1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
/*
* functions.h -- ePiX auxiliary functions; Deriv, Integral classes
*
* This file is part of ePiX, a C++ library for creating high-quality
* figures in LaTeX
*
* Version 1.1.22
* Last Change: September 24, 2007
*/
/*
* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
* Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
* Department of Mathematics and Computer Science
* College of the Holy Cross
* Worcester, MA, 01610-2395, USA
*/
/*
* ePiX is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ePiX is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ePiX; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef EPIX_FUNCTIONS
#define EPIX_FUNCTIONS
namespace ePiX {
class P;
// sensitive to angle units
double Cos(double t);
double Sin(double t);
double Tan(double t);
double Sec(double t);
double Csc(double t);
double Cot(double t);
double Acos(double t);
double Asin(double t);
double Atan(double t);
double Atan2(double y, double x);
// additional hyperbolic functions and inverses
double sech(double);
double csch(double);
double coth(double);
double asech(double);
double acsch(double);
double acoth(double);
// zero functions
double zero(double);
double zero(double, double);
double zero(double, double, double);
double zero(const P&);
// P constructors
P xyz(double x, double y, double z=0);
P cyl(double r, double t, double z);
P sph(double r, double t, double phi);
// for log data plotting
P log_log(double x, double y, double z=0);
P log_lin(double x, double y, double z=0);
P lin_log(double x, double y, double z=0);
P cylindrical(P); // not const P&
P spherical(P);
P polar(double r, double t);
P cis(double t);
// utility functions
double recip (double);
double sinx (double); // discontinuity removed
double sgn (double);
// period-2 extension of absolute value on [-1,1]: \/\/\/
double cb (double);
int gcd (int, int);
double min(double, double);
double max(double, double);
double snip_to(double var, double arg1, double arg2);
double inf (double f(double), double, double);
double sup (double f(double), double, double);
// derivative class
class Deriv {
private:
double (*f)(double);
double dt;
public:
Deriv(double func(double));
Deriv(double func(double), double eps);
P operator() (const P&) const; // for plotting
// numerical values
double eval(double t) const;
// one-sided derivatives
double right(double t) const;
double left(double t) const;
}; // end of class Deriv
// definite integral class
class Integral {
private:
double (*f)(double);
double x0; // lower limit
public:
Integral(double func(double), double a=0);
P operator() (const P&) const;
double eval(double) const;
}; // end of class Integral
double newton (double f(double), double g(double), double start);
double newton (double f(double), double start);
} // end of namespace
#endif /* EPIX_FUNCTIONS */
|