1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
/*
* curves.h -- Ellipses, arcs, splines, coordinate grids
*
* This file is part of ePiX, a C++ library for creating high-quality
* figures in LaTeX
*
* Version 1.1.10
* Last Change: August 08, 2007
*/
/*
* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
* Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
* Department of Mathematics and Computer Science
* College of the Holy Cross
* Worcester, MA, 01610-2395, USA
*/
/*
* ePiX is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ePiX is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ePiX; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef EPIX_CURVES
#define EPIX_CURVES
#include <vector>
#include "constants.h"
namespace ePiX {
class P;
class mesh;
// lines can be "stretched" by double parameter
void line(const P& tail, const P& head, double expand=0);
void line(const P& tail, const P& head, double expand,
unsigned int num_pts);
// "Visible" portion of the line through p1, p2
void Line(const P& tail, const P& head);
// point-slope form
void Line(const P&, double);
void triangle(const P&, const P&, const P&);
void quad(const P&, const P&, const P&, const P&);
void rect(const P&, const P&);
void rect(const P&, const P&, bool solid);
// arrows
void arrow(const P& tail, const P& head, double scale=1);
void dart(const P& tail, const P& head);
// double-tipped
void aarrow(const P& tail, const P& head, double scale=1);
// arbitrary elliptical arc
void arrow(const P& center, const P& axis1, const P& axis2,
double t_min, double t_max, double scale=1);
// Algebraic curves (elliptical and circular arcs, splines)
void ellipse(const P& center, const P& axis1, const P& axis2); // full turn
void ellipse(const P& center, const P& axis1, const P& axis2,
double t_min, double t_max); // angle range
void ellipse(const P& center, const P& axis1, const P& axis2,
double t_min, double t_max, unsigned int num_pts);
// for backward compatibility
void ellipse_arc(const P& center, const P& axis1, const P& axis2,
double t_min, double t_max);
// old style "center and polyradius"
void ellipse (const P& center, const P& radius);
// Standard half-ellipse functions
void ellipse_left (const P&, const P&);
void ellipse_right (const P&, const P&);
void ellipse_top (const P&, const P&);
void ellipse_bottom (const P&, const P&);
// Circular arcs parallel to (x,y)-plane
void arc(const P& center, double r,
double start, double finish);
void arc_arrow (const P& center, double r,
double start, double finish,
double scale=1);
// Quadratic and cubic splines/spline arrows
void spline(const P& p1, const P& p2, const P& p3, unsigned int num_pts);
void spline(const P& p1, const P& p2, const P& p3);
void arrow(const P& p1, const P& p2, const P& p3, double scale=1);
void spline (const P& p1, const P& p2, const P& p3, const P& p4,
unsigned int num_pts);
void spline (const P& p1, const P& p2, const P& p3, const P& p4);
void arrow(const P&, const P&, const P&, const P&, double scale=1);
// natural spline
void spline(const std::vector<P>&, unsigned int num_pts);
// A "mesh" is an ordered pair of positive integers, and is used to
// specify the "fineness" of a grid. Grids, like parametric surface
// meshes, have a "coarse mesh" -- the numbers of grid intervals in
// each direction, and a "fine mesh" -- the numbers of points used
// to render the grid lines. Since an ePiX camera does not always
// map lines in object space to lines on the screen, grid lines cannot
// generally be drawn using only two points.
// A grid may look strange unless each component of fine is a multiple
// of the corresponding entry of coarse, of course. :)
// Cartesian grid of specified size, mesh, and resolution
void grid(const P& arg1, const P& arg2, mesh coarse, mesh fine);
// coarse = fine = (n1,n2)
void grid(const P& arg1, const P& arg2,
unsigned int n1=1, unsigned int n2=1);
void grid(unsigned int n1=1, unsigned int n2=1);
// polar grid of specified radius, mesh (rings and sectors), and resolution
void polar_grid(double r, mesh coarse, mesh fine);
// polar grid with n1 rings and n2 sectors
void polar_grid(double r, unsigned int n1, unsigned int n2);
// (semi-)logarithmic grids specified by corners and numbers of orders of
// magnitude or grid divisions in each direction. Optional arguments
// specify the log base (10 by default). If corners are omitted, the grid
// fills the bounding box.
void log_grid(const P& arg1, const P& arg2,
unsigned int segs1, unsigned int segs2,
unsigned int base1=10, unsigned int base2=10);
void log1_grid(const P& arg1, const P& arg2,
unsigned int segs1, unsigned int segs2,
unsigned int base1=10);
void log2_grid(const P& arg1, const P& arg2,
unsigned int segs1, unsigned int segs2,
unsigned int base2=10);
void log_grid(unsigned int segs1, unsigned int segs2,
unsigned int base1=10, unsigned int base2=10);
void log1_grid(unsigned int segs1, unsigned int segs2,
unsigned int base1=10);
void log2_grid(unsigned int segs1, unsigned int segs2,
unsigned int base2=10);
// fractal generation
//
// The basic "level-1" recursion unit is a piecewise-linear path whose
// segments are parallel to spokes on a wheel, labelled modulo <spokes>.
// Recursively up to <depth>, each segment is replaced by a copy of the
// recursion unit.
//
// Sample data for _/\_ standard Koch snowflake:
// const int pre_seed[] = {6, 4, 0, 1, -1, 0};
// pre_seed[0] = spokes, pre_seed[1] = seed_length;
void fractal (const P& p, const P& q, const int depth, const int *pre_seed);
} // end of namespace
#endif /* EPIX_CURVES */
|