1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
#!/usr/bin/env python3
import xasy2asy as x2a
import numpy as np
import math
import PyQt5.QtCore as Qc
import PyQt5.QtGui as Qg
class PrimitiveShape:
# The magic number.
# see https://www.desmos.com/calculator/lw6j7khikj for unitcircle
# optimal_ctl_pt = 0.5447
@staticmethod
def pos_to_tuple(pos):
if isinstance(pos, tuple) or isinstance(pos, np.ndarray):
return pos
elif isinstance(pos, Qc.QPoint) or isinstance(pos, Qc.QPointF):
return pos.x(), pos.y()
else:
raise TypeError("Position must be a valid type!")
@staticmethod
def euclideanNorm(p1, p2):
x1, y1 = PrimitiveShape.pos_to_tuple(p1)
x2, y2 = PrimitiveShape.pos_to_tuple(p2)
normSq = ((x1 - x2) ** 2) + ((y1 - y2) ** 2)
return math.sqrt(normSq)
@classmethod
def circle(cls, position, radius):
pos_x, pos_y = PrimitiveShape.pos_to_tuple(position)
newCircle = x2a.asyPath()
ptsList = [(pos_x + radius, pos_y), (pos_x, pos_y + radius), (pos_x - radius, pos_y), (pos_x, pos_y - radius),
'cycle']
# cycle doesn't work for now.
lkList = ['..', '..', '..', '..']
newCircle.initFromNodeList(ptsList, lkList)
return newCircle
@classmethod
def inscribedRegPolygon(cls, sides, position, radius, starting_rad, qpoly=False):
pos_x, pos_y = PrimitiveShape.pos_to_tuple(position)
lkList = ['--'] * sides
ptsList = []
for ang in np.linspace(starting_rad, starting_rad + math.tau, sides, endpoint=False):
ptsList.append((pos_x + radius * math.cos(ang), pos_y + radius * math.sin(ang)))
if qpoly:
ptsList.append((pos_x + radius * math.cos(starting_rad), pos_y + radius * math.sin(starting_rad)))
qpoints = [Qc.QPointF(x, y) for (x, y) in ptsList]
return Qg.QPolygonF(qpoints)
else:
ptsList.append('cycle')
newPoly = x2a.asyPath()
newPoly.initFromNodeList(ptsList, lkList)
return newPoly
@classmethod
def exscribedRegPolygon(cls, sides, position, length, starting_rad, qpoly=False):
ang = math.tau/sides
# see notes
adjusted_radius = length / math.cos(ang/2)
return cls.inscribedRegPolygon(sides, position, adjusted_radius, starting_rad - ang/2, qpoly)
|