summaryrefslogtreecommitdiff
path: root/fonts/greek/kd/mf/kdbase.mf
blob: ec4311ce07e6a8d2892ec97e5f67765159a2dd91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
% ======================================================================
%		   KD Classical Greek Family of Fonts
%		   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
%
%	A set of MF source fonts for use with TeX version 3.0 or higher
%	accompanied with macros and hyphenation tables to facilitate
%	the typesetting of greek texts
%
%	This piece of work is partially based on original work of
%	Sylvio Levi (design of an excellent set of fonts)  
%	and Yianni Haralambous (ideas about macros other fonts).
%
%	This file is part of the greektex package and abides to 
%	copyright laws of the GNU general public software licence
%
%	You are allowed to use or modify this file as long as the 
%	original authors are clearly mentioned. It is ILLEGAL to sell
%	any part of this work or work derived from it. You may not
%	charge for this work except to cover for reasonable media 
%	expensess.
%
%	K J Dryllerakis (C) 1991-1992 
%
% ======================================================================
%
%	Base File for Computer Classic Greek Fonts
%
%	By K J Dryllerakis May 1991. Based on Sylvio-Levy's
%	grbase.

numeric kdbase; kdbase:=1;      %don't read this file twice
%
%	make reference to file in subdirectories less painful
%
def readfrom(expr filename) = scantokens ("input " & filename); enddef;
%
% Parameter Definitions
%
boolean one_accent;             % are we working in |one_accent|-system?
boolean monowidth;              % do characters have single width?
boolean straight;               % are certain strokes straight?
boolean italics;                % are we going to make italics?
numeric univ_acc_breadth;       % from 0 to 1:the breadth of the univ. accent
%
% Expand the Standard Font setup
%
let old_font_setup = font_setup; 
def font_setup =
	define_whole_vertical_pixels(acc_ht,circ_ht,Circ_ht,iota_dp);   %accent heights
	old_font_setup;
enddef;
 
%	This part defines macros for saving pictures to facilitate
%	the design of composite characters
%	But if we're using various definitions for the same letter (as when
%	running 6test.mf) we can't use this trick, 
%	so we set |working_hard:=true|.

boolean working_hard;
working_hard:=false;

def this_letter =
	italcorr ital; adjust_fit(fit_params);
	if known savedpicture: currentpicture:=savedpicture; else: gen_letter; fi
	if not working_hard : picture savedpicture; savedpicture=currentpicture; fi
enddef;
%
%	The following routines are for use with double characters.
%
boolean is_double; is_double:=false;
let oldendchar=endchar;

def begindoublechar(expr c,w_sharp,h_sharp,d_sharp) =
is_double:=true; beginchar(c,w_sharp,h_sharp,d_sharp);
enddef;
%
def doublecharkern(expr k_sharp) =
if not monospace: k:=hround(k_sharp*hppp); r:=r+k; charwd:=charwd+k_sharp; fi
enddef;
%
def middoublechar(expr w_sharp,h_sharp,d_sharp) =
	scantokens extra_endchar;
	forsuffixes e=r,l,w,charwd: numeric first.e; first.e:=e; endfor

	w:=hround(w_sharp*hppp); h:=vround(h_sharp*hppp); d:=vround(d_sharp*hppp);
	charwd:=w_sharp; charht:=max(charht,h_sharp); chardp:=max(chardp,d_sharp);
	picture first.glyph; first.glyph=currentpicture;
	clearxy; clearpen; clearit; clearpen;
enddef;

def endchar =
	if is_double :
		charwd:=first.charwd+charwd;
		picture second_glyph; second_glyph=currentpicture shifted (first.r-l,0);
		currentpicture:= first.glyph; addto currentpicture also second_glyph;
		scantokens extra_endchar;
		w:=first.w+w; r:=first.r-l+r; l:=first.l;
		chardx:=first.w+w; interim xoffset:= -l;
		if proofing>0: makebox(proofrule); fi
		shipit;
		if displaying>0: makebox(screenrule); showit; fi
		endgroup;
		is_double:=false
	else :
		oldendchar
	fi
enddef;
 
% By convention, we reserve the name z1' for the direction at z1, and so on.
% The direction at |z1r| is |z1'r|, or |zdir1r|.
vardef zdir[]@#= z@'@# enddef;
vardef assign_z@#(expr zz)= x@#:=xpart(zz); y@#:=ypart(zz) enddef;
vardef sgn(expr x)= if (x>0): 1 elseif (x<0): -1 else: 0 fi enddef;

vardef double_circ_stroke text t =
	forsuffixes e = l,r: path_.e:=t; endfor
	if cycle path_.l: errmessage "Beware: `stroke' isn't intended for cycles"; fi
	path_.l .. reverse path_.r .. cycle 
enddef;

%vardef drawloop(suffix $,$$,@@,@)=
%numeric temp[], sup;
%sup=superness;
%forsuffixes e=r,l:
%path curv[]e; numeric S[]e;
%curv1e=pulled_super_arc.e($,$$)(.5superpull);
%curv2e=pulled_super_arc.e(@,@@)(.5superpull); endfor
%(S1r,S2r)=curv1r intersectiontimes curv2r;
%(temp1,S2l)=curv1r intersectiontimes curv2l;
%(S1l,temp2)=curv1l intersectiontimes curv2r;
%for i=1 upto 4:
%exitif (temp1>=S1r) and (temp2>=S2r);
%begingroup
%numeric S[]r, S[]l, temp[]; pair p;
%interim superness:=(i/10)[sup,1];
%message"change in superness required; increased to "; show superness;
%curv1r:=pulled_super_arc.r($,$$)(0);
%curv2r:=pulled_super_arc.r(@,@@)(0);
%(S1r,S2r)=curv1r intersectiontimes curv2r;
%(temp1,S2l)=curv1r intersectiontimes curv2l;
%(S1l,temp2)=curv1l intersectiontimes curv2r;
%endgroup;
%endfor;
%if S1l=-1 : S1l:=2; fi
%if S2l=-1 : S2l:=2; fi
%filldraw stroke subpath(0,S1e+eps) of curv1e;
%filldraw stroke subpath(0,S2e+eps) of curv2e;
%filldraw subpath (S1r+eps,2) of curv1r...subpath(2,S2r+eps) of curv2r..cycle;
%enddef ;

vardef drawloop(suffix $,$$,@@,@)=
  numeric temp[], sup;
  sup=superness;
  forsuffixes e=r,l:
    path curv[]e; numeric S[]e;
    curv1e=pulled_super_arc.e($,$$)(.5superpull);
    curv2e=pulled_super_arc.e(@,@@)(.5superpull); endfor
  (S1r,S2r)=curv1r intersectiontimes curv2r;
  (temp1,S2l)=curv1r intersectiontimes curv2l;
  (S1l,temp2)=curv1l intersectiontimes curv2r;
  for i=1 upto 9:
    exitif (temp1>=S1r) and (temp2>=S2r);
    begingroup
      numeric S[]r, S[]l, temp[]; pair p;
      interim superness:=(i/10)[sup,1];
      message"change in superness required; increased to "; show superness;
      curv1r:=pulled_super_arc.r($,$$)(0);
      curv2r:=pulled_super_arc.r(@,@@)(0);
      (S1r,S2r)=curv1r intersectiontimes curv2r;
      (temp1,S2l)=curv1r intersectiontimes curv2l;
      (S1l,temp2)=curv1l intersectiontimes curv2r;
    endgroup;
  endfor;
  if S1l=-1 : S1l:=2; fi
  if S2l=-1 : S2l:=2; fi
  filldraw stroke subpath(0,S1e+eps) of curv1e; 
  filldraw stroke subpath(0,S2e+eps) of curv2e;
  filldraw subpath (S1r+eps,2) of curv1r...subpath(2,S2r+eps) of curv2r..cycle;
enddef ;

vardef gr_arc.r(suffix $,$$,$$$)(expr min,max,tilt)=
	pair center, corner;
	if (y$$$r-y$r)*(x$$$r-x$r) < 0 :        %first or third quadrant
		center=(x$$$r,y$r); corner=(x$r,y$$$r);
	else :
		center=(x$r,y$$$r); corner=(x$$$r,y$r);
	fi
	z$r{corner-z$r}...superness[center,corner]{z$$$r-z$r}...
	{z$$$r-corner}z$$$r
enddef;

vardef gr_arc.l(suffix $,$$,$$$)(expr min,max,tilt)=
	save p,q,wdth;
	pair center, corner, temp;
	numeric wdth, t, s;
	path p,q;
	if (y$$$r-y$r)*(x$$$r-x$r) < 0 :        %first or third quadrant
		center=(x$$$r,y$r); corner=(x$r,y$$$r);
		if tilt>=0 : wdth:=min; other_wdth:=max; t:=2(1-tilt);
		else : wdth:=max; other_wdth:=min; t:=-2tilt; fi
	else :
		center=(x$r,y$$$r); corner=(x$$$r,y$r);
		if tilt>=0 : wdth:=max; other_wdth:=min; t:=2(1-tilt);
		else : wdth:=min; other_wdth:=max; t:=-2tilt; fi
	fi
	p:=z$r{corner-z$r}...superness[center,corner]{z$$$r-z$r}...
	{z$$$r-corner}z$$$r;
	pos$$(wdth,angle direction t of p - 90);
	z$$r=point t of p;
	assign_z$$'l(direction t of p);
	assign_z$$'r(z$$'l);
	if other_wdth<=currentbreadth: errmessage "bad pos"; fi
	temp:=point (2-t) of p-
	(other_wdth-currentbreadth,0) rotated (angle direction (2-t) of p - 90);
	boolean k[]; k1:=false; k2:=false;
	if unknown x$l:
		k1:=true;
		assign_z$l(temp);
		assign_z$'l(direction(2-t) of p);
		if (y$$$r-y$r)*(x$$$r-x$r) < 0 :        %first or third quadrant
			y$l:=2ypart center-y$l;
			x$'l:=-x$'l;
		else:
			x$l:=2xpart center-x$l;
		y$'l:=-y$'l;
		fi
	fi
	if unknown x$$$l:
		k2:=true;
		assign_z$$$l(temp);
		assign_z$$$'l(direction(2-t) of p);
		if (y$$$r-y$r)*(x$$$r-x$r) < 0 :        %first or third quadrant
			x$$$l:=2xpart center-x$$$l;
			y$$$'l:=-y$$$'l;
		else:
			y$$$l:=2ypart center-y$$$l;
			x$$$'l:=-x$$$'l;
		fi
	fi
	q:=z$l{z$'l}...z$$l{z$$'l}...z$$$l{z$$$'l};
	if k1 :
		t := xpart(q intersectiontimes (center---z$r));
		if t=-1 : t:=0; fi
		assign_z$l(point t of q);
		assign_z$'l(direction t of q);
		assign_z$'r(corner-z$r);
		z$l+z$r=2z$;
	else: t:=0;
	fi
	if k2 :
		s := xpart(q intersectiontimes (center---z$$$r));
		if s=-1 : s:=2; fi
		assign_z$$$l(point s of q);
		assign_z$$$'l(direction s of q);
		assign_z$$$'r(z$$$r-corner);
		z$$$l+z$$$r=2z$$$;
	else: s:=2;
	fi
	subpath (t,s) of q
enddef;

vardef doodah(suffix $,$$,$$$)=
	if known x$$:
		vardef ward(expr gr)=
		sgn(xpart direction 1 of (z${zdir$}..(x$$,gr)..{zdir$$$}z$$$)) <> sgn(x$-x$$)
		enddef;
		y$$=solve ward(y$,y$$$);
	else:
		vardef ward(expr gr)=
		sgn(ypart direction 1 of (z${zdir$}..(gr,y$$)..{zdir$$$}z$$$)) <> sgn(y$-y$$)
		enddef;
		x$$=solve ward(x$,x$$$);
	fi
	(z${zdir$}..z$$..{zdir$$$}z$$$)
enddef;

forsuffixes e=r,l:
vardef club.e(suffix $,$$,$$$)= doodah($e,$$e,$$$e) enddef; endfor


vardef alpha_tail(suffix $,$$) =
	pos$$(hair,180); top y$$=vround 4/3[bot y$l,top y$r];           %tip of hook
	rt x$$l=hround(x$+(y$$-y$)+.5hair);                     %central arc is round
enddef;

vardef pi_bar =
	pos3(vstem,-90); rt x3=hround(w-.75u); top y3l=x_height;        %top right
	pos2(vstem,-90); y2=y3; x2=.25w;                                %top left
	x1-.5hair=hround.75u; y1-.5hair=4/3[top y2l,bot y2r];           %tip of bar
	numeric slope; slope=angle((z2-z1)yscaled 2); pos1(hair,slope-90);
	forsuffixes e=l,r: z1'e=(z2e-z1e)yscaled 2; endfor
	filldraw circ_stroke z1e{z1'e}...z2e---z3e;             %bar
enddef;

def traba(expr poso) = transform t; t = identity shifted (poso,0);
currentpicture := currentpicture transformed t;
enddef;

% End of KD Base