
The clojure-pamphlet package∗

Ernesto Lanchares Sanchez
e.lancha98@gmail.com

August 23, 2019

Abstract

A package to make beautiful literate programming documents. The sys-
tem is based on clojure’s pamphelt files.

1 Introduction

Literate Programming is a programming paradigm that changes the goal of the
program:

Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what
to do, let us concentrate rather on explaining to human beings what
we want a computer to do.

Since it’s creation, many systems have been created to accomplish this goal,
systems like WEB, CWEB, noweb, . . . This systems all share the same structure: There
is one source file and two programs needed, one that extracts the code to be
compiled and other that extracts the literature (usually a TEX/LATEXfile) to be
compiled.

This is the reason that we preffer clojure’s system where there is one
LATEXsource file that can be compiled and one program to extract the code to
be compiled. Although the clojure system is fine as it is, we think the resulting
documentation can be a bit prettier hence this package. The difference in using
this package or the clojure system as a developer is non-existent, however we think
the documentation with our system is a bit more readable. It also automaticly
adds hyperlinks to the output in order to make it easier to navigate when viewing
in a computer.

2 Usage

The clojure-pamphlet system is designed to be as simple as possible, so this
package only provides one environment and one command. The system is based

∗This document corresponds to clojure-pamphlet v1.o, dated 2019/07/08.

1

http://www.literateprogramming.com/

arround code chunks. This chunks are the part of the documents that contain
code and can be extracted. The chunks also contain a name so that they can be
referenced in the document and in other chunk blocks. The name is also needed
for the tangler to extract the chunk.

2.1 chunk environment

The chunk environment is used to define code blocks. This code blocks have achunk

name and are what the tangler will actually output. It is based on the listings
package, so all style formats that yo can apply to lstlisting environments, you
can also apply to chunk environments by simply using the command lstset.

Here’s an example of a code usage and it’s output

\begin{chunk}{main}

int main(int argc, char* argv[]) {

printf("Hello World.\n");

}

\end{chunk}

— main —

i n t main (i n t argc , char ∗ argv []) {
p r i n t f (” He l lo World.\n ”) ;

}

——
Also, inside the chunk environment, you can use the \getchunk command,\getchunk

which includes the referenced chunk at that exact same spot. The \getchunk

command requires to be in it’s own separate line. Let’s illustrate this with an
example:

\begin{chunk}{onechunk}

CHUNK ONE

\end{chunk}

\begin{chunk}{otherchunk}

PREVIOUS

\getchunk{onechunk}

POST

\end{chunk}

— print —

p r i n t f (” He l lo World ”) ;

2

https://www.ctan.org/pkg/listings

—Used by, main—
— main —

i n t main (i n t argc , char ∗ argv []) {〈
print

〉
}

——

2.2 The tangler

The tangler is designed to be as simple to use as possible. You just need to
provide it with a LATEXclojure-pamphlet file and a code chunk to extract. Then
the tangler will output the code to be compiled in the standard output. For
example in order to extract the main chunk of code we will need to run

pamphletangler [filename.tex] main

And the output will be

int main(int argc, char* argv[]) {

printf("Hello World");

}

3

	Introduction
	Usage
	chunk environment
	The tangler

