summaryrefslogtreecommitdiff
path: root/dviware/dvisvgm/src/EllipticalArc.cpp
blob: e7353458e349ed44e7ad67c3acd8f9b3be3152cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*************************************************************************
** EllipticalArc.cpp                                                    **
**                                                                      **
** This file is part of dvisvgm -- a fast DVI to SVG converter          **
** Copyright (C) 2005-2021 Martin Gieseking <martin.gieseking@uos.de>   **
**                                                                      **
** This program is free software; you can redistribute it and/or        **
** modify it under the terms of the GNU General Public License as       **
** published by the Free Software Foundation; either version 3 of       **
** the License, or (at your option) any later version.                  **
**                                                                      **
** This program is distributed in the hope that it will be useful, but  **
** WITHOUT ANY WARRANTY; without even the implied warranty of           **
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the         **
** GNU General Public License for more details.                         **
**                                                                      **
** You should have received a copy of the GNU General Public License    **
** along with this program; if not, see <http://www.gnu.org/licenses/>. **
*************************************************************************/

#include <cmath>
#include "EllipticalArc.hpp"
#include "utility.hpp"

using namespace std;


/** Constructs an elliptical arc from end point parameterization.
 *  @param[in] start start point of arc
 *  @param[in] rx length of semi-major axis
 *  @param[in] ry length of semi-minor axis
 *  @param[in] angle rotation of ellipse around its center (in radians)
 *  @param[in] laf if true, choose the larger arc between start and end point
 *  @param[in] sweep if true, arc is drawn in the direction of increasing angles
 *  @param[in] end end point of the arc */
EllipticalArc::EllipticalArc (const DPair &start, double rx, double ry, double angle, bool laf, bool sweep, const DPair &end)
	: _rx(abs(rx)), _ry(abs(ry)), _rotationAngle(math::normalize_angle(angle, math::PI)),
	  _largeArc(laf), _sweepPositive(sweep), _startPoint(start), _endPoint(end)
{
	if (!isStraightLine()) {
		// fix out-of-range radii according to section F.6.6.3 in
		// https://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii
		double c = cos(_rotationAngle);
		double s = sin(_rotationAngle);
		DPair p = (_startPoint-_endPoint)/2.0;
		p = DPair(c*p.x()+s*p.y(), c*p.y()-s*p.x());
		double lambda = (p.x()*p.x())/(_rx*_rx) + (p.y()*p.y())/(_ry*_ry);
		if (lambda > 1) {
			lambda = sqrt(lambda);
			_rx *= lambda;
			_ry *= lambda;
		}
	}
}


/** Constructs an elliptical arc from center parameterization
 *  @param[in] center absolute coordinates of the center of the ellipse
 *  @param[in] rx length of semi-major axis
 *  @param[in] ry length of semi-minor axis
 *  @param[in] rot rotation of ellipse around its center (in radians)
 *  @param[in] startAngle angle between major axis and vector from center to start point
 *  @param[in] deltaAngle angle between the vectors from center to start and end point, respectively */
EllipticalArc::EllipticalArc (const DPair &center, double rx, double ry, double rot, double startAngle, double deltaAngle)
	: _rx(rx), _ry(ry), _rotationAngle(math::normalize_angle(rot, math::TWO_PI)),
	  _largeArc(abs(deltaAngle) > math::PI), _sweepPositive(deltaAngle > 0)
{
	// https://www.w3.org/TR/SVG/implnote.html#ArcConversionCenterToEndpoint
	double c = cos(_rotationAngle);
	double s = sin(_rotationAngle);
	double c1 = cos(startAngle);
	double s1 = sin(startAngle);
	double c2 = cos(startAngle+deltaAngle);
	double s2 = sin(startAngle+deltaAngle);
	_startPoint = DPair(c*rx*c1*c - s*ry*s1, s*rx*c1 + c*ry*s1) + center;
	_endPoint   = DPair(c*rx*c2*c - s*ry*s2, s*rx*c2 + c*ry*s2) + center;
}


/** Returns the angle between (1, 0) and a given vector.
 *  The angle is normalized to the range [0, 2pi). */
static inline double angle (const DPair &p) {
	return math::normalize_0_2pi(atan2(p.y(), p.x()));
}


/** Computes the center parameterization of the arc. */
EllipticalArc::CenterParams EllipticalArc::getCenterParams () const {
	EllipticalArc::CenterParams params;
	if (isStraightLine()) {
		params.center = (_endPoint-_startPoint)/2.0;
		params.startAngle = params.deltaAngle = 0;
	}
	else {
		// https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
		double c = cos(_rotationAngle);
		double s = sin(_rotationAngle);
		DPair p = (_startPoint-_endPoint)/2.0;
		p = DPair(c*p.x()+s*p.y(), c*p.y()-s*p.x());
		double rx2 = _rx*_rx, ry2 = _ry*_ry;
		double px2 = p.x()*p.x(), py2 = p.y()*p.y();
		double radicand = rx2*ry2 - rx2*py2 - ry2*px2;
		if (radicand < 0)  // should not happen if out-of-range radii were fixed correctly
			radicand = 0;
		else
			radicand /= rx2*py2 + ry2*px2;
		double root = sqrt(radicand) * (_largeArc == _sweepPositive ? -1 : 1);
		DPair cp(root*p.y()*_rx/_ry, -root*p.x()*_ry/_rx);
		DPair mid = (_startPoint+_endPoint)/2.0;
		params.center = DPair(c*cp.x() - s*cp.y() + mid.x(), s*cp.x() + c*cp.y() + mid.y());
		DPair q1((p.x() - cp.x())/_rx, (p.y() - cp.y())/_ry);
		DPair q2(-(p.x() + cp.x())/_rx, -(p.y() + cp.y())/_ry);
		params.startAngle = angle(q1);
		params.deltaAngle = angle(q2) - params.startAngle;
		if (_sweepPositive && params.deltaAngle < 0)
			params.deltaAngle += math::TWO_PI;
		else if (!_sweepPositive && params.deltaAngle > 0)
			params.deltaAngle -= math::TWO_PI;
	}
	return params;
}


/** Applies the affine transformation described by a given matrix to the arc. */
void EllipticalArc::transform (const Matrix &matrix) {
	double c = cos(_rotationAngle);
	double s = sin(_rotationAngle);
	Matrix ellipse({_rx*c, -_ry*s, 0, _rx*s, _ry*c});  // E := rotate(xrot)*scale(rx, ry)
	ellipse.lmultiply(matrix);                         // E':= M*E
	// Compute the singular value decomposition of the transformed ellipse shape:
	// E' = rotate(phi)*scale(sx, sy)*rotate(theta)
	// The initial, right-hand rotation can be ignored because it rotates the unit circle
	// around the origin, i.e. rotate(theta) maps the circle to itself.
	// The signs of sx and sy don't matter either. They just flip the yet unrotated
	// ellipse on the x- and/or y-axis. Thus, |sx| and |sy| are the new radii,
	// and phi the new rotation angle.
	auto vec = math::svd({{ellipse.get(0,0), ellipse.get(0,1)}, {ellipse.get(1,0), ellipse.get(1,1)}});
	if (std::abs(vec[1]-vec[2]) < 1e-7) {  // circle?
		_rx = _ry = vec[1];   // always >= 0
		_rotationAngle = 0;
	}
	else {
		_rx = vec[1];         // always >= 0
		_ry = abs(vec[2]);    // ensure >= 0
		_rotationAngle = math::normalize_angle(vec[0], math::HALF_PI);
	}
	// change drawing direction (clockwise vs. counter-clockwise) if 'matrix'
	// flipped the ellipse horizontally or vertically but not both
	if ((matrix.get(0, 0) < 0) != (matrix.get(1, 1) < 0))
		_sweepPositive = !_sweepPositive;
	_startPoint = matrix * _startPoint;
	_endPoint = matrix * _endPoint;
}


/** Approximates an arc of the unit circle by a single cubic Bézier curve.
 *  @param[in] phi start angle of the arc in radians
 *  @param[in] delta length of the arc */
static Bezier approx_unit_arc (double phi, double delta) {
	double c = 0.551915024494;  // see http://spencermortensen.com/articles/bezier-circle
	if (abs(delta + math::HALF_PI) < 1e-7)
		c = -c;
	else
		c = 4.0/3*tan(delta/4);
	DPair p1(cos(phi), sin(phi));
	DPair p4(cos(phi+delta), sin(phi+delta));
	DPair p2(p1.x()-c*p1.y(), p1.y()+c*p1.x());
	DPair p3(p4.x()+c*p4.y(), p4.y()-c*p4.x());
	return Bezier(p1, p2, p3, p4);
}


/** Approximates the arc by a sequence of cubic Bézier curves. */
vector<Bezier> EllipticalArc::approximate () const {
	vector<Bezier> beziers;
	if (_startPoint != _endPoint) {
		if (isStraightLine()) {
			DPair dir = (_endPoint - _startPoint);
			dir /= dir.length()/3.0;
			beziers.emplace_back(_startPoint, _startPoint+dir, _endPoint-dir, _endPoint);
		}
		else {
			CenterParams cparams = getCenterParams();
			int numCurves = ceil(cparams.deltaAngle/math::HALF_PI);
			double remainder = abs(fmod(cparams.deltaAngle, math::HALF_PI));
			if (remainder < 1e-7)
				numCurves--;
			else if (math::HALF_PI-remainder < 1e-7)
				numCurves++;
			if (numCurves > 0) {
				double c = cos(_rotationAngle);
				double s = sin(_rotationAngle);
				Matrix ellipse{_rx*c, -_ry*s, cparams.center.x(), _rx*s, _ry*c, cparams.center.y()};
				double angle = cparams.startAngle;
				double diff = cparams.deltaAngle/numCurves;
				while (numCurves-- > 0) {
					beziers.push_back(approx_unit_arc(angle, diff).transform(ellipse));
					angle += diff;
				}
			}
		}
	}
	return beziers;
}


static inline bool is_angle_between (double t, double angle1, double angle2) {
	if (angle1 < angle2)
		return angle1 < t && t < angle2;
	return angle2 > t || t > angle1;
}


/** Returns the tight bounding box of the arc. */
BoundingBox EllipticalArc::getBBox () const {
	BoundingBox bbox;
	bbox.embed(_startPoint);
	bbox.embed(_endPoint);
	if (!isStraightLine()) {
		// compute extremes of ellipse centered at the origin
		double c = cos(_rotationAngle);
		double s = sin(_rotationAngle);
		double tx1 = math::normalize_0_2pi(-atan2(_ry*s, _rx*c));  // position of vertical tangent, d/dt E(tx1)=(0, y)
		double tx2 = math::normalize_0_2pi(math::PI+tx1);          // position of second vertical tangent
		double ct = cos(tx1);
		double st = sin(tx1);
		DPair pv1(_rx*c*ct - _ry*s*st, _rx*s*ct + _ry*c*st);       // E(tx1), 1st point on ellipse with vertical tangent
		DPair pv2 = -pv1;                                          // E(tx2), 2nd point on ellipse with vertical tangent

		double ty1 = math::normalize_0_2pi(atan2(_ry*c, _rx*s));   // position of horizontal tangent, d/dt E(ty1)=(x, 0)
		double ty2 = math::normalize_0_2pi(math::PI+ty1);          // position of second horizontal tangent
		ct = cos(ty1);
		st = sin(ty1);
		DPair ph1(_rx*c*ct - _ry*s*st, _rx*s*ct + _ry*c*st);       // E(ty1), 1st point on ellipse with horizontal tangent
		DPair ph2 = -ph1;                                          // E(ty2), 2nd point on ellipse with horizontal tangent

		// translate extreme points to actual coordinates
		CenterParams cparams = getCenterParams();
		pv1 += cparams.center;
		pv2 += cparams.center;
		ph1 += cparams.center;
		ph2 += cparams.center;

		double angle1 = cparams.startAngle;
		double angle2 = math::normalize_0_2pi(angle1+cparams.deltaAngle);
		if (!_sweepPositive)
			swap(angle1, angle2);

		// only consider extreme points located on the arc
		if (is_angle_between(tx1, angle1, angle2))
			bbox.embed(pv1);
		if (is_angle_between(tx2, angle1, angle2))
			bbox.embed(pv2);
		if (is_angle_between(ty1, angle1, angle2))
			bbox.embed(ph1);
		if (is_angle_between(ty2, angle1, angle2))
			bbox.embed(ph2);
	}
	return bbox;
}