1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.
\ProvidesFileRCS{pgflibrarycurvilinear.code.tex}
%
% This file defines commands for computing points in curvilinear
% coordinate systems.
%
%
% Curvilinear coordinate systems defined in terms of a Bezier curve.
%
% For the following coordinate systems, you must first provide a
% Bezier curve (using, as always, four points), which will be set for
% the current scope. When the curve is "installed" some expensive
% precomputations are done; subsequent calls to
% \pgfpointcurvilinearxxx based on this Bezier curve will be
% relatively quick.
%
% Install a Bezier curve
%
% #1 = start point
% #2 = first control point
% #3 = second control point
% #4 = end point
%
% Description:
%
% Subsequent calls to functions like
% \pgfpointcurvilinearbezierorthogonal will be relative to the curve
% installed using this command. The main job of this macro is a
% precomputation for computing length along the curve.
% All lengths along the Bezier curve are approximated using a lookup table
% of four time/length points. For this, an approximate time for length
% 1pt is computed first, and then the length for twice this time, four
% times this time, and eight times this time are approximated. A
% distance-to-time conversion is then done by a linear interpolation
% of distance-to-time for these four points. Note that all of these
% computations are not particularly precise, but a compromise trading
% speed against precision. Also note that the results will only be
% best near the start of the curve and may be far off near the end if
% that end is degenerate (second control point very near to end
% point).
%
% Example:
%
% \pgfsetcurvilinearbeziercurve
% {\pgfpoint{0mm}{10mm}}
% {\pgfpoint{5.5mm}{10mm}}
% {\pgfpoint{10mm}{5.5mm}}
% {\pgfpoint{10mm}{0mm}} % nearly a quarter circle
% \pgfpointcurvilinearbezierorthogonal{5mm}{5mm}
% % should be 5mm along the circle, put at
% % distance 15mm from the origin (5mm from the circle line).
\def\pgfsetcurvilinearbeziercurve#1#2#3#4{%
\pgf@process{#1}%
\edef\pgf@curvilinear@line@a{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
\pgf@xa=-\pgf@x%
\pgf@ya=-\pgf@y%
\pgf@process{#2}%
\edef\pgf@curvilinear@line@b{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
\pgf@xb=-\pgf@x%
\pgf@yb=-\pgf@y%
\advance\pgf@x by\pgf@xa%
\advance\pgf@y by\pgf@ya%
\pgfmathveclen@{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}%
\let\pgf@curvilinear@lenab\pgfmathresult%
\pgf@process{#3}%
\edef\pgf@curvilinear@line@c{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
\pgf@xc=-\pgf@x%
\pgf@yc=-\pgf@y%
\advance\pgf@x by\pgf@xb%
\advance\pgf@y by\pgf@yb%
\pgfmathveclen@{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}%
\let\pgf@curvilinear@lenbc\pgfmathresult%
\pgf@process{#4}%
\edef\pgf@curvilinear@line@d{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
\advance\pgf@x by\pgf@xc%
\advance\pgf@y by\pgf@yc%
\pgfmathveclen@{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}%
\let\pgf@curvilinear@lencd\pgfmathresult
%
\pgf@x=\pgf@curvilinear@lenab pt%
\advance\pgf@x by\pgf@curvilinear@lenbc pt%
\advance\pgf@x by\pgf@curvilinear@lencd pt%
\pgfmathreciprocal@{\pgf@sys@tonumber\pgf@x}%
\pgf@curvilinear@time@a\pgfmathresult pt%
\pgf@process{\pgfpointcurveattime{\pgf@curvilinear@time@a}{\pgf@curvilinear@line@a}{\pgf@curvilinear@line@b}{\pgf@curvilinear@line@c}{\pgf@curvilinear@line@d}}%
\pgf@xb=-\pgf@x%
\pgf@yb=-\pgf@y%
\advance\pgf@x by\pgf@xa%
\advance\pgf@y by\pgf@ya%
\pgfmathveclen@{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}%
\pgf@curvilinear@length@a\pgfmathresult pt%
\ifdim\pgf@curvilinear@length@a>1pt\relax%
% Ok, too large, let us make this smaller
\pgfmathdivide@{\pgf@sys@tonumber\pgf@curvilinear@time@a}{\pgf@sys@tonumber\pgf@curvilinear@length@a}%
\pgf@curvilinear@time@a\pgfmathresult pt%
\pgf@process{\pgfpointcurveattime{\pgf@curvilinear@time@a}{\pgf@curvilinear@line@a}{\pgf@curvilinear@line@b}{\pgf@curvilinear@line@c}{\pgf@curvilinear@line@d}}
\pgf@xb=-\pgf@x%
\pgf@yb=-\pgf@y%
\advance\pgf@x by\pgf@xa%
\advance\pgf@y by\pgf@ya%
\pgfmathveclen@{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}%
\pgf@curvilinear@length@a\pgfmathresult pt%
\fi%
% Compute three positions:
\pgf@process{\pgfpointcurveattime{2\pgf@curvilinear@time@a}{\pgf@curvilinear@line@a}{\pgf@curvilinear@line@b}{\pgf@curvilinear@line@c}{\pgf@curvilinear@line@d}}
\pgf@xa=-\pgf@x%
\pgf@ya=-\pgf@y%
\advance\pgf@x by\pgf@xb%
\advance\pgf@y by\pgf@yb%
\pgfmathveclen@{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}%
\pgf@curvilinear@length@b\pgfmathresult pt%
\advance\pgf@curvilinear@length@b by\pgf@curvilinear@length@a%
\pgf@process{\pgfpointcurveattime{4\pgf@curvilinear@time@a}{\pgf@curvilinear@line@a}{\pgf@curvilinear@line@b}{\pgf@curvilinear@line@c}{\pgf@curvilinear@line@d}}
\pgf@xb=-\pgf@x%
\pgf@yb=-\pgf@y%
\advance\pgf@x by\pgf@xa%
\advance\pgf@y by\pgf@ya%
\pgfmathveclen@{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}%
\pgf@curvilinear@length@c\pgfmathresult pt%
\advance\pgf@curvilinear@length@c by\pgf@curvilinear@length@b%
\pgf@process{\pgfpointcurveattime{8\pgf@curvilinear@time@a}{\pgf@curvilinear@line@a}{\pgf@curvilinear@line@b}{\pgf@curvilinear@line@c}{\pgf@curvilinear@line@d}}
\advance\pgf@x by\pgf@xb%
\advance\pgf@y by\pgf@yb%
\pgfmathveclen@{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}%
\pgf@curvilinear@length@d\pgfmathresult pt%
\advance\pgf@curvilinear@length@d by\pgf@curvilinear@length@c%
\let\pgf@curvilinear@comp@a\pgf@curvilinear@comp@a@initial%
\let\pgf@curvilinear@comp@b\pgf@curvilinear@comp@b@initial%
\let\pgf@curvilinear@comp@c\pgf@curvilinear@comp@c@initial%
\let\pgf@curvilinear@comp@d\pgf@curvilinear@comp@d@initial%
\let\pgf@curvilinear@comp@e\pgf@curvilinear@comp@e@initial%
\let\pgf@curvilinear@point\pgf@curvilinear@curve@point%
}%
\newdimen\pgf@curvilinear@time@a
\newdimen\pgf@curvilinear@length@a
\newdimen\pgf@curvilinear@length@b
\newdimen\pgf@curvilinear@length@c
\newdimen\pgf@curvilinear@length@d
\def\pgf@curvilinear@comp@a@initial{%
\pgfmathdivide@{\pgf@sys@tonumber\pgf@curvilinear@time@a}{\pgf@sys@tonumber\pgf@curvilinear@length@a}%
\let\pgf@curvilinear@quot@a\pgfmathresult%
\let\pgf@curvilinear@comp@a\pgf@curvilinear@comp@a@cont%
\pgf@curvilinear@comp@a@cont%
}%
\def\pgf@curvilinear@comp@a@cont{%
\pgf@x\pgf@curvilinear@quot@a\pgf@x%
}%
\def\pgf@curvilinear@comp@b@initial{%
\pgf@y=\pgf@curvilinear@length@b%
\advance\pgf@y by-\pgf@curvilinear@length@a%
\pgfmathdivide@{\pgf@sys@tonumber\pgf@curvilinear@time@a}{\pgf@sys@tonumber\pgf@y}%
\let\pgf@curvilinear@quot@b\pgfmathresult%
\pgf@y\pgfmathresult\pgf@curvilinear@length@a%
\pgf@y-\pgf@y%
\advance\pgf@y by\pgf@curvilinear@time@a%
\edef\pgf@curvilinear@correct@b{\pgf@sys@tonumber\pgf@y}%
\let\pgf@curvilinear@comp@b\pgf@curvilinear@comp@b@cont%
\pgf@curvilinear@comp@b@cont%
}%
\def\pgf@curvilinear@comp@b@cont{%
\pgf@x\pgf@curvilinear@quot@b\pgf@x%
\advance\pgf@x by\pgf@curvilinear@correct@b pt%
}%
\def\pgf@curvilinear@comp@c@initial{%
\pgf@y=\pgf@curvilinear@length@c%
\advance\pgf@y by-\pgf@curvilinear@length@b%
\pgf@y.5\pgf@y%
\pgfmathdivide@{\pgf@sys@tonumber\pgf@curvilinear@time@a}{\pgf@sys@tonumber\pgf@y}%
\let\pgf@curvilinear@quot@c\pgfmathresult%
\pgf@y\pgf@curvilinear@quot@c\pgf@curvilinear@length@b%
\pgf@y-\pgf@y%
\advance\pgf@y by2\pgf@curvilinear@time@a%
\edef\pgf@curvilinear@correct@c{\pgf@sys@tonumber\pgf@y}%
\let\pgf@curvilinear@comp@c\pgf@curvilinear@comp@c@cont%
\pgf@curvilinear@comp@c@cont%
}%
\def\pgf@curvilinear@comp@c@cont{%
\pgf@x\pgf@curvilinear@quot@c\pgf@x%
\advance\pgf@x by\pgf@curvilinear@correct@c pt%
}%
\def\pgf@curvilinear@comp@d@initial{%
\pgf@y=\pgf@curvilinear@length@d%
\advance\pgf@y by-\pgf@curvilinear@length@c%
\pgf@y.25\pgf@y%
\pgfmathdivide@{\pgf@sys@tonumber\pgf@curvilinear@time@a}{\pgf@sys@tonumber\pgf@y}%
\let\pgf@curvilinear@quot@d\pgfmathresult%
\pgf@y\pgf@curvilinear@quot@d\pgf@curvilinear@length@c%
\pgf@y-\pgf@y%
\advance\pgf@y by4\pgf@curvilinear@time@a%
\edef\pgf@curvilinear@correct@d{\pgf@sys@tonumber\pgf@y}%
\let\pgf@curvilinear@comp@d\pgf@curvilinear@comp@d@cont%
\pgf@curvilinear@comp@d@cont%
}%
\def\pgf@curvilinear@comp@d@cont{%
\pgf@x\pgf@curvilinear@quot@d\pgf@x%
\advance\pgf@x by\pgf@curvilinear@correct@d pt%
}%
\def\pgf@curvilinear@comp@e@initial{%
\pgfmathmultiply@{8}{\pgf@sys@tonumber\pgf@curvilinear@time@a}%
\expandafter\pgfmathdivide@\expandafter{\pgfmathresult}{\pgf@sys@tonumber\pgf@curvilinear@length@d}%
\let\pgf@curvilinear@quot@e\pgfmathresult%
\let\pgf@curvilinear@comp@e\pgf@curvilinear@comp@e@cont%
\pgf@curvilinear@comp@e@cont%
}%
\def\pgf@curvilinear@comp@e@cont{%
\pgf@x\pgf@curvilinear@quot@e\pgf@x%
}%
% Convert a distance into a time
%
% #1 = a distance
%
% Description:
%
% After having called \pgfsetcurvilinearbeziercurve, you can use this
% macro to convert a distance into a time along the curve set in that
% command. The result will be stored in \pgf@x. It will only be
% reasonably precise for small nonnegative #1 (in particular, #1
% should not be more than about half the length of the curve).
\def\pgfcurvilineardistancetotime#1{%
\pgfmathsetlength{\pgf@x}{#1}%
\ifdim\pgf@x<\pgf@curvilinear@length@c\relax%
\ifdim\pgf@x<\pgf@curvilinear@length@a\relax%
\pgf@curvilinear@comp@a%
\else\ifdim\pgf@x<\pgf@curvilinear@length@b\relax%
\pgf@curvilinear@comp@b%
\else%
\pgf@curvilinear@comp@c%
\fi\fi%
\else\ifdim\pgf@x<\pgf@curvilinear@length@d\relax%
\pgf@curvilinear@comp@d%
\else%
\pgf@curvilinear@comp@e%
\fi\fi%
}%
% Compute a "Bezier-orthogonal" point for use in a nonlinear transformation.
%
% #1 = x
% #2 = y
%
% Description:
%
% In this coordinate system, the x-axis "goes along" the Bezier curve
% installed using \pgfsetcurvilinearbeziercurve
% and the y-axis is always perpendicular to the (Bezier) curve at the
% given x-coordinate. Formally, given a pair (x,y), let B(x) be the point on
% the Bezier curve B at distance x from the start of the curve. Let
% T(x) be the tangent of B at B(x) and let P(x) be the (normalized)
% vector perpendicular to T(x). Then (x,y) would be mapped to B(x) +
% y*P(x). As an example, if B is a circle, then the corresponding
% curvilinear coordinate system is (essentially, except for an offset in
% the y value) the polar coordinate system.
%
% In addition to setting \pgf@x and \pgf@y, \pgf@xa/ya will be set to
% a tangent along the curve at the given point and \pgf@xb/yb to a
% tangent orthogonal to the curve.
\def\pgfpointcurvilinearbezierorthogonal#1#2{%
\pgfmathsetmacro\pgf@curvilinear@yfactor{#2}%
\pgfcurvilineardistancetotime{#1}%
\pgfpointcurveattime{\pgf@x}{\pgf@curvilinear@line@a}{\pgf@curvilinear@line@b}{\pgf@curvilinear@line@c}{\pgf@curvilinear@line@d}
\pgf@xc\pgf@x% save
\pgf@yc\pgf@y% save
% compute normal:
\advance\pgf@xb by-\pgf@xa%
\advance\pgf@yb by-\pgf@ya%
\ifdim\pgf@xb<0.0001pt\ifdim\pgf@xb>-0.0001pt\ifdim\pgf@yb<0.0001pt\ifdim\pgf@yb>-0.0001pt\pgf@diff@curvi@ac\fi\fi\fi\fi
\pgf@process{\pgfpointnormalised{\pgf@x=\pgf@yb\pgf@y=-\pgf@xb}}
\pgf@x\pgf@curvilinear@yfactor\pgf@x%
\pgf@y\pgf@curvilinear@yfactor\pgf@y%
\advance\pgf@x by\pgf@xc%
\advance\pgf@y by\pgf@yc%
}%
\def\pgf@diff@curvi@ac{%
\pgf@curvilinear@line@a%
\pgf@xa\pgf@x\pgf@ya\pgf@y%
\pgf@curvilinear@line@c%
\pgf@xb\pgf@x\pgf@yb\pgf@y%
\advance\pgf@xb by-\pgf@xa%
\advance\pgf@yb by-\pgf@ya%
\ifdim\pgf@xb<0.0001pt\ifdim\pgf@xb>-0.0001pt\ifdim\pgf@yb<0.0001pt\ifdim\pgf@yb>-0.0001pt% still degenerate!
\pgf@curvilinear@line@d%
\pgf@xb\pgf@x\pgf@yb\pgf@y%
\advance\pgf@xb by-\pgf@xa%
\advance\pgf@yb by-\pgf@ya%
\fi\fi\fi\fi%
\pgf@xb-\pgf@xb%
\pgf@yb-\pgf@yb%
}%
% Compute a "Bezier-polar" point.
%
% #1 = x
% #2 = y
%
% Description:
%
% Let (r:d) be the point (x,y) in polar coordinates, that is, r is the
% angle and d the distance of (x,y) to the origin. The point returned
% by \pgfpointcurvilinearbezierpolar is now defined as follows: First,
% we compute that point at distance d along the Bezier curve B. Let
% B(d) be this point. Then, we rotate this point around the start of
% the curve (B(0)) by r degrees.
%
% As an example, consider a triangle with one tip at the origin and
% the other tips as (4cm,3cm) and (4cm,-3cm). Then this triangle would be
% transformed as follows: We take the first 5cm of the Bezier curve
% and rotate it by roughly 37 degrees to the left and by 37 degrees to
% the right.
%
% Note that this command is pretty expensive.
\def\pgfpointcurvilinearbezierpolar#1#2{%
\pgfmathsetlength\pgfutil@tempdima{#1}%
\pgfmathsetlength\pgfutil@tempdimb{#2}%
% Compute angle:
\pgfpointnormalised{\pgfqpoint{\pgfutil@tempdima}{\pgfutil@tempdimb}}%
\ifdim\pgfutil@tempdimb=0pt\relax\ifdim\pgfutil@tempdima=0pt\pgf@x1pt\pgf@y0pt\fi\fi%
\ifdim\pgfutil@tempdima<0pt%
\pgf@x-\pgf@x%
\pgf@y-\pgf@y%
\fi%
\pgf@ya=-\pgf@y%
\pgfsettransformentries%
{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}%
{\pgf@sys@tonumber\pgf@ya}{\pgf@sys@tonumber\pgf@x}{0pt}{0pt}%
\pgftransformshift{\pgfpointscale{-1}{\pgf@curvilinear@line@a}}%
\pgfmathveclen@{\pgf@sys@tonumber\pgfutil@tempdima}{\pgf@sys@tonumber\pgfutil@tempdimb}%
\ifdim\pgfutil@tempdima<0pt%
\edef\pgfmathresult{-\pgfmathresult}%
\fi%
\pgfcurvilineardistancetotime{\pgfmathresult}%
% Now, transform:
\pgf@process{%
\pgfpointadd{%
\pgfpointtransformed{%
\pgfpointcurveattime%
{\pgf@x}%
{\pgf@curvilinear@line@a}%
{\pgf@curvilinear@line@b}%
{\pgf@curvilinear@line@c}%
{\pgf@curvilinear@line@d}%
}%
}%
\pgf@curvilinear@line@a%
}%
}%
\endinput
|