summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/eqexam/examples/test03.tex
blob: 717c41a4f866eb6c48cecb5272bd32112279eadf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
\documentclass{article}
\usepackage[fleqn]{amsmath}
\usepackage[pointsonleft,nototals,
    forcolorpaper,useforms,
% choose to compile with exactly one of the next 4 options
%-------------------
    nosolutions,    % compile with no solutions to get the exam document
%   answerkey,      % get answer key
%   vspacewithsolns,% put solutions at end of document
%   solutionsonly,  % compile with vspacewithsolns several times, then compile with solutionsonly
%-------------------
%   coverpage,coverpagesumry=bypages
    showgrayletters]{eqexam}
\usepackage{graphicx}

\forceNoColor
\vspacewithkeyOn

\university
{%
      NORTHWEST FLORIDA STATE COLLEGE\\
         Department of Mathematics
}
\email{storyd@nwfsc.edu}

\examSIDLabel{Class: MAC 1105, \vA{12:30 pm, L-134}\vB{12:30 am, L-105}}
\coverpageSubjectFmt{\bfseries\LARGE}
\coverpageTitleFmt{\bfseries\LARGE}
\examNum{3}\numVersions{2}\forVersion{a}
\subject[MAC1105]{College Algebra}
\longTitleText
    {Test~\nExam}
    {Test~\nExam}
\endlongTitleText
\shortTitleText
    {T\nExam}
    {T\nExam}
\endshortTitleText
\altTitle{\vA{12:30 pm, L-134}\vB{12:30 pm, L-105}}
\title[\sExam]{\Exam}
\author{Dr.\ D. P. Story}
\date{\thisterm, \the\year}
\duedate{04/05/11}
\keywords{MAC 1105, Exam \nExam, {\thisterm} semester, \theduedate, at NWFSC}
\renewcommand{\fillInFormatDefault}{}
\DoNotFitItIn
\eqpartsitemsep{3pt}
\solAtEndFormatting{\eqequesitemsep{3pt}}


\everymath{\displaystyle}
%\renameSolnAfterTo{}
%\resetSolnAfterToDefault


\eqCommentsColor{gray}
\eqCommentsColorBody{gray}
\newcommand{\cs}[1]{\texttt{\char`\\#1}}
\def\qt#1{&&\qquad\text{#1}}


\encloseProblemsWith{theseproblems}

\begin{document}

\maketitle


\begin{exam}{Test\nExam}

\ifsolutionsonly\NoPoints
\begin{instructions}[Solutions:]
The solutions to the test.
\end{instructions}
\else
\begin{instructions}[Instructions:]
This exam has {\nQuesInExam} questions distributed over {\nPagesOnExam} pages.
Solve each of the problem and box in your final $\boxed{\text{answer}}$, where applicable.
\end{instructions}
\fi

\begin{theseproblems}

\renameSolnAfterTo{}

\begin{problem*}[2ea]\label{shortAns}
Answer each of the following, none of the problems shown below requires any
calculations. Respond to True/False questions with \texttt{T} (for True) or \texttt{F} (for
False).
\begin{parts}
    \item When viewing the graph of a function, we may use the
    \fillin[u]{1.5in}{Horizontal Line} Test to determine if it is a
    one-to-one function.
\begin{solution}[]\ifvspacewithsolns
When viewing the graph of a function, we may use the
\fillin[u]{1.5in}{Horizontal Line} Test to determine if it is a
one-to-one function.\fi
\end{solution}

    \item \TF{F} (\texttt{T} or \texttt{F}) The graph of the function $ f(x) =
    2-4x-3x^2$ is a parabola that opens up.
\begin{solution}[]\ifvspacewithsolns
\TF{F} (\texttt{T} or \texttt{F}) The graph of the function $ f(x) =
2-4x-3x^2$ is a parabola that opens up.\fi
\end{solution}

    \item \TF{F} (\texttt{T} or \texttt{F}) For a quadratic function of the form
    $f(x)=ax^2+bx+c$, if $a>0$, then the function has a \emph{maximum
    value}.
\begin{solution}[]\ifvspacewithsolns
\TF{F} (\texttt{T} or \texttt{F}) For a quadratic function of the form
    $f(x)=ax^2+bx+c$, if $a>0$, then the function has a \emph{maximum
    value}.\fi
\end{solution}

\pushProblem

\begin{eqComments}[Comments:]
Questions like the three above (fill-in and True/False) often have no
solution; hence, normally, the \texttt{solution} environment is not used. When
using the \texttt{vspacewithsolns} or the \texttt{solutionsonly} options
you would like the ``answers'' to appear on the solutions pages. To
rectify this, we simply copy and past the item into a solutions
environment, like so, in the case of the last question above.
\begin{verbatim}
\begin{solution}[]\ifvspacewithsolns
\TF{F} (\texttt{T} or \texttt{F}) For a quadratic function of the form
    $f(x)=ax^2+bx+c$, if $a>0$, then the function has a \emph{maximum
    value}.\fi
\end{solution}
\end{verbatim}
The optional argument is empty (important). We don't want the student or instructor to
see this solution when the document is compiled using the \texttt{answerkey}
option, so we wrap this solution in a conditional
\verb~\ifvspacewithsolns...\fi~ This switch will be true if either the
options \texttt{vspacewithsolns} or \texttt{solutionsonly} options are
taken
\end{eqComments}

\popProblem

    \item\label{whichRatFunc} Which rational function below has a horizontal asymptote of
    $y=-2$, and has vertical asymptotes of $x=1$ (odd) and $ x=2 $ (even)?
    \begin{answers}{3}\rowsep{6pt}
    \bChoices[label=whichRat]
        \Ans0 $ y = \frac{(x+2) (1-2x)}{(1-x)(x-2)^2} $\eAns
        \Ans0 $ y = \frac{(x+2)^2 (2x-1)}{(x-1)(x-2)^2} $\eAns
        \Ans1 $ y = \frac{(x+2)^2 (1-2x)}{(x-1)(x-2)^2} $\eAns
        \Ans0 $ y = \frac{(x+2)^2 (2x-1)}{(x-1)^2(x-2)} $\eAns
        \Ans0 $ y = \frac{(x+2) (1-2x)^2}{(x-1)^2(x-2)} $\eAns
        \Ans0 none of these\eAns
    \eChoices
    \end{answers}
\begin{solution}[]\ifvspacewithsolns
We can access the ``answers'' to a multiple choice question in several
ways:
\begin{itemize}
\item The correct alternative is part~\useSavedAlts{whichRat},
\useSavedAns{whichRat}.
\begin{verbatim}
The correct alternative is part~\useSavedAlts{whichRat},
\useSavedAns{whichRat}.
\end{verbatim}
The command \verb!\useSavedAlts{whichRat}! expands to the letter alternative of the
correct response, \useSavedAlts{whichRat}, in this case. Similarly,
\verb!\useSavedAns{whichRat}! expands to the correct answer, here, the
correct answer is \useSavedAns{whichRat}.

\item The correct answer is \useSavedAltsAns{whichRat}.
\begin{verbatim}
The correct answer is \useSavedAltsAns{whichRat}.
\end{verbatim}
The command \verb!\useSavedAltsAns{whichRat}! expands to the correct
letter followed by the correct answer.
\item You can  now copy and paste the \texttt{answers} (or \texttt{manswers})
      environment into the \texttt{solutions} environment, like so.

\item[] Which rational function below has a horizontal asymptote of
    $y=-2$, and has vertical asymptotes of $x=1$ (odd) and $ x=2 $ (even)?
    \begin{answers}{3}\rowsep{6pt}
    \bChoices[label=whichRat]
        \Ans0 $ y = \frac{(x+2) (1-2x)}{(1-x)(x-2)^2} $\eAns
        \Ans0 $ y = \frac{(x+2)^2 (2x-1)}{(x-1)(x-2)^2} $\eAns
        \Ans1 $ y = \frac{(x+2)^2 (1-2x)}{(x-1)(x-2)^2} $\eAns
        \Ans0 $ y = \frac{(x+2)^2 (2x-1)}{(x-1)^2(x-2)} $\eAns
        \Ans0 $ y = \frac{(x+2) (1-2x)^2}{(x-1)^2(x-2)} $\eAns
        \Ans0 none of these\eAns
    \eChoices
    \end{answers}
\end{itemize}\fi
\end{solution}

\pushProblem
\begin{eqComments}[Comments:]
Multiple choice and multiple selection questions were an especially
difficult problem to solve; the \texttt{answers} and \texttt{manswers}
environments are undefined outside of an \texttt{exam} environment so one
cannot simply copy and paste the choices into the \texttt{solution} environment.

To resolve this issue, I added a key-value pair to the \cs{bChoices} command,
the key is \texttt{label}. The source code for the above question reads
\verb!\bChoices[label=whichRat]! The value of the label key is used to
build a series of macros that record the labels and text for the choices
that are marked correct by \cs{Ans1}. The information gathered by these
macros are accessible through \cs{useSavedAlts}, \cs{useSavedAns},
\cs{useSavedAltsAns}, and \cs{useSavedNumAns}, as described in the \textsf{eqexam}
manual. See the solutions pages to see the answers to these multiple
choice questions and details on the use of these commands.
\end{eqComments}
\popProblem

    \item How many times can a quadratic equation cross the $x$-axis?
    Check as many of the alternatives that are possibly correct for a
    quadratic function.
    \begin{manswers}{4}
    \bChoices[label=nCrossings]
        \Ans1 0\eAns
        \Ans1 2\eAns
        \Ans1 3\eAns
        \Ans0 4\eAns
        \Ans0 5\eAns
        \Ans0 6\eAns
        \Ans0 infinitely many\eAns
        \Ans0 none of these\eAns
    \eChoices
    \end{manswers}
\begin{solution}[]\ifvspacewithsolns
Here is how these same macros expand for multiple selection problems.
\begin{itemize}
\item The correct alternatives are parts~\useSavedAlts{nCrossings}.
\begin{verbatim}
The correct alternatives are parts~\useSavedAlts{nCrossings}.
\end{verbatim}
\item The correct answers are \useSavedAns{nCrossings}.
\begin{verbatim}
The correct answers are \useSavedAns{nCrossings}.
\end{verbatim}
\item The correct responses are \useSavedAltsAns{nCrossings}.
\begin{verbatim}
The correct responses are \useSavedAltsAns{nCrossings}.
\end{verbatim}
\item[] End each case, the command expands to a comma-delimited list of correct
answers.
\end{itemize}
You can also access the answers individually, for example the second
correct response is part~\useSavedAlts[2]{nCrossings}, the answer for
part~\useSavedAlts[2]{nCrossings} is \useSavedAns[2]{nCrossings}. Or,
we can say, \useSavedAltsAns[2]{nCrossings} to get a combined listing of
the second correct response.
\begin{verbatim}
You can also access the answers individually, for example the second
correct response is part~\useSavedAlts[2]{nCrossings}, the answer for
part~\useSavedAlts[2]{nCrossings} is \useSavedAns[2]{nCrossings}. Or,
we can say, \useSavedAltsAns[2]{nCrossings} to get a combined listing of
the second correct response.
\end{verbatim}
\fi
\end{solution}
\end{parts}
\end{problem*}

\begin{eqComments}[Comments:]
The above question is a multiple selection question. The student must
select all the correct choices. See the solutions pages to see the answers
to these multiple choice questions and details on the use of these
commands.
\end{eqComments}

\begin{problem}[5]
Which rational function below has a horizontal asymptote of
    $y=-2$, and has vertical asymptotes of $x=1$ (odd) and $ x=2 $ (even)?
    \begin{answers}{3}\rowsep{6pt}
    \bChoices[label=whichRat1]
        \Ans0 $ y = \frac{(x+2) (1-2x)}{(1-x)(x-2)^2} $\eAns
        \Ans0 $ y = \frac{(x+2)^2 (2x-1)}{(x-1)(x-2)^2} $\eAns
        \Ans1 $ y = \frac{(x+2)^2 (1-2x)}{(x-1)(x-2)^2} $\eAns
        \Ans0 $ y = \frac{(x+2)^2 (2x-1)}{(x-1)^2(x-2)} $\eAns
        \Ans0 $ y = \frac{(x+2) (1-2x)^2}{(x-1)^2(x-2)} $\eAns
        \Ans0 none of these\eAns
    \eChoices
    \end{answers}
\begin{solution}[]\ifvspacewithsolns
We can access the ``answers'' to a multiple choice question in several
ways:
\begin{itemize}
\item The correct alternative is part~\useSavedAlts{whichRat1},
\useSavedAns{whichRat1}.
\begin{verbatim}
The correct alternative is part~\useSavedAlts{whichRat1},
\useSavedAns{whichRat1}.
\end{verbatim}
The command \verb!\useSavedAlts{whichRat1}! expands to the letter alternative of the
correct response, \useSavedAlts{whichRat1}, in this case. Similarly,
\verb!\useSavedAns{whichRat1}! expands to the correct answer, here, the
correct answer is \useSavedAns{whichRat1}.

\item The correct answer is \useSavedAltsAns{whichRat1}.
\begin{verbatim}
The correct answer is \useSavedAltsAns{whichRat1}.
\end{verbatim}
The command \verb!\useSavedAltsAns{whichRat1}! expands to the correct
letter followed by the correct answer.
\end{itemize}\fi
\end{solution}
\end{problem}

\begin{eqComments}[Comments:]
This is the same question as Problem~\ref{shortAns} (\ref{whichRatFunc}),
but this one is a stand alone question.  The lettering of the label can
change depending on the options you take, so, if you compile this document
without the \texttt{useforms} options, the choices listed in~\ref{shortAns} (\ref{whichRatFunc})
will be numbers, (A), (B),\dots, and the choices of this question will be
letters, (a), (b),\dots. Check the solutions page, the references should
change to reflect the change in options, let's hope.
\end{eqComments}

\resetSolnAfterToDefault

\begin{problem*}[\auto]
Let $f(x) = 4x+3$ and $ g(x) = 2x^2 - 5 $. Compute each of the following,
simplify were appropriate.
\begin{multicols}{2}
\begin{parts}
\item \PTs{2} $ (fg)(-2) = \fillin[boxed,boxsize=LARGE,align=l]{1in}{-15} $

\begin{solution}[.65in]
We have \[ (fg)(-2)=f(-2)g(-2)=(-5)(3)=\boxed{-15}\]
\end{solution}

\item \PTs{2} $\left(\frac{g}{f}\right)(x)= \fillin[boxed,boxsize=LARGE]{\ifNoSolutions{1in}{}}{\frac{2x^2-5}{4x+3}} $

\begin{solution}[\sameVspace]
$ \left(\frac{g}{f}\right)(x)=\frac{g(x)}{f(x)}=\boxed{\frac{2x^2 - 5}{4x+3}}$
\end{solution}

\item \PTs{2} $ (f\circ f )(x)  = \fillin[boxed,boxsize=LARGE]{\ifNoSolutions{1in}{}}{16x+15} $

\begin{solution}[\sameVspace]
Composing, $(f\circ f )(x)=f(f(x))=f(4x+3)=4(4x+3)+3=\boxed{16x+15}$
\end{solution}

\item \PTs{4} $ (f\circ g )(x)  = \fillin[boxed,boxsize=LARGE]{1in}{8x^2-17} $

\begin{solution}[\sameVspace]
Composing, $(f\circ g )(x)=f(g(x))=f(2x^2 - 5)=4(2x^2 -5)+3=\boxed{8x^2-17}$
\end{solution}
\end{parts}
\end{multicols}
\end{problem*}

\begin{eqComments}[Comments:]
Nothing new about the above problem, each has a solution, no special
attention is needed. In some of the answer boxes, \cs{ifNoSolutions} is
used to set the width then \texttt{nosolutions} is in effect, and to et the box to
its natural width otherwise.
\end{eqComments}


\begingroup

\setlength{\columnsep}{30pt}

\begin{multicols}{2}
\begin{problem}[5]
Use the \textbf{vertex formula} to find the $x$-coordinate, $h$, and the
$y$-coordinate, $k$, of the quadratic function $ f(x) = 2x^2 - 8x + 5 $.
\begin{equation*}
    \fillin[boxed,boxsize=LARGE,align=l,boxpretext={h=}]{1in}{2}\quad
    \fillin[boxed,boxsize=LARGE,align=l,boxpretext={k=}]{1in}{-3}
\end{equation*}
\begin{solution}[.5in]
We use the vertex formula, $ h = -b/(2a) = - (-8)/4 = 2 $, and
so $h=f(2) = 8 - 16 + 5 = -3$.
\end{solution}
\end{problem}

\columnbreak

\begin{problem}[] %
\PTs{3}\addtocounter{eqpointvalue}{3} The function $ f(x) = x^2 - x + 1 $ has a
\fillin[u]{.75in}{minimum} (max/min) at $x = \fillin[u]{.5in}{1/2}$.
\begin{solution}[\sameVspace]
We use the vertex formula, $ h = -b/(2a) = - (-1)/2 =
1/2 $. A \textbf{minimum} occurs since the leading coefficient is
positive, which means the parabola opens up, the vertex is a minimum.
\end{solution}
\end{problem}
\end{multicols}

\endgroup

\begin{eqComments}[Comments:]
I include this problem in this file, because it is a construct that
appeared in a test of mine. I wanted to conserve vertical space so I put
to problems into two column format. The problem is the points appear to
the left. So, for the problem on the left, the points appear as usual, for
the problem on the right, the points appear in-line, I had to explicitly
increment the points counter, like so
\verb~\addtocounter{eqpointvalue}{3}~. Some adjustment of the space
between the columns was necessary \verb~\setlength{\columnsep}{30pt}~.
\end{eqComments}

\renameSolnAfterTo{}

\begin{problem}[5]
For a polynomial of degree $12$, according to theory, the maximum number
of zeros is \fillin[u]{.5in}{12}, and the maximum number of turning points
is \fillin[u]{.5in}{11}.
\begin{solution}[]\ifvspacewithsolns
For a polynomial of degree $12$, according to theory, the maximum number
of zeros is \fillin[u]{.5in}{12}, and the maximum number of turning points
is \fillin[u]{.5in}{11}.\fi
\end{solution}
\end{problem}

\begin{eqComments}[Comments:]
A fill-in the blank problem, just copy and paste it into the solution
environment, protected by \verb~\ifvspacewithsolns...\fi~.
\end{eqComments}


\begin{problem}[5]
In the boxes provided, list the laws of the exponents and the laws of
logarithms.
    \begin{equation*}\def\bwidth{2.75in}\def\bheight{1.5in}
        \begin{tabular}{cc}
        \textbf{Laws of the Exponents} & \textbf{Laws of Logarithms}\\
        \multicolumn{1}{p{\bwidth}}{%
        \fillin[boxed,enclosesoln,parbox={[c][\bheight][t]}]{\linewidth}{%
%
        \begin{enumerate}
            \item $a^x a^y = a^{x+y}$
            \item $a^x/a^y = a^{x-y}$
            \item $ (a^x)^y = a^{xy}$
        \end{enumerate}
%
        }}&
        \multicolumn{1}{p{\bwidth}}{%
        \fillin[boxed,enclosesoln,parbox={[c][\bheight][t]}]{\linewidth}{%
%
        \begin{enumerate}
            \item $\log_a(xy) = \log_a(x)+\log_a(y)$
            \item $\log_a(x/y) = \log_a(x)-\log_a(y)$
            \item $\log_a(x^r) = r\log_a(x)$
        \end{enumerate}
%
        }}
        \end{tabular}
    \end{equation*}
\begin{solution}[]\ifvspacewithsolns
Write sentences, in the provided boxes, describing,  in laymen's terms, Type I
    and Type II errors for this test of hypothesis.
    \begin{equation*}\def\bwidth{2.75in}\def\bheight{1.5in}
        \begin{tabular}{cc}
        \textbf{Laws of the Exponents} & \textbf{Laws of Logarithms}\\
        \multicolumn{1}{p{\bwidth}}{%
        \fillin[boxed,enclosesoln,parbox={[c][\bheight][t]}]{\linewidth}{%
%
        \begin{enumerate}
            \item $a^x a^y = a^{x+y}$
            \item $a^x/a^y = a^{x-y}$
            \item $ (a^x)^y = a^{xy}$
        \end{enumerate}
%
        }}&
        \multicolumn{1}{p{\bwidth}}{%
        \fillin[boxed,enclosesoln,parbox={[c][\bheight][t]}]{\linewidth}{%
%
        \begin{enumerate}
            \item $\log_a(xy) = \log_a(x)+\log_a(y)$
            \item $\log_a(x/y) = \log_a(x)-\log_a(y)$
            \item $\log_a(x^r) = r\log_a(x)$
        \end{enumerate}
%
        }}
        \end{tabular}
    \end{equation*}\fi
\end{solution}
\end{problem}

\begin{eqComments}[Comments:]
The above pair of boxes use the \texttt{enclosesoln} key. When this key is
used, the vertical size of the box is adjusted to the vertical size the
solution uses when either \texttt{nosolutions} or \texttt{vspacewithsolns}
option are used. Note the dimensions of the \cs{parbox} are adjusted so
that the width and height are correct. The \cs{boxed} command adds
\texttt{2\cs{fboxesp}+2\cs{fboxrule}}, so we reduce the \cs{parbox} by
that amount so the boxes are the correct size.
\end{eqComments}

\begin{problem}[12]
Define $ f(x) = -2x^2(x+1) $. Make a good sketch of the graph in the
coordinate plane below, taking into consideration the end-behavior of the
polynomial, and its intercepts.
\begin{solution}[3in]
The graph of $ f(x) = -2x^2(x+1) $ is seen below.
\par\nobreak\medskip\vskip-1.5\baselineskip
\begin{minipage}[t]{3.5in}\vskip\baselineskip\kern0pt
\includegraphics[width=3.5in]{graph}
\end{minipage}\hfill
\begin{minipage}[t]{\linewidth-3.5in-30pt}\vskip\baselineskip\kern0pt
\noindent\makebox[\linewidth][c]{\textbf{Work Area}}
\begin{itemize}
\item The end-behavior is like $y=-x^3$
\item $x$-int: $x=0$ (even); $ x=-1 $ (odd)
\item $y$-int: $y=0$ (passes through origin)
\end{itemize}
\end{minipage}
\end{solution}
\begin{workarea}{\sameVspace}%
\begin{minipage}[t]{3.5in}\kern0pt
\includegraphics[width=3.5in]{coorplane}
\end{minipage}\hfill
\begin{minipage}[t]{\linewidth-3.5in-30pt}\kern0pt
\makebox[\linewidth][c]{\textbf{Work Area}}
\end{minipage}
\end{workarea}
\end{problem}

\begin{eqComments}[Comments:]
Finally, we have the above problem. It uses the \texttt{workarea}
environment. Previously, \texttt{workarea} appeared with the \texttt{nosolutions}
option. Now it appears with the \texttt{vspacewithsolns} option as well.
On the actual test, I used \textsf{PSTricks} for the graphics, for this
demo file, I replace the \textsf{pstricks} code this a figure depicting what the
\textsf{pstricks} produced, that way users of pdflatex can compile this
file! \texttt{:-)}
\end{eqComments}

\newpage

\begin{eqComments}%
On this page, we more clearly demonstrate the new feature of preserving
the vertical space even when the \texttt{answerkey} option is used. In the
preamble, we have \cs{vspacewithkeyOn}.
\end{eqComments}


\resetSolnAfterToDefault
% try changing \vspacewithkeyOn to \vspacewithkeyOff and recompile,
% the 4 inches of vertical space are not preserved when you compile
% with the answerkey option.
\vspacewithkeyOn

\begin{problem}[10]
Solve the equation $2x^2 - 5x + 10 = 0 $ using the quadratic formula.
\begin{solution}[4in]
Applying the quadratic formula with $a=2$, $ b = -5 $, and $ c = 10 $,
\begin{alignat*}{2}
    x & = \frac{-b \pm \sqrt{b^2 -4ac}}{2a} \qt{The Quad.\ Formula}\\&
        = \frac{5 \pm \sqrt{25 -4(2)(10)}}{2(2)} \qt{substitute}\\&
        = \frac{5 \pm \sqrt{25 -80}}{4} \qt{arithmetic}\\&
        = \frac{5 \pm \sqrt{-45}}{4} \qt{ditto}\\&
        = \frac{5 \pm 3\sqrt{5}\,\imath}{4} \qt{simplify}
\end{alignat*}
The solution is $\boxed{x=\frac{5 \pm 3\sqrt{5}\,\imath}{4}}$
\end{solution}
\end{problem}

\begin{problem}[5]
Write the equation, in standard form, for the circle with center at
$C(1,-3)$ and radius of $2$
\begin{solution}[1in]
We have $(x-1)^2 + (y+2)^2 = 4 $. Expanding and combining the equation, we
have\dots \[\boxed{x^2+y^2-2x+4y+1=0}\]
\end{solution}
\end{problem}

\begin{eqComments}[Comments:]
The \texttt{solution} environments in the above problems declared 4 inches
and 1 inch of vertical space, respectively. With \cs{vspacewithkeyOn} we
should have about 4 inches (resp., 1 inch) of vertical space even with the
\texttt{answerkey} option. Try compiling the file with
\cs{vspacewithkeyOff}.
\end{eqComments}

\end{theseproblems}

\end{exam}

\end{document}