summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/tkz/tkz-elements/doc/latex/TKZdoc-elements-classes-triangle.tex
blob: f54a53f39ebc4658bf10fa18f780bf442d01cc50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
\newpage
\section{Class \Iclass{triangle}} % (fold)
\label{sec:class_triangle}

\subsection{Attributes of a triangle} % (fold)
\label{sub:attributes_of_a_triangle}
The triangle object is created using the \Imeth{triangle}{new} method, for example with
\begin{mybox}
   Creation  | T.ABC = triangle : new ( z.A , z.B , z.C ) |
\end{mybox}
(Refer to examples:  \ref{sub:alternate}; \ref{sub:apollonius_circle}; \ref{sub:excircles} ). Multiple attributes are then created.

\bgroup
\catcode`_=12
\small
\captionof{table}{Triangle attributes.}\label{triangle:att}
\begin{tabular}{ll}
\toprule
\textbf{Attributes}     & \textbf{Application}\\
\Iattr{triangle}{pa} &T.ABC.pa \\
\Iattr{triangle}{pb} &T.ABC.pb \\
\Iattr{triangle}{pc} &T.ABC.pc \\
\Iattr{triangle}{type} & 'triangle' \\
\Iattr{triangle}{circumcenter} & T.ABC.circumcenter\\
\Iattr{triangle}{centroid} &T.ABC.centroid\\
\Iattr{triangle}{incenter} &T.ABC.incenter\\
\Iattr{triangle}{orthocenter}  &T.ABC.orthocenter\\
\Iattr{triangle}{eulercenter} &T.ABC.eulercenter  \\
\Iattr{triangle}{spiekercenter} &T.ABC.spiekercenter  \\
\Iattr{triangle}{a}& It's the length of the side opposite the first vertex  \\
\Iattr{triangle}{b}& It's the length of the side opposite the second verte\\
\Iattr{triangle}{c}& It's the length of the side opposite the third vertex \\
\Iattr{triangle}{alpha}& Vertex angle of the first vertex\\
\Iattr{triangle}{beta}& Vertex angle of the second vertex\\
\Iattr{triangle}{gamma}& Vertex angle of the third vertex\\
\Iattr{triangle}{ab}& Line defined by the first two points of the triangle\\
\Iattr{triangle}{bc}& Line defined by the last two points \\
\Iattr{triangle}{ca}&  Line defined by the last and the first points of the triangle\\
\bottomrule %
\end{tabular}
\egroup

\subsection{Triangle attributes: angles} % (fold)
\label{sub:triangle_attributes_angles}

\begin{minipage}{.6\textwidth}
\begin{Verbatim}
\begin{tkzelements}
  z.A       = point: new(0,0)
  z.B       = point: new(5,0)
  z.C       = point: new(2,3)
  T.ABC     = triangle: new (z.A,z.B,z.C)
\end{tkzelements}
\def\wangle#1{\tkzDN[2]{%
  \tkzUseLua{math.deg(T.ABC.#1)}}}
\begin{tikzpicture}
\tkzGetNodes
  \tkzDrawPolygons(A,B,C)
  \tkzLabelAngle(B,A,C){$\wangle{alpha}^\circ$}
  \tkzLabelAngle(C,B,A){$\wangle{beta}^\circ$}
  \tkzLabelAngle(A,C,B){$\wangle{gamma}^\circ$}
\end{tikzpicture}
\end{Verbatim}
\end{minipage}
\begin{minipage}{.4\textwidth}
\begin{tkzelements}
   z.A       = point: new(0,0)
   z.B       = point: new(5,0)
   z.C       = point: new(2,3)
   T.ABC     = triangle: new (z.A,z.B,z.C)
\end{tkzelements}
\def\wangle#1{\tkzDN[2]{\tkzUseLua{math.deg(T.ABC.#1)}}}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons(A,B,C)
\tkzLabelAngle(B,A,C){$\wangle{alpha}^\circ$}
\tkzLabelAngle(C,B,A){$\wangle{beta}^\circ$}
\tkzLabelAngle(A,C,B){$\wangle{gamma}^\circ$}
\end{tikzpicture}
\end{minipage}
% subsection triangle_attributes_angles (end)

\subsubsection{Example: triangle attributes} % (fold)
\label{ssub:example_triangle_attributes}
\begin{minipage}{.5\textwidth}
\begin{Verbatim}
\begin{tkzelements}
   z.A   = point: new (0 , 0)
   z.B   = point: new (4 , 0)
   z.C   = point: new (0 , 3)
   T.ABC = triangle : new (z.A,z.B,z.C)
   z.O   = T.ABC.circumcenter
   z.I   = T.ABC.incenter
   z.H   = T.ABC.orthocenter
   z.G   = T.ABC.centroid
   a     = T.ABC.a
   b     = T.ABC.b
   c     = T.ABC.c
   alpha = T.ABC.alpha
   beta  = T.ABC.beta
   gamma = T.ABC.gamma
\end{tkzelements}
\begin{tikzpicture}
   \tkzGetNodes
   \tkzDrawPolygon(A,B,C)
   \tkzDrawPoints(A,B,C,O,G,I,H)
   \tkzLabelPoints[below](A,B,O,G,I)
   \tkzLabelPoints[above right](H,C)
   \tkzDrawCircles(O,A)
   \tkzLabelSegment[sloped](A,B){\tkzUseLua{c}}
   \tkzLabelSegment[sloped,above](B,C){\tkzUseLua{a}}
\end{tikzpicture}
\end{Verbatim}
\end{minipage}
\begin{minipage}{.5\textwidth}
\begin{tkzelements}
   z.A   = point: new (0 , 0)
   z.B   = point: new (4 , 0)
   z.C   = point: new (0 , 3)
   T.ABC = triangle : new (z.A,z.B,z.C)
   z.O   = T.ABC.circumcenter
   z.I   = T.ABC.incenter
   z.H   = T.ABC.orthocenter
   z.G   = T.ABC.centroid
   a     = T.ABC.a
   b     = T.ABC.b
   c     = T.ABC.c
   alpha = T.ABC.alpha
   beta  = T.ABC.beta
   gamma = T.ABC.gamma
\end{tkzelements}  
\hspace*{\fill}
\begin{tikzpicture}
   \tkzGetNodes
   \tkzDrawPolygon(A,B,C)
   \tkzDrawPoints(A,B,C,O,G,I,H)
   \tkzLabelPoints[below](A,B,O,G,I)
   \tkzLabelPoints[above right](H,C)
   \tkzDrawCircles(O,A)
   \tkzLabelSegment[sloped](A,B){\tkzUseLua{c}}
   \tkzLabelSegment[sloped,above](B,C){\tkzUseLua{a}}
\end{tikzpicture}
\hspace*{\fill}
\end{minipage}

% subsubsection example_triangle_attributes (end)

% subsection attributes_of_a_triangle (end)

\subsection{Methods of the class triangle} % (fold)
\label{sub:methods_of_the_class_triangle}

\bgroup
\catcode`_=12
\small
\begin{minipage}{\textwidth}
\captionof{table}{triangle methods.}\label{triangle:met}
\begin{tabular}{ll}
\toprule
\textbf{Methods} & \textbf{Comments}     \\
\midrule
\Imeth{triangle}{new} (a, b ,c) & |T.ABC = triangle : new (z.A,z.B,z.C)|    \\
 ... & |T| or |T.name| with what you want for name, is possible.\\
\midrule 
 \textbf{Points} &\\
\midrule 
\Imeth{triangle}{lemoine\_point ()} &  |T.ABC : lemoine_point ()| intersection os the symmedians\\
\Imeth{triangle}{symmedian\_point ()}  & Lemoine point  or the Grebe point \\
\Imeth{triangle}{bevan\_point ()}  &  Circumcenter of the excentral triangle\\
\Imeth{triangle}{mittenpunkt\_point ()}  &  Symmedian point of the excentral triangle\\
\Imeth{triangle}{gergonne\_point ()}  & Intersection of the three cevians that lead to the contact points \\
\Imeth{triangle}{nagel\_point () } & Intersection of the three cevians that lead to the extouch points\\
\Imeth{triangle}{feuerbach\_point () } & The point at which the incircle and euler circle are tangent. \\
\Imeth{triangle}{spieker\_center ()} &  Incenter of the medial triangle \\
\Imeth{triangle}{barycenter (ka,kb,kc)} & |T.ABC: barycenter (2,1,1)| barycenter of |({A,2},{B,1},{C,1}) |\\
\Imeth{triangle}{base (u,v)  }  &  |z.D = T.ABC: base(1,1)| \tkzar ABDC is a parallelogram   \\
\Imeth{triangle}{projection (p) }   &  Projection of a point on the sides \\
\Imeth{triangle}{euler\_points () } & Euler points of euler circle   \\
\Imeth{triangle}{nine\_points () }   & 9 Points of the euler circle  \\
\Imeth{triangle}{parallelogram ()} & |z.D = T.ABC : parallelogram ()| \tkzar ABCD is a parallelogram\\
\midrule
 \textbf{Lines} &\\
\midrule 
\Imeth{triangle}{altitude (n) }  & |L.AHa = T.ABC : altitude () | n empty or 0  line from $A$  
\footnote{|z.Ha = L.AHa.pb| recovers the common point of the opposite side and altitude. The method |orthic| is usefull.}\\
\Imeth{triangle}{bisector (n) }  & |L.Bb = T.ABC : bisector (1) |  n = 1   line from $B$     \footnote{|_,z.b = get_points(L.Bb)| recovers the common point of the opposite side and bisector. }\\
\Imeth{triangle}{bisector\_ext(n) }   &   n=2  line from the third vertex.\\
\Imeth{triangle}{symmedian\_line (n)}  & Cevian with respect to Lemoine point. \\
\Imeth{triangle}{euler\_line () } & the line through $N$ ,$G$, $H$ and $O$ if the triangle is not equilateral
\footnote{N center of nine points circle, G centroid, H orthocenter , O circum center } \\
\Imeth{triangle}{antiparallel(pt,n)} & n=0 antiparallel through pt to $(BC)$, n=1 to $(AC)$ etc.\\
\midrule 
 \textbf{Circles} &\\
\midrule 
\Imeth{triangle}{euler\_circle ()} & C.|NP = T.ABC : euler_circle ()| \tkzar $N$ euler point 
 \footnote{ The midpoint of each side of the triangle, the foot of each altitude, the midpoint of the line segment from each vertex of the triangle to the orthocenter.}   \\
\Imeth{triangle}{circum\_circle ()}  & |C.OA = T.ABC : circum ()| Triangle's circumscribed circle \\
\Imeth{triangle}{in\_circle ()}   &   Inscribed circle of  the triangle\\
\Imeth{triangle}{ex\_circle (n)}  &  Circle tangent to  the three sides of the triangle ; n =1 swap ; n=2 2 swap \\
\Imeth{triangle}{first\_lemoine\_circle ()}  & The center is the midpoint between Lemoine point and the circumcenter.\footnote{
Through the Lemoine point draw lines parallel to the triangle's sides. The points where the parallel lines intersect the sides of ABC
 then lie on a circle known as the first Lemoine circle. } \\
\Imeth{triangle}{second\_lemoine\_circle ()} & Refer to example \ref{sub:antiparallel_through_lemoine_point}\\
\Imeth{triangle}{spieker\_circle ()} & The incircle of the medial triangle\\

\bottomrule
\end{tabular}
\end{minipage}
\egroup

Remark: If you don't need to use the triangle object several times, you can obtain a bisector or a altitude with the next functions 

|bisector (z.A,z.B,z.C)| and |altitude (z.A,z.B,z.C)| Refer to (\ref{misc})

\clearpage\newpage
\bgroup
\catcode`_=12
\small
\begin{minipage}{\textwidth}
\begin{center}
%\caption{Methods of the class triangle (follow-up) }
\begin{tabular}{ll}
\toprule
\textbf{Methods} & \textbf{Comments}     \\
\midrule 
 \textbf{Triangles} &\\
\midrule 
\Imeth{triangle}{orthic ()}  &  |T = T.ABC : orthic ()| triangle joining the feet of the altitudes   \\
\Imeth{triangle}{medial ()}  &   |T = T.ABC : medial ()| triangle with vertices at the midpoints\\
\Imeth{triangle}{incentral ()}    &   Cevian triangle of the triangle with respect to its incenter \\
\Imeth{triangle}{excentral ()  }  &   Triangle with vertices corresponding to the excenters   \\
\Imeth{triangle}{extouch ()}  & Triangle formed by the points of tangency with the excircles    \\
\Imeth{triangle}{intouch () } &  Contact triangle formed by the points of tangency of the incircle \\
\Imeth{triangle}{tangential ()} & Triangle formed by the lines tangent to the circumcircle at the vertices\\
\Imeth{triangle}{feuerbach ()} & Triangle formed by the points of tangency of the euler circle with the excircles\\
\Imeth{triangle}{anti () }&  Anticomplementary Triangle The given triangle is its medial triangle.   \\
\Imeth{triangle}{cevian (pt)} & Triangle formed with the endpoints of the three cevians with respect to |pt|.\\
\Imeth{triangle}{symmedian ()} & Triangle formed with the intersection points of the symmedians. \\
\Imeth{triangle}{euler ()} &  Triangle formed with the euler points \\
\midrule 
 \textbf{Ellipses} &\\
\Imeth{triangle}{steiner\_inellipse ()}   & Refer to ex. (\ref{ssub:steiner_inellipse_and_circumellipse})\\ 
\Imeth{triangle}{steiner\_circumellipse ()}   & Refer to ex. (\ref{ssub:steiner_inellipse_and_circumellipse})\\ 
\Imeth{triangle}{euler\_ellipse ()}   & Refer to ex. (\ref{sub:euler_ellipse})\\ 
 \midrule 
 \textbf{Miscellaneous} &\\
\midrule 
\Imeth{triangle}{area ()}   & $ \mathcal{A}$| = T.ABC: area ()|\\
\Imeth{triangle}{barycentric\_coordinates (pt)} & Triples of numbers corresponding to masses placed at the vertices\\
\Imeth{triangle}{in\_out (pt)}  & Boolean. Test if |pt| is inside the triangle\\
\Imeth{triangle}{check\_equilateral ()} & Boolean. Test if the triangle is equilateral\\
\bottomrule
\end{tabular}
\end{center}
\end{minipage}
\egroup
% subsubsection methods_of_the_class_triangle (end)

\subsubsection{Euler line} % (fold)
\label{ssub:euler_line}

\begin{minipage}{.5\textwidth}
\begin{Verbatim}
\begin{tkzelements}
   z.A           = point: new (0 , 0)
   z.B           = point: new (6 , 0)
   z.C           = point: new (1.5 , 3.5)
   T.ABC         = triangle: new (z.A,z.B,z.C)
   z.O           = T.ABC.circumcenter
   z.G           = T.ABC.centroid
   z.N           = T.ABC.eulercenter
   z.H           = T.ABC.orthocenter
   z.P,z.Q,z.R   = get_points (T.ABC: orthic())
   z.K,z.I,z.J   = get_points (T.ABC: medial ())
\end{tkzelements}
\begin{tikzpicture}
   \tkzGetNodes
   \tkzDrawLines[blue](O,H)
   \tkzDrawCircle[red](N,I)
   \tkzDrawCircles[teal](O,A)
   \tkzDrawSegments(A,P B,Q C,R)
   \tkzDrawSegments[red](A,I B,J C,K)
   \tkzDrawPolygons(A,B,C)
   \tkzDrawPoints(A,B,C,N,I,J,K,O,P,Q,R,H,G)
   \tkzLabelPoints(A,B,C,I,J,K,P,Q,R,H)
   \tkzLabelPoints[below](N,O,G)
\end{tikzpicture}
\end{Verbatim}
\end{minipage}
\begin{minipage}{.5\textwidth}
\begin{tkzelements}
 z.A    = point: new (0 , 0)
 z.B    = point: new (6 , 0)
 z.C    = point: new (1.5 , 3.5)
 T.ABC  = triangle: new (z.A,z.B,z.C)
 z.O    = T.ABC.circumcenter
 z.G    = T.ABC.centroid
 z.N    = T.ABC. eulercenter
 z.H    = T.ABC. orthocenter
 z.P,z.Q,z.R    = get_points (T.ABC: orthic())
 z.K,z.I,z.J    = get_points (T.ABC: medial ())
\end{tkzelements}
\hspace*{\fill}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines[blue](O,H)
\tkzDrawCircle[red](N,I)
\tkzDrawCircles[teal](O,A)
\tkzDrawSegments(A,P B,Q C,R)
\tkzDrawSegments[red](A,I B,J C,K)
\tkzDrawPolygons(A,B,C)
\tkzDrawPoints(A,B,C,N,I,J,K,O,P,Q,R,H,G)
\tkzLabelPoints(A,B,C,I,J,K,P,Q,R)
\tkzLabelPoints[below](N,O,G,H)
\end{tikzpicture}
\end{minipage}
% subsubsection euler_line (end)

\subsection{Euler ellipse} % (fold)
\label{sub:euler_ellipse}
Example of obtaining the Euler circle as well as the Euler ellipse.

\begin{tkzelements}
z.A     = point: new (2,3.8)
z.B     = point: new (0 ,0)
z.C     = point: new (6.2 ,0)
L.AB    = line : new ( z.A , z.B )
T.ABC   = triangle: new (z.A,z.B,z.C)
z.K     = midpoint (z.B,z.C) 
E.euler = T.ABC : euler_ellipse ()
z.N     = T.ABC.eulercenter
C.euler = circle : new (z.N,z.K)
ang     = math.deg(E.euler.slope)
z.O     = T.ABC.circumcenter
z.G     = T.ABC.centroid
z.H     = T.ABC.orthocenter
\end{tkzelements}

\begin{minipage}{.5\textwidth}
\begin{Verbatim}
\begin{tkzelements}
z.A     = point: new (2,3.8)
z.B     = point: new (0 ,0)
z.C     = point: new (6.2 ,0)
L.AB    = line : new ( z.A , z.B )
T.ABC   = triangle: new (z.A,z.B,z.C)
z.K     = midpoint (z.B,z.C) 
E.euler = T.ABC : euler_ellipse ()
z.N     = T.ABC.eulercenter
C.euler = circle : new (z.N,z.K)
ang     = math.deg(E.euler.slope)
z.O     = T.ABC.circumcenter
z.G     = T.ABC.centroid
z.H     = T.ABC.orthocenter
\end{tkzelements}
\end{Verbatim}
\end{minipage}
\begin{minipage}{.5\textwidth}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(N,K)
\tkzDrawEllipse[teal](N,\tkzUseLua{E.euler.Rx},
      \tkzUseLua{E.euler.Ry},\tkzUseLua{ang})
\tkzDrawLine(O,H)
\tkzDrawPoints(A,B,C,N,O,H,G)
\tkzLabelPoints[below left](B,C,N,O,H,G)
\tkzLabelPoints[above](A)
\end{tikzpicture}
\end{minipage}

\begin{Verbatim}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(N,K)
\tkzDrawEllipse[teal](N,\tkzUseLua{E.euler.Rx},
      \tkzUseLua{E.euler.Ry},\tkzUseLua{ang})
\tkzDrawLine(O,H)
\tkzDrawPoints(A,B,C,N,O,H,G)
\tkzLabelPoints[below left](B,C,N,O,H,G)
\tkzLabelPoints[above](A)
\end{tikzpicture}
\end{Verbatim}
% subsection euler_ellipse (end)

\subsubsection{Steiner inellipse and circumellipse} % (fold)
\label{ssub:steiner_inellipse_and_circumellipse}
In this example, the inner and outer Steiner ellipses, referred to as the "inellipse" and "circumellipse" (Mathworld.com), respectively, along with the orthoptic circle, are depicted.. The triangle must be acutangle.

\begin{minipage}{.5\textwidth}
\begin{Verbatim}
\begin{tkzelements}
  scale    = .5
  z.A      = point: new (1 , 4)
  z.B      = point: new (11 , 1)
  z.C      = point: new (5 , 12) 
  T.ABC    = triangle: new(z.A,z.B,z.C)
  E        = T.ABC: steiner_inellipse ()
  z.G      = E.center
  ang      = math.deg(E.slope)
  z.F      = E.Fa
  z.E      = E.Fb   
  C        = E: orthoptic_circle ()
  z.w      = C.center
  z.o      = C.through
  EE       = T.ABC : steiner_circumellipse ()
  z.M      = C : point (0)
  L.T1,L.T2= E : tangent_from (z.M)
  z.T1     = L.T1.pb
  z.T2     = L.T2.pb
\end{tkzelements}
\end{Verbatim}
\end{minipage}
\begin{minipage}{.5\textwidth}\begin{tkzelements}
  scale = .5
z.A      = point: new (1 , 4)
z.B      = point: new (11 , 1)
z.C      = point: new (5 , 12) 
T.ABC    = triangle: new(z.A,z.B,z.C)
E        = T.ABC: steiner_inellipse ()
z.G      = E.center
ang      = math.deg(E.slope)
z.F      = E.Fa
z.E      = E.Fb   
C        = E: orthoptic_circle ()
z.w      = C.center
z.o      = C.through
EE       = T.ABC : steiner_circumellipse ()
z.M      = C : point (0)
L.T1,L.T2= E : tangent_from (z.M)
z.T1     = L.T1.pb
z.T2     = L.T2.pb
\end{tkzelements}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircles(w,o)
\tkzDrawEllipse[teal](G,\tkzUseLua{E.Rx},
  \tkzUseLua{E.Ry},\tkzUseLua{ang})
\tkzDrawEllipse[red](G,\tkzUseLua{EE.Rx},
  \tkzUseLua{EE.Ry},\tkzUseLua{ang})
\tkzDrawLines(F,E M,T1 M,T2) %
\tkzDrawPoints(A,B,C,F,E,G,M,T1,T2)
\tkzLabelPoints[above](C,M,T1)  
\tkzLabelPoints[right](T2,B)
\tkzLabelPoints[below left](A,F,E,G)
\end{tikzpicture}
\end{minipage}

\begin{Verbatim}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircles(w,o)
\tkzDrawEllipse[teal](G,\tkzUseLua{E.Rx},
  \tkzUseLua{E.Ry},\tkzUseLua{ang})
\tkzDrawEllipse[red](G,\tkzUseLua{EE.Rx},
  \tkzUseLua{EE.Ry},\tkzUseLua{ang})
\tkzDrawLines(F,E M,T1 M,T2) %
\tkzDrawPoints(A,B,C,F,E,G,M,T1,T2)
\tkzLabelPoints[above](C,M,T1)  
\tkzLabelPoints[right](T2,B)
\tkzLabelPoints[below left](A,F,E,G)
\end{tikzpicture}
\end{Verbatim}
% subsubsection steiner_inellipse_and_circumellipse (end)


\subsection{Harmonic division and bisector} % (fold)
\label{sub:harmonic_division_and_bisector}

\begin{minipage}{.4\textwidth}
\begin{Verbatim}
\begin{tkzelements}  
   scale    =  .4
   z.A      = point: new (0 , 0)
   z.B      = point: new (6 , 0)
   z.M      = point: new (5 , 4)
   T.AMB    = triangle : new (z.A,z.M,z.B)
   L.AB     = T.AMB.ca
   L.bis    = T.AMB : bisector (1)
   z.C      = L.bis.pb
   L.bisext = T.AMB : bisector_ext (1)
   z.D      = intersection (L.bisext,L.AB)
   L.CD     = line: new (z.C,z.D)
   z.O      = L.CD.mid
   L.AM     = line: new (z.A,z.M)
   L.LL     = L.AM : ll_from (z.B)
   L.MC     = line: new (z.M,z.C)
   L.MD     = line: new (z.M,z.D)
   z.E      = intersection (L.LL,L.MC)
   z.F      = intersection (L.LL,L.MD)
\end{tkzelements}
\end{Verbatim}
\end{minipage}
\begin{minipage}{.6\textwidth}
\begin{tkzelements}  
   scale =.4
   z.A  = point: new (0 , 0)
   z.B  = point: new (6 , 0)
   z.M  = point: new (5 , 4)
   T.AMB    = triangle : new (z.A,z.M,z.B)
   L.AB = T.AMB.ca
   L.bis    = T.AMB : bisector (1)
   z.C  = L.bis.pb
   L.bisext = T.AMB : bisector_ext (1)
   z.D  = intersection (L.bisext,L.AB)
   L.CD = line: new (z.C,z.D)
   z.O  = L.CD.mid
   L.AM = line: new (z.A,z.M)
   L.LL = L.AM : ll_from (z.B)
   L.MC = line: new (z.M,z.C)
   L.MD = line: new (z.M,z.D)
   z.E  = intersection (L.LL,L.MC)
   z.F  = intersection (L.LL,L.MD)
\end{tkzelements}
\hspace{\fill}   
\begin{tikzpicture}
  \tkzGetNodes
  \tkzDrawPolygon(A,B,M)
  \tkzDrawCircle[purple](O,C)
  \tkzDrawSegments[purple](M,E M,D E,F)
  \tkzDrawSegments(D,B)
  \tkzDrawPoints(A,B,M,C,D,E,F)
  \tkzLabelPoints[below right](A,B,C,D,E)
  \tkzLabelPoints[above](M,F)
  \tkzMarkRightAngle[opacity=.4,fill=gray!20](C,M,D)
  \tkzMarkAngles[mark=||,size=.5](A,M,E E,M,B B,E,M)
  \tkzMarkAngles[mark=|,size=.5](B,M,F M,F,B)
  \tkzMarkSegments(B,E B,M B,F)
\end{tikzpicture}
\end{minipage}

\begin{Verbatim}
\begin{tikzpicture}
   \tkzGetNodes
   \tkzDrawPolygon(A,B,M)
   \tkzDrawCircle[purple](O,C)
   \tkzDrawSegments[purple](M,E M,D E,F)
   \tkzDrawSegments(D,B)
   \tkzDrawPoints(A,B,M,C,D,E,F)
   \tkzLabelPoints[below right](A,B,C,D,E)
   \tkzLabelPoints[above](M,F)
   \tkzMarkRightAngle[opacity=.4,fill=gray!20](C,M,D)
   \tkzMarkAngles[mark=||,size=.5](A,M,E E,M,B B,E,M)
   \tkzMarkAngles[mark=|,size=.5](B,M,F M,F,B)
   \tkzMarkSegments(B,E B,M B,F)
\end{tikzpicture}
\end{Verbatim}



% subsection harmonic_division_and_bisector (end)
% subsection methods_of_the_class_triangle (end)
% section class_triangle (end)
\endinput