summaryrefslogtreecommitdiff
path: root/macros/inrstex/inrsdoc/thmatsym.tex
blob: a2e575d2c1b7be644fdab66812199db8affb9dca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
%-*-tex-*-
\ifundefined{writestatus} \input status \relax \fi %
\chcode{matsym}


\def\cqu{\cquote{{\leftskip=0ptplus1fill\def\\%
{\endgraf}Yet what are all such gaieties to me\\Whose thoughts are full of
indices and surds?\\$x^2+7x+53$\\ $\displaystyle={11\over3}$.\\ }}{
Four~Riddles, Lewis~Carroll (1832-1898)}}


\chapterhead{matsym}{MATHEMATICS:\cr SYMBOLS\cr FONTS}
\tex\ supplies a vast array of mathematical symbols, both in fixed and
extensible forms. For the most part, the symbols mentioned are available only
in mathematics mode. Other symbols that are useful in 
regular text mode have been listed in Section \ref{specialtextsymbols}
This chapter describes the symbols available. These
symbols can be used in any font size that is on the system. Although it is
possible to build your own symbols from simpler ones, it takes a little care
to make sure that they are the correct size for all possible uses. 

\shead{mathfonts}{Ordinary Fonts in Mathematics}
The mathematics symbol font contains characters that are very similar to
to text italic font. The major difference is the spacing. {\it For instance} is
in ordinary italic but $For\ instance$, is in math italic and was invoked with
|$For\|\]|instance$|, where |\|\]  forces the  space. 
However, it is an easy matter to put
roman or {\bf bold} letters in  mathematics by just using 
|$x={\bf the\ spot}$| to obtain $x={\bf the\ spot}$. The real fun
comes  with something like the following:

\def\xbf{{\vec{\bf x}}}
$$ \xbf = 2^{\xbf^\xbf} $$
which is given by
\begintt
\def\xbf{{\vec{\bf x}}}
$$ 
\xbf = 2^{\xbf^\xbf} 
$$
\endtt
Note that the bold face is scaled correctly up into the superscripts. The
extra $\{\ldots\}$ are necessary so that the third |\xbf| will look like a
single token to the second |\@|.

\shead{mathtypes}{Mathematical Symbol Types}
Some symbols, even though they may look the same are given different command
sequences in \tex. The reason for this is that their use demands different
spacing and line breaking when in mathematics mode.
For this reason there are four mathematics symbols for a vertical
bar $\mid$, namely |\mid|, |\left\vert|, |\right\vert|, and |\vert|. The
first  is a {\it relation} -- called {\it Rel} -- like the $=$; the second
and third are opening and 
closing brackets like ( and ) --- \tex\ calls these {\it openings} and {\it
closings}; and the last is an {\it ordinary} --- called {\it Ord} --- symbol
like $\infty$. Two other types are {\it large operators} --- called {\it Op}
--- like $\sum$ and {\it binary operators} --- called {\it Bin} --- like $+$.
Finally there is the {\it punctuation} --- called {\it Punct} --- like the
period. 

\shead{greekletters}{Greek Letters}
All the Greek letters are of type {\it Ord}. They are all assumed to be in
mathematics mode.

\bshortcomlist
\@|\alpha {\rm A} A|&$\alpha$ A $A$ \cr
\@|\beta {\rm B} B|&$\beta$ B $B$\cr 
\@|\gamma \Gamma {\mit\Gamma}|&$\gamma$  $\Gamma$  ${\mit\Gamma}$ \cr
\@|\delta \Delta {\mit\Delta} |&$\delta$ $\Delta$ ${\mit\Delta}$ \cr
\@|\epsilon {\rm E} E|&$\epsilon$  E $E$ \cr
\@|\varepsilon|&$\varepsilon$\cr
\@|\zeta {\rm Z} Z|&$\zeta$ Z $Z$ \cr
\@|\eta {\rm H} H|&$\eta$  H $H$ \cr
\@|\theta \Theta {\mit\Theta} |&$\theta$  $\Theta$ $\mit\Theta$ \cr
\@|\vartheta|&$\vartheta$ \cr
\@|\iota {\rm I} I|&$\iota$ I $I$ \cr
\@|\kappa {\rm K} K |&$\kappa$ K $K$ \cr
\@|\lambda \Lambda {\mit\Lambda}  |&$\lambda$  $\Lambda$ $\mit\Lambda$ \cr
\@|\mu {\rm M} M |&$\mu$ M $M$ \cr
\@|\nu {\rm N} N|&$\nu$ N $N$ \cr
\@|\xi \Xi {\mit\Xi} |&$\xi$ $\Xi$ $\mit\Xi$  \cr
 |o {\rm O} O|&$o$ O $O$ \cr 
\@|\pi \Pi {\mit\Pi}|&$\pi$ $\Pi$ $\mit\Pi$ \cr
\@|\varpi|&$\varpi$\cr
\@|\rho {\rm R} R|&$\rho$ R $R$\cr
\@|\sigma \Sigma {\mit\Sigma}|&$\sigma$ $\Sigma$ $\mit\Sigma$ \cr
\@|\tau {\rm T} T|&$\tau$ T $T$ \cr
\@|\upsilon \Upsilon {\mit\Upsilon}|&$\upsilon$ $\Upsilon$ $\mit\Upsilon$ \cr 
\@|\phi \Phi {\mit\Phi}|&$\phi$ $\Phi$ $\mit\Phi$ \cr
\@|\varphi|&$\varphi$ \cr
\@|\chi {\rm X} X|&$\chi$ X $X$ \cr
\@|\psi \Psi {\mit\Psi}|&$\psi$ $\Psi$ $\mit\Psi$\cr
\@|\omega \Omega {\mit\Omega}|&$\omega$ $\Omega$ $\mit\Omega$\cr
\eshortcomlist

\shead{caligraphic}{Calligraphic Capitals}
These look like ${\cal A} \ldots{\cal Z}$ and are obtained in math mode by
the construction |{\cal <capital letter>}| while in math 
mode.

\shead{opsrels}{Ords, Operators, and Relations}
The following is a composite list of the symbols of
type ordinary, relation and operator supplied by
{\it plain}. The type is specified along with the symbol. The meaning of the
type abbreviations has been given in Section \ref{mathtypes}.
\medbreak
\beginmulticolumnformat
\hfuzz=20pt
\parindent=0pt
\def\bin{\leavevmode\hbox to 30pt{\it Bin\hss}}
\def\ord{\leavevmode\hbox to 30pt{\it Ord\hss}}
\def\rel{\leavevmode\hbox to 30pt{\it Rel\hss}}
\def\op{\leavevmode\hbox to 30pt{\it Op\hss}}
\intercolumnsep = {\hskip 3em}
\numberofcolumns = 2
\obeylines
\bin\hbox to 20pt{$+$\quad\hss}\@|+|
\bin\hbox to 20pt{$-$\quad\hss}\@|-|
\rel\hbox to 20pt{$=$\quad\hss}\@|=|
\rel\hbox to 20pt{$\not=$\quad\hss}\@|\not=| |\ne| |\neq|
\rel\hbox to 20pt{$<$\quad\hss}\@|<|
\rel\hbox to 20pt{$\not<$\quad\hss}\@|\not<|
\rel\hbox to 20pt{$>$\quad\hss}\@|>|
\rel\hbox to 20pt{$\not>$\quad\hss}\@|\not>|
\ord\hbox to 20pt{$\aleph$\quad\hss}\@|\aleph| 
\ord\hbox to 20pt{$\amalg$\quad\hss}\@|\amalg|
\ord\hbox to 20pt{$\angle$\quad\hss}\@|\angle|
\rel\hbox to 20pt{$\approx$\quad\hss}\@|\approx|
\rel\hbox to 20pt{$\not\approx$\quad\hss}\@|\not\approx|
\bin\hbox to 20pt{$\ast$\quad\hss}\@|\ast| or *
\rel\hbox to 20pt{$\asymp$\quad\hss}\@|\asymp|
\ord\hbox to 20pt{$\backslash$\quad\hss}\@|\backslash|
\op\hbox to 20pt{$\bigcap$\quad\hss}\@|\bigcap|
\bin\hbox to 20pt{$\bigcirc$\quad\hss}\@|\bigcirc|
\op\hbox to 20pt{$\bigcup$\quad\hss}\@|\bigcup|
\op\hbox to 20pt{$\bigodot$\quad\hss}\@|\bigodot|
\op\hbox to 20pt{$\bigoplus$\quad\hss}\@|\bigoplus|
\op\hbox to 20pt{$\bigotimes$\quad\hss}\@|\bigotimes|
\op\hbox to 20pt{$\bigsqcup$\quad\hss}\@|\bigsqcup|
\bin\hbox to 20pt{$\bigtriangledown$\quad\hss}\@|\bigtriangledown|
\bin\hbox to 20pt{$\bigtriangleup$\quad\hss}\@|\bigtriangleup|
\op\hbox to 20pt{$\biguplus$\quad\hss}\@|\biguplus|
\op\hbox to 20pt{$\bigvee$\quad\hss}\@|\bigvee|
\op\hbox to 20pt{$\bigwedge$\quad\hss}\@|\bigwedge|
\ord\hbox to 20pt{$\bot$\quad\hss}\@|\bot|
\rel\hbox to 20pt{$\bowtie$\quad\hss}\@|\bowtie|
\bin\hbox to 20pt{$\bullet$\quad\hss}\@|\bullet|
\bin\hbox to 20pt{$\cap$\quad\hss}\@|\cap|
\bin\hbox to 20pt{$\cdot$\quad\hss}\@|\cdot|
\bin\hbox to 20pt{$\circ$\quad\hss}\@|\circ|
\ord\hbox to 20pt{$\clubsuit$\quad\hss}\@|\clubsuit|
\rel\hbox to 20pt{$\cong$\quad\hss}\@|\cong|
\rel\hbox to 20pt{$\not\cong$\quad\hss}\@|\not\cong|
\op\hbox to 20pt{$\coprod$\quad\hss}\@|\coprod|
\bin\hbox to 20pt{$\cup$\quad\hss}\@|\cup|
\bin\hbox to 20pt{$\dagger$\quad\hss}\@|\dagger|
\rel\hbox to 20pt{$\dashv$\quad\hss}\@|\dashv|
\bin\hbox to 20pt{$\ddagger$\quad\hss}\@|\ddagger|
\ord\hbox to 20pt{$\diamondsuit$\quad\hss}\@|\diamondsuit|
\balancecolumnsize = 470pt
\bin\hbox to 20pt{$\diamond$\quad\hss}\@|\diamond|
\bin\hbox to 20pt{$\div$\quad\hss}\@|\div|
\rel\hbox to 20pt{$\doteq$\quad\hss}\@|\doteq|
\rel\hbox to 20pt{$\Downarrow$\quad\hss}\@|\Downarrow|
\rel\hbox to 20pt{$\downarrow$\quad\hss}\@|\downarrow| 
\ord\hbox to 20pt{$\ell$\quad\hss}\@|\ell|
\ord\hbox to 20pt{$\emptyset$\quad\hss}\@|\emptyset|
\rel\hbox to 20pt{$\equiv$\quad\hss}\@|\equiv|
\rel\hbox to 20pt{$\not\equiv$\quad\hss}\@|\not\equiv|
\ord\hbox to 20pt{$\exists$\quad\hss}\@|\exists|
\ord\hbox to 20pt{$\flat$\quad\hss}\@|\flat|
\ord\hbox to 20pt{$\forall$\quad\hss}\@|\forall|
\ord\hbox to 20pt{$\frown$\quad\hss}\@|\frown|
\rel\hbox to 20pt{$\geq$\quad\hss}\@|\ge| \@|\geq|
\rel\hbox to 20pt{$\not\geq$\quad\hss}\@|\not\geq|
\rel\hbox to 20pt{$\gg$\quad\hss}\@|\gg|
\rel\hbox to 20pt{$\not\gg$\quad\hss}\@|\not\gg|
\ord\hbox to 20pt{$\hbar$\quad\hss}\@|\hbar|
\ord\hbox to 20pt{$\heartsuit$\quad\hss}\@|\heartsuit|
\rel\hbox to 20pt{$\hookleftarrow$\quad\hss}\@|\hookleftarrow| 
\rel\hbox to 20pt{$\hookrightarrow$\quad\hss}\@|\hookrightarrow|
\ord\hbox to 20pt{$\Im$\quad\hss}\@|\Im|
\ord\hbox to 20pt{$\imath$\quad\hss}\@|\imath|
\ord\hbox to 20pt{$\infty$\quad\hss}\@|\infty|
\op\hbox to 20pt{$\int$\quad\hss}\@|\int|
\rel\hbox to 20pt{$\in$\quad\hss}\@|\in|
\rel\hbox to 20pt{$\not\in$\quad\hss}\@|\not\in|
\ord\hbox to 20pt{$\jmath$\quad\hss}\@|\jmath|
\rel\hbox to 20pt{$\Leftarrow$\quad\hss}\@|\Leftarrow|
\rel\hbox to 20pt{$\leftarrow$\quad\hss}\@|\leftarrow| 
\rel\hbox to 20pt{$\leftharpoondown$\quad\hss}\@|\leftharpoondown| 
\rel\hbox to 20pt{$\leftharpoonup$\quad\hss}\@|\leftharpoonup| 
\rel\hbox to 20pt{$\Leftrightarrow$\quad\hss}\@|\Leftrightarrow| 
\rel\hbox to 20pt{$\leftrightarrow$\quad\hss}\@|\leftrightarrow| 
\rel\hbox to 20pt{$\leq$\quad\hss}\@|\le| \@|\leq|
\rel\hbox to 20pt{$\not\leq$\quad\hss}\@|\not\leq|
\rel\hbox to 20pt{$\ll$\quad\hss}\@|\ll|
\rel\hbox to 20pt{$\not\ll$\quad\hss}\@|\not\ll|
\rel\hbox to 20pt{$\Longleftarrow$\quad\hss}\@|\Longleftarrow| 
\rel\hbox to 20pt{$\longleftarrow$\quad\hss}\@|\longleftarrow| 
\rel\hbox to 20pt{$\Longleftrightarrow$\quad\hss}\@|\Longleftrightarrow| 
\rel\hbox to 20pt{$\longleftrightarrow$\quad\hss}\@|\longleftrightarrow|  
\rel\hbox to 20pt{$\longmapsto$\quad\hss}\@|\longmapsto| 
\rel\hbox to 20pt{$\Longrightarrow$\quad\hss}\@|\Longrightarrow| 
\rel\hbox to 20pt{$\longrightarrow$\quad\hss}\@|\longrightarrow|
\rel\hbox to 20pt{$\mapsto$\quad\hss}\@|\mapsto|
\rel\hbox to 20pt{$\mid$\quad\hss}\@|\mid|
\rel\hbox to 20pt{$\models$\quad\hss}\@|\models|
\bin\hbox to 20pt{$\mp$\quad\hss}\@|\mp|
\ord\hbox to 20pt{$\nabla$\quad\hss}\@|\nabla|
\ord\hbox to 20pt{$\natural$\quad\hss}\@|\natural|
\rel\hbox to 20pt{$\nearrow$\quad\hss}\@|\nearrow| 
\rel\hbox to 20pt{$\nwarrow$\quad\hss}\@|\nwarrow|
\ord\hbox to 20pt{$\neg$\quad\hss}\@|\neg| \@|\lnot|
\rel\hbox to 20pt{$\ni$\quad\hss}\@|\ni| \@|\owns|
\bin\hbox to 20pt{$\odot$\quad\hss}\@|\odot|
\op\hbox to 20pt{$\oint$\quad\hss}\@|\oint|
\bin\hbox to 20pt{$\ominus$\quad\hss}\@|\ominus|
\bin\hbox to 20pt{$\oplus$\quad\hss}\@|\oplus|
\bin\hbox to 20pt{$\oslash$\quad\hss}\@|\oslash|
\bin\hbox to 20pt{$\otimes$\quad\hss}\@|\otimes|
\rel\hbox to 20pt{$\parallel$\quad\hss}\@|\parallel|
\ord\hbox to 20pt{$\partial$\quad\hss}\@|\partial|
\bin\hbox to 20pt{$\perp$\quad\hss}\@|\perp|
\bin\hbox to 20pt{$\pm$\quad\hss}\@|\pm|
\rel\hbox to 20pt{$\preceq$\quad\hss}\@|\preceq|
\rel\hbox to 20pt{$\not\preceq$\quad\hss}\@|\not\preceq|
\rel\hbox to 20pt{$\prec$\quad\hss}\@|\prec|
\rel\hbox to 20pt{$\not\prec$\quad\hss}\@|\not\prec|
\ord\hbox to 20pt{$\prime$\quad\hss}\@|\prime|
\op\hbox to 20pt{$\prod$\quad\hss}\@|\prod|
\rel\hbox to 20pt{$\propto$\quad\hss}\@|\propto|
\ord\hbox to 20pt{$\Re$\quad\hss}\@|\Re|
\rel\hbox to 20pt{$\Rightarrow$\quad\hss}\@|\Rightarrow| 
\rel\hbox to 20pt{$\rightarrow$\quad\hss}\@|\rightarrow| 
\rel\hbox to 20pt{$\rightharpoondown$\quad\hss}\@|\rightharpoondown|  
\rel\hbox to 20pt{$\rightharpoonup$\quad\hss}\@|\rightharpoonup|  
\rel\hbox to 20pt{$\rightleftharpoons$\quad\hss}\@|\rightleftharpoons|
\bin\hbox to 20pt{$\setminus$\quad\hss}\@|\setminus|
\ord\hbox to 20pt{$\sharp$\quad\hss}\@|\sharp|
\rel\hbox to 20pt{$\simeq$\quad\hss}\@|\simeq|
\rel\hbox to 20pt{$\not\simeq$\quad\hss}\@|\not\simeq|
\rel\hbox to 20pt{$\sim$\quad\hss}\@|\sim|
\rel\hbox to 20pt{$\not\sim$\quad\hss}\@|\not\sim|
\rel\hbox to 20pt{$\smile$\quad\hss}\@|\smile|
\ord\hbox to 20pt{$\spadesuit$\quad\hss}\@|\spadesuit|
\bin\hbox to 20pt{$\sqcap$\quad\hss}\@|\sqcap|
\bin\hbox to 20pt{$\sqcup$\quad\hss}\@|\sqcup|
\rel\hbox to 20pt{$\sqsubseteq$\quad\hss}\@|\sqsubseteq|
\rel\hbox to 20pt{$\not\sqsubseteq$\quad\hss}\@|\not\sqsubseteq|
\rel\hbox to 20pt{$\sqsupseteq$\quad\hss}\@|\sqsupseteq|
\rel\hbox to 20pt{$\not\sqsupseteq$\quad\hss}\@|\not\sqsupseteq|
\ord\hbox to 20pt{$\star$\quad\hss}\@|\star|
\rel\hbox to 20pt{$\subseteq$\quad\hss}\@|\subseteq|
\rel\hbox to 20pt{$\not\subseteq$\quad\hss}\@|\not\subseteq|
\rel\hbox to 20pt{$\subset$\quad\hss}\@|\subset|
\rel\hbox to 20pt{$\not\subset$\quad\hss}\@|\not\subset|
\rel\hbox to 20pt{$\succeq$\quad\hss}\@|\succeq|
\rel\hbox to 20pt{$\not\succeq$\quad\hss}\@|\not\succeq|
\rel\hbox to 20pt{$\succ$\quad\hss}\@|\succ|
\rel\hbox to 20pt{$\not\succ$\quad\hss}\@|\not\succ|
\op\hbox to 20pt{$\sum$\quad\hss}\@|\sum|
\rel\hbox to 20pt{$\supseteq$\quad\hss}\@|\supseteq|
\rel\hbox to 20pt{$\not\supseteq$\quad\hss}\@|\not\supseteq|
\rel\hbox to 20pt{$\supset$\quad\hss}\@|\supset|
\rel\hbox to 20pt{$\not\supset$\quad\hss}\@|\not\supset|
\ord\hbox to 20pt{$\surd$\quad\hss}\@|\surd|
\rel\hbox to 20pt{$\searrow$\quad\hss}\@|\searrow| 
\rel\hbox to 20pt{$\swarrow$\quad\hss}\@|\swarrow|
\bin\hbox to 20pt{$\times$\quad\hss}\@|\times|
\bin\hbox to 20pt{$\top$\quad\hss}\@|\top|
\bin\hbox to 20pt{$\triangleleft$\quad\hss}\@|\triangleleft|
\bin\hbox to 20pt{$\triangleright$\quad\hss}\@|\triangleright|
\ord\hbox to 20pt{$\triangle$\quad\hss}\@|\triangle|
\bin\hbox to 20pt{$\uplus$\quad\hss}\@|\uplus|
\rel\hbox to 20pt{$\Uparrow$\quad\hss}\@|\Uparrow| 
\rel\hbox to 20pt{$\uparrow$\quad\hss}\@|\uparrow| 
\rel\hbox to 20pt{$\Updownarrow$\quad\hss}\@|\Updownarrow| 
\rel\hbox to 20pt{$\updownarrow$\quad\hss}\@|\updownarrow|         
\ord\hbox to 20pt{$\Vert$\quad\hss}\@|\Vert| or |\|\vrt 
\ord\hbox to 20pt{$\vert$\quad\hss}\@|\vert| or \vrt
\rel\hbox to 20pt{$\vdash$\quad\hss}\@|\vdash|
\bin\hbox to 20pt{$\vee$\quad\hss}\@|\lor| \@|\vee|
\bin\hbox to 20pt{$\wedge$\quad\hss}\@|\land| \@|\wedge|
\ord\hbox to 20pt{$\wp$\quad\hss}\@|\wp|
\bin\hbox to 20pt{$\wr$\quad\hss}\@|\wr|
\endmulticolumnformat

\shead{delims}{Brackets or Delimiters}
\tex\ supplies a large variety of delimiters or brackets, some of different
sizes and others that grow to be the correct size. Here is a list of the
delimiters supplied by {\it plain}. 

\bshortcomlist
\@|\big\Arrowvert|&center part of double up arrow -- $\big\Arrowvert$\cr
\@|\big\arrowvert|&center part of up arrow --  $\big\arrowvert$\cr
\@|\langle|&left angle bracket --  $\langle$\cr
\@|\rangle|&right angle bracket --  $\rangle$\cr
\@|\big\bracevert|&center part of large braces -- $\big\bracevert$ \cr
|\{| or \@|\lbrace|&left brace --  $\{$\cr
|\}| or \@|\rbrace|&right brace --  $\}$\cr
|[| or \@|\lbrack|&left square bracket --  $[$\cr
|]| or \@|\rbrack|&right square bracket --  $]$\cr
\@|\lceil|&left ceiling --  $\lceil$\cr
\@|\rceil|&right ceiling --  $\rceil$\cr
\@|\lfloor|&left floor --  $\lfloor$\cr
\@|\rfloor|&right floor --  $\rfloor$\cr
\@|\big\lgroup|&large left paren without middle -- $\big\lgroup$\cr
\@|\big\rgroup|&large right paren without middle -- $\big\rgroup$\cr
\@|\big\lmoustache|&  -- $\big\lmoustache$\cr
\@|\big\rmoustache|&  -- $\big\rmoustache$\cr
|/|&slash --  $/$\cr
\@|\backslash|&reverse slash --  $\backslash$\cr
\vrt\ or |\vert|&vertical bar --  $\vert$\cr
|\|\vrt\ or |\Vert|&double vertical bar --  $\Vert$\cr
|\downarrow|&down arrow --  $\downarrow$\cr
|\Downarrow|&double down arrow --  $\Downarrow$\cr
|\uparrow|&up arrow --  $\uparrow$\cr
|\Uparrow|&double up arrow --  $\Uparrow$\cr
|\updownarrow|&up-and-down arrow --  $\updownarrow$\cr
|\Updownarrow|&double up-and-down arrow --  $\Updownarrow$\cr
|(|&left paren --  $($\cr
|)|&right paren --  $)$\cr
\eshortcomlist

Two very powerful operators exist for the delimiters, namely |\left| and
|\right|. They must be used in pairs as 
\par
\hbox to \hsize{\hss\@|$\left<delimiter> ...\right<delimiter>$|,\hss} 
\noindent
where the |<delimiter>| is one of the above. The result
of these operators is a pair of braces that grow the correct size for the
particular formula in which they are used. This saves you from the problem of
measuring. A |\right.| implies there is nothing at the place of the right
delimiter and |\left.| similarly on the left. This allows a delimiter on only
one side of a formula but to still have the operators match in pairs.

Finally there is a second set of four pairs of operators, \@|\bigl|, |\Bigl|,
\@|\biggl|, \@|\Biggl| and the corresponding  right hand ones  \@|\bigr|, \@|\Bigr|,
\@|\biggr|, and \@|\Biggr|. These produce big, but fixed size delimiters for instance we have
\begintt
$$
 \bigl\{\quad 
\Bigl[\quad 
\biggl\lfloor\quad 
\Biggl\Updownarrow\quad\Biggr\Updownarrow
\quad\biggr\rfloor
\quad\Bigr]
\quad\bigr\}
$$
\endtt
produces
$$
 \bigl\{\quad 
\Bigl[\quad 
\biggl\lfloor\quad 
\Biggl\Updownarrow\quad\Biggr\Updownarrow
\quad\biggr\rfloor
\quad\Bigr]
\quad\bigr\}
$$

\shead{sincos}{Common Mathematical Functions}
Certain functions such as |sin|, |cos|, and |limsup| for example are shown in
mathematics text in Roman font. In addition some like |lim| sometimes take
limits that should be placed in the same way as the limits on the large
operators ({\it Op}). For example
\begintt
$$
\limsup_{t \leftrightarrow \infty} 
$$
\endtt
gives
$$
\limsup_{t \leftrightarrow \infty} 
$$
There are 32 of these already defined in {\it plain}. They are
\beginthreecolumn
\@|\arg|    
\@|\arccos| 
\@|\arcsin| 
\@|\arctan| 
\@|\cot|  
\@|\coth| 
\@|\cosh| 
\@|\cos|  
\@|\csc|
\@|\det|
\@|\deg|
\@|\dim|
\@|\exp|
\@|\gcd|
\@|\hom|
\@|\inf|
\@|\ker|   
\@|\lg|    
\@|\liminf|
\@|\limsup|
\@|\lim|   
\@|\ln|    
\@|\log|   
\@|\max|   
\@|\min| 
\@|\Pr|  
\@|\sec| 
\@|\sin| 
\@|\sinh|
\@|\sup|
\@|\tanh|
\@|\tan|
\endthreecolumn

\shead{buildown}{Build Your Own Symbols}
There are several advanced facilities in \tex\ for building your own symbols.
However, there is one rather simple form using 
\@|\buildrel <superscript> \over <relation>|. For example
|\buildrel \triangle  \over =| gives $\buildrel \triangle  \over =$.

\ejectpage
\done