summaryrefslogtreecommitdiff
path: root/graphics/asymptote/LspCpp/include/LibLsp/JsonRpc/threaded_queue.h
blob: 3e1ba547ca0ada6ecc69c27c306d5ab4dac95f52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#pragma once

#include <boost/optional/optional.hpp>
#include <algorithm>
#include <atomic>
#include <condition_variable>
#include <deque>
#include <memory>
#include <mutex>
#include <tuple>
#include <utility>
#include <vector>


struct MultiQueueWaiter;

struct BaseThreadQueue {
  virtual ~BaseThreadQueue() = default;

  virtual bool IsEmpty() = 0;

  std::shared_ptr<MultiQueueWaiter> waiter;
};

// std::lock accepts two or more arguments. We define an overload for one
// argument.
namespace std {
template <typename Lockable>
void lock(Lockable& l) {
  l.lock();
}
}  // namespace std

template <typename... Queue>
struct MultiQueueLock {
  MultiQueueLock(Queue... lockable) : tuple_{lockable...} { lock(); }
  ~MultiQueueLock() { unlock(); }
  void lock() { lock_impl(typename std::index_sequence_for<Queue...>{}); }
  void unlock() { unlock_impl(typename std::index_sequence_for<Queue...>{}); }

 private:
  template <size_t... Is>
  void lock_impl(std::index_sequence<Is...>) {
    std::lock(std::get<Is>(tuple_)->mutex...);
  }

  template <size_t... Is>
  void unlock_impl(std::index_sequence<Is...>) {
    (void)std::initializer_list<int>{
        (std::get<Is>(tuple_)->mutex.unlock(), 0)...};
  }

  std::tuple<Queue...> tuple_;
};

struct MultiQueueWaiter {
  static bool HasState(std::initializer_list<BaseThreadQueue*> queues);

  bool ValidateWaiter(std::initializer_list<BaseThreadQueue*> queues);

  template <typename... BaseThreadQueue>
  bool Wait(std::atomic<bool>& quit, BaseThreadQueue... queues) {
          MultiQueueLock<BaseThreadQueue...> l(queues...);
          while (!quit.load(std::memory_order_relaxed)) {
                  if (HasState({ queues... }))
                          return false;
                  cv.wait(l);
          }
          return true;
  }
  template <typename... BaseThreadQueue>
  void WaitUntil(std::chrono::steady_clock::time_point t,
          BaseThreadQueue... queues) {
          MultiQueueLock<BaseThreadQueue...> l(queues...);
          if (!HasState({ queues... }))
                  cv.wait_until(l, t);
  }
  template <typename... BaseThreadQueue>
  void Wait(BaseThreadQueue... queues) {
    assert(ValidateWaiter({queues...}));

    MultiQueueLock<BaseThreadQueue...> l(queues...);
    while (!HasState({queues...}))
      cv.wait(l);
  }

  std::condition_variable_any cv;
};

// A threadsafe-queue. http://stackoverflow.com/a/16075550
template <class T>
struct ThreadedQueue : public BaseThreadQueue {
 public:
  ThreadedQueue() : ThreadedQueue(std::make_shared<MultiQueueWaiter>()) {}

  explicit ThreadedQueue(std::shared_ptr<MultiQueueWaiter> waiter)
      : total_count_(0) {
    this->waiter = waiter;
  }

  // Returns the number of elements in the queue. This is lock-free.
  size_t Size() const { return total_count_; }

  // Add an element to the queue.
  void Enqueue(T&& t, bool priority) {
    {
      std::lock_guard<std::mutex> lock(mutex);
      if (priority)
        priority_.push_back(std::move(t));
      else
        queue_.push_back(std::move(t));
      ++total_count_;
    }
    waiter->cv.notify_one();
  }

  // Add a set of elements to the queue.
  void EnqueueAll(std::vector<T>&& elements, bool priority) {
    if (elements.empty())
      return;

    {
      std::lock_guard<std::mutex> lock(mutex);
      total_count_ += elements.size();
      for (T& element : elements) {
        if (priority)
          priority_.push_back(std::move(element));
        else
          queue_.push_back(std::move(element));
      }
      elements.clear();
    }

    waiter->cv.notify_all();
  }

  // Returns true if the queue is empty. This is lock-free.
  bool IsEmpty() { return total_count_ == 0; }

  // Get the first element from the queue. Blocks until one is available.
  T Dequeue() {
    std::unique_lock<std::mutex> lock(mutex);
    waiter->cv.wait(lock,
                    [&]() { return !priority_.empty() || !queue_.empty(); });

    auto execute = [&](std::deque<T>* q) {
      auto val = std::move(q->front());
      q->pop_front();
      --total_count_;
      return std::move(val);
    };
    if (!priority_.empty())
      return execute(&priority_);
    return execute(&queue_);
  }

  // Get the first element from the queue without blocking. Returns a null
  // value if the queue is empty.
  boost::optional<T> TryDequeue(bool priority) {
    std::lock_guard<std::mutex> lock(mutex);

    auto pop = [&](std::deque<T>* q) {
      auto val = std::move(q->front());
      q->pop_front();
      --total_count_;
      return std::move(val);
    };

    auto get_result = [&](std::deque<T>* first,
                          std::deque<T>* second) -> boost::optional<T> {
      if (!first->empty())
        return pop(first);
      if (!second->empty())
        return pop(second);
      return {};
    };

    if (priority)
      return get_result(&priority_, &queue_);
    return get_result(&queue_, &priority_);
  }
  // Return all elements in the queue.
  std::vector<T> DequeueAll() {
          std::lock_guard<std::mutex> lock(mutex);

          total_count_ = 0;

          std::vector<T> result;
          result.reserve(priority_.size() + queue_.size());
          while (!priority_.empty()) {
                  result.emplace_back(std::move(priority_.front()));
                  priority_.pop_front();
          }
          while (!queue_.empty()) {
                  result.emplace_back(std::move(queue_.front()));
                  queue_.pop_front();
          }

          return result;
  }
  std::vector<T> TryDequeueSome(size_t num) {
      std::lock_guard<std::mutex> lock(mutex);

      std::vector<T> result;
      num = std::min(num, priority_.size() + queue_.size());
      total_count_ -= num;
      result.reserve(num);
      while (num)
      {
          if(!priority_.empty()) {
              result.emplace_back(std::move(priority_.front()));
              priority_.pop_front();
          }
          else
          {
                  break;
          }
          num -= 1;
      }
      while (num)
      {
          if (!queue_.empty()) {
              result.emplace_back(std::move(queue_.front()));
              queue_.pop_front();
          }
          else
          {
              break;
          }
          num -= 1;
      }
      return result;
  }
  template <typename Fn>
  void Iterate(Fn fn) {
    std::lock_guard<std::mutex> lock(mutex);
    for (auto& entry : priority_)
      fn(entry);
    for (auto& entry : queue_)
      fn(entry);
  }

  mutable std::mutex mutex;

 private:
  std::atomic<int> total_count_;
  std::deque<T> priority_;
  std::deque<T> queue_;
};