1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
|
%Paradigm: Sorting. Aug 1995, revised Feb 1996
%C.G. van der laan, cgl@rc.service.rig.nl
\input blue.tex
\loadtocmacros
\loadindexmacros %necessary for sorting examples
\tolerance500\hbadness=499\hfuzz=5pt
\bluetitle Paradigms: Sorting
\blueissue \maps{96}2
\everyverbatim{\emc}
\def\on{\bgroup\afterassignment\doold\count0=}
\def\doold{\oldstyle\the\count0\egroup}
\beginscript
\bluehead BLUe's Design IX
Hi folks.
A strong and {\em unique\/} point of BLUe's format system is its
indexing on the fly.
Be it for a total document or just for a chapter. One of the requisites
for indexing on the fly is the possibility to sort within \TeX.
Sorting has always been an important topic in computer science.
In \TeX{} I needed sorting on several occasions especially for sorting
numbers such as citation lists,
words such as addresses, and
index entries.
This note is devoted to paradigms encountered while implementing and applying
sorting in \TeX.
Sorting can be characterized by
\item- the set to be sorted (numbers, word. etc.)
\item- the addressing of elements of the set
\item- the ordering for the set
\item- the comparison operation, and
\item- the exchange operation.
\smallbreak
To do some sorting of your own please load from \bluetex{} the index macros
via \cs{loadindexmacros}.
Below parts have been extracted from that collection of
macros to make this note as intelligible as possible.
\cs{ea} is my shortcut for \cs{expandafter}.
\bluehead Linear sorting
A simple sorting method is repeatedly searching for the smallest element.
In the example below the set is defined as a def with
list element tag |\\|.
\thisverbatim{\unmc}
\beginverbatim
\def\lst{\\\ia\\\ib\\\ic}
\def\ia{314} \def\ib{1} \def\ic{27}
%
\def\dblbsl#1{\ifnum#1<\min\let\min=#1\fi}
%
\loop\ifx\empty\lst\expandafter\break\fi
\def\\{\let\\=\dblbsl\let\min=} %space
\lst%find minimum
\min%typeset minimum
{\def\\#1{\ifx#1\min \else\nx\\%
\nx#1\fi}\xdef\lst{\lst}}%
\pool%Inspired upon van der Goot's
%Midnight macros.
\def\loop#1\pool{#1\loop#1\pool}
\def\break#1\pool{}
!endverbatim
The coding implements the looping of the basic steps
\item- find minimum (via \cs{lst},
and suitable definition of \DeK's list element tag |\\|)
\item- typeset minimum (via \cs{min})
\item- delete minimum from the list (via another appropriate
definition of the list element tag.
\smallbreak
Remark.
The kludge for using \cs{ifx} instead of \cs{ifnum} in the deletion part
is necessary because \TeX{} inserts a \cs{relax}.
\bluehead Sorting in an array
If we adopt array addressing in \TeX{} for the elements to be sorted
then we can implement bubble sort in \TeX{} too.\ftn
{The above example of linear sorting can be seen as sorting in a
so-called associative array.}
\bluesubhead Array addressing
When we think of associating values to (index) numbers\Dash
|1| $\rightarrow$ |\value{1}| \Dash
then we are talking about an array.
A mapping of the \IN{} on \dots for example \IN.
The \cs{value} control sequence can be implemented as follows.
\beginverbatim
\def\value#1{\csname#1\endcsname}
!endverbatim
The writing to the array elements can be done via
\beginverbatim
\def\1{<value1>} \def\2{<value2>}...
!endverbatim
In general this must be done via
\beginverbatim
\ea\def\csname<number>\endcsname{<valuenumber>}
!endverbatim
\bluesubsubhead To get the hang of it
The reader must be aware of the differences between
\item- the index number, $\langle k\rangle$
\item- the counter variable \cs{k}, with the value $\langle k\rangle$
as index number
\item- the control sequences |\<k>|$, k=1, 2, \dots, n$,
with as replacement texts the items to be sorted.
\smallbreak
When we have |\def\3{4}| |\def\4{5}| |\def\5{6}| then \\
\def\3{4}\def\4{5}\def\5{6}
|\3| yields {\bf\3}, \\
|\csname\3\endcsname| yields
{\bf\csname\3\endcsname}, and \\
|\csname\csname\3\endcsname\endcsname| yields
{\bf\csname\csname\3\endcsname\endcsname}.
Similarly, when we have\\
\cs{k3} |\def\3{name}| |\def\name{action}| then \\
\def\3{name}\def\name{action}\k=3{}
|\the\k| yields {\bf\the\k}, \\
|\csname\the\k\endcsname| yields {\bf\csname\the\k\endcsname}, and\\
|\csname\csname\the\k\endcsname\endcsname| yields
{\bf\csname\csname\the\k\endcsname\endcsname}.\ftn{Confusing, but powerful.}
To exercise shortcut notation the last can be denoted by
|\value{\value{\the\k}}|.
Another \cs{csname...} will execute \cs{action}, which can be whatever
you provided as replacement text.\ftn
{My other uses of the \cs{csname} construction are:
to let \TeX{} accept an outer defined macro name in a replacement text,
to check whether a name has already been defined, and
to mimic a switch selector.}
\bluehead Bubble sort
This process looks repeatedly for the biggest element which is swapped
to the end. This is done for the complete array, the array of size $n-1$ et cetera.
The pseudo code reads as follows.
\beginpascal
for n:= upb downto 2 do
begin for k:= n-1 downto 1 do
if a[n]<a[k] then
exchange(a[n], a[k]);
end;
\endpascal
The \TeX{} macro reads as follows.
\thisverbatim{\unmc}
\beginverbatim
\def\bubblesort{%Data in defs \1, \2,...\<n>.
%Result: \1<=\2<=...<=\<n>.
{\loop\ifnum1<\n{\k\n
\loop\ifnum1<\k \advance\k-1
\cmp{\deref\k}{\deref\n}%
\ifnum\status=1 \xch\k\n\fi
\repeat}\advance\n-1
\repeat}}%end \bubblesort
%with auxiliaries
\def\deref#1{\csname\the#1\endcsname}
\let\cmp\cmpn %from blue.tex or provide
%\def\cmp#1#2{%Comparison. Yields
% \status=0, 1, 2 for =, >, <
%{...}
%\def\xch#1#2{%exchange
%#1, #2 counter variables
%{...}
!endverbatim
\bluehead Heap sort
We can organize the array as a heap. A heap is an ordered tree.
Loosely speaking for each node the siblings are smaller or
equal than the node.
The process consists of two main steps
\item- creation of a heap
\item- sorting the heap
\smallbreak
with a sift operation to be used in both.
In comparison with my earlier release of the code in \maps{92}2,
I adapted the notation with respect to sorting in {\em non-decreasing\/}
order.\ftn
{It is true that the reverse of the comparison operation would
do, but it seemed more consistent to me to adapt
the notation of the heap concept with
the smallest elements at the bottom.}
What is a heap?
A sequence $a_1, a_2, \dots, a_n$, is a heap if
$a_k\ge a_{2k} \wedge a_k\ge a_{2k+1}, k=1, 2, \dots, n\div2$, and
because $a_{n+1}$ is undefined, the notation is simplified by
defining $a_k>a_{n+1}, k= 1, 2, \dots , n$.
\\
A tree and one of its heap representations of $2, 6, 7, 1, 3, 4$
read
$$\thisbintree{\tophns10ex}
\beginbintree{00}2{11}6{12}7{21}1{22}3{23}4
2\endbintree
\kern-4ex\raise13ex\hbox{$\buildrel heap\over \longrightarrow$}
\thisbintree{\tophns10ex}\kern-4ex
\beginbintree{00}7{11}6{12}4{21}3{22}2{23}1
2\endbintree$$
In PASCAL-like notation the algoritm,
for sorting the array a[1:n], reads
{\parindent0pt
\beginpascal
(*heap creation*)
l := n div 2 + 1;
while l <> 1 do
begin l := l-1; sift(a, l, n) end;
(*sorting*)
r := n;
while r <> 1 do
begin swap(a[1], a[r]);
r := r-1; sift(a, 1, r)
end;
(*sift arg1 through arg2*)
j:= arg1;
while 2j >= arg2 and
(a[j] < a[2j] or a[j] < a[2j+1])
do begin mi := 2j + if a[2j] > a[2j+1]
then 0 else 1;
exchange(a[j], a[mi]); j := mi
end;
\endpascal
\smallskip}
\bluesubhead Purpose
Sorting values given in an array.
\bluesubhead Input
The values are stored in the control sequences
\cs{1}, \dots, |\<n>|.
The counter |\n| must contain the value $\langle n\rangle$.
The parameter for comparison, \cs{cmp},
must be \cs{let}-equal to
\item- \cs{cmpn}, for numerical comparison,
\item- \cs{cmpw}, for word comparison,
\item- \cs{cmpaw}, for word comparison obeying the ASCII ordering, or
\item- a comparison macro of your own.
\smallbreak
\bluesubhead Output
The sorted array \cs{1}, \cs{2}, \dots |\<n>|,
with \\
\cs{value1} $\le$ \cs{value2} $\le$
\dots $\le$ \cs{value}$\langle n\rangle$.
\bluesubhead Source
\thisverbatim{\unmc}
\beginverbatim
%Non-descending sorting
\def\heapsort{%data in \1 to \n
\r\n\heap\ic1
{\loop\ifnum1<\r\xch\ic\r
\advance\r-1 \sift\ic\r
\repeat}}
%
\def\heap{%Transform \1..\n into heap
\lc\n\divide\lc2{}\advance\lc1
{\loop\ifnum1<\lc\advance\lc-1
\sift\lc\n\repeat}}
%
\def\sift#1#2{%#1, #2 counter variables
\jj#1\uone#2\advance\uone1 \goontrue
{\loop\jc\jj \advance\jj\jj
\ifnum\jj<\uone
\jjone\jj \advance\jjone1
\ifnum\jj<#2 \cmpval\jj\jjone
\ifnum2=\status\jj\jjone\fi\fi
\cmpval\jc\jj\ifnum2>\status\goonfalse\fi
\else\goonfalse\fi
\ifgoon\xch\jc\jj\repeat}}
%
\def\cmpval#1#2{%#1, #2 counter variables
%Result: \status= 0, 1, 2 if
%values pointed by
% #1 =, >, < #2
\ea\let\ea\aone\csname\the#1\endcsname
\ea\let\ea\atwo\csname\the#2\endcsname
\cmp\aone\atwo}
%
\def\cmpn#1#2{%#1, #2 must expand into
%numbers
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}.
\ifnum#1=#2\global\status0 \else
\ifnum#1>#2\global\status1 \else
\global\status2 \fi\fi}
%
\def\xch#1#2{%#1, #2 counter variables
\edef\aux{\csname\the#1\endcsname}\ea
\xdef\csname\the#1\endcsname{\csname
\the#2\endcsname}\ea
\xdef\csname\the#2\endcsname{\aux}}.
%with auxiliaries
\newcount\n\newcount\lc\newcount\r
\newcount\ic\newcount\uone
\newcount\jc\newcount\jj\newcount\jjone
\newif\ifgoon
!endverbatim
Explanation.
\item{}\cs{heapsort}
The values given in \cs{1},\dots|\<n>|,
are sorted in non-descending order.
\item{}\cs{heap}
The values given in \cs{1},\dots|\<n>|,
are rearranged into a heap.
\item{}\cs{sift}
The first element denoted by the first (counter) argument
has disturbed the heap. Sift rearranges
the part of the array denoted by its two arguments, such that the
heap property holds again.
\item{}\cs{cmpval}
The values denoted by the counter values,
supplied as arguments, are compared.
\smallbreak
\blueexample Numbers, words
\cs{cmpn}, and \cs{cmpw} stand for compare numbers and words.
\cs{prtn}, and \cs{prtw} stand for print numbers and words, and
work the way you expect.
\cs{accdef} takes care that accents are properly defined.
\beginverbatim
\def\1{314}\def\2{1}\def\3{27}\n3
\let\cmp\cmpn\heapsort
\beginquote\prtn,\endquote
%
\def\1{ab}\def\2{c}\def\3{aa}\n3
\let\cmp\cmpaw\heapsort
\beginquote\prtw,\endquote
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}
\def\4{\'el\`eve}\n4
\let\cmp\cmpw {\accdef\heapsort}
\beginquote\prtw\endquote
!endverbatim
yields
\def\1{314}\def\2{1}\def\3{27}\n=3
{\let\cmp\cmpn\heapsort
\beginquote\prtn,\endquote
%
\def\1{ab}\def\2{c}\def\3{aa}\n=3
\let\cmp\cmpaw\heapsort
\beginquote\prtw,\endquote
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}\def\4{\'el\`eve}\n=4
\let\cmp=\cmpw{\accdef\heapsort}
\beginquote\prtw.\endquote
}
\bluehead Quick sort
The quick sort algorithm has been discussed in many places,
The following code is borrowed from Bentley.\ftn{Programming Pearls, Addison-Wesley.
It contains also diagrams which keep track of the invariants.}
\beginpascal
procedure QSort(low,up);
if low<up then
begin
(*choose suitable median*)
Swap(X[low], X[RandInt(low,up)]);
T:=X[low]; M:=low;
(*Invariant loop
X[low+1..M]<T and X[M+1..I-1]>=T*)
for I:=low+1 to up do
if X[I]<T then
begin M:=M+1;
Swap(X[M], X[I]);
end;
(*exchange median*)
Swap(X[low], X[M]);
(*X[low..M-1]<X[M]<=X[M+1..up]*)
QSort(low, M-1); QSort(M+1, up);
end;
\endpascal
\bluesubhead Purpose
Sorting of the values given in the array
|\<low>|, \dots, |\<up>|.
\bluesubhead Input
The values are stored in
|\<low>|, \dots, |\<up>|,
with $1\le low\le up\le n$.
The parameter for comparison, \cs{cmp},
must be \cs{let}-equal to
\item- \cs{cmpn}, for number comparison,
\item- \cs{cmpw}, for word comparison,
\item- \cs{cmpaw},for word comparison obeying the ASCII ordering, or
\item- a comparison macro of your own.
\smallbreak
\bluesubhead Output
The sorted array |\<low>|, \dots, |\<up>|, with \\
\cs{va}$\langle low\rangle \le
\dots \le{}$ \cs{val}$\langle up\rangle$.
\bluesubhead Source
\thisverbatim{\unmc}
\beginverbatim
\def\quicksort{%Values given in
%\low,...,\up are sorted, non-descending.
%Parameters: \cmp, comparison.
\ifnum\low<\up\else\brk\fi
%\refval, a reference value selected
%at random.
\m\up\advance\m-\low%Size-1 of array part
\ifnum10<\m\rnd\multiply\m\rndval
\divide\m99 \advance\m\low \xch\low\m
\fi
\ea\let\ea\refval\csname\the\low\endcsname
\m\low\k\low\let\refvalcop\refval
{\loop\ifnum\k<\up\advance\k1
\ea\let\ea\oneqs\csname\the\k\endcsname
\cmp\refval\oneqs\ifnum1=\status
\global\advance\m1 \xch\m\k\fi
\let\refval\refvalcop
\repeat}\xch\low\m
{\up\m\advance\up-1 \quicksort}%
\low\m\advance\low1 \quicksort}
%
\def\brk#1\quicksort{\fi}
!endverbatim
Explanation.
At each level the array is partitioned into two parts.
After partitioning
the left part contains values less than the reference value and the
right part contains values greater than or equal to the reference value.
Each part is again partitioned via a recursive call of the macro.
The array is sorted when all parts are partitioned.
In the \TeX{} coding
the reference value as estimate for the mean value is determined
via a random selection of one of the elements.\ftn
{If the array is big enough. I chose rather arbitrarily \on10{}
as threshold.}
Reid's \cs{rnd} has been used.
The random number is mapped into
the range [$\,low:up\,$], via the linear transformation
$\hbox{\cs{low}}+(\hbox{\cs{up}}-\hbox{\cs{low}})*
\hbox{\cs{rndval}}/99$.\ftn
{Note that the number is guaranteed within the range.}
The termination of the recursion is coded in a \TeX{} peculiar way.
First, I coded the infinite loop.
Then I inserted the condition for termination with the \cs{fi}
on the same line, and not enclosing the main part of the macro.
On termination the invocation \cs{brk} gobbles up all the tokens
at that level to the end, to its separator \cs{quicksort},
and inserts its replacement text, a new \cs{fi},
to compensate for the gobbled \cs{fi}.
\bluesubhead Auxiliaries
Sorting is parameterized by comparison and exchanging.
Also needed is a random number generator.
The latter is not supplied here.
\thisverbatim{\unmc}
\beginverbatim
\def\cmpn#1#2{%#1, #2 must expand into
%numbers
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}.
\ifnum#1=#2\global\status0 \else
\ifnum#1>#2\global\status1 \else
\global\status2 \fi\fi}
%
\def\xch#1#2{%#1, #2 counter variables
\edef\aux{\csname\the#1\endcsname}\ea
\xdef\csname\the#1\endcsname{\csname
\the#2\endcsname}\ea
\xdef\csname\the#2\endcsname{\aux}}
!endverbatim
\bluesubhead Ordering
The ordering is parameterized in the ordering table.
\blueexample Numbers, words
\cs{cmpn}, and \cs{cmpw} stand for compare numbers and words.
\cs{prtn}, and \cs{prtw} stand for print numbers and words, and
work the way you expect.
\cs{accdef} takes care that accents are properly defined.
\beginverbatim
\def\1{314}\def\2{1}\def\3{27}\n3
\low1\up\n\let\cmp\cmpn
\quicksort
\beginquote\prtn,\endquote
%
\def\1{ab}\def\2{c}\def\3{aa}
\def\4{\ij}\def\5{ik}\def\6{z}\def\7{a}\n7
\low1\up\n\let\cmp\cmpw
\quicksort
\beginquote\prtw,\endquote
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}
\def\4{\'el\`eve}\n4
\low1\up\n\let\cmp\cmpw
{\accdef\quicksort}
\beginquote\prtw.\endquote
!endverbatim
yields
\def\1{314}\def\2{1}\def\3{27}\n3
{\low1\up\n\let\cmp\cmpn
\quicksort
\beginquote\prtn,\endquote
%
\def\1{ab}\def\2{c}\def\3{aa}
\def\4{\ij}\def\5{ik}\def\6{z}\def\7{a}\n7
\low1\up\n\let\cmp\cmpw
\quicksort
\beginquote\prtw,\endquote
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}
\def\4{\'el\`eve}\n=4
\low=1\up=\n\let\cmp=\cmpw
{\accdef\quicksort}
\beginquote\prtw.\endquote
}
\bluehead Use
I needed sorting within \TeX{} for indexing and
for sorting address labels.
\bluesubhead Sorting address labels
Suppose we wish to sort addresses on the secondary key membership number.
In order to do so the index must point to the name of the database entry
and the name must point to its membership number, that is
$$\vbox{\hbox{$1\,2\,\ldots
\rightarrow$ |\<name>|${}_x\,$ |\<name>|$_y\,\ldots
\rightarrow$ |<no>|${}_x\,$ |<no>|$_y\,\ldots$\hss}}
$$
This can be coded as follows.
\beginverbatim
\loadindexmacros
%
\def\lst#1#2{\advance\k1
\ea\def\csname\the\k\endcsname{#1}%
\ea\def\ea#1\gobbletono#2}
\def\gobbletono#1\no{}
\k0
\input toy.dat %The test database
\n\k %number of items
Membershipno unsorted: \1, \2, ...
%
\let\cmp\cmpn\sort
Sorted on membershipno: \1, \2, ...
!endverbatim
The amazing thing is that we don't have to do much extra because the name
will expand to the number, which will be used in the comparison.
I used that \cs{no} was the last element of the database entry,
but that is not essential.
Each database entry consist of a triple \cs{lst}, |\<name>|,
and entry proper within braces.
\bluesubsubhead Typesetting
Now we have to redirect the pointer from the name away from the number
to the complete entry, that is
$$\vbox{\hbox{$1\,2\,\ldots
\rightarrow$|\<name>|$_1\,$|\<name>|$_2\,\dots
\rightarrow$|{entry}|$_1\,$|{entry}|$_2\,\ldots$\hss}}
$$
This is done as follows.
\beginverbatim
\def\lst#1#2{\def#1{#2}}
\input toy.dat
\1 \2 \3 \4 \5 \6
!endverbatim
\bluesubhead Sorting index entries
One of the processes in preparing an index is sorting the Index Reminders, IRs.
This is again a sorting process on secondary keys, even tertiary keys.
Given the sorting macros we just have to code
the special comparison macro in compliance with \cs{cmpw}:
compare two `values' specified by \cs{def}s.
Let us call this macro \cs{cmpir}.\ftn{Mnemonics: compare index reminders}
Each value is composed of
\item- a word (action: word comparison)
\item- a digit (action: number comparison), and
\item- a page number (action: (page) number comparison).
\smallbreak
The macros read as follows.
\thisverbatim{\unmc\catcode`!=12 \catcode`*=0 }
\beginverbatim
\def\cmpir#1#2{%#1, #2 defs
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}
\ea\ea\ea\decom\ea#1\ea;#2.}
%
\def\decom#1 !#2 #3;#4 !#5 #6.{%
\def\one{#1}\def\four{#4}\cmpaw\one\four
\ifnum0=\status%Compare second key
\ifnum#2<#5\global\status2 \else
\ifnum#2>#5\global\status1 \else
%Compare third key
\ifnum#3<#6\global\status2
\else\ifnum#3>#6\global\status1 \fi
\fi
\fi
\fi
\fi}
*endverbatim
Explanation.
I needed a two-level approach. The values are decomposed
into their components by providing them as arguments to \cs{decom}.\ftn
{Mnemonics: decompose. In each comparison the defs
are `dereferenced,' that is their replacement texts are
passed over. This is a standard \TeX nique: a triad of
\cs{ea}s, and the hop-overs to the second argument.}
The macro picks up the components
\item- the primary keys, the $\langle word\rangle$
\item- the secondary keys, the $\langle digit\rangle$, and
\item- the tertiary keys, the $\langle page\,number\rangle$.
\smallbreak
It compares the primary keys, and if necessary
successively the secondary and the tertiary keys.
The word comparison is done via the already available macro \cs{cmpaw}.
To let this work with \cs{sort}, we have to
\cs{let}-equal the \cs{cmp} parameter to \cs{cmpir}.
\bluehead Sorting in the mouth
Alan Jeffrey and Bernd Raichle have provided macros for this.
The following variant of the linear sorting given at the beginning of this
note is inspired upon Bernd's `Quick Sort in the Mouth,' Euro\TeX~\on94.
The idea is that a sequence is split in its smallest element and the rest
by an invoke of \cs{fifo}.
The rest is treated recursively as a similar sequence.
Another example of (multiple) nested FIFO.
\thisverbatim{\unmc}
\beginverbatim
\def\fifo#1%accumulated rest
#2%smallest
#3%next
{\ifx\ofif#3 #2\ofif{#1}\fi
\ifnum#3<#2
\p{\fifo{#1{#2}}{#3}}\else
\q{\fifo{#1{#3}}{#2}}\fi}
%repeat or terminate
\def\ofif#1\fi#2\fi{\fi
\if*#1*\endsort\fi
\fifo{}#1\ofif}
%auxiliaries
\def\p#1\else#2\fi{\fi#1}
\def\q#1\fi{\fi#1}
%terminator
\def\endsort#1\ofif{\fi}
%test
\fifo{}3{123}8{1943}\ofif
!endverbatim
To assure yourself that it is all done in the mouth \cs{write} the test.\ftn
{I don't know how to ensure correctness.
It is tricky to get the braces right.
I used \cs{tracingmacros=1}.}
However, in sorting within \TeX{} I prefer a uniform approach
not in the least parameterized over the ordering table.
Have fun, and all the best
\makesignature
\pasteuptoc
\endscript
|