summaryrefslogtreecommitdiff
path: root/fonts/utilities/mathkit/testmatp.mk
blob: 70ae6c551d1156694ded178708773ab1047675ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
%&plain

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% This is the file testmatp.mk, part of the MathKit package
%% (version 0.7, January , 1998) for math font 
%% generation.  (Author: Alan Hoenig, ajhjj@cunyvm.cuny.edu)
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\font\TTT=cmr7 \newcount\cno
\def\TT{\T\setbox0=\hbox{\char\cno}\ifdim\wd0>0pt
   \box0\lower4pt\hbox{\TTT\the\cno}\else
   \ifdim\ht0>0pt \box0\lower4pt\hbox{\TTT\the\cno}\fi\fi
   \global\advance\cno by1
}
\def\showfont#1{\font\T=#1 at 10pt\global\cno=0
 \tabskip1pt plus2pt minus1pt\halign to\hsize{&\hss\TT ##\hss\cr
 \multispan{16}\hfil \tt Font #1\hfil\cr\noalign{\smallskip}
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
 &&&&&&&&&&&&&&&\cr
}}

%% This is a `plain tex-ified' version of Alan Jeffrey's 
%% testmath.tex.

\input z<mock><fam>
\advance\hsize by -4pc


\centerline{\bf A Plain Math Test Document}\medskip
\centerline{for fonts installed by MathKit}\bigskip
\centerline{\it <currdate>}

\raggedbottom 

\def\framebox[#1]#2{%
  \setbox0=\hbox{#2}\dimen0=\wd0
  \vbox{\hrule\hbox to#1\dimen0{\vrule\vrule width0pt height8pt depth2pt
     #2\vrule}\hrule}}
\def\testsize#1{ 
   {\tt\string#1}: $a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2}, X^{X^X}_{X_X},
      a_{0_a}, 0_{a_0}, E=mc^2, X_{E=mc^2}, X_{X_{E=mc^2}}, 
      \sum_{i=0}^\infty$ 
} 

\def\testdelims#1#2#3{\sqrt{ 
   #1|#1\|#1\uparrow 
   #1\downarrow#1\updownarrow#1\Uparrow#1\Downarrow 
   #1\Updownarrow#1\lfloor#1\lceil 
   #1(#1\{#1[#1\langle 
      #3 
   #2\rangle#2]#2\}#2) 
   #2\rceil#2\rfloor#2\Updownarrow#2\Downarrow 
   #2\Uparrow#2\updownarrow#2\downarrow#2\uparrow 
   #2\|#2| 
}\cr} 

\def\testglyphs#1{ 
\endgraf
\bgroup\narrower\noindent
   #1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m 
   #1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z 
   #1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M 
   #1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z 
   #10#11#12#13#14#15#16#17#18#19 
   #1\Gamma#1\Delta#1\Theta#1\Lambda#1\Xi 
   #1\Pi#1\Sigma#1\Upsilon#1\Phi#1\Psi#1\Omega 
   #1\alpha#1\beta#1\gamma#1\delta#1\epsilon 
   #1\varepsilon#1\zeta#1\eta#1\theta#1\vartheta 
   #1\iota#1\kappa#1\lambda#1\mu#1\nu#1\xi#1\omicron 
   #1\pi#1\varpi#1\rho#1\varrho 
   #1\sigma#1\varsigma#1\tau#1\upsilon#1\phi 
   #1\varphi#1\chi#1\psi#1\omega 
   #1\partial#1\ell#1\imath#1\jmath#1\wp 
\endgraf
\egroup
} 

\def\sidebearings#1{ $|#1|$ } 
\def\subscripts#1{ $#1_\circ$ } 
\def\supscripts#1{ $#1^\circ$ } 
\def\scripts#1{ $#1^\circ_\circ$ } 
\def\vecaccents#1{ $\vec#1$ } 
\def\tildeaccents#1{ $\tilde#1$ } 

\ifx\omicron\undefined 
   \let\omicron=o 
\fi 

\beginsection Introduction 

This document (based on a similar document created by Alan Jeffrey)  
tests the math capabilities of a math package for plain \TeX.  The math 
package combines the {\tt <mock>} math fonts with the {\tt <fam>}
text fonts.

\showfont{<fam>r<m>7t}
\smallskip			     
\showfont{<fam>r<m>7m}
\smallskip
\showfont{<mock>sy10}
\smallskip
\showfont{<mock>ex10}

\beginsection Fonts 

Math italic: 
$$ 
   ABCDEFGHIJKLMNOPQRSTUVWXYZ 
   abcdefghijklmnopqrstuvwxyz 
$$ 
Text italic: 
$$ 
   {\it ABCDEFGHIJKLMNOPQRSTUVWXYZ 
      abcdefghijklmnopqrstuvwxyz} 
$$ 
Roman: 
$$ 
   {\rm ABCDEFGHIJKLMNOPQRSTUVWXYZ 
      abcdefghijklmnopqrstuvwxyz} 
$$ 
[tt]Typewriter: 
[tt]$$ 
[tt]   {\tt ABCDEFGHIJKLMNOPQRSTUVWXYZ 
[tt]	  abcdefghijklmnopqrstuvwxyz} 
[tt]$$
Bold: 
$$ 
   {\bf ABCDEFGHIJKLMNOPQRSTUVWXYZ 
      abcdefghijklmnopqrstuvwxyz} 
$$ 
[b]{\boldface 
[b]$$ 
[b]   \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega 
[b]$$ 
[b]}
Calligraphic: 
$$ 
   A{\cal ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
$$
Sans:
$$
   A{\sf ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z\       a{\sf abcdefghijklmnopqrstuvwxyz}z
$$
[fr]Fraktur:
[fr]$$
[fr] A{\frak ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z\ a{\frak abcdefghijklmnopqrstuvwxyz}z
[fr]$$
[bb]Blackboard Bold:
[bb]$$
[bb]  A{\bb ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
[bb]$$
Greek: 
$$ 
   \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega 
  \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta 
   \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho 
   \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega 
$$ 
Do these line up appropriately? 
$$ 
   \forall {\cal B} \Gamma {\bf D} \exists 
[tt]{\tt F} 
   G {\cal H} \Im {\bf J} {\sf K} \Lambda 
   M \aleph \emptyset \Pi {\it Q} \Re \Sigma 
[tt]{\tt T}
  \Upsilon {\cal V} {\bf W} \Xi 
   {\sf Y} Z 
   \quad 
   a {\bf c} \epsilon 
[tt]{\tt i} 
   \kappa {\bf m} \nu o \varpi {\sf r} 
   s \tau {\it u} v {\sf w} z 
   \quad 
[tt]{\tt g} 
   j {\sf q} \chi y 
   \quad 
   b \delta {\bf f} 
[tt]{\tt h} 
   k {\sf l} \phi 
$$ 

\beginsection Glyph dimensions 

These glyphs should be optically centered: 
   \testglyphs\sidebearings 
\noindent These subscripts should be correctly placed: 
   \testglyphs\subscripts 
\noindent These superscripts should be correctly placed: 
   \testglyphs\supscripts 
\noindent These subscripts and superscripts should be correctly placed: 
   \testglyphs\scripts 
\noindent These accents should be centered: 
   \testglyphs\vecaccents 
\noindent As should these: 
   \testglyphs\tildeaccents 
\noindent And here are accents in general:
   \'o \`o \^o \"o \~o \=o \.o \u o \v o \H o 
   \t oo \c o \d o \b o \quad
   $\hat o \check o \tilde o \acute o \grave o \dot o 
   \ddot o \breve o \bar o \vec o \vec h \hbar$

\beginsection Symbols 

These arrows should join up properly: 
$$ 
   a \hookrightarrow b \hookleftarrow c \longrightarrow d 
   \longleftarrow e \Longrightarrow f \Longleftarrow g 
   \longleftrightarrow h \Longleftrightarrow i 
   \mapsto j 
$$ 
These symbols should of similar weights: 
$$ 
   \pm + - \mp = / \backslash ( \langle [ \{ \} ] \rangle ) < \leq >  \geq 
$$ 
Are these the same size? 
$$\textstyle 
   \oint \int \quad 
   \bigodot \bigoplus \bigotimes \sum \prod 
   \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod 
$$ 
Are these? 
$$ 
   \oint \int \quad 
   \bigodot \bigoplus \bigotimes \sum \prod 
   \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod 
$$ 


\beginsection Sizing 

$$
    abcde + x^{abcde} + 2^{x^{abcde}}
$$

The subscripts should be appropriately sized: 

{\narrower\noindent\bodyfonts
\testsize\bodyfonts \endgraf
}

\beginsection Delimiters 

Each row should be a different size, but within each row the delimiters 
should be the same size.  First with {\tt\string\big}, etc: 
$$\vbox{\halign{\hfil$#$\hfil\cr
   \testdelims\relax\relax{a} 
   \testdelims\bigl\bigr{a} 
   \testdelims\Bigl\Bigr{a} 
   \testdelims\biggl\biggr{a} 
   \testdelims\Biggl\Biggr{a} 
}}$$ 
Then with {\tt\string\left} and {\tt\string\right}: 
$$\vbox{\halign{\hfil$#$\hfil\cr
   \testdelims\left\right{\vcenter{{\halign{\hss$#$\hss\cr a \cr}}}} 
   \testdelims\left\right{\vcenter{{\halign{\hss$#$\hss\cr a\cr a \cr}}}} 
   \testdelims\left\right{\vcenter{{\halign{\hss$#$\hss\cr a\cr a\cr a \cr}}}} 
   \testdelims\left\right{\vcenter{{\halign{\hss$#$\hss\cr a\cr a\cr a\cr a \cr}}}}  
}}$$ 

\beginsection Spacing 

This paragraph should appear to be a monotone grey texture. 
Suppose $f \in {\cal S}_n$ and $g(x) = (-1)^{|\alpha|}x^\alpha 
f(x)$.  Then $g \in {\cal S}_n$; now ({\bf c}) implies that $\hat 
g = D_\alpha \hat f$ and $P \cdot D_\alpha\hat f = P \cdot \hat g = 
(P(D)g)\hat{}$, which is a bounded function, since $P(D)g \in 
L^1(R^n)$.  This proves that $\hat f \in {\cal S}_n$.  If $f_i 
\rightarrow f$ in ${\cal S}_n$, then $f_i \rightarrow f$ in 
$L^1(R^n)$.  Therefore $\hat f_i(t) \rightarrow \hat f(t)$ for all $t 
\in R^n$.  That $f \rightarrow \hat f$ is a {\it continuous\/} mapping 
of ${\cal S}_n$ into ${\cal S}_n$ follows now from the closed 
graph theorem.  And thus for $x_1$ through $x_i$.
{\bf Functional Analysis}, W.~Rudin, McGraw--Hill, 
1973. 

[b]{\boldface
[b]This paragraph should appear to be a monotone dark texture. 
[b]Suppose $f \in {\cal S}_n$ and $g(x) = (-1)^{|\alpha|}x^\alpha 
[b]f(x)$.  Then $g \in {\cal S}_n$; now (c) implies that $\hat 
[b]g = D_\alpha \hat f$ and $P \cdot D_\alpha\hat f = P \cdot \hat g = 
[b](P(D)g)\hat{}$, which is a bounded function, since $P(D)g \in 
[b]L^1(R^n)$.  This proves that $\hat f \in {\cal S}_n$.  If $f_i 
[b]\rightarrow f$ in ${\cal S}_n$, then $f_i \rightarrow f$ in 
[b]$L^1(R^n)$.  Therefore $\hat f_i(t) \rightarrow \hat f(t)$ for all $t 
[b]\in R^n$.  That $f \rightarrow \hat f$ is a {\it continuous} mapping 
[b]of ${\cal S}_n$ into ${\cal S}_n$ follows now from the closed 
[b]graph theorem.  And thus for $x_1$ through $x_i$.
[b]{\it Functional Analysis}, W.~Rudin, McGraw--Hill, 1973. 
[b]}
[b]
{\it This paragraph should appear to be a monotone grey texture. 
Suppose $f \in {\cal S}_n$ and $g(x) = (-1)^{|\alpha|}x^\alpha 
f(x)$.  Then $g \in {\cal S}_n$; now ({\bf c}) implies that $\hat 
g = D_\alpha \hat f$ and $P \cdot D_\alpha\hat f = P \cdot \hat g = 
(P(D)g)\hat{}$, which is a bounded function, since $P(D)g \in 
L^1(R^n)$.  This proves that $\hat f \in {\cal S}_n$.  If $f_i 
\rightarrow f$ in ${\cal S}_n$, then $f_i \rightarrow f$ in 
$L^1(R^n)$.  Therefore $\hat f_i(t) \rightarrow \hat f(t)$ for all $t 
\in R^n$.  That $f \rightarrow \hat f$ is a {\bi continuous} mapping 
of ${\cal S}_n$ into ${\cal S}_n$ follows now from the closed 
graph theorem.  {\bi Functional Analysis}, W.~Rudin, McGraw--Hill, 
1973.} 

The text in these boxes should spread out as much as the math does: 
$$\vbox{\halign{\hfil#\hfil\cr
   \framebox[.95]{For example $x+y = \min\{x,y\} 
      + \max\{x,y\}$ is a formula.} \cr 
   \framebox[.975]{For example $x+y = \min\{x,y\} 
      + \max\{x,y\}$ is a formula.} \cr  
   \framebox[1]{For example $x+y = \min\{x,y\} 
      + \max\{x,y\}$ is a formula.} \cr  
   \framebox[1.025]{For example $x+y = \min\{x,y\} 
      + \max\{x,y\}$ is a formula.} \cr  
   \framebox[1.05]{For example $x+y = \min\{x,y\} 
      + \max\{x,y\}$ is a formula.} \cr  
   \framebox[1.075]{For example $x+y = \min\{x,y\} 
      + \max\{x,y\}$ is a formula.} \cr  
   \framebox[1.1]{For example $x+y = \min\{x,y\} 
      + \max\{x,y\}$ is a formula.} \cr  
   \framebox[1.125]{For example $x+y = \min\{x,y\} 
      + \max\{x,y\}$ is a formula.} \cr  
\cr}}$$ 
\bye