1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
|
Only in gl-matrix-2.4.0-pruned: LICENSE.js
diff -r -u gl-matrix-2.4.0/src/gl-matrix/mat3.js gl-matrix-2.4.0-pruned/src/gl-matrix/mat3.js
--- gl-matrix-2.4.0/src/gl-matrix/mat3.js 2017-07-22 13:02:47.000000000 -0600
+++ gl-matrix-2.4.0-pruned/src/gl-matrix/mat3.js 2019-09-27 15:41:24.534735384 -0600
@@ -70,7 +70,7 @@
* @param {mat3} a matrix to clone
* @returns {mat3} a new 3x3 matrix
*/
-export function clone(a) {
+function clone(a) {
let out = new glMatrix.ARRAY_TYPE(9);
out[0] = a[0];
out[1] = a[1];
@@ -91,7 +91,7 @@
* @param {mat3} a the source matrix
* @returns {mat3} out
*/
-export function copy(out, a) {
+function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
@@ -118,7 +118,7 @@
* @param {Number} m22 Component in column 2, row 2 position (index 8)
* @returns {mat3} A new mat3
*/
-export function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
+function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
let out = new glMatrix.ARRAY_TYPE(9);
out[0] = m00;
out[1] = m01;
@@ -147,7 +147,7 @@
* @param {Number} m22 Component in column 2, row 2 position (index 8)
* @returns {mat3} out
*/
-export function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {
+function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {
out[0] = m00;
out[1] = m01;
out[2] = m02;
@@ -166,7 +166,7 @@
* @param {mat3} out the receiving matrix
* @returns {mat3} out
*/
-export function identity(out) {
+function identity(out) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
@@ -186,7 +186,7 @@
* @param {mat3} a the source matrix
* @returns {mat3} out
*/
-export function transpose(out, a) {
+function transpose(out, a) {
// If we are transposing ourselves we can skip a few steps but have to cache some values
if (out === a) {
let a01 = a[1], a02 = a[2], a12 = a[5];
@@ -254,7 +254,7 @@
* @param {mat3} a the source matrix
* @returns {mat3} out
*/
-export function adjoint(out, a) {
+function adjoint(out, a) {
let a00 = a[0], a01 = a[1], a02 = a[2];
let a10 = a[3], a11 = a[4], a12 = a[5];
let a20 = a[6], a21 = a[7], a22 = a[8];
@@ -277,7 +277,7 @@
* @param {mat3} a the source matrix
* @returns {Number} determinant of a
*/
-export function determinant(a) {
+function determinant(a) {
let a00 = a[0], a01 = a[1], a02 = a[2];
let a10 = a[3], a11 = a[4], a12 = a[5];
let a20 = a[6], a21 = a[7], a22 = a[8];
@@ -293,7 +293,7 @@
* @param {mat3} b the second operand
* @returns {mat3} out
*/
-export function multiply(out, a, b) {
+function multiply(out, a, b) {
let a00 = a[0], a01 = a[1], a02 = a[2];
let a10 = a[3], a11 = a[4], a12 = a[5];
let a20 = a[6], a21 = a[7], a22 = a[8];
@@ -324,7 +324,7 @@
* @param {vec2} v vector to translate by
* @returns {mat3} out
*/
-export function translate(out, a, v) {
+function translate(out, a, v) {
let a00 = a[0], a01 = a[1], a02 = a[2],
a10 = a[3], a11 = a[4], a12 = a[5],
a20 = a[6], a21 = a[7], a22 = a[8],
@@ -352,7 +352,7 @@
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat3} out
*/
-export function rotate(out, a, rad) {
+function rotate(out, a, rad) {
let a00 = a[0], a01 = a[1], a02 = a[2],
a10 = a[3], a11 = a[4], a12 = a[5],
a20 = a[6], a21 = a[7], a22 = a[8],
@@ -382,7 +382,7 @@
* @param {vec2} v the vec2 to scale the matrix by
* @returns {mat3} out
**/
-export function scale(out, a, v) {
+function scale(out, a, v) {
let x = v[0], y = v[1];
out[0] = x * a[0];
@@ -410,7 +410,7 @@
* @param {vec2} v Translation vector
* @returns {mat3} out
*/
-export function fromTranslation(out, v) {
+function fromTranslation(out, v) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
@@ -434,7 +434,7 @@
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat3} out
*/
-export function fromRotation(out, rad) {
+function fromRotation(out, rad) {
let s = Math.sin(rad), c = Math.cos(rad);
out[0] = c;
@@ -462,7 +462,7 @@
* @param {vec2} v Scaling vector
* @returns {mat3} out
*/
-export function fromScaling(out, v) {
+function fromScaling(out, v) {
out[0] = v[0];
out[1] = 0;
out[2] = 0;
@@ -484,7 +484,7 @@
* @param {mat2d} a the matrix to copy
* @returns {mat3} out
**/
-export function fromMat2d(out, a) {
+function fromMat2d(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = 0;
@@ -507,7 +507,7 @@
*
* @returns {mat3} out
*/
-export function fromQuat(out, q) {
+function fromQuat(out, q) {
let x = q[0], y = q[1], z = q[2], w = q[3];
let x2 = x + x;
let y2 = y + y;
@@ -546,7 +546,7 @@
*
* @returns {mat3} out
*/
-export function normalFromMat4(out, a) {
+function normalFromMat4(out, a) {
let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
@@ -596,7 +596,7 @@
* @param {number} height Height of gl context
* @returns {mat3} out
*/
-export function projection(out, width, height) {
+function projection(out, width, height) {
out[0] = 2 / width;
out[1] = 0;
out[2] = 0;
@@ -615,7 +615,7 @@
* @param {mat3} a matrix to represent as a string
* @returns {String} string representation of the matrix
*/
-export function str(a) {
+function str(a) {
return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
a[3] + ', ' + a[4] + ', ' + a[5] + ', ' +
a[6] + ', ' + a[7] + ', ' + a[8] + ')';
@@ -627,7 +627,7 @@
* @param {mat3} a the matrix to calculate Frobenius norm of
* @returns {Number} Frobenius norm
*/
-export function frob(a) {
+function frob(a) {
return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2)))
}
@@ -639,7 +639,7 @@
* @param {mat3} b the second operand
* @returns {mat3} out
*/
-export function add(out, a, b) {
+function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
@@ -660,7 +660,7 @@
* @param {mat3} b the second operand
* @returns {mat3} out
*/
-export function subtract(out, a, b) {
+function subtract(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
@@ -683,7 +683,7 @@
* @param {Number} b amount to scale the matrix's elements by
* @returns {mat3} out
*/
-export function multiplyScalar(out, a, b) {
+function multiplyScalar(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
@@ -705,7 +705,7 @@
* @param {Number} scale the amount to scale b's elements by before adding
* @returns {mat3} out
*/
-export function multiplyScalarAndAdd(out, a, b, scale) {
+function multiplyScalarAndAdd(out, a, b, scale) {
out[0] = a[0] + (b[0] * scale);
out[1] = a[1] + (b[1] * scale);
out[2] = a[2] + (b[2] * scale);
@@ -725,7 +725,7 @@
* @param {mat3} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
-export function exactEquals(a, b) {
+function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] &&
a[3] === b[3] && a[4] === b[4] && a[5] === b[5] &&
a[6] === b[6] && a[7] === b[7] && a[8] === b[8];
@@ -738,7 +738,7 @@
* @param {mat3} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
-export function equals(a, b) {
+function equals(a, b) {
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7], a8 = a[8];
let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7], b8 = b[8];
return (Math.abs(a0 - b0) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
@@ -756,10 +756,10 @@
* Alias for {@link mat3.multiply}
* @function
*/
-export const mul = multiply;
+const mul = multiply;
/**
* Alias for {@link mat3.subtract}
* @function
*/
-export const sub = subtract;
+const sub = subtract;
diff -r -u gl-matrix-2.4.0/src/gl-matrix/mat4.js gl-matrix-2.4.0-pruned/src/gl-matrix/mat4.js
--- gl-matrix-2.4.0/src/gl-matrix/mat4.js 2017-07-22 13:02:47.000000000 -0600
+++ gl-matrix-2.4.0-pruned/src/gl-matrix/mat4.js 2019-09-27 15:41:24.534735384 -0600
@@ -57,7 +57,7 @@
* @param {mat4} a matrix to clone
* @returns {mat4} a new 4x4 matrix
*/
-export function clone(a) {
+function clone(a) {
let out = new glMatrix.ARRAY_TYPE(16);
out[0] = a[0];
out[1] = a[1];
@@ -85,7 +85,7 @@
* @param {mat4} a the source matrix
* @returns {mat4} out
*/
-export function copy(out, a) {
+function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
@@ -126,7 +126,7 @@
* @param {Number} m33 Component in column 3, row 3 position (index 15)
* @returns {mat4} A new mat4
*/
-export function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
+function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
let out = new glMatrix.ARRAY_TYPE(16);
out[0] = m00;
out[1] = m01;
@@ -169,7 +169,7 @@
* @param {Number} m33 Component in column 3, row 3 position (index 15)
* @returns {mat4} out
*/
-export function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
+function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
out[0] = m00;
out[1] = m01;
out[2] = m02;
@@ -223,7 +223,7 @@
* @param {mat4} a the source matrix
* @returns {mat4} out
*/
-export function transpose(out, a) {
+function transpose(out, a) {
// If we are transposing ourselves we can skip a few steps but have to cache some values
if (out === a) {
let a01 = a[1], a02 = a[2], a03 = a[3];
@@ -325,7 +325,7 @@
* @param {mat4} a the source matrix
* @returns {mat4} out
*/
-export function adjoint(out, a) {
+function adjoint(out, a) {
let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
@@ -356,7 +356,7 @@
* @param {mat4} a the source matrix
* @returns {Number} determinant of a
*/
-export function determinant(a) {
+function determinant(a) {
let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
@@ -465,7 +465,7 @@
* @param {vec3} v the vec3 to scale the matrix by
* @returns {mat4} out
**/
-export function scale(out, a, v) {
+function scale(out, a, v) {
let x = v[0], y = v[1], z = v[2];
out[0] = a[0] * x;
@@ -558,7 +558,7 @@
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
-export function rotateX(out, a, rad) {
+function rotateX(out, a, rad) {
let s = Math.sin(rad);
let c = Math.cos(rad);
let a10 = a[4];
@@ -601,7 +601,7 @@
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
-export function rotateY(out, a, rad) {
+function rotateY(out, a, rad) {
let s = Math.sin(rad);
let c = Math.cos(rad);
let a00 = a[0];
@@ -644,7 +644,7 @@
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
-export function rotateZ(out, a, rad) {
+function rotateZ(out, a, rad) {
let s = Math.sin(rad);
let c = Math.cos(rad);
let a00 = a[0];
@@ -721,7 +721,7 @@
* @param {vec3} v Scaling vector
* @returns {mat4} out
*/
-export function fromScaling(out, v) {
+function fromScaling(out, v) {
out[0] = v[0];
out[1] = 0;
out[2] = 0;
@@ -800,7 +800,7 @@
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
-export function fromXRotation(out, rad) {
+function fromXRotation(out, rad) {
let s = Math.sin(rad);
let c = Math.cos(rad);
@@ -835,7 +835,7 @@
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
-export function fromYRotation(out, rad) {
+function fromYRotation(out, rad) {
let s = Math.sin(rad);
let c = Math.cos(rad);
@@ -870,7 +870,7 @@
* @param {Number} rad the angle to rotate the matrix by
* @returns {mat4} out
*/
-export function fromZRotation(out, rad) {
+function fromZRotation(out, rad) {
let s = Math.sin(rad);
let c = Math.cos(rad);
@@ -909,7 +909,7 @@
* @param {vec3} v Translation vector
* @returns {mat4} out
*/
-export function fromRotationTranslation(out, q, v) {
+function fromRotationTranslation(out, q, v) {
// Quaternion math
let x = q[0], y = q[1], z = q[2], w = q[3];
let x2 = x + x;
@@ -955,7 +955,7 @@
* @param {mat4} mat Matrix to be decomposed (input)
* @return {vec3} out
*/
-export function getTranslation(out, mat) {
+function getTranslation(out, mat) {
out[0] = mat[12];
out[1] = mat[13];
out[2] = mat[14];
@@ -973,7 +973,7 @@
* @param {mat4} mat Matrix to be decomposed (input)
* @return {vec3} out
*/
-export function getScaling(out, mat) {
+function getScaling(out, mat) {
let m11 = mat[0];
let m12 = mat[1];
let m13 = mat[2];
@@ -1000,7 +1000,7 @@
* @param {mat4} mat Matrix to be decomposed (input)
* @return {quat} out
*/
-export function getRotation(out, mat) {
+function getRotation(out, mat) {
// Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
let trace = mat[0] + mat[5] + mat[10];
let S = 0;
@@ -1051,7 +1051,7 @@
* @param {vec3} s Scaling vector
* @returns {mat4} out
*/
-export function fromRotationTranslationScale(out, q, v, s) {
+function fromRotationTranslationScale(out, q, v, s) {
// Quaternion math
let x = q[0], y = q[1], z = q[2], w = q[3];
let x2 = x + x;
@@ -1111,7 +1111,7 @@
* @param {vec3} o The origin vector around which to scale and rotate
* @returns {mat4} out
*/
-export function fromRotationTranslationScaleOrigin(out, q, v, s, o) {
+function fromRotationTranslationScaleOrigin(out, q, v, s, o) {
// Quaternion math
let x = q[0], y = q[1], z = q[2], w = q[3];
let x2 = x + x;
@@ -1164,7 +1164,7 @@
*
* @returns {mat4} out
*/
-export function fromQuat(out, q) {
+function fromQuat(out, q) {
let x = q[0], y = q[1], z = q[2], w = q[3];
let x2 = x + x;
let y2 = y + y;
@@ -1248,7 +1248,7 @@
* @param {number} far Far bound of the frustum
* @returns {mat4} out
*/
-export function perspective(out, fovy, aspect, near, far) {
+function perspective(out, fovy, aspect, near, far) {
let f = 1.0 / Math.tan(fovy / 2);
let nf = 1 / (near - far);
out[0] = f / aspect;
@@ -1281,7 +1281,7 @@
* @param {number} far Far bound of the frustum
* @returns {mat4} out
*/
-export function perspectiveFromFieldOfView(out, fov, near, far) {
+function perspectiveFromFieldOfView(out, fov, near, far) {
let upTan = Math.tan(fov.upDegrees * Math.PI/180.0);
let downTan = Math.tan(fov.downDegrees * Math.PI/180.0);
let leftTan = Math.tan(fov.leftDegrees * Math.PI/180.0);
@@ -1352,7 +1352,7 @@
* @param {vec3} up vec3 pointing up
* @returns {mat4} out
*/
-export function lookAt(out, eye, center, up) {
+function lookAt(out, eye, center, up) {
let x0, x1, x2, y0, y1, y2, z0, z1, z2, len;
let eyex = eye[0];
let eyey = eye[1];
@@ -1439,7 +1439,7 @@
* @param {vec3} up vec3 pointing up
* @returns {mat4} out
*/
-export function targetTo(out, eye, target, up) {
+function targetTo(out, eye, target, up) {
let eyex = eye[0],
eyey = eye[1],
eyez = eye[2],
@@ -1488,7 +1488,7 @@
* @param {mat4} a matrix to represent as a string
* @returns {String} string representation of the matrix
*/
-export function str(a) {
+function str(a) {
return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' +
a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' +
a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' +
@@ -1501,7 +1501,7 @@
* @param {mat4} a the matrix to calculate Frobenius norm of
* @returns {Number} Frobenius norm
*/
-export function frob(a) {
+function frob(a) {
return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2) ))
}
@@ -1513,7 +1513,7 @@
* @param {mat4} b the second operand
* @returns {mat4} out
*/
-export function add(out, a, b) {
+function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
@@ -1541,7 +1541,7 @@
* @param {mat4} b the second operand
* @returns {mat4} out
*/
-export function subtract(out, a, b) {
+function subtract(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
@@ -1569,7 +1569,7 @@
* @param {Number} b amount to scale the matrix's elements by
* @returns {mat4} out
*/
-export function multiplyScalar(out, a, b) {
+function multiplyScalar(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
@@ -1598,7 +1598,7 @@
* @param {Number} scale the amount to scale b's elements by before adding
* @returns {mat4} out
*/
-export function multiplyScalarAndAdd(out, a, b, scale) {
+function multiplyScalarAndAdd(out, a, b, scale) {
out[0] = a[0] + (b[0] * scale);
out[1] = a[1] + (b[1] * scale);
out[2] = a[2] + (b[2] * scale);
@@ -1625,7 +1625,7 @@
* @param {mat4} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
-export function exactEquals(a, b) {
+function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] &&
a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] &&
a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] &&
@@ -1639,7 +1639,7 @@
* @param {mat4} b The second matrix.
* @returns {Boolean} True if the matrices are equal, false otherwise.
*/
-export function equals(a, b) {
+function equals(a, b) {
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
let a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7];
let a8 = a[8], a9 = a[9], a10 = a[10], a11 = a[11];
@@ -1672,10 +1672,10 @@
* Alias for {@link mat4.multiply}
* @function
*/
-export const mul = multiply;
+const mul = multiply;
/**
* Alias for {@link mat4.subtract}
* @function
*/
-export const sub = subtract;
+const sub = subtract;
diff -r -u gl-matrix-2.4.0/src/gl-matrix.js gl-matrix-2.4.0-pruned/src/gl-matrix.js
--- gl-matrix-2.4.0/src/gl-matrix.js 2017-07-22 13:02:47.000000000 -0600
+++ gl-matrix-2.4.0-pruned/src/gl-matrix.js 2019-09-27 17:04:06.477164503 -0600
@@ -26,19 +26,9 @@
THE SOFTWARE. */
// END HEADER
-import * as glMatrix from "./gl-matrix/common";
-import * as mat2 from "./gl-matrix/mat2";
-import * as mat2d from "./gl-matrix/mat2d";
import * as mat3 from "./gl-matrix/mat3";
import * as mat4 from "./gl-matrix/mat4";
-import * as quat from "./gl-matrix/quat";
-import * as vec2 from "./gl-matrix/vec2";
-import * as vec3 from "./gl-matrix/vec3";
-import * as vec4 from "./gl-matrix/vec4";
export {
- glMatrix,
- mat2, mat2d, mat3, mat4,
- quat,
- vec2, vec3, vec4,
-};
\ No newline at end of file
+ mat3,mat4
+};
|