1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
%TESTS OF DIAGRAM MACROS - J. C. Reynolds - December 1987
%This is an input file for LATEX that inputs the macros in diagmac.tex
%and tests them. A user's manual for these macros is in diagmac.doc
\documentclass[12pt]{article}
\input diagmac
\oddsidemargin=0in
\evensidemargin=0in
\textwidth=6.5in
\begin{document}
\thispagestyle{empty}
\begin{centering}
{\large\bf TESTS OF DIAGRAM MACROS} \\[14 pt]
\today \\[21 pt]
\end{centering}
%These are the two examples given in the user's manual.
$$\diagram{
\vertex 0,100:{A}{\border{3pt}{4pt}\rect}
\vertex 150,100:{B}{\border{3pt}{4pt}\rect}
\vertex 0,0:{A'}{\border{3pt}{4pt}\rect}
\vertex 150,0:{B'}{\border{3pt}{4pt}\rect}
\setedge 0,100,150,100:
\shadeedge
\drawsolidedge
\drawedgehead{100}10
\abutabove 75:{\textstyle c}{\border{2pt}{2pt}\octagon{3pt}}
\setedge 0,0,150,0:
\shadeedge
\drawsolidedge
\drawedgehead{100}10
\abutbelow 75:{\textstyle c'}{\border{2pt}{2pt}\octagon{3pt}}
\setedge 0,100,0,0:
\shadeedge
\drawsolidedge
\drawedgehead{100}10
\abutleft 50:{\textstyle a}{\border{2pt}{2pt}\octagon{3pt}}
\setedge 150,100,150,0:
\shadeedge
\drawsolidedge
\drawedgehead{100}10
\abutright 50:{\textstyle b}{\border{2pt}{2pt}\octagon{3pt}}
}$$
$$\ctdiagram{
\ctv 0,100:{A}
\ctv 150,100:{B}
\ctv 0,0:{A'}
\ctv 150,0:{B'}
\ctet 0,100,150,100:{c}
\cteb 0,0,150,0:{c'}
\ctel 0,100,0,0:{a}
\cter 150,100,150,0:{b}
}$$
\newpage
%This gives a thorough workout to the general macros for diagrams.
%The result looks like an eye-chart for Martians.
$$\diagram{
\vertex -150,0:{X+Y}{\border{4pt}{3pt}\rorect{2pt}01\outline}
\vertex 0,-50:Y{\border{10pt}{10pt}\hexagon\outline}
\vertex 150,0:\sum{\border{10pt}{10pt}\octagon{10pt}\outline
\border{5pt}{5pt}\octagon{12pt}\thicklines\outline\thinlines}
\vertex -100,150:\alpha{\border{4pt}{3pt}\diamond\outline}
\vertex 100,150:\sum{\border{10pt}{10pt}\rorect{20pt}00\outline
\border{5pt}{5pt}\rorect{24pt}00\thicklines\outline\thinlines}
\vertex 0,200:{X^2+Y^2}{\border{4pt}{3pt}\rect\outline}
\place -150,-150:{X+Y^{Z^2}}
{\leftghost X\symmetrize\borderto{0pt}{0pt}\border{4pt}{3pt}\rect\outline
\setcircle{16pt}{\xcenter}{\bexpr}\drawcircle0110
\drawcirclehead{0}{-1}1
\abutcirclebelow{-10pt}\alpha{\border{2pt}{2pt}\rect\outline}
\abutcirclebelow{10pt}\alpha{\border{2pt}{2pt}\rect\outline}}
\placed{150pt}{-150pt}{X+Y}
{\rightghost Y\symmetrize\borderto{0pt}{26pt}\border{4pt}{0pt}\rect\outline
\placed{\lexpr}{\ycenter}{\vrule height3.2pt depth-2.8pt width10pt}{}
\place 0,-3:{\vrule height3.2pt depth-2.8pt width10pt}{\xcenter=\lexpr}
\setcircle{16pt}{\rexpr}{\texpr}\shiftcircle{8pt}{8pt}\drawcircle1101
\drawcirclehead{0}{-1}1\drawcirclehead{-1}00
\abutcircleabove{0pt}\alpha{\border{2pt}{2pt}\rect\outline}}
\vertex 0,-150:{}{\setcircle{40pt}{\xcenter}{\ycenter}\drawcircle1111
\drawcirclehead231\drawcirclehead{-2}30
\drawcirclehead6{-9}0\drawcirclehead{-4}{-6}1
\abutcircleleft{0pt}\alpha{\border{2pt}{2pt}\rect\outline}
\abutcircleright{20pt}\alpha{\border{2pt}{2pt}\rect\outline}
\abutcircleright{0pt}\alpha{\border{2pt}{2pt}\rect\outline}
\abutcircleright{-20pt}\alpha{\border{2pt}{2pt}\rect\outline}}
\setedge 0,200,-100,150:\shadeedge\drawsolidedge\drawedgehead{100}10
\abutleft 185:{\alpha+\beta}{\border{2pt}{2pt}\rorect{5pt}01\outline}
\setedge 0,200,100,150:\shadeedge\drawsolidedge\drawedgehead{100}10
\abutright 185:{\alpha+\beta}{\border{2pt}{2pt}\rorect{5pt}01\outline}
\setedge -150,0,0,-50:\shadeedge\drawdashedge{11pt}{10pt}01\drawedgehead{80}01
\abutleftd{-25pt}{\alpha\beta}
{\border{2pt}{2pt}\borderto{25pt}{0pt}\rect\outline}
\setedge -150,0,150,0:\drawedgehead{50}01\shadeedge\drawsolidedge
\abutabove -10:\rho{\border{2pt}{2pt}\diamond\outline}
\setedge -150,0,-100,150:\shadeedge\drawsolidedge\drawedgehead{100}10
\abutleft 75:\rho{\border{10pt}{10pt}\octagon{10pt}\outline}
\setedge -150,0,100,150:\shadeedge\drawdotedge{7pt}1
\abutaboved{-100pt}\rho{\border{10pt}{10pt}\hexagon\outline}
\setedge 0,-50,150,0:\shadeedge\drawsolidedge\drawedgehead{20}11
\abutrightd{-25pt}\rho{\border{2pt}{2pt}\borderto{25pt}{0pt}\rect\outline}
\setedge 0,-50,-100,150:\shadeedge\drawsolidedge
\setedge 0,-50,100,150:\shadeedge\drawsolidedge
\setedge 150,0,-100,150:\shadeedge\drawsolidedge
\abutbelowd{100pt}\rho{\border{10pt}{10pt}\hexagon\outline}
\setedge 150,0,100,150:\shadeedge\drawdashedge{40pt}{40pt}11\drawedgehead000
\abutleft 75:\rho{\border{10pt}{10pt}\hexagon\outline}
\shiftedge{-10pt}\shadeedge\drawdashedge{30pt}{30pt}10\drawedgehead000
\shiftedge{-10pt}\shadeedge\drawdashedge{11pt}{5pt}01\drawedgehead000
\shiftedge{-10pt}\shadeedge\drawdotedge{8pt}0\drawedgehead{100}10
\abutright 75:\rho{\border{5pt}{5pt}\rorect{5pt}11\outline}
\setedge -100,150,100,150:\drawedgehead{50}11\shadeedge\drawsolidedge
\abutbelow 0:\rho{\border{2pt}{2pt}\rect\outline}
\setedge 0,-50,-150,-150:\thicklines\drawedgehead{50}01\thinlines
\shadeedge\drawdashedge{13pt}{3pt}01\drawedgehead{50}11
\abutbelow -50:{X \atop Y}{\border{2pt}{2pt}\rorect{5pt}10\outline}
\setedge 0,-50,0,-150:\thicklines\shadeedge\drawsolidedge\thinlines
\setedge 0,-50,150,-150:\shadeedge\drawsolidedge
\abutabove 75:{X \atop Y}{\border{2pt}{2pt}\rorect{5pt}10\outline}
\setedge -175,-50,-175,-100:\drawdashedge{10pt}{31pt}11
\setedge -165,-100,-165,-50:\drawdashedge{15pt}{15pt}01
\setedge -155,-50,-155,-100:\drawdashedge{5pt}{5pt}11
\setedge -145,-100,-145,-50:\drawdotedge{26pt}1
\setedge -135,-50,-135,-100:\drawdotedge{25pt}1
\setedge -125,-100,-125,-50:\drawdotedge{5pt}1
\setedge 125,-50,175,-50:\drawdashedge{10pt}{31pt}11
\setedge 175,-60,125,-60:\drawdashedge{15pt}{15pt}01
\setedge 125,-70,175,-70:\drawdashedge{5pt}{5pt}11
\setedge 175,-80,125,-80:\drawdotedge{26pt}1
\setedge 125,-90,175,-90:\drawdotedge{25pt}1
\setedge 175,-100,125,-100:\drawdotedge{5pt}1
}$$
\newpage
%These three diagrams test the macros for category-theory diagrams.
$$\ctdiagram{
\ctvg0,0:{Y'}{\ctlpbl{I_{Y'}}}
\ctvg150,0:{Z=Z_0}{\ctgl{Z}\ctlpbr{I_Z}}
\ctvg0,100:{X_0=X}{\ctgr{X}\ctlptl{I_X}}
\ctvg150,100:{Y}{\ctlptr{I_Y}}
\ctet0,100,150,100:\alpha
\cteb0,0,150,0:{\beta'}
\ctel0,100,0,0:{\alpha'}
\cter150,100,150,0:\beta
\ctetb0,100,150,0:11{\alpha;\beta}{\alpha';\beta'}
}$$
$$\ctdiagram{\ctdash
\ctvg0,0:{Y'}{\ctlpblcc{I_{Y'}}}
\ctvg150,0:{Z=Z_0}{\ctgl{Z}\ctlpbrcc{I_Z}}
\ctvg0,100:{X_0=X}{\ctgr{X}\ctlptlcc{I_X}}
\ctvg150,100:{Y}{\ctlptrcc{I_Y}}
\ctet0,100,150,100:\alpha
\ctnohead\cteb0,0,150,0:{\beta'}\cthead
\ctel0,100,0,0:{\alpha'}
\cter150,100,150,0:\beta
\ctelr0,100,150,0:11{\alpha';\beta'}{\alpha;\beta}
}$$
$$\ctdiagram{
\ctv0,0:{Y'}
\ctvg150,0:{Z=Z_0}{\ctgl{Z}}
\ctvg0,100:{X_0=X}{\ctgr{X}}
\ctv150,100:Y
\ctetg0,100,150,100;50:\alpha
\ctebg0,0,150,0;50:{\beta'}
\ctelg0,100,0,0;30:{\alpha'}
\cterg150,100,150,0;30:\beta
\ctetbg0,100,150,0;50,100:10{\rho}{\rho'}
\ctelrg0,0,150,100;70,30:01{\theta}{\theta'}
}$$
\newpage
%The next two diagrams are further tests of the macros for drawing
%double edges.
$$\ctdiagram{
\ctv0,0:X
\ctv-100,100:Y\ctv-100,0:Y\ctv-100,-100:Y
\ctv100,100:Z\ctv100,0:Z\ctv100,-100:Z
\ctetb0,0,-100,100:10\alpha\beta
\ctdash\ctetb0,0,-100,0:00\alpha\beta\ctsolid
\ctetb0,0,-100,-100:01\alpha\beta
\ctetb0,0,100,100:10\alpha\beta
\ctdash\ctetb0,0,100,0:11\alpha\beta\ctsolid
\ctetb0,0,100,-100:01\alpha\beta
}$$
$$\ctdiagram{
\ctv0,0:X
\ctv-100,100:Y\ctv0,100:Y\ctv100,100:Y
\ctv-100,-100:Z\ctv0,-100:Z\ctv100,-100:Z
\ctelr0,0,-100,100:10\alpha\beta
\ctelr0,0,0,100:00\alpha\beta
\ctelr0,0,100,100:01\alpha\beta
\ctelr0,0,-100,-100:10\alpha\beta
\ctelr0,0,0,-100:11\alpha\beta
\ctelr0,0,100,-100:01\alpha\beta
}$$
\newpage
%These two diagrams test the usage of \ctinnermid and \ctoutermid.
$$\ctdiagram{\ctv 0,0:{
{\displaystyle\sum_{i=0}^{100}x_i\cdot y_i}\over
{\displaystyle\sqrt{\biggl(\sum_{i=0}^{100}x_i^2\biggr)
+\biggl(\sum_{i=0}^{100}y_i^2\biggr)}}}
\ctv0,150:A\ctv150,150:B\ctv150,0:C\ctv150,-150:D
\ctv0,-150:E\ctv-150,-150:F\ctv-150,0:G\ctv-150,150:H
\cter0,0,0,150:A\ctinnermid\cter0,0,0,150:a\ctoutermid
\cter150,150,0,0:B\ctinnermid\cter150,150,0,0:b\ctoutermid
\cteb0,0,150,0:C\ctinnermid\cteb0,0,150,0:c\ctoutermid
\cteb150,-150,0,0:D\ctinnermid\cteb150,-150,0,0:d\ctoutermid
\ctel0,0,0,-150:E\ctinnermid\ctel0,0,0,-150:e\ctoutermid
\ctel-150,-150,0,0:F\ctinnermid\ctel-150,-150,0,0:f\ctoutermid
\ctet0,0,-150,0:G\ctinnermid\ctet0,0,-150,0:g\ctoutermid
\ctet-150,150,0,0:H\ctinnermid\ctet-150,150,0,0:h
}$$
$$\ctdiagram{\ctv 0,0:{
{\displaystyle\sum_{i=0}^{100}x_i\cdot y_i}\over
{\displaystyle\sqrt{\biggl(\sum_{i=0}^{100}x_i^2\biggr)
+\biggl(\sum_{i=0}^{100}y_i^2\biggr)}}}
\ctv-150,150:A\ctv0,150:C\ctv150,150:E\ctv150,0:G
\ctelr0,0,-150,150:11AB\ctinnermid
\ctelr0,0,-150,150:11ab\ctoutermid
\ctelr0,150,0,0:11CD\ctinnermid
\ctelr0,150,0,0:11cd\ctoutermid
\ctetb0,0,150,150:11EF\ctinnermid
\ctetb0,0,150,150:11ef\ctoutermid
\ctetb150,0,0,0:11GH\ctinnermid
\ctetb150,0,0,0:11gh
}$$
\newpage
%This is a ``real'' diagram, relating directed complete relations to
%Scott's inverse limit construction. It is sufficiently crowded
%that it has been necessary to place some of the abutted expressions
%carefully to avoid ambiguity.
$$\ctdiagram{
\ctvg0,0:{D_0}{\border{2pt}{0pt}}
\ctv72,0:{D_1}
\ctv144,0:{D_2}
\ctv216,0:{\quad\cdots}
\ctvg288,144:{D_\infty}{\advance\ycenter by 5pt\border{50pt}{10pt}}
\ctv234,36:{\cdots}
\ctetbg0,0,72,0;48,48:10{\phi_0}{\psi_0}
\ctetbg72,0,144,0;114,114:10{\phi_1}{\psi_1}
\ctetb144,0,216,0:10{\phi_2}{\psi_2}
\ctelrg0,0,288,144;42,30:10{\Phi_0}{\Psi_0}
\ctelrg72,0,288,144;42,30:10{\Phi_1}{\Psi_1}
\ctelrg144,0,288,144;42,30:10{\Phi_2}{\Psi_2}
\ctvg0,-72:{D'_0}{\border{2pt}{0pt}}
\ctv72,-72:{D'_1}
\ctv144,-72:{D'_2}
\ctv216,-72:{\quad\cdots}
\ctvg288,-216:{D'_\infty}{\advance\ycenter by -5pt\border{50pt}{10pt}}
\ctv234,-108:{\cdots}
\ctetbg0,-72,72,-72;48,48:10{\phi'_0}{\psi'_0}
\ctetbg72,-72,144,-72;114,114:10{\phi'_1}{\psi'_1}
\ctetb144,-72,216,-72:10{\phi'_2}{\psi'_2}
\ctelrg0,-72,288,-216;-114,-102:10{\Phi'_0}{\Psi'_0}
\ctelrg72,-72,288,-216;-114,-102:10{\Phi'_1}{\Psi'_1}
\ctelrg144,-72,288,-216;-114,-102:10{\Phi'_2}{\Psi'_2}
\cter0,0,0,-72:{\alpha_0}
\cter72,0,72,-72:{\alpha_1}
\cter144,0,144,-72:{\alpha_2}
\ctv216,-36:{\cdots}
\ctdash
\cter288,144,288,-216:{\alpha_\infty}
}$$
\newpage
%This shows how a macro can be defined and then used to give two different
%views of the same diagram.
\def\testcube#1#2#3#4#5#6#7#8{
$$\ctdiagram{
\ctv#1,#3:{A_1}
\ctv#2,#3:{B_1}
\ctv#1,#4:{A_2}
\ctv#2,#4:{B_2}
\ctv#5,#7:{A'_1}
\ctv#6,#7:{B'_1}
\ctv#5,#8:{A'_2}
\ctv#6,#8:{B'_2}
\ctet#1,#3,#2,#3:{\gamma_1}
\ctet#1,#4,#2,#4:{\gamma_2}
\cter#1,#3,#1,#4:{\alpha}
\cter#2,#3,#2,#4:{\beta}
\ctet#5,#7,#6,#7:{\gamma'_1}
\ctet#5,#8,#6,#8:{\gamma'_2}
\cter#5,#7,#5,#8:{\alpha'}
\cter#6,#7,#6,#8:{\beta'}
\cter#1,#3,#5,#7:{a_1}
\cter#2,#3,#6,#7:{b_1}
\cter#1,#4,#5,#8:{a_2}
\cter#2,#4,#6,#8:{b_2}
}$$}
\testcube{0}{200}{200}{0}{50}{150}{150}{50}
\testcube{0}{150}{150}{0}{100}{250}{200}{50}
\newpage
%An example of a partial ordering with a limit point.
$${\def\diagramunit{0.25in}
\ctdiagram{\ctnohead
\ctv0,0:{\geq 0}
\ctv2,2:{\geq 1}
\ctv4,4:{\geq 2}
\ctv7,7:\infty
\ctv-2,2:{=0}
\ctv0,4:{=1}
\ctv2,6:{=2}
\cten0,0,2,2:
\cten2,2,4,4:
\cten0,0,-2,2:
\cten2,2,0,4:
\cten4,4,2,6:
\ctdot
\cten4,4,7,7:
}}$$
%An example of a binary tree, produced by user macros.
\newcount\cnx\newcount\cny\newcount\cnxx\newcount\cnyy
\def\treea#1{\cnxx=\cnx\cnyy=\cny
\ctv\cnx,\cny:{\scriptstyle #1}
\advance\cnx by -1\advance\cny by 4
\ctdot
\cten\cnxx,\cnyy,\cnx,\cny:
\advance\cnx by 2
\cten\cnxx,\cnyy,\cnx,\cny:
\ctsolid
\cnx=\cnxx\cny=\cnyy}
\def\treeb#1{\ctv\cnx,\cny:{\scriptstyle #1}
\advance\cnx by -2\advance\cny by 4
\treea{#10}
\cnxx=\cnx\advance\cnxx by 2\cnyy=\cny\advance\cnyy by -4
\cten\cnxx,\cnyy,\cnx,\cny:
\advance\cnx by 4
\treea{#11}
\cnxx=\cnx\advance\cnxx by -2\cnyy=\cny\advance\cnyy by -4
\cten\cnxx,\cnyy,\cnx,\cny:
\advance\cnx by -2\advance\cny by -4}
\def\treec#1{\ctv\cnx,\cny:{\scriptstyle #1}
\advance\cnx by -4\advance\cny by 4
\treeb{#10}
\cnxx=\cnx\advance\cnxx by 4\cnyy=\cny\advance\cnyy by -4
\cten\cnxx,\cnyy,\cnx,\cny:
\advance\cnx by 8
\treeb{#11}
\cnxx=\cnx\advance\cnxx by -4\cnyy=\cny\advance\cnyy by -4
\cten\cnxx,\cnyy,\cnx,\cny:
\advance\cnx by -4\advance\cny by -4}
\def\treed#1{\ctv\cnx,\cny:{\scriptstyle #1}
\advance\cnx by -8\advance\cny by 4
\treec{#10}
\cnxx=\cnx\advance\cnxx by 8\cnyy=\cny\advance\cnyy by -4
\cten\cnxx,\cnyy,\cnx,\cny:
\advance\cnx by 16
\treec{#11}
\cnxx=\cnx\advance\cnxx by -8\cnyy=\cny\advance\cnyy by -4
\cten\cnxx,\cnyy,\cnx,\cny:
\advance\cnx by -8\advance\cny by -4}
\def\tree{\ctv\cnx,\cny:\bot\def\centerheight{2pt}
\advance\cnx by -16\advance\cny by 4
\treed{0}
\cnxx=\cnx\advance\cnxx by 16\cnyy=\cny\advance\cnyy by -4
\cten\cnxx,\cnyy,\cnx,\cny:
\advance\cnx by 32
\treed{1}
\cnxx=\cnx\advance\cnxx by -16\cnyy=\cny\advance\cnyy by -4
\cten\cnxx,\cnyy,\cnx,\cny:
\advance\cnx by -16\advance\cny by -4}
$${\def\diagramunit{7.5pt}
\ctdiagram{\ctnohead\cnx=0\cny=0\tree}}$$
\end{document}
|