
llmk
The Light LATEX Make

Takuto Asakura (wtsnjp)

v0.1.0 2020-09-14

1 Overview

The llmk program is yet another build tool specific for LATEX documents. Its aim is to provide
a simple way to specify a workflow of processing LATEX documents and encourage people to
always explicitly show the right workflow for each document.

The main features of llmk are all about the above purpose. First, you can write the workflows
either in an external file llmk.toml or in a LATEX document source in a form of magic comments.
Further, multiple magic comment formats can be used. Second, it is fully cross-platform. The
only requirement of the program is the texlua command; llmk makes a uniform way to describe
the workflows available for nearly all TEX environments. Third, it behaves exactly the same in any
environment. At this point, llmk intentionally does not provide any method for user configuration.
Therefore, one can guarantee that a LATEX document with an llmk setup, the process of typesetting
the document must be reproduced in any TEX environment with the program.

1.1 Learning llmk

The bundled README.md has a general introduction for the program. If you are new to llmk and
looking for a quick guidance, you are recommended to read it first. Conversely, this document
can be regarded as a reference manual: it contains detailed descriptions for every feature of llmk
as much as possible, but unsuitable for getting general ideas of its basic usage.

All official resources are available from the repository on GitHub:

https://github.com/wtsnjp/llmk

Notably, you can find some example LATEX documents with llmk setups in the examples directory.

1

https://github.com/wtsnjp/llmk/blob/master/README.md
https://github.com/wtsnjp/llmk
https://github.com/wtsnjp/llmk/tree/master/examples


The design concept of llmk is described in a separate TUGboat article [1]. It will not give
you practical tips, but if you are interested in the underlying ideas of the program, it should be
worth reading. The differences from other similar tools, e.g., latexmk [3] and arara [2], are also
discussed in the article.

1.2 Reporting bugs and requesting features

If you get trouble with llmk or think you have found a bug, please report it by creating either an
issue or a pull request on the GitHub repository:

https://github.com/wtsnjp/llmk/issues

If you do not want to use GitHub for some reasons, it is also fine to directly send an email to the
author (tkt.asakura@gmail.com).

The llmk program is currently version 0.x and still growing in any aspect. At this moment,
requests for new features are also welcome; the author cannot promise to implement the requested
features, but will happy to take them into account. Before making a request, it is strongly
recommended to read the article about the design concept [1].

One more thing: as you can see, the author of the program is not a native English speaker. Thus,
there should be plenty of grammatical errors and unnatural sentences in the documentation,
including this manual itself. Correction for such writing issues is particularly welcome.

2 Command-line interface

2.1 Command usage

The full usage of llmk can be summarized as follows:

llmk ⟨options⟩ ⟨files⟩

Herein, ⟨options⟩ are the command-line options, that start with the hyphen character -, and ⟨files⟩
are the arguments for the llmk command.

Arguments ⟨files⟩

You can specify the filenames of the source TEX files, normally the files with .tex or .ltx
extensions, as the arguments for the llmk command. When one or more ⟨files⟩ are specified, llmk
will read either the TOML field (Section 3) or another supported magic comment (Section 4) in
each of the source files and process it with the specified workflow in the given order.

As well as the tex command, you can omit the .tex extensions and just give the basenames
of the files for the argument; when a ⟨basename⟩, which must not contain any dot character, is

2

https://github.com/wtsnjp/llmk/issues
mailto:tkt.asakura@gmail.com


given and the file that exactly matches to the name does not exist, llmk will automatically add the
.tex extension and process it like any other if the file ⟨basename⟩.tex exists.

Note that llmk naively pass the given filenames to invoked commands. Filenames that contains
special characters of TEX, e.g., # and %, are very likely to be causes of troubles. Moreover, at this
point llmk does not any specific features to take care of multi-byte characters: filenames including
multi-byte characters may work in some cases but can be cause of problems1. Using filenames
that contain only the characters in the range of the ASCII code, except special characters of TEX,
is the safest way to go at any rate.

Alternatively, if the argument is not specified, llmk will read the special TOML file llmk.toml in
the working directory and execute the workflow specified in the file (see Section 3). In case the
argument is not specified and the llmk.toml does not exist, it will result in an error. When llmk
executes the workflow specified in the file llmk.toml, all magic comments, including TOML
fields and other formats, in each source LATEX files specified in the source array will be ignored.

Command-line options ⟨options⟩

We have tried to implement a GNU-compatible option parser. Short options, each of which
consists of a single letter, must start with a single hyphen -. Multiple short options can be
specified with a single hyphen, e.g., -vs is equivalent to -v -s. Long options have to be
following double hyphens --. All options must be specified before the first argument. A string
beginning with a hyphen after the first argument will be treated as an argument starting with a
hyphen.

When two or more options are specified, llmk applies them in the given order. If contradicting
options are specified, e.g., -q v.s. -v, the option in the latter position wins over the former one.

The following is the full list of available command-line options:

-c, --clean

Removes temporary files such as aux and log files. The files removed with this action can
be customized with the key clean_files.

-C, --clobber

Removes all generated files including final PDFs. The files removed with this action can be
customized with the key clobber_files.

1 The author admits that llmk needs to be enhanced in this aspect: it should have better features to treat various file-
names with multi-byte characters, though the author is negative to support special characters of TEX. Suggestions
and patches in this direction are especially welcome.

3



-d ⟨category⟩, --debug=⟨category⟩, -D, --debug

Activates the specified debug category; debugging messages related to the activated cat-
egory will be shown. Herein, available debug categories are: config, parser, run, fdb,
programs, and all to activate all of these. You can repeat this option more than once to
activate multiple categories. If you specify -D or --debug without the argument ⟨category⟩,
it activates all available debug categories.

-h, --help

Shows a quick help message (namely a list of command-line options) and exit successfully.
When this is specified, all other options and arguments are ignored.

-q, --quiet

This suppress most of the messages from the program.

-s, --silent

Silence messages from invoked programs. To be more specific, this redirects both standard
output and standard error streams to the null device.

-v, --verbose

Make llmk to print additional information such as invoked commands with options and
arguments by the program.

-V, --version

Shows the current version of the program and exit successfully. When this is specified, all
other options and arguments are ignored.

2.2 Exit codes

You can grasp whether llmk successfully executed or not by seeing its status code. Note that the
exit codes of invoked programs are not directly transferred as the exit code of llmk; instead, the
statuses of external programs that failed, if any, are reported in the error messages.

0 Success.
1 General error.
2 Invoked program failed.
3 Parser error.
4 Type error.

4



3 Writing workflows in TOML format

The primary configuration format for llmk is TOML — Tom’s Obvious Minimal Language [8].
You can specify the workflows to process your LATEX documents in the format either in the
special configuration file (llmk.toml) or in the TOML field (Section 3.2). You have full access
to the llmk configuration with this primary format, while other supported magic comment formats
(Section 4) have only partial access. You can read the entire TOML specification at its website.

3.1 TOML in llmk

The configuration for llmk written in the TOML format is read by our built-in parser. At this
point, the built-in parser supports a subset of the TOML specification; only the data-types that
necessary for the configuration keys (Section 3.3 & 3.4) are supported.

Type Example Supported

Bare keys key ✓
Quoted keys "key"
Dotted keys tex.latex ✓

Basic strings "str" ✓
Multi-line basic strings
Literal strings ’str’ ✓
Multi-line literal strings

Integer 123 ✓

Boolean true ✓

Float 3.14

Date & Time 1979-05-27

Array [1, 2, 3] ✓

Table [table] ✓
Inline table
Array of tables [[fruit]]

3.2 Where to write

You have two options to write the configuration for llmk in TOML format: (1) creating a special
file llmk.toml and (2) writing a TOML field in your LATEX source file. Either way, you have full
access to the llmk configuration and specify the same workflows in (almost) the same manner.

5

https://toml.io/


Special file: llmk.toml

When the llmk command is executed without any argument, the special file llmk.toml is loaded
automatically (Section 2.1). This filename is fixed and cannot be customized at this point. The
entire content of the file must be a valid TOML; you can include supplemental information in
the form of TOML comment that starts with the # character. The file must be encoded in UTF-8
because it is required by the TOML specification [8]. The source key is required in this file.

TOML field

The other way to pass the configuration in TOML format to llmk is using TOML fields — special
comment areas in LATEX source files that are given by comment lines containing only three or
more consecutive + characters. The following is a simple example.

1 % +++
2 % # This is a sample TOML field!
3 % latex = "xelatex"
4 % +++
5 \documentclass{article}

The formal syntax of opening and closing for TOML fields is:

⟨optional spaces⟩%⟨optional spaces⟩+++⟨optional pluses⟩⟨optional spaces⟩

where the definitions of ⟨optional spaces⟩ and ⟨optional pluses⟩ are given as follows (hereafter,
whitespace ␣ denotes tab 0x09 or space 0x20).

⟨optional spaces⟩ −→ ⟨empty⟩ | ␣⟨optional spaces⟩
⟨optional pluses⟩ −→ ⟨empty⟩ | +⟨optional pluses⟩

The line of opening and closing for TOML fields must include only the characters specified in
the above. In a TOML filed, you can write TOML code for llmk configuration in the form of
LATEX comment lines.

⟨optional spaces⟩%⟨optional spaces⟩⟨TOML line⟩⟨optional spaces⟩

If one or more arguments are given for the llmk command, it first looks for a TOML field from
the beginning of each file. Only the topmost field in a file is the valid TOML field, i.e., you
cannot have multiple TOML fields in a file. TOML fields have the highest priority for llmk
configuration; if a TOML field is found in a file, other supported magic comments described in
Section 4 are ignored.

Though the author recommend you to always encode your LATEX source file in UTF-8, you can
use other encodings. In any case, the TOML lines in the fields must be consist of valid UTF-8
encoded strings. Therefore, it is recommended to use only the characters in the range of ASCII
code in your TOML field if you chose the other encodings for some reasons.

6



3.3 Available top-level keys

Now we are going to look over all available TOML keys for llmk configuration. This section
includes the full list of available top-level keys, that are effective for an entire workflow. The
detailed specification for each program in your workflow can be given by the keys in the programs
table, which will be described in the next section. Only the keys shown in these two sections
are effective for llmk; if other key names are specified, they will be ignored. Each key requests a
value of specified type; if a value of which is not the expected type, it will result in a type error.

In the string values for some specific keys, a few format specifiers are available. These specifiers
will be replaced to appropriate strings before executing actions by llmk:

• %S is replaced by the filename given to the llmk as a command-line argument or as an
element of the source array.

• %T is replaced by the target for each program.
• %B is replaced by the basename of %S.

Some keys have default values; the default configuration of llmk should work well for typical and
simple LATEX documents. Only the keys you explicitly specify in the TOML format override the
default configuration. If you do not write a key in your configuration, the default value will be
used. In other words, you only need to write the differences from the default configuration.

bibtex [type: string] (default: "bibtex")

The command to use for the bibtex program. Internally, this key is an alias for the command
key in the bibtex entry. If the command key is specified in the programs table, this alias is
ineffective.

clean_files [type: array of strings] (default: see bellow)

The files to be removed with the cleaning action (--clean). The format specifiers are
available for this key. The default value is:

[
"%B.aux", "%B.bbl", "%B.bcf", "%B-blx.bib", "%B.blg", "%B.fls",
"%B.idx", "%B.ilg", "%B.log", "%B.out", "%B.run.xml", "%B.toc"

]

clobber_files [type: array of strings] (default: see bellow)

The files to be removed with the clobbering action (--clobber). The format specifiers are
available for this key. The default value is:

["%B.dvi", "%B.pdf", "%B.ps", "%B.synctex.gz"]

7



dvipdf [type: string] (default: "dvipdfmx")

The command to use for the dvipdf program. Internally, this key is an alias for the command
key in the dvipdf entry. If the command key is specified in the programs table, this alias is
ineffective.

dvips [type: string] (default: "dvips")

The command to use for the dvips program. Internally, this key is an alias for the command
key in the dvips entry. If the command key is specified in the programs table, this alias is
ineffective.

latex [type: string] (default: "lualatex")

The command to use for the latex program. Internally, this key is an alias for the command
key in the latex entry. If the command key is specified in the programs table, this alias is
ineffective.

llmk_version [type: string]

You can declare the llmk version to use with this key. This is especially useful in consid-
eration of compatibility. In case breaking changes are made in the future updates and an
incompatible version is declared with the key, llmk will fallback to the previous behavior or
at least show you a warning message. The versioning of llmk will try to follow the semantic
versioning [7] and you can specify one of the versions in the following syntax:

⟨major⟩.⟨minor⟩.⟨patch⟩
Optionally, you can ommit the tailing .⟨patch⟩ part.

makeindex [type: string] (default: "makeindex")

The command to use for the makeindex program. Internally, this key is an alias for the
command key in the makeindex entry. If the command key is specified in the programs table,
this alias is ineffective.

max_repeat [type: integer] (default: 5)

You can specify the maximum number of execution repetitions for each command in your
sequence. When processing your sequence, llmk repeats a command until aux_file
becomes unchanged from the former execution if the key is specified and the corresponding
auxiliary file exists. This key is to prevent the potential infinite loop of repetition.

8



programs [type: table] (default: see Section 3.5.1)

The table that contains the detailed configuration for each program. See Section 3.4 for the
details.

ps2pdf [type: string] (default: "ps2pdf")

The command to use for the ps2pdf program. Internally, this key is an alias for the command
key in the ps2pdf entry. If the command key is specified in the programs table, this alias is
ineffective.

sequence [type: array of strings] (default: see Section 3.5.2)

The array that contains the names of programs that will be executed by llmk. The pro-
grams specified in this array are processed in the given order with the setups specified
in the programs table. Further information about the default behavior can be found in
Section 3.5.2.

source [type: string or array of strings]

You can specify a LATEX source file as a string value or one or more files as an array of strings.
This key is only effective and required in llmk.toml. Conversely, ineffective in TOML
fields. The given filenames will be treated as well as those specified as command-line
arguments.

3.4 Available keys in programs table

As it is described, llmk invokes each program whose name specified in the sequence array in the
given order. You can control each program execution by specifying the detailed configuration in
the programs table.

The programs table is a table of tables; each of the entries (a.k.a. elements) is a set of configuration
consists of the keys in the following list. The programs table must have corresponding entries
for all names in the sequence array, otherwise, it will result in an error.

As well as the top-level keys, some available keys in the programs table have default values,
and only the values for the keys you explicitly specified in your configuration override. In string
values for some specific keys, the format specifiers described in Section 3.3 can be used in the
same way.

9



args [type: string or array of strings] (default: ["%T"])

You can specify an argument to give the command as a string value or one or more arguments
as an array of strings. Each argument will be surrounded by a pair of double quotations,
e.g., "arg". The format specifiers are available for this key.

aux_file [type: string]

The auxiliary file to monitor so that to check whether rerunning for the program is necessary
or not. If this key is set and the specified file that is non-empty (see aux_empty_size) exists,
llmk will repeat the program execution until no change is made to the auxiliary file. This key
is originally for the auxiliary file of LATEX, but the monitoring feature should be applicable
to other programs. The format specifiers are available for this key.

aux_empty_size [type: integer]

The empty size in bytes with this key, The auxiliary files specified with the aux_file
which is smaller than the value of this key are recognized as empty and will be ignored.
For instance, the auxiliary files of LATEX, which normally have .aux extensions, contain
\relax␣⟨line break⟩ (9 bytes); thus the default value of this key for the latex program is 9.

command [type: string]

The name of the command to invoke. This is the only required key for each entry in the
programs table.

generated_target [type: boolean]

This flag is to denote whether or not the target is a file that should be generated in the
sequence execution. For instance, DVI files, PS files, and the input files for makeindex,
which have .idx extensions are applicable. Conversely, files that you directly edit are not
generated files. When the value is true, llmk will consider only the target files newer than
the time that the sequence processing starts. In case the target file is older, it will be ignored
and the program will not be called.

opts [type: string or array of strings]

You can specify a command-line option to give the command as a string value or one or
more options as an array of strings. The format specifiers are available for this key.

10



postprocess [type: string]

The name of a program (in the programs table) to be executed as postprocess. The specified
program will be called only when the current main program is executed.

target [type: string] (default: "%S")

The target filename of the program. The existence of the target file is checked by llmk right
before trying to execute each program, and the programs are invoked only when it exists.
This filename is also used for replacing the value for the format specifiers. When this key is
not specified, the input filename that is given as a command-line argument, or the filename
in the value for the source key is used as a target.

3.5 Default programs and sequence

In this section, the default values of the two important data structures for advanced control for
llmk, i.e., the default configuration for the programs table and the sequence array. As it is already
described in Section 3.3, programs is the table to contain detailed configuration for each program
to execute by llmk, and sequence is an array to contain the names of entries in the programs
table in the order of execution for a workflow. The default values of these are designed to work
well for typical LATEX documents. Therefore, you normally do not need to change the values, but
you can override any of the values by writing new values in your TOML configuration.

3.5.1 The default programs

The followings are the default values in the programs table for each entry, i.e., program, expressed
in the TOML format. The default programs table contains useful settings for popular tools in the
ecosystem of LATEX2. Only some of them are used in the default sequence (see Section 3.5.2),
but other entries can be easily used just by overriding the sequence array.

Program bibtex The entry for the BIBTEX program and friends. The latex program is set as
postprocess so that to make sure rerunning LATEX command after this execution.

1 [programs.bibtex]
2 command = "bibtex"
3 target = "%B.bib"
4 args = ["%B"]
5 postprocess = "latex"

2 Reuquests for new settings for other programs will be considered.

11



Program dvipdf The entry for the dvipdf program and friends.
1 [programs.dvipdf]
2 command = "dvipdfmx"
3 target = "%B.dvi"
4 generated_target = true

Program dvips The entry for the dvips program and friends.
1 [programs.dvips]
2 command = "dvips"
3 target = "%B.dvi"
4 generated_target = true

Program latex The entry for the main LATEX programs. The default value for the command is
"lualatex"; since llmk runs on texlua, the installation of LuaTEX is guaranteed. That is why
the command is chosen for the default.

1 [programs.latex]
2 command = "lualatex"
3 opts = ["-interaction=nonstopmode", "-file-line-error", "-synctex=1"]
4 aux_file = "%B.aux"
5 aux_empty_size = 9

Program makeindex The entry for the Makeindex program and friends. The latex program
is set as postprocess so that to make sure rerunning LATEX command after this execution.

1 [programs.makeindex]
2 command = "makeindex"
3 target = "%B.idx"
4 generated_target = true
5 postprocess = "latex"

Program ps2pdf The entry for the ps2pdf program and friends.
1 [programs.ps2pdf]
2 command = "ps2pdf"
3 target = "%B.ps"
4 generated_target = true

12



3.5.2 The default sequence

The following is the default value for the sequence array:

["latex", "bibtex", "makeindex", "dvipdf"]

With these default settings in the programs table the sequence array, the default behavior of
llmk can be summarized as follows.

1. It runs the LATEX command, by default LuaLATEX, against your LATEX source file. This
execution may be repeated when the auxiliary file exists until no change made for the file
to resolve all cross-references and so on.

2. If the corresponding BIBTEX database file, whose name matches to %B.bib, exists, the
BIBTEX program is executed. When the execution occurs, the latex program is executed
again right after because the program is set as postprocess.

3. Identically, if the corresponding input file for Makeindex exists, the program is executed.
When the execution occurs, the latex program is executed again right after because the
program is set as postprocess.

4. In case the corresponding DVI file is generated in the previous steps, though this will not
happen with the default value of latex, i.e., "lualatex", the dvipdf program, by default
dvipdfmx, is executed to produce the final PDF file.

The entries that are not used within the default sequence are to make it easier to use other tools
from the above. For instance, if you wan to use dvips + ps2pdf combination instead of dvipdf,
you can just modify the value of sequence a bit:

1 sequence = ["latex", "bibtex", "makeindex", "dvips", "ps2pdf"]

4 Other supported formats

In addition to the TOML format, llmk also supports a few other magic comment formats that are
supported in some existing tools. These features are for user convenience, but note that the aim
of llmk is not to behave perfectly compatible with other tools.

For llmk, in your LATEX file, configuration in TOML format has the highest priority: when a
TOML field is found, all the other magic comments will be ignored. The precedence of magic
comment formats is as follows. Remember that all of these will be ignored if llmk uses the
configuration in a special file llmk.toml.

1. TOML field (Section 3)
2. TEXShop directives (Section 4.1)
3. Shebang-like directive (Section 4.2)

13



4.1 TEXShop directives

TEXShop [6], a TEX-oriented IDE, understands special directives, which typically start with
%␣!TEX, to specify a workflow for processing LATEX document, e.g., which TEX engine to use.
Similar directives are also supported in a few other tools such as TEXworks [5] and TEXstudio [9].

Among several variation of the directives, llmk supports two of them. One is the directive to
specify a variant of TEX engine. The formal syntax of the directive is:

⟨TS prefix⟩TEX␣⟨optional spaces⟩program⟨equals⟩⟨command⟩⟨optional spaces⟩
⟨TS prefix⟩TEX␣⟨optional spaces⟩TS-program⟨equals⟩⟨command⟩⟨optional spaces⟩

where the definitions of ⟨TS prefix⟩ and ⟨equals⟩ are given as follows.

⟨TS prefix⟩ −→ ⟨optional spaces⟩%⟨optional spaces⟩!⟨optional spaces⟩
⟨equals⟩ −→ ⟨optional spaces⟩=⟨optional spaces⟩

The ⟨command⟩ part will be passed to the latex key of llmk. The other supported TEXShop
directive is that for the BIBTEX program. The syntax is very similar to the first one:

⟨TS prefix⟩BIB␣⟨optional spaces⟩program⟨equals⟩⟨command⟩⟨optional spaces⟩
⟨TS prefix⟩BIB␣⟨optional spaces⟩TS-program⟨equals⟩⟨command⟩⟨optional spaces⟩

The ⟨command⟩ part will be passed to the bibtex key of llmk. For both of the two directives,
only the topmost ones are effective; the others will be ignored. For example, the following two
configuration are equivalent:

1 % !TEX TS-program = xelatex
2 % !BIB TS-program = biber
3 \documentclass{article}

1 % +++
2 % latex = "xelatex"
3 % bibtex = "biber"
4 % +++
5 \documentclass{article}

4.2 Shebang-like directive

A few existing tools, notably the YaTeX mode for Emacs [4], support the so-called shebang-like
directive. This is also supported by llmk. The syntax is:

⟨optional spaces⟩%#!⟨optional spaces⟩⟨command⟩⟨optional spaces⟩

The ⟨command⟩ part will be passed to the latex key of llmk. This directive is only effective
strictly in the first line in your LATEX source file.

14



For example, the following two configuration are equivalent:

1 %#!pdflatex
2 \documentclass{article}

1 % +++
2 % latex = "pdflatex"
3 % +++
4 \documentclass{article}

5 Acknowledgements

This project has been supported by the TEX Development Fund created by the TEX Users Group
(No. 29). I would like to thank all contributors and the people who gave me advice and suggestions
for new features for the llmk project.

6 License

This software is released under the MIT license:

The MIT License (MIT)

Copyright 2018-2020 Takuto ASAKURA (wtsnjp)

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Third-party software

toml.lua Copyright 2017 Jonathan Stoler. Released under the MIT license:

https://github.com/jonstoler/lua-toml/blob/master/LICENSE

15

https://github.com/jonstoler/lua-toml/blob/master/LICENSE


References

[1] Takuto Asakura. The design concept for llmk — Light LATEX Make. TUGboat, Volume 41,
No. 2. (2020)

[2] Paulo Cereda, et al. arara — The cool TEX automation tool. https://ctan.org/pkg/arara

[3] John Collins. latexmk — generate LATEX document. https://ctan.org/pkg/latexmk

[4] Yuuji Hirose. YaTeX — Yet Another TeX mode for Emacs. https://www.yatex.org/

[5] Jonathan Kew, Stefan Löffler, and Charlie Sharpsteen. TEXworks — lowering the entry barrier
to the TEX world. https://tug.org/texworks/

[6] Richard Koch, et al. TEXShop. https://pages.uoregon.edu/koch/texshop/

[7] Tom Preston-Werner. Semantic Versioning 2.0.0. https://semver.org/

[8] Tom Preston-Werner. TOML: Tom’s Obvious Minimal Language. https://toml.io/

[9] Benito van der Zander, et al. TEXstudio — LATEX made comfortable.
https://texstudio.org/

16

https://ctan.org/pkg/arara
https://ctan.org/pkg/latexmk
https://www.yatex.org/
https://tug.org/texworks/
https://pages.uoregon.edu/koch/texshop/
https://semver.org/
https://toml.io/
https://texstudio.org/

	1 Overview
	1.1 Learning llmk
	1.2 Reporting bugs and requesting features

	2 Command-line interface
	2.1 Command usage
	2.2 Exit codes

	3 Writing workflows in TOML format
	3.1 TOML in llmk
	3.2 Where to write
	3.3 Available top-level keys
	3.4 Available keys in _=`_codeprograms table
	3.5 Default _=`_codeprograms and _=`_codesequence
	3.5.1 The default _=`_codeprograms
	3.5.2 The default _=`_codesequence


	4 Other supported formats
	4.1 TeXShop directives
	4.2 Shebang-like directive

	5 Acknowledgements
	6 License

