summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/tkz/tkz-euclide/doc/latex/TKZdoc-euclide-pointsSpc.tex
blob: fa18a677b6f0ea4a47ffb57fc426fb8e9af6b23f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
Now that the fixed points are defined, we can with their references using macros from the package or macros that you will create get new points. The calculations may not be apparent but they are usually done by the package.
You may need to use some mathematical constants, here is the list of constants defined by the package.
You may need to use some mathematical constants, here is the list of constants defined by the package.

\section{Auxiliary tools}
\subsection{Constants}

\tkzname{\tkznameofpack} knows some constants, here is the list:
\begin{tkzltxexample}[]
  \def\tkzPhi{1.618034}
  \def\tkzInvPhi{0.618034}
  \def\tkzSqrtPhi{1.27202}
  \def\tkzSqrTwo{1.414213}
  \def\tkzSqrThree{1.7320508}
  \def\tkzSqrFive{2.2360679}
  \def\tkzSqrTwobyTwo{0.7071065}
  \def\tkzPi{3.1415926}
  \def\tkzEuler{2.71828182}
\end{tkzltxexample}

\subsection{New  point by calculation }

When a macro of \tkzname{tkznameofpack} creates a new point, it is stored internally with the reference \tkzname{tkzPointResult}. You can assign your own reference to it. This is done with the macro \tkzcname{tkzGetPoint}. A new reference is created, your choice of reference must be placed between braces.

\begin{NewMacroBox}{tkzGetPoint}{\marg{ref}}%
If the result is in \tkzname{tkzPointResult}, you can access it with \tkzcname{tkzGetPoint}.

 \medskip
\begin{tabular}{lll}%
\toprule
arguments & default & example \\
\midrule
\TAline{ref}{no default}{ \tkzcname{tkzGetPoint\{M\} } see the next example}
\end{tabular}
\end{NewMacroBox}

Sometimes you need to get two points. It's possible with 

\begin{NewMacroBox}{tkzGetPoints}{\marg{ref1}\marg{ref2}}%
The result is in \tkzname{tkzPointFirstResult} and \tkzname{tkzPointSecondResult}. 

 \medskip
\begin{tabular}{lll}%
\toprule
arguments & default & example \\
\midrule
\TAline{\{ref1,ref2\}}{no default}{ \tkzcname{tkzGetPoints\{M,N\} } It's the case with \tkzcname{tkzInterCC}}
\end{tabular}
\end{NewMacroBox}

If you need only the first or the second point you can also use :

\begin{NewMacroBox}{tkzGetFirstPoint}{\marg{ref1}}%
  
 \medskip
\begin{tabular}{lll}%
\toprule
arguments & default & example \\
\midrule
\TAline{ref1}{no default}{ \tkzcname{tkzGetFirstPoint\{M\} }}
\end{tabular}
\end{NewMacroBox}

\begin{NewMacroBox}{tkzGetSecondPoint}{\marg{ref2}}%

 \medskip
\begin{tabular}{lll}%
\toprule
arguments & default & example \\
\midrule
\TAline{ref2}{no default}{ \tkzcname{tkzGetSecondPoint\{M\} }}
\end{tabular}
\end{NewMacroBox}

Sometimes the results consist of a point and a dimension. You get the point with \tkzcname{tkzGetPoint} and the dimension with \tkzcname{tkzGetLength}.

\begin{NewMacroBox}{tkzGetLength}{\marg{name of a macro}}%
  
 \medskip
\begin{tabular}{lll}%
\toprule
arguments & default & example \\
\midrule
\TAline{name of a macro}{no default}{ \tkzcname{tkzGetLength\{rAB\} \tkzcname{rAB} gives the length in cm}}
\end{tabular}
\end{NewMacroBox}

%\tkzcname{tkzCalcLength}(A,B) After \tkzcname{tkzGetLength\{dAB\}} \tkzcname{dAB} gives $AB$ in cm}


\section{Special points}
Here are some special points.
%<--------------------------------------------------------------------------->
\subsection{Middle of a segment \tkzcname{tkzDefMidPoint}}
It is a question of determining the middle of a segment.

\begin{NewMacroBox}{tkzDefMidPoint}{\parg{pt1,pt2}}%
The result is in \tkzname{tkzPointResult}. We can access it with \tkzcname{tkzGetPoint}.

 \medskip
\begin{tabular}{lll}%
\toprule
arguments & default & definition \\
\midrule
\TAline{(pt1,pt2)}{no default}{pt1 and pt2 are two points}
\end{tabular}
\end{NewMacroBox}

\subsubsection{Use of \tkzcname{tkzDefMidPoint}}
Review the use of \tkzcname{tkzDefPoint}.
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1]
 \tkzDefPoint(2,3){A}
 \tkzDefPoint(6,2){B}
 \tkzDefMidPoint(A,B) 
 \tkzGetPoint{M}
 \tkzDrawSegment(A,B)
 \tkzDrawPoints(A,B,M)
 \tkzLabelPoints[below](A,B,M)
\end{tikzpicture}
\end{tkzexample}

\subsection{\tkzname{Golden ratio} \tkzcname{tkzDefGoldenRatio}}
From Wikipedia : In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities $a$, $b$ such as $a > b > 0$; $a+b$ is to $a$ as $a$ is to $b$.

$ \frac{a+b}{a} = \frac{a}{b} = \phi = \frac{1 + \sqrt{5}}{2}$


One of the two solutions to the equation $x^2 - x - 1 = 0$
is the golden ratio $\phi$, $\phi = \frac{1 + \sqrt{5}}{2}$.

\begin{NewMacroBox}{tkzDefGoldenRatio}{\parg{pt1,pt2}}%
\begin{tabular}{lll}%
arguments & default & example \\
\midrule
\TAline{(pt1,pt2)}{no default}{\tkzcname{tkzDefGoldenRatio(A,C)} \tkzcname{tkzGetPoint}\{B\}}
\bottomrule
\end{tabular}

\medskip
$AB=a$, $BC=b$ and $\frac{AC}{AB} = \frac{AB}{BC} =\phi$
\end{NewMacroBox}

\subsubsection{Use the golden ratio to divide a line segment}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
 \tkzDefPoints{0/0/A,6/0/C}
 \tkzDefMidPoint(A,C) \tkzGetPoint{I}
 %\tkzDefPointWith[linear,K=\tkzInvPhi](A,C) 
 \tkzDefGoldenRatio(A,C) \tkzGetPoint{B}
 \tkzDrawSegments(A,C)
 \tkzDrawPoints(A,B,C)
 \tkzLabelPoints(A,B,C)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Golden arbelos}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.6]
\tkzDefPoints{0/0/A,10/0/B}
\tkzDefGoldenRatio(A,B)     \tkzGetPoint{C}
\tkzDefMidPoint(A,B)        \tkzGetPoint{O_1}
\tkzDefMidPoint(A,C)        \tkzGetPoint{O_2}
\tkzDefMidPoint(C,B)        \tkzGetPoint{O_3}
\tkzDrawSemiCircles[fill=purple!15](O_1,B)
\tkzDrawSemiCircles[fill=teal!15](O_2,C O_3,B)
\end{tikzpicture}
\end{tkzexample}

It is also possible to use the following macro.
\subsection{\tkzname{Barycentric coordinates} with \tkzcname{tkzDefBarycentricPoint}}

$pt_1$, $pt_2$, \dots, $pt_n$ being $n$ points, they define $n$ vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, \dots, $\overrightarrow{v_n}$ with the origin of the referential as the common endpoint. $\alpha_1$, $\alpha_2$,
\dots $\alpha_n$ are $n$ numbers, the vector obtained by:
\begin{align*}
  \frac{\alpha_1 \overrightarrow{v_1} + \alpha_2 \overrightarrow{v_2} + \cdots + \alpha_n \overrightarrow{v_n}}{\alpha_1
    + \alpha_2 + \cdots + \alpha_n}
\end{align*}
defines a single point.

\begin{NewMacroBox}{tkzDefBarycentricPoint}{\parg{pt1=$\alpha_1$,pt2=$\alpha_2$,\dots}}%
\begin{tabular}{lll}%
arguments & default & definition \\
\midrule
\TAline{(pt1=$\alpha_1$,pt2=$\alpha_2$,\dots)}{no default}{Each point has a assigned weight}
\bottomrule
\end{tabular}

\medskip
\emph{You need at least two points. Result in \tkzname{tkzPointResult}.}
\end{NewMacroBox}


\subsubsection{with two points}
In the following example, we obtain the barycenter of points $A$ and $B$ with coefficients $1$ and $2$, in other words:
\[
  \overrightarrow{AI}= \frac{2}{3}\overrightarrow{AB}
\]

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
  \tkzDefPoint(2,3){A}
  \tkzDefShiftPointCoord[2,3](30:4){B}
  \tkzDefBarycentricPoint(A=1,B=2)
  \tkzGetPoint{G}
  \tkzDrawLine(A,B)
  \tkzDrawPoints(A,B,G)
  \tkzLabelPoints(A,B,G)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{with three points}
This time $M$ is simply the center of gravity of the triangle.

 For reasons of simplification and homogeneity, there is also \tkzcname{tkzCentroid}.
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.8]
  \tkzDefPoints{2/1/A,5/3/B,0/6/C}
  \tkzDefBarycentricPoint(A=1,B=1,C=1)
  \tkzGetPoint{G}
  \tkzDefMidPoint(A,B)  \tkzGetPoint{C'}
  \tkzDefMidPoint(A,C)  \tkzGetPoint{B'}
  \tkzDefMidPoint(C,B)  \tkzGetPoint{A'}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawLines[add=0 and 1,new](A,G B,G C,G)
  \tkzDrawPoints[new](A',B',C',G)
  \tkzDrawPoints(A,B,C)
  \tkzLabelPoint[above right](G){$G$}
  \tkzAutoLabelPoints[center=G](A,B,C)
  \tkzLabelPoints[above right](A')
  \tkzLabelPoints[below](B',C')
\end{tikzpicture}
\end{tkzexample}


\subsection{\tkzname{Internal and external Similitude Center}}
The centers of the two homotheties in which two circles correspond are called external and internal centers of similitude. You can use \tkzcname{tkzDefIntSimilitudeCenter} and \tkzcname{tkzDefExtSimilitudeCenter} but the next macro is better.

\begin{NewMacroBox}{tkzDefSimilitudeCenter}{\oarg{options}\parg{O,A}\parg{O',B} or \parg{O,r}\parg{O',r'}}%

\begin{tabular}{lll}%
arguments           & example & explanation                         \\
\midrule
\TAline{\parg{pt1,pt2}\parg{pt3,pt4}}{$(O,A)(O',B)$} {$r=OA,r'=O'B$}
\TAline{\parg{pt1,r1}\parg{pt2,r2}}{$(A,1)(B,2)$} {}

\end{tabular} 
    
\medskip
\begin{tabular}{lll}%
\toprule
options             & default & definition                         \\ 
\midrule
\TOline{ext}{ext}{external center}
\TOline{int}{ext}{internal center}

\TOline{node}{node}{Circles are defined by two points: center and point on the circle}
\TOline{R}{node}{Circles are defined by the center and the radius}
\end{tabular}
\end{NewMacroBox}  

\subsubsection{Internal and external with \tkzname{node}}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.75]
 \tkzDefPoints{0/0/O,4/-5/A,3/0/B,5/-5/C}
\tkzDefSimilitudeCenter[int](O,B)(A,C)    \tkzGetPoint{I}
 \tkzDefSimilitudeCenter[ext](O,B)(A,C)   \tkzGetPoint{J}
 \tkzDefLine[tangent from = I](O,B)       \tkzGetPoints{D}{E}
 \tkzDefLine[tangent from = I](A,C)       \tkzGetPoints{D'}{E'}
 \tkzDefLine[tangent from = J](O,B)       \tkzGetPoints{F}{G}
 \tkzDefLine[tangent from = J](A,C)    
 \tkzGetPoints{F'}{G'}
 \tkzDrawCircles(O,B A,C)               
 \tkzDrawSegments[add = .5 and .5,new](D,D' E,E')
 \tkzDrawSegments[add= 0 and 0.25,new](J,F J,G)
 \tkzDrawPoints(O,A,I,J,D,E,F,G,D',E',F',G')
\end{tikzpicture}
\end{tkzexample}

\subsubsection{D'Alembert Theorem} % (fold)
\label{ssub:d_alembert_theorem}

\begin{tkzexample}[latex=7cm,small]
 \begin{tikzpicture}[scale=.6,rotate=90]
 \tkzDefPoints{0/0/A,3/0/a,7/-1/B,5.5/-1/b}
 \tkzDefPoints{5/-4/C,4.25/-4/c}
 \tkzDrawCircles(A,a B,b C,c)
 \tkzDefExtSimilitudeCenter(A,a)(B,b) \tkzGetPoint{I}
 \tkzDefExtSimilitudeCenter(A,a)(C,c) \tkzGetPoint{J}
 \tkzDefExtSimilitudeCenter(C,c)(B,b) \tkzGetPoint{K}
 \tkzDefIntSimilitudeCenter(A,a)(B,b) \tkzGetPoint{I'}
 \tkzDefIntSimilitudeCenter(A,a)(C,c) \tkzGetPoint{J'}
 \tkzDefIntSimilitudeCenter(C,c)(B,b) \tkzGetPoint{K'}
 \tkzDrawPoints(A,B,C,I,J,K,I',J',K')
 \tkzDrawSegments[new](I,K A,I A,J B,I B,K C,J C,K)
 \tkzDrawSegments[new](I,J' I',J I',K)
 \end{tikzpicture}
\end{tkzexample}

% subsubsection d_alembert_theorem (end)

You can  use \tkzcname{tkzDefBarycentricPoint} to find a homothetic center

|\tkzDefBarycentricPoint(O=\r,A=\R)     \tkzGetPoint{I}| \\
|\tkzDefBarycentricPoint(O={-\r},A=\R)  \tkzGetPoint{J}|

\subsubsection{Example with \tkzname{node}}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[rotate=60,scale=.5]
 \tkzDefPoints{0/0/A,5/0/C}
 \tkzDefGoldenRatio(A,C) \tkzGetPoint{B}
 \tkzDefSimilitudeCenter(A,B)(C,B) \tkzGetPoint{J}
 \tkzDefTangent[from = J](A,B)   \tkzGetPoints{F}{G}
 \tkzDefTangent[from = J](C,B)    \tkzGetPoints{F'}{G'}
 \tkzDrawCircles(A,B C,B)   
 \tkzDrawSegments[add= 0 and 0.25,cyan](J,F J,G)
 \tkzDrawPoints(A,J,F,G,F',G')
\end{tikzpicture}
\end{tkzexample}
\newpage
%<---------------------------------------------------------------------->
\subsection{ \tkzname{Harmonic division} with \tkzcname{tkzDefHarmonic}}
%<---------------------------------------------------------------------->

\begin{NewMacroBox}{tkzDefHarmonic}{\oarg{options}\parg{pt1,pt2,pt3} or \parg{pt1,pt2}}%
   
\begin{tabular}{lll}%
options             & default & definition                         \\ 
\midrule
\TOline{both}{both}{\parg{A,B} we look for C and D such that $(A,B;C,D) = -1$ }
\TOline{ext}{both}{\parg{A,B,C} we look for D such that $(A,B;C,D) = -1$}
\TOline{int}{both}{\parg{A,B,D} we look for C such that $(A,B;C,D) = -1$}
\end{tabular}
\end{NewMacroBox}  

\subsubsection{options \tkzname{ext} and \tkzname{int}}
\begin{tkzexample}[vbox,small]
  \begin{tikzpicture}
  \tkzDefPoints{0/0/A,6/0/B,4/0/C}
  \tkzDefHarmonic[ext](A,B,C) \tkzGetPoint{J}
  \tkzDefHarmonic[int](A,B,J) \tkzGetPoint{I}
  \tkzDrawPoints(A,B,I,J)
  \tkzDrawLine[add=.5 and 1](A,B)
  \tkzLabelPoints(A,B,I,J)
  \end{tikzpicture}
\end{tkzexample}

\subsubsection{Bisector and harmonic division} % (fold)
\label{ssub:bisector_and_harmonic_division}

\begin{tkzexample}[vbox,small]
  \begin{tikzpicture}[scale=1.25]
  \tkzDefPoints{0/0/A,4/0/C,5/3/X}
  \tkzDefLine[bisector](A,X,C) \tkzGetPoint{x}
  \tkzInterLL(X,x)(A,C)        \tkzGetPoint{B}
  \tkzDefHarmonic[ext](A,C,B)  \tkzGetPoint{D}
  \tkzDrawPolygon(A,X,C)
  \tkzDrawSegments(X,B C,D D,X)
  \tkzDrawPoints(A,B,C,D,X)
  \tkzMarkAngles[mark=s|](A,X,B B,X,C)
  \tkzMarkRightAngle[size=.4,
                     fill=gray!20,
                     opacity=.3](B,X,D)
  \tkzLabelPoints(A,B,C,D)
  \tkzLabelPoints[above right](X)
  \end{tikzpicture}
\end{tkzexample}


% subsubsection bisector_and_harmonic_division (end)
\subsubsection{option \tkzname{both} }
\tkzname{both} is the default option
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}
 \tkzDefPoints{0/0/A,6/0/B}
 \tkzDefHarmonic(A,B,{1/2})\tkzGetPoints{I}{J}
 \tkzDrawPoints(A,B,I,J)
 \tkzDrawLine[add=1 and .5](A,B)
 \tkzLabelPoints(A,B,I,J)
\end{tikzpicture}
\end{tkzexample}

%<---------------------------------------------------------------------->
\subsection{\tkzname{Equidistant points} with \tkzcname{tkzDefEquiPoints} }
%<---------------------------------------------------------------------->

\begin{NewMacroBox}{tkzDefEquiPoints}{\oarg{local options}\parg{pt1,pt2}}%
\begin{tabular}{lll}%
arguments &  default & definition \\
\midrule
\TAline{(pt1,pt2)}{no default}{unordered list of two items}
\end{tabular}

\begin{tabular}{lll}%
options             & default & definition  \\
\midrule
\TOline{dist} {2 (cm)} {half the distance between the two points}
\TOline{from=pt} {no default} {reference point}
\TOline{show} {false} {if true displays compass traces}
\TOline{/compass/delta} {0} {compass trace size }
\end{tabular}

\medskip
\emph{This macro makes it possible to obtain two points on a straight line equidistant from a given point.}
\end{NewMacroBox}


\subsubsection{Using \tkzcname{tkzDefEquiPoints} with options}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
  \tkzSetUpCompass[color=purple,line width=1pt]
  \tkzDefPoints{0/1/A,5/2/B,3/4/C}
  \tkzDefEquiPoints[from=C,dist=1,show,
      /tkzcompass/delta=20](A,B)
   \tkzGetPoints{E}{H}
   \tkzDrawLines[color=blue](C,E C,H A,B)
   \tkzDrawPoints[color=blue](A,B,C)
   \tkzDrawPoints[color=red](E,H)
   \tkzLabelPoints(E,H)
   \tkzLabelPoints[color=blue](A,B,C)
\end{tikzpicture}
\end{tkzexample}
%<---------------------------------------------------------------------->
%                          Middle of an arc                             >
%<---------------------------------------------------------------------->
\subsection{Middle of an arc}
\begin{NewMacroBox}{tkzDefMidArc}{\parg{pt1,pt2,pt3}}%
\begin{tabular}{lll}%
arguments &  default & definition \\
\midrule
\TAline{$pt1,pt2,pt3$}{no default}{$pt1$ is the center, $\widearc{pt2pt3}$ the  arc}
\end{tabular}
\end{NewMacroBox}

\begin{tkzexample}[vbox,small]
  \begin{tikzpicture}[scale=1]
   \tkzDefPoints{0/0/A,10/0/B}
   \tkzDefGoldenRatio(A,B)                              \tkzGetPoint{C}
   \tkzDefMidPoint(A,B)                                 \tkzGetPoint{O_1}
   \tkzDefMidPoint(A,C)                                 \tkzGetPoint{O_2}
   \tkzDefMidPoint(C,B)                                 \tkzGetPoint{O_3}
   \tkzDefMidArc(O_3,B,C)                               \tkzGetPoint{P}
   \tkzDefMidArc(O_2,C,A)                               \tkzGetPoint{Q}
   \tkzDefMidArc(O_1,B,A)                               \tkzGetPoint{L}
   \tkzDefPointBy[rotation=center C angle 90](B)        \tkzGetPoint{c}
   \tkzInterCC[common=B](P,B)(O_1,B)                    \tkzGetFirstPoint{P_1}
   \tkzInterCC[common=C](P,C)(O_2,C)                    \tkzGetFirstPoint{P_2}
   \tkzInterCC[common=C](Q,C)(O_3,C)                    \tkzGetFirstPoint{P_3}
   \tkzInterLC[near](c,C)(O_1,A)                        \tkzGetFirstPoint{D}
   \tkzInterLL(A,P_1)(C,D)                              \tkzGetPoint{P_1'}
   \tkzDefPointBy[inversion = center A through D](P_2)  \tkzGetPoint{P_2'}
   \tkzDefCircle[circum](P_3,P_2,P_1)                   \tkzGetPoint{O_4}
   \tkzInterLL(B,Q)(A,P)                                \tkzGetPoint{S}
   \tkzDefMidPoint(P_2',P_1')                           \tkzGetPoint{o}
   \tkzDefPointBy[inversion = center A through D](S)    \tkzGetPoint{S'}
   \tkzDrawArc[cyan,delta=0](Q,A)(P_1) 
   \tkzDrawArc[cyan,delta=0](P,P_1)(B)
   \tkzDrawSemiCircles[teal](O_1,B O_2,C O_3,B)
   \tkzDrawCircles[new](o,P O_4,P_1)
   \tkzDrawSegments(A,B)
   \tkzDrawSegments[cyan](A,P_1 A,S' A,P_2')
   \tkzDrawSegments[purple](B,L C,P_2' B,Q B,L S',P_1')
   \tkzDrawLines[add=0 and .8](B,P_2')
   \tkzDrawLines[add=0 and .4](C,D)
   \tkzDrawPoints(A,B,C,P,Q,P_3,P_2,P_1,P_1',D,P_2',L,S,S')
   \tkzLabelPoints(A,B,C,P_3)
   \tkzLabelPoints[above](P,Q,P_1)
   \tkzLabelPoints[above right](P_2,P_2',D,S')
   \tkzLabelPoints[above left](L,S)
    \tkzLabelPoints[below left](P_1')
  \end{tikzpicture}
\end{tkzexample}

%<---------------------------------------------------------------------->
%                          Point on a line                              >
%<---------------------------------------------------------------------->

\section{Point on line or circle}
\subsection{Point on a line with \tkzcname{tkzDefPointOnLine}}

\begin{NewMacroBox}{tkzDefPointOnLine}{\oarg{local options}\parg{A,B}}%
\begin{tabular}{lll}%
arguments &  default & definition                 \\
\midrule
\TAline{pt1,pt2} {no default}  {Two points to define a line}
\bottomrule
\end{tabular}

\medskip
\begin{tabular}{lll}%
options       & default & definition \\
\midrule
\TOline{pos=nb}  {}{nb is a decimal  }
\end{tabular}
\end{NewMacroBox}

\subsubsection{Use of option \tkzname{pos}}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B}
\tkzDefPointOnLine[pos=1.2](A,B)\tkzGetPoint{P}
\tkzDefPointOnLine[pos=-0.2](A,B)\tkzGetPoint{R}
\tkzDefPointOnLine[pos=0.5](A,B) \tkzGetPoint{S}
\tkzDrawLine[new](A,B)
\tkzDrawPoints(A,B,P)
\tkzLabelPoints(A,B)
\tkzLabelPoint[above](P){pos=$1.2$}
\tkzLabelPoint[above](R){pos=$-.2$}
\tkzLabelPoint[above](S){pos=$.5$}
\tkzDrawPoints(A,B,P,R,S)
\tkzLabelPoints(A,B)
\end{tikzpicture}
\end{tkzexample}

\subsection{Point on a circle with \tkzcname{tkzDefPointOnCircle}}
The order of the arguments has changed: now it is center, angle and point or radius.
I have added two options for working with radians which are \tkzname{through in rad} and \tkzname{R in rad}.

\begin{NewMacroBox}{tkzDefPointOnCircle}{\oarg{local options}}%
\begin{tabular}{lll}%
options   & default & examples definition \\
\midrule
\TOline{through}  {}{through =  center K1 angle 30 point B]}
\TOline{R} {}{R =  center K1 angle 30 radius \tkzcname{rAp}}
\TOline{through in rad}  {}{through in rad=  center K1 angle pi/4 point B]}
\TOline{R in rad} {}{R in rad =  center K1 angle pi/6 radius \tkzcname{rAp}}
\end{tabular}

\medskip
\emph{The new order for arguments are : center, angle and point or radius.}
\end{NewMacroBox}

\subsubsection{Altshiller's Theorem}
 The two lines joining the points of intersection of two orthogonal circles to a point on one of the circles met the other circle in two diametricaly oposite points. Altshiller p 176

\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}[scale=.4]
\tkzDefPoints{0/0/P,5/0/Q,3/2/I}
\tkzDefCircle[orthogonal from=P](Q,I) 
\tkzGetFirstPoint{E}
\tkzDrawCircles(P,E Q,E)
\tkzInterCC[common=E](P,E)(Q,E) \tkzGetFirstPoint{F}
\tkzDefPointOnCircle[through =  center P angle 80 point E]
 \tkzGetPoint{A}
\tkzInterLC[common=E](A,E)(Q,E)  \tkzGetFirstPoint{C}
\tkzInterLL(A,F)(C,Q)  \tkzGetPoint{D}
\tkzDrawLines[add=0 and .75](P,Q)
\tkzDrawLines[add=0 and 2](A,E)
\tkzDrawSegments(P,E E,F F,C A,F C,D)
\tkzDrawPoints(P,Q,E,F,A,C,D)
\tkzLabelPoints(P,Q,F,C,D)
\tkzLabelPoints[above](E,A)
\end{tikzpicture}
\end{tkzexample}  
  
\subsubsection{Use of  \tkzcname{tkzDefPointOnCircle}}

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B,0.8/3/C} 
\tkzDefPointOnCircle[R = center B  angle 90 radius 1]
\tkzGetPoint{I}
\tkzDefCircle[circum](A,B,C)
\tkzGetPoints{G}{g}
\tkzDefPointOnCircle[through = center G  angle 30 point g]
\tkzGetPoint{J}
\tkzDefCircle[R](B,1) \tkzGetPoint{b}
\tkzDrawCircle[teal](B,b)
\tkzDrawCircle(G,J)
\tkzDrawPoints(A,B,C,G,I,J)
\tkzAutoLabelPoints[center=G](A,B,C,J)
\tkzLabelPoints[below](G,I)
\end{tikzpicture}
\end{tkzexample}

\newpage
\section{Special points relating to a triangle}

\subsection{Triangle center: \tkzcname{tkzDefTriangleCenter}}

\begin{NewMacroBox}{tkzDefTriangleCenter}{\oarg{local options}\parg{A,B,C}}%
\tkzHandBomb\ This macro allows you to define the center of a triangle.. Be careful, the arguments are lists of three points. This macro is used in conjunction with \tkzcname{tkzGetPoint} to get the center you are looking for.

 You can use \tkzname{tkzPointResult} if it is not necessary to keep the results.

\medskip
\begin{tabular}{lll}%
\toprule
arguments & default & example \\
\midrule
\TAline{(pt1,pt2,pt3)}{no default}{ \tkzcname{tkzDefTriangleCenter[ortho](B,C,A)}}
\midrule
options             & default & definition                         \\
\midrule
\TOline{ortho}  {circum}{intersection of the altitudes}
\TOline{orthic}  {circum}{\dots}
\TOline{centroid} {circum}{intersection of the medians}
\TOline{median} {circum}{ \dots }
\TOline{circum}{circum}{circle center circumscribed}
\TOline{in}    {circum}{center of the circle inscribed in a triangle }
\TOline{in}    {circum}{intersection of the bisectors}
\TOline{ex}    {circum}{center of a circle exinscribed to a triangle }
\TOline{euler}{circum}{center of Euler's circle }
\TOline{gergonne}{circum}{defined with the Contact triangle}
\TOline{symmedian} {circum}{Lemoine's point or symmedian center or Grebe's point }
\TOline{lemoine} {circum}{ \dots}
\TOline{grebe} {circum}{ \dots}
\TOline{spieker} {circum}{Spieker circle center}
\TOline{nagel}{circum}{Nagel Center}
\TOline{mittenpunkt} {circum}{Or middlespoint}
\TOline{feuerbach}{circum}{Feuerbach Point}

\end{tabular}
\end{NewMacroBox}

\subsubsection{Option \tkzname{ortho} or \tkzname{orthic}}
 The intersection $H$ of the three altitudes  of a triangle is called the orthocenter.

\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(5,1){B}
  \tkzDefPoint(1,4){C}
  \tkzDefTriangleCenter[ortho](B,C,A)
  \tkzGetPoint{H}
  \tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawSegments[new](A,Ha B,Hb C,Hc)  
  \tkzDrawPoints(A,B,C,H)
  \tkzLabelPoint(H){$H$}
  \tkzLabelPoints[below](A,B)
  \tkzLabelPoints[above](C)
 \tkzMarkRightAngles(A,Ha,B B,Hb,C C,Hc,A)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Option \tkzname{centroid}}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}[scale=.75]
  \tkzDefPoints{0/0/A,5/0/B,1/4/C}
  \tkzDefTriangleCenter[centroid](A,B,C)
  \tkzGetPoint{G}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawLines[add = 0 and 2/3,new](A,G B,G C,G)
  \tkzDrawPoints(A,B,C,G)
  \tkzLabelPoint(G){$G$}
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Option \tkzname{circum}}
\begin{tkzexample}[latex=6cm,small]
 \begin{tikzpicture}
  \tkzDefPoints{0/1/A,3/2/B,1/4/C}
  \tkzDefTriangleCenter[circum](A,B,C)
  \tkzGetPoint{O}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawCircle(O,A)
  \tkzDrawPoints(A,B,C,O)
  \tkzLabelPoint(O){$O$}
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Option \tkzname{in}}
In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter.
The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex $A$, for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex $A$, or the excenter of $A$. Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the incircle together with the three excircle centers form an orthocentric system.\\
(Article on \href{https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle}{Wikipedia})
 
 \medskip
 We get the center of the inscribed circle of the triangle. The result is of course in \tkzname{tkzPointResult}. We can retrieve it with \tkzcname{tkzGetPoint}.

\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefTriangleCenter[in](A,B,C)  
   \tkzGetPoint{I}
\tkzDrawLines(A,B B,C C,A)   
\tkzDefCircle[in](A,B,C) \tkzGetPoints{I}{i}
\tkzDrawCircle(I,i)
\tkzDrawPoint[red](I)
\tkzDrawPoints(A,B,C)
\tkzLabelPoint(I){$I$}
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Option \tkzname{ex}}
An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides.\\
(Article on \href{https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle}{Wikipedia})


 We get the center of an inscribed circle of the triangle. The result is of course in \tkzname{tkzPointResult}. We can retrieve it with \tkzcname{tkzGetPoint}.

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.5]
  \tkzDefPoints{0/1/A,3/2/B,1/4/C}
  \tkzDefTriangleCenter[ex](B,C,A)
  \tkzGetPoint{J_c}
  \tkzDefPointBy[projection=onto A--B](J_c)
  \tkzGetPoint{Tc}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawCircle[new](J_c,Tc)
  \tkzDrawLines[add=1.5 and 0](A,C B,C)
  \tkzDrawPoints(A,B,C,J_c)
  \tkzLabelPoints(J_c)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Option \tkzname{euler}}
This macro allows to obtain the center of the circle of the nine points or euler's circle or Feuerbach's circle. The nine-point circle, also called Euler's circle or the Feuerbach circle, is the circle that passes through the perpendicular feet $H_A$, $H_B$, and $H_C$ dropped from the vertices of any reference triangle $ABC$ on the sides opposite them. Euler showed in 1765 that it also passes through the midpoints $M_A$, $M_B$, $M_C$ of the sides of $ABC$. By Feuerbach's theorem, the nine-point circle also passes through the midpoints $E_A$, $E_B$, and $E_C$ of the segments that join the vertices and the orthocenter $H$. These points are commonly referred to as the Euler points.\\ (\url{https://mathworld.wolfram.com/Nine-PointCircle.html})

\begin{tkzexample}[latex=5cm,small]
\begin{tikzpicture}[scale=1,rotate=90]
 \tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
 \tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C}
 \tkzDefTriangleCenter[euler](A,B,C)\tkzGetPoint{N} 
 % I= N nine points
 \tkzDefTriangleCenter[ortho](A,B,C)\tkzGetPoint{H}
 \tkzDefMidPoint(A,H) \tkzGetPoint{E_A}
 \tkzDefMidPoint(C,H) \tkzGetPoint{E_C}
 \tkzDefMidPoint(B,H) \tkzGetPoint{E_B}
 \tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawCircle[new](N,E_A)
 \tkzDrawSegments[new](A,H_A B,H_B C,H_C)
 \tkzDrawPoints(A,B,C,N,H)
 \tkzDrawPoints[new](M_A,M_B,M_C)
 \tkzDrawPoints( H_A,H_B,H_C)
 \tkzDrawPoints[green](E_A,E_B,E_C)
 \tkzAutoLabelPoints[center=N,
 font=\scriptsize](A,B,C,M_A,M_B,M_C,H_A,H_B,H_C,E_A,E_B,E_C)
 \tkzLabelPoints[font=\scriptsize](H,N)
 \tkzMarkSegments[mark=s|,size=3pt,
 color=blue,line width=1pt](B,E_B E_B,H)
\end{tikzpicture}
\end{tkzexample}


\subsubsection{Option \tkzname{symmedian}}

The point of concurrence $K$ of the symmedians, sometimes also called the Lemoine point (in England and France) or the Grebe point (in Germany).\\
\href{https://mathworld.wolfram.com/SymmedianPoint.html}{Weisstein, Eric W. "Symmedian Point." From MathWorld--A Wolfram Web Resource.} 

\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(5,0){B}
  \tkzDefPoint(1,4){C}
  \tkzDefTriangleCenter[symmedian](A,B,C)\tkzGetPoint{K}
  \tkzDefTriangleCenter[median](A,B,C)\tkzGetPoint{G}
  \tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I}
  \tkzDefSpcTriangle[centroid,name=M](A,B,C){a,b,c}
  \tkzDefSpcTriangle[incentral,name=I](A,B,C){a,b,c}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawLines[add = 0 and 2/3,new](A,K B,K C,K)
  \tkzDrawSegments[color=cyan](A,Ma B,Mb C,Mc)
  \tkzDrawSegments[color=green](A,Ia B,Ib C,Ic)
  \tkzDrawPoints(A,B,C,K,G,I)
  \tkzLabelPoints[font=\scriptsize](A,B,K,G,I)
  \tkzLabelPoints[above,font=\scriptsize](C)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Option \tkzname{spieker}}
The Spieker center is the center $Sp$ of the Spieker circle, i.e., the incenter of the medial triangle of a reference triangle.\\
\href{https://mathworld.wolfram.com/SpiekerCenter.html}{Weisstein, Eric W. "Spieker Center." From MathWorld--A Wolfram Web Resource. }

\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}
 \tkzDefPoints{0/0/A,6/0/B,5/5/C}
 \tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc}
 \tkzDefTriangleCenter[centroid](A,B,C) 
 \tkzGetPoint{G}
 \tkzDefTriangleCenter[spieker](A,B,C) 
 \tkzGetPoint{Sp}
 \tkzDrawPolygon[](A,B,C)
 \tkzDrawPolygon[new](Ma,Mb,Mc)
 \tkzDefCircle[in](Ma,Mb,Mc) \tkzGetPoints{I}{i}
 \tkzDrawCircle(I,i)
 \tkzDrawPoints(B,C,A,Sp,Ma,Mb,Mc)
 \tkzAutoLabelPoints[center=G,dist=.3](Ma,Mb)
 \tkzLabelPoints[right](Sp)
 \tkzLabelPoints[below](A,B,Mc)
 \tkzLabelPoints[above](C)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Option \tkzname{gergonne}}

The Gergonne Point is the point of concurrency which results from connecting the vertices of a triangle to the opposite points of tangency of the triangle's incircle. 
(Joseph Gergonne French mathematician )

\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/B,3.6/0/C,2.8/4/A}
\tkzDefTriangleCenter[gergonne](A,B,C) 
\tkzGetPoint{Ge}
\tkzDefSpcTriangle[intouch](A,B,C){C_1,C_2,C_3}
\tkzDefCircle[in](A,B,C) \tkzGetPoints{I}{i}
\tkzDrawLines[add=.25 and .25,teal](A,B A,C B,C)
\tkzDrawSegments[new](A,C_1 B,C_2 C,C_3)
\tkzDrawPoints(A,...,C,C_1,C_2,C_3)
\tkzDrawPoints[red](Ge)
\tkzLabelPoints(B,C,C_1,Ge)
\tkzLabelPoints[above](A,C_2,C_3)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Option \tkzname{nagel}}
Let $Ta$ be the point at which the excircle with center $Ja$ meets the side $BC$ of a triangle $ABC$, and define $Tb$ and $Tc$ similarly. Then the lines $ATa$, $BTb$, and $CTc$ concur in the Nagel point $Na$.\\
\href{https://mathworld.wolfram.com/NagelPoint.html}{Weisstein, Eric W. "Nagel point." From MathWorld--A Wolfram Web Resource. }


\begin{tkzexample}[latex=7cm,small]
  \begin{tikzpicture}[scale=.5]
  \tkzDefPoints{0/0/A,6/0/B,4/6/C}
  \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc}
  \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc}
  \tkzDefTriangleCenter[nagel](A,B,C) 
  \tkzGetPoint{Na}
  \tkzDrawPolygon[blue](A,B,C)
  \tkzDrawLines[add=0 and 1](A,Ta B,Tb C,Tc)
  \tkzDrawPoints[new](Ja,Jb,Jc,Ta,Tb,Tc)
  \tkzClipBB
  \tkzDrawLines[add=1 and 1,dashed](A,B B,C C,A)
  \tkzDrawCircles[new](Ja,Ta Jb,Tb Jc,Tc)
  \tkzDrawSegments[new,dashed](Ja,Ta Jb,Tb Jc,Tc)
  \tkzDrawPoints(B,C,A)
  \tkzDrawPoints[new](Na)
  \tkzLabelPoints(B,C,A)
  \tkzLabelPoints[new](Na)
  \tkzLabelPoints[new](Ja,Jb,Jc,Ta,Tb,Tc)
  \tkzMarkRightAngles[fill=gray!20](Ja,Ta,C
              Jb,Tb,A Jc,Tc,B)
  \end{tikzpicture}
\end{tkzexample}


\subsubsection{Option   \tkzname{mittenpunkt}} 

The mittenpunkt (also called the middlespoint) of a triangle $ABC$ is the symmedian point of the excentral triangle, i.e., the point of concurrence M of the lines from the excenters  through the corresponding triangle side midpoints.\\
\href{https://mathworld.wolfram.com/Mittenpunkt.html}{Weisstein, Eric W. "Mittenpunkt." From MathWorld--A Wolfram Web Resource.}


\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}[scale=.5]
 \tkzDefPoints{0/0/A,6/0/B,4/6/C}
 \tkzDefSpcTriangle[centroid](A,B,C){Ma,Mb,Mc}
 \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc}
 \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc}
 \tkzDefTriangleCenter[mittenpunkt](A,B,C) 
 \tkzGetPoint{Mi}
 \tkzDrawPoints[new](Ma,Mb,Mc,Ja,Jb,Jc)
 \tkzClipBB
 \tkzDrawPolygon[blue](A,B,C)
 \tkzDrawLines[add=0 and 1](Ja,Ma 
               Jb,Mb Jc,Mc)
 \tkzDrawLines[add=1 and 1](A,B A,C B,C)
 \tkzDrawCircles[new](Ja,Ta Jb,Tb Jc,Tc)
 \tkzDrawPoints(B,C,A)
 \tkzDrawPoints[new](Mi)
 \tkzLabelPoints(Mi)
 \tkzLabelPoints[left](Mb)
 \tkzLabelPoints[new](Ma,Mc,Jb,Jc)
 \tkzLabelPoints[above left](Ja,Jc)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Relation between  \tkzname{gergonne}, \tkzname{centroid} and \tkzname{mittenpunkt}}

The Gergonne point $Ge$, triangle centroid $G$, and mittenpunkt $M$ are collinear, with  GeG/GM=2.

\begin{tkzexample}[vbox,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,2/2/B,8/0/C}
\tkzDefTriangleCenter[gergonne](A,B,C) \tkzGetPoint{Ge}
\tkzDefTriangleCenter[centroid](A,B,C)       
\tkzGetPoint{G}
\tkzDefTriangleCenter[mittenpunkt](A,B,C) 
\tkzGetPoint{M}
\tkzDrawLines[add=.25 and .25,teal](A,B A,C B,C)
\tkzDrawLines[add=.25 and .25,new](Ge,M)
\tkzDrawPoints(A,...,C)
\tkzDrawPoints[red,size=2](G,M,Ge)
\tkzLabelPoints(A,...,C,M,G,Ge)
\tkzMarkSegment[mark=s||](Ge,G)
\tkzMarkSegment[mark=s|](G,M)
\end{tikzpicture}
\end{tkzexample}

\endinput