cx )
return cx[1]^2 + cx[2]^2
end
function complex.abs( cx )
return math.sqrt( cx[1]^2 + cx[2]^2 )
end
function complex.get( cx )
return cx[1],cx[2]
end
function complex.set( cx,real,imag )
cx[1],cx[2] = real,imag
end
function complex.is( cx,real,imag )
if cx[1] == real and cx[2] == imag then
return true
end
return false
end
function complex.copy( cx )
return setmetatable( { cx[1],cx[2] }, complex_meta )
end
function complex.add( cx1,cx2 )
return setmetatable( { cx1[1]+cx2[1], cx1[2]+cx2[2] }, complex_meta )
end
function complex.sub( cx1,cx2 )
return setmetatable( { cx1[1]-cx2[1], cx1[2]-cx2[2] }, complex_meta )
end
function complex.mul( cx1,cx2 )
return setmetatable( { cx1[1]*cx2[1] - cx1[2]*cx2[2],cx1[1]*cx2[2] + cx1[2]*cx2[1] }, complex_meta )
end
function complex.mulnum( cx,num )
return setmetatable( { cx[1]*num,cx[2]*num }, complex_meta )
end
function complex.div( cx1,cx2 )
local val = cx2[1]*cx2[1] + cx2[2]*cx2[2]
return setmetatable( { (cx1[1]*cx2[1]+cx1[2]*cx2[2])/val,(cx1[2]*cx2[1]-cx1[1]*cx2[2])/val }, complex_meta )
end
function complex.divnum( cx,num )
return setmetatable( { cx[1]/num,cx[2]/num }, complex_meta )
end
function complex.pow( cx,num )
if math.floor( num ) == num then
if num < 0 then
local val = cx[1]^2 + cx[2]^2
cx = { cx[1]/val,-cx[2]/val }
num = -num
end
local real,imag = cx[1],cx[2]
for i = 2,num do
real,imag = real*cx[1] - imag*cx[2],real*cx[2] + imag*cx[1]
end
return setmetatable( { real,imag }, complex_meta )
end
local length,phi = math.sqrt( cx[1]^2 + cx[2]^2 )^num, math.atan2( cx[2], cx[1] )*num
return setmetatable( { length * math.cos( phi ), length * math.sin( phi ) }, complex_meta )
end
function complex.sqrt( cx )
local h
local k
if type(cx[1]) ~= "table" then h = cx[1] end
if type(cx[2]) ~= "table" then k = cx[2] end
if type(cx[1]) == "table" then h = frac.toFnumber(cx[1]) end
if type(cx[2]) == "table" then k = frac.toFnumber(cx[2]) end
local len = math.sqrt( h^2 + k^2 )
local sign = ( h<0 and -1) or 1
return setmetatable( { math.sqrt((h +len)/2), sign*math.sqrt((len-h)/2) }, complex_meta )
end
function complex.ln( cx )
return setmetatable( { math.log(math.sqrt( cx[1]^2 + cx[2]^2 )),
math.atan2( cx[2], cx[1] ) }, complex_meta )
end
function complex.exp( cx )
local expreal = math.exp(cx[1])
return setmetatable( { expreal*math.cos(cx[2]), expreal*math.sin(cx[2]) }, complex_meta )
end
function complex.conjugate( cx )
return setmetatable( { cx[1], -cx[2] }, complex_meta )
end
function Xround(num, numDecimalPlaces)
if type(num)=="number" then
if num==math.floor(num) then
return math.floor(num)
end
end
if type(num)=="number" then
local mult = 10^(numDecimalPlaces or 0)
return math.floor(num * mult + 0.5) / mult
end
return num
end
function complex.round( cx,idp )
local mult =10^( idp or 0 )
if type(cx[1]) ~= "table" and type(cx[2]) ~= "table" then
return setmetatable( {Xround(cx[1],idp), Xround(cx[2],idp)}, complex_meta )
end
if type(cx[1]) ~= "table" and type(cx[2]) == "table" then
return setmetatable( {Xround(cx[1],idp), cx[2]}, complex_meta )
end
if type(cx[1]) == "table" and type(cx[2]) ~= "table" then
return setmetatable({cx[1],Xround(cx[2],idp)}, complex_meta )
end
if type(cx[1]) == "table" and type(cx[2]) == "table" then
return setmetatable({cx[1],cx[2]}, complex_meta )
end
end
complex.zero = complex.new(0, 0)
complex.one = complex.new(1, 0)
complex_meta.__add = function( cx1,cx2 )
local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
return complex.add( cx1,cx2 )
end
complex_meta.__sub = function( cx1,cx2 )
local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
return complex.sub( cx1,cx2 )
end
complex_meta.__mul = function( cx1,cx2 )
local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
return complex.mul( cx1,cx2 )
end
complex_meta.__div = function( cx1,cx2 )
local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
return complex.div( cx1,cx2 )
end
complex_meta.__pow = function( cx,num )
if num == "*" then
return complex.conjugate( cx )
end
return complex.pow( cx,num )
end
complex_meta.__unm = function( cx )
return setmetatable( { -cx[1], -cx[2] }, complex_meta )
end
complex_meta.__eq = function( cx1,cx2 )
if cx1[1] == cx2[1] and cx1[2] == cx2[2] then
return true
end
return false
end
complex_meta.__tostring = function( cx )
return tostring( complex.tostring( cx ) )
end
complex_meta.__concat = function( cx,cx2 )
return tostring(cx)..tostring(cx2)
end
-- cx( cx, formatstr )
complex_meta.__call = function( ... )
print( complex.tostring( ... ) )
end
complex_meta.__index = {}
for k,v in pairs( complex ) do
complex_meta.__index[k] = v
end
return complex
|