latexindent.pl| .-

i,
TR

. -
RN

Version
3.22.2

Chris Hughes *

2023-07-14

latexindent.pl is a Perl script that indents . tex (and other) files according to an indentation
scheme that the user can modify to suit their taste. Environments, including those with align-
ment delimiters (such as tabular), and commands, including those that can split braces and
brackets across lines, are usually handled correctly by the script. Options for verbatim-like envi-
ronments and commands, together with indentation after headings (such as chapter, section,
etc) are also available. The script also has the ability to modify line breaks, and to add comment
symbols and blank lines; furthermore, it permits string or regex-based substitutions. All user
options are customisable via the switches and the YAML interface.

tl;dr, a quick start guide is given in Section 1.3 on page 5.

Contents

1 Introduction
1.1 Thanks. e e e e e e e
1.2 LICENSE . . v o i it e
1.3 QUICK Start vttt e e e e e e e e e e e
1.4 Required perlmodules e
1.5 About thisdocumentation
1.6 A word about regular eXpressions i i

2 Demonstration: before and after

3 How to use the script
3.1 ReqUIremMents oot i ittt et e e e e e e e e e e
3. 1.1 Perlusers e
3.1.2 Windows users withoutperl
3.1.3 Ubuntu Linux users withoutperl
3.1.4 macOS users withoutperl
315 condaUSers e e e

*and contributors! See Section 11.5 on page 151. For all communication, please visit [35].

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

(2RO Ny |

CONTENTS 2
3.1.6 dOCKEr USErS o it it e 14

3.2 Fromthecommandline 15
3.3 Fromarara e e 21
3.4 Summaryofexitcodes e 21
indentconfig.yaml, local settings and the -y switch 23
4.1 indentconfig.yaml and .indentconfig.yaml 23
4.2 localSettings.yaml and friends 24
4.3 The-y|lyamlswitch e 25
4.4 Settingsload order 25
defaultSettings.yaml 27
5.1 Backup and log file preferences 27
5.2 Verbatimcodeblocks 29
5.3 filecontents and preamble e 32
5.4 Indentation and horizontal space 33
5.5 Aligning atdelimiters. e 33
5.5.1 lookForAlignDelims: spacesBeforeAmpersand 38
5.5.2 lookForAlignDelims: alignFinalDoubleBackSlash 40
5.5.3 lookForAlignDelims: the dontMeasure feature 41
5.5.4 lookForAlignDelims: the delimiterRegEx and delimiterJustification feature . . 43
5.5.5 lookForAlignDelims: lookForChildCodeBlocks 45
5.5.6 lookForAlignDelims: alignContentAfterDoubleBackSlash 45

5.6 Indent after items, specials and headings 46
5.7 The code blocks known latexindent.pl 53
5.8 noAdditionallndent and indentRules 53
5.8.1 Environments and theirarguments 55
5.8.2 Environments withitems 62
5.8.3 Commands with argumentst uunennn... 63
5.8.4 ifelseficodeblocks 65
5.8.5 specialBeginEnd codeblocks. 66
5.8.6 afterHeading codeblocks. 67
5.8.7 Theremainingcodeblocks, 69
5.8.7.1 keyEqualsValuesBracesBrackets 69

5.8.7.2 namedGroupingBracesBrackets 70

5.8.7.3 UnNamedGroupingBracesBrackets 70

5.8.7.4 filecontents 71

5.8.8 Summary 71

5.9 Commands and the strings between their arguments 71
6 The -m (modifylinebreaks) switch 77
6.1 Text WIapping v o v o i et e e et e e e e e e e e e e e e e 79
6.1.1 TeXt Wrap: OVEIVIEW v vt i ittt e et e e et et e e 79
6.1.2 Text wrap: simpleexamples 80
6.1.3 Text wrap: blocksFollowexamples. 81
6.1.4 Text wrap: blocksBeginWith examples 85
6.1.5 Text wrap: blocksEndBefore examples 87
6.1.6 Text wrap: trailing commentsandspaces 88
6.1.7 Text wrap: when before/after 89
6.1.8 Text wrap: Wrapping COMmMEentS ¢ o o v v v v v v e et e e e e e e e e e e e 91
6.1.9 Text wrap: huge, tabstop and separator 92

6.2 oneSentencePerLine: modifying line breaks for sentences 93
6.2.1 oneSentencePerLine: overview 94
6.2.2 oneSentencePerLine: sentencesFollow 96
6.2.3 oneSentencePerLine: sentencesBeginWith 97
6.2.4 oneSentencePerLine: sentencesEndWith, 98
6.2.5 Features of the oneSentencePerLine routine 99
6.2.6 oneSentencePerLine: text wrapping and indenting sentences. 101

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

CONTENTS

6.2.7 oneSentencePerLine: text wrapping and indenting sentences, when before/after104
6.2.8 oneSentencePerLine: text wrapping sentences and comments 105
6.3 Poly-switches e e 105
6.3.1 Poly-switches for environments 106

6.3.1.1 Adding line breaks: BeginStartsOnOwnLine and BodyStartsOnOwn-
Lineo e 106

6.3.1.2 Adding line breaks: EndStartsOnOwnLine and EndFinishesWithLine-
Break e 108
6.3.1.3 poly-switches 1, 2, and 3 only add line breaks when necessary 110
6.3.1.4 Removing line breaks (poly-switches setto—1) 111
6.3.1.5 About trailing horizontal space 113
6.3.1.6 poly-switch line break removal and blank lines 113
6.3.2 Poly-switches for double backslash 115
6.3.2.1 Double backslash startsonownline 115
6.3.2.2 Double backslash finishes with line break 116
6.3.2.3 Double backslash poly-switches for specialBeginEnd 117
6.3.2.4 Double backslash poly-switches for optional and mandatory arguments117
6.3.2.5 Double backslash optional square brackets 118
6.3.3 Poly-switches for other code blocks. 119
6.3.4 Partnering BodyStartsOnOwnLine with argument-based poly-switches 121
6.3.5 Conflicting poly-switches: sequential code blocks 122
6.3.6 Conflicting poly-switches: nested code blocks 123
7 The -1, -rv and -rr switches 126
7.1 Introduction to replace€ments v vttt e e e e e e e e 126
7.2 The two typesof replacements i 127
7.3 Examplesof replacements e 127
8 The -lines switch 135
9 Fine tuning 141
10 Conclusions and known limitations 149
11 References 150
11.1 perl-related links e 150
11.2 conda-related links 150
11.3 VScode-related links e 150
11.4 Other links e 150
11.5 Contributors (in chronological order) 151
A Required Perl modules 153
A1l Moduleinstaller script e e e 153
A.2 Manually installing modules 154
A21 LiNUX . ..o e e e 154
A2.1.1 perlbrew e 154
A.2.1.2 Ubuntu/Debiant 154
A.2.1.3 Ubuntu: using the texlive from apt-get 154
A.2.1.4 Ubuntu: users withoutperl. 154
A.2.1.5 Arch-based distributions oL 154
A2.1.6 AlpIne. i e 155
A22 MaC . . .o e 155
A2.3 WINAOWS . . . oot e e e 155
A3 The GCString switch e 156
B Updating the path variable 157
B.1l AddtopathforLinux.ttt 157
B.2 Addtopathfor Windows 157

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

CONTENTS 4
C Batches of files 159
C.1 locationofindent.dog ittt e e 159
C.2 interactionwith-wswitch 159
C.3 interactionwith-oswitch 159
C.4 interaction with lines switch 159
C.5 interaction with check switches 160
C.6 whenafile doesSnoOt eXiSt v vt i it ittt e et e e 160

D latexindent-yaml-schema.json 161
D.1 VSCode demonstration v v v v vt et et e et e e e e e e e e e 161

E Using conda 162
E.1 Sample conda installationon Ubuntu 162

F Using docker 163
E1 Sample docker installation on Ubuntu 163

E2 HowtoformatonDocker 163

G pre-commit 164
G.1 Sample pre-commit installation on Ubuntu 164
G.2 pre-commitdefaults e 164
G.3 pre-commit using CPAN 165
G.4 pre-commitusingconda 165
G.5 pre-commit using docker 166
G.6 pre-commit example using -1, -m switches 166

H indentconfig options 168
H.1 Why to change the configuration location 168
H.2 How to change the configuration location 169
H.2.1 LINUX . . oo e e e e e e e e 169

H.2.2 WINdows oo e e e e 169

H.2.3 MacC . . . oot e e e e e e 169

I logFilePreferences 170
J Encoding indentconfig.yaml 171
K dos2unix linebreak adjustment 172
L Differences from Version 2.2 to 3.0 173
List of listings 175
Index 182

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

1.1

1.2

1.3

SECTION 1

Introduction

Thanks

I first created latexindent.pl to help me format chapter files in a big project. After I blogged about
it on the TgX stack exchange [28] I received some positive feedback and follow-up feature requests.
A big thank you to Harish Kumar [2] who helped to develop and test the initial versions of the script.

The YAML-based interface of latexindent.pl was inspired by the wonderful arara tool; any simi-
larities are deliberate, and I hope that it is perceived as the compliment that it is. Thank you to Paulo
Cereda and the team for releasing this awesome tool; I initially worried that I was going to have to
make a GUI for latexindent.pl, but the release of arara has meant there is no need.

There have been several contributors to the project so far (and hopefully more in the future!); thank
you very much to the people detailed in Section 11.5 on page 151 for their valued contributions, and
thank you to those who report bugs and request features at [35].

License

latexindent.pl is free and open source, and it always will be; it is released under the GNU General
Public License v3.0.

Before you start using it on any important files, bear in mind that 1atexindent.pl has the option
to overwrite your .tex files. It will always make at least one backup (you can choose how many
it makes, see page 28) but you should still be careful when using it. The script has been tested on
many files, but there are some known limitations (see Section 10). You, the user, are responsible for
ensuring that you maintain backups of your files before running latexindent.pl on them. I think
it is important at this stage to restate an important part of the license here:

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

There is certainly no malicious intent in releasing this script, and I do hope that it works as you expect
it to; if it does not, please first of all make sure that you have the correct settings, and then feel free
to let me know at [35] with a complete minimum working example as I would like to improve the
code as much as possible.

Warning!

Before you try the script on anything important (like your thesis), test it out on the
sample files in the test-case directory [35].

If you have used any version 2.* of latezindent.pl, there are a few changes to the interface; see
appendix L on page 173 and the comments throughout this document for details.

Quick start
If you'd like to get started with latexindent.pl then simply type

latexindent.pl myfile.tex

from the command line.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

1.3 Quick start

example 1

We give an introduction to latexindent.pl using Listing 1; there is no explanation in this section,
which is deliberate for a quick start. The rest of the manual is more verbose.

LISTING 1: quick-start.tex

\documentclass{article}
\usepackage [
inner=2.5cm,
I1{geometry}
\begin{document}
A quick start
demonstration for latexindent.pl.
\begin{myenv}
The body of environments and
other code blocks
receive indentation.
\end{myenv}
\end{document}

Running

latexindent.pl quick-start.tex

gives Listing 2.

LISTING 2: quick-start-default.tex

\documentclass{article}
\usepackage [
inner=2.5cm,
1{geometry}
\begin{document}
A quick start
demonstration for latexindent.pl.
\begin{myenv}
The body of environments and
other code blocks
receive indentation.
\end{myenv}
\end{document}

Running

latexindent.pl -1 quick-startl.yaml quick-start.tex

gives Listing 3.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

1.3 Quick start

LISTING 3: quick-start-modl.tex LISTING 4: quick-startl.yaml

\documentclass{article} defaultIndent: " "
\usepackage [

inner=2.5cm,

I1{geometry}

\begin{document}

A quick start

demonstration for,latexindent.pl.
\begin{myenv}

uThe jbody of environments and
pother ,code blocks

_receive indentation.

\end{myenv}

\end{document}

See Section 5.4.

example 2 Running

latexindent.pl -1 quick-start2.yaml quick-start.tex

gives Listing 5.

LISTING 5: quick-start-mod2.tex LISTING 6: quick-start2.yaml

\documentclass{article} ArdemaiEilem:
\usepackage [myenv: " "
inner=2.5cm,

J{geometry}

\begin{document}

A quick start

demonstration for latexindent.pl.

\begin{myenv}

uuuThe bodyof ienvironments, and

Luuother ,code blocks

uuureceiveindentation.

\end{myenv}

\end{document}

See Section 5.8.

example 3 Running

latexindent.pl -1 quick-start3.yaml quick-start.tex

gives Listing 7.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

1.3 Quick start

LISTING 7: quick-start-mod3.tex LISTING 8: quick-start3.yaml
\documentclass{article} noAdditionalIndent:
\usepackage [myenv: 1
inner=2.5cm,
1{geometry}
\begin{document}

A quick start

demonstration for latexindent.pl.
\begin{myenv}

The body of environments and
other code blocks

receive indentation.

\end{myenv}

\end{document}

See Section 5.8.

example 4 Running

latexindent.pl -m -1 quick-start4.yaml quick-start.tex

gives Listing 9.

LISTING 9: quick-start-mod4.tex LISTING 10: quick-start4.yaml
\documentclass{article} modifyLineBreaks:
\usepackage[textWrapOptions:
inner=2.5cm, columns: 20
J{geometry}
\begin{document}

A quick start
demonstration for latexindent.pl.
\begin{myenv}
The body of environments and
other code blocks
receive indentation.
\end{myenv}
\end{document}

Full details of text wrapping in Section 6.1.

example 5 Running

latexindent.pl -m -1 quick-startb.yaml quick-start.tex

gives Listing 11.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

1.3 Quick start

example 6

example 7

LISTING 11: quick-start-mod5.tex LISTING 12: quick-start5.yaml
\documentclass{article} modifyLineBreaks:
\usepackage [textWrapOptions:
inner=2.5cm, columns: 20
1{geometry} blocksFollow:
\begin{document} other: ’\\begin\{myenv\}’

A quick start
demonstration for latexindent.pl.
\begin{myenv}
The body of
environments and
other code blocks
receive
indentation.
\end{myenv}
\end{document}

Full details of text wrapping in Section 6.1.

Running

latexindent.pl -m -1 quick-start6.yaml quick-start.tex

gives Listing 13.

LISTING 13: quick-start-mod6.tex LISTING 14: quick-start6.yaml
-m
\documentclass{article} modifyLineBreaks:
\usepackage[environments:
inner=2.5cm, BeginStartsOnOwnLine: -1

J{geometry}\begin{document}

A quick start

demonstration for

latexindent.pl.\begin{myenv}

The body of environments and
other code blocks
receive indentation.

\end{myenv}

\end{document}

This is an example of a poly-switch; full details of poly-switches are covered in Section 6.3.

Running

latexindent.pl -m -1 quick-start7.yaml quick-start.tex

gives Listing 15.

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

1.3 Quick start

10

example 8

example 9

LISTING 15: quick-start-mod7.tex LISTING 16: quick-start7.yaml
\documentclass{article} modifyLineBreaks:
\usepackage[environments:
inner=2.5cm, EndStartsOnOwnLine: -1
I1{geometry}
\begin{document}

A quick start
demonstration for latexindent.pl.
\begin{myenv}
The body of environments and
other code blocks
receive
indentation.\end{myenv}\end{document}

Full details of poly-switches are covered in Section 6.3.

Running

latexindent.pl -1 quick-start8.yaml quick-start.tex

gives Listing 17; note that the preamble has been indented.

LISTING 17: quick-start-mod8.tex LISTING 18: quick-start8.yaml

\documentclass{article} indentPreamble: 1
\usepackage [
inner=2.5cm,
J{geometry}
\begin{document}
A quick start
demonstration for latexindent.pl.
\begin{myenv}
The body of environments and
other code blocks
receive indentation.
\end{myenv}
\end{document}

See Section 5.3.

Running

latexindent.pl -1 quick-start9.yaml quick-start.tex

gives Listing 19.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

1.4 Required perl modules 11

1.4

1.5

LISTING 19: quick-start-mod9.tex LISTING 20: quick-start9.yaml
\documentclass{article} noAdditionalIndent:
\usepackage [document: 0
inner=2.5cm,
1{geometry}
\begin{document}

A quick start
demonstration for latexindent.pl.
\begin{myenv}
The body of environments and
other code blocks
receive indentation.
\end{myenv}
\end{document}

See Section 5.8. -

Required perl modules

If you receive an error message such as that given in Listing 21, then you need to install the missing
perl modules.

LISTING 21: Possible error messages

Can’t_locate File/HomeDir.pm in @INC_(@INC contains:,
/Library/Perl/5.12/darwin-thread-multi-2level,,/Library/Perl/5.12,
/Network/Library/Perl/5.12/darwin-thread-multi-2levely,
/Network/Library/Perl/5.12,
/Library/Perl/Updates/5.12.4/darwin-thread-multi-2level,
/Library/Perl/Updates/5.12.4,
/System/Library/Perl/5.12/darwin-thread-multi-2level,/System/Library/Perl/5.12
/System/Library/Perl/Extras/5.12/darwin-thread-multi-2level,,
/System/Library/Perl/Extras/5.12,.)at helloworld.pl line ,10.

BEGIN_failed--compilation aborted at helloworld.pl line 10.

latexindent.pl ships with a script to help with this process; if you run the following script, you
should be prompted to install the appropriate modules.

perl latexindent-module-installer.pl

You might also like to see https:/ /stackoverflow.com/questions/19590042/error-cant-locate-file-homedir-
pm-in-inc, for example, as well as appendix A on page 153.

About this documentation

As you read through this documentation, you will see many listings; in this version of the documen-
tation, there are a total of 606. This may seem a lot, but I deem it necessary in presenting the various
different options of latexindent.pl and the associated output that they are capable of producing.

The different listings are presented using different styles:

LISTING 22: demo-tex.tex

demonstration .tex file

This type of listing is a . tex file.

47 fileExtensionPreference:

48
49
50
51

LISTING 23:

fileExtensionPreference

This type of listing is a .yaml file; when

.tex:
.sty:
.cls:
.bib:

1

2
3
4

you see line numbers given (as here) it
means that the snippet is taken directly from
defaultSettings.yaml, discussed in detail in
Section 5 on page 27.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

https://stackoverflow.com/questions/19590042/error-cant-locate-file-homedir-pm-in-inc
https://stackoverflow.com/questions/19590042/error-cant-locate-file-homedir-pm-in-inc

1.6 A word about regular expressions 12

LISTING 24: modifyLineBreaks

-m This type of listing is a . yaml file, but it will only

500 modifyLineBreaks: be relevant when the -m switch is active; see Sec-
S01 preserveBlankLines: 1 #0/1 tion 6 on page 77 for more details.
502 condenseMultipleBlankLinesInto: 1 # 0/1

618 replacements:

619 -
620
621 =
622
623
624
625

N: 2017-06-25

amalgamate: 1

this: latexindent.pl

LISTING 25: replacements
-r

This type of listing is a . yam1 file, but it will only
be relevant when the -r switch is active; see Sec-
tion 7 on page 126 for more details.

that: pl.latexindent

lookForThis:

0

when: before

1.6

You will occasionally see dates shown in the margin (for example, next to this paragraph!) which
detail the date of the version in which the feature was implemented; the ‘N’ stands for ‘new as of the
date shown’ and ‘U’ stands for ‘updated as of the date shown’. If you see »*, it means that the feature
is either new (N) or updated (U) as of the release of the current version; if you see »* attached to
a listing, then it means that listing is new (N) or updated (U) as of the current version. If you have
not read this document before (and even if you have!), then you can ignore every occurrence of the

; they are simply there to highlight new and updated features. The new and updated features in
this documentation (V3.22.2) are on the following pages:

fine tuning trailing comments demonstration (N) -« «««---oovreeerrae .. 148

A word about regular expressions

As you read this documentation, you may encounter the term regular expressions. I've tried to write
this documentation in such a way so as to allow you to engage with them or not, as you prefer. This
documentation is not designed to be a guide to regular expressions, and if you’d like to read about
them, I recommend [34].

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

SECTION 2

Demonstration: before and after

Let’s give a demonstration of some before and after code — after all, you probably won’t want to try
the script if you don’t much like the results. You might also like to watch the video demonstration I

made on youtube [48]

As you look at Listings 26 to 31, remember that latexindent.pl is just following its rules, and
there is nothing particular about these code snippets. All of the rules can be modified so that you

can personalise your indentation scheme.

In each of the samples given in Listings 26 to 31 the ‘before’ case is a ‘worst case scenario’ with no
effort to make indentation. The ‘after’ result would be the same, regardless of the leading white
space at the beginning of each line which is stripped by latexindent.pl (unless a verbatim-like
environment or noIndentBlock is specified — more on this in Section 5).

LISTING 26: filecontentsl.tex

\begin{filecontents}{mybib.bib}
@online{strawberryperl,
title="Strawberry Perl",
url="http://strawberryperl.com/"}
@online{cmhblog,

title="A Perl script ...

url="...

}

\end{filecontents}

LISTING 28: tikzset.tex

\tikzset{

shrink inner sep/.code={
\pgfkeysgetvalue. ..
\pgfkeysgetvalue. ..

}

}

LISTING 30: pstricks.tex

\def\Picture#1{%
\def\stripH{#1}/
\begin{pspicture}[showgrid}
\psforeach{\row}{/
{{3,2.8,2.7,3,3.1}},%
{2.8,1,1.2,2,3},%

H%

\expandafter...

}
\end{pspicture}}

LISTING 27: filecontentsl.tex default output

\begin{filecontents}{mybib.bib}
@online{strawberryperl,
title="Strawberry Perl",
url="http://strawberryperl.com/"}
Qonline{cmhblog,
title="A Perl script ...
url="...
}
\end{filecontents}

LISTING 29: tikzset.tex default output

\tikzset{
shrink inner sep/.code={
\pgfkeysgetvalue. ..
\pgfkeysgetvalue. ..
}
}

LISTING 31: pstricks.tex default output

\def\Picture#1{%
\def\stripH{#1}/,
\begin{pspicture} [showgrid}

\psforeach{\row}{/
{{3,2.8,2.7,3,3.1}},%
{2.8,1,1.2,2,3},%

H%
\expandafter...
}
\end{pspicturel}}

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

N: 2018-01-13

N: 2022-10-30

N: 2022-10-30

3.1
3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

SECTION 3

How to use the script

latexindent.pl ships as part of the TgXLive distribution for Linux and Mac users; latexindent . exe
ships as part of the TiXLive for Windows users. These files are also available from github [35] should
you wish to use them without a TgX distribution; in this case, you may like to read appendix B on
page 157 which details how the path variable can be updated.

In what follows, we will always refer to latexindent.pl, but depending on your operating system
and preference, you might substitute latexindent.exe or simply latexindent.

There are two ways to use latexindent.pl: from the command line, and using arara; we discuss
these in Section 3.2 and Section 3.3 respectively. We will discuss how to change the settings and
behaviour of the script in Section 5 on page 27.

Requirements
Per] users

Perl users will need a few standard Perl modules — see appendix A on page 153 for details; in partic-
ular, note that a module installer helper script is shipped with latexindent.pl.

Windows users without perl

latexindent.pl ships with latexindent.exe for Windows users, so that you can use the script
with or without a Perl distribution.

latexindent.exe is available from [35].
MiKTeX users on Windows may like to see [38] for details of how to use latexindent .exe without

a Perl installation.

Ubuntu Linux users without perl

latexindent.pl ships with latexindent-1linux for Ubuntu Linux users, so that you can use the
script with or without a Perl distribution.

latexindent-1linux is available from [35].

macOS users without perl

latexindent.pl ships with latexindent-macos for macOS users, so that you can use the script
with or without a Perl distribution.

latexindent-macO0S is available from [35].

conda users

Users of conda should see the details given in appendix E.

docker users

Users of docker should see the details given in appendix F.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

N:

N:

N:

3.2 From the command line 15

2017-06-25

2022-01-08

2022-03-25

3.2 From the command line

latexindent.pl has a number of different switches/flags/options, which can be combined in any
way that you like, either in short or long form as detailed below. latexindent.pl produces a .log
file, indent.log, every time it is run; the name of the log file can be customised, but we will refer
to the log file as indent.log throughout this document. There is a base of information that is
written to indent . log, but other additional information will be written depending on which of the
following options are used.

-v, -version

latexindent.pl -v

latexindent.pl --version

This will output only the version number to the terminal.

-vv, -vversion

latexindent.pl -vv
latexindent.pl --vversion

This will output verbose version details to the terminal, including the location of latexindent.pl
and defaultSettings.yaml.

-h, -help

latexindent.pl -h
latexindent.pl --help

As above this will output a welcome message to the terminal, including the version number and
available options.

latexindent.pl myfile.tex

This will operate on myfile.tex, but will simply output to your terminal; myfile.tex will not be
changed by latexindent.pl in any way using this command.

You can instruct latexindent.pl to operate on multiple (batches) of files, for example

latexindent.pl myfilel.tex myfile2.tex

Full details are given in appendix C on page 159.

-w, —-overwrite

latexindent.pl -w myfile.tex

latexindent.pl --overwrite myfile.tex
latexindent.pl myfile.tex --overwrite

This will overwrite myfile.tex, but it will make a copy of myfile.tex first. You can control the
name of the extension (default is .bak), and how many different backups are made — more on this
in Section 5, and in particular see backupExtension and onlyOneBackUp.

Note that if latexindent.pl can not create the backup, then it will exit without touching your
original file; an error message will be given asking you to check the permissions of the backup file.

-wd, -overwriteIfDifferent

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

3.2 From the command line 16

latexindent.pl -wd myfile.tex

latexindent.pl --overwritelfDifferent myfile.tex
latexindent.pl myfile.tex --overwriteIfDifferent

This will overwrite myfile.tex but only if the indented text is different from the original. If the
indented text is not different from the original, then myfile. tex will not be overwritten.

All other details from the -w switch are relevant here. If you call latexindent.pl with both the
-wd and the -w switch, then the -w switch will be deactivated and the -wd switch takes priority.

-o=output.tex,-outputfile=output.tex

latexindent.pl -o=output.tex myfile.tex
latexindent.pl myfile.tex -o=output.tex

latexindent.pl --outputfile=output.tex myfile.tex
latexindent.pl --outputfile output.tex myfile.tex

This will indent myfile. tex and output it to output . tex, overwriting it (output . tex) if it already
foral
exists".

Note that if latexindent.pl is called with both the -w and -o switches, then -w will be ignored
and -o will take priority (this seems safer than the other way round). The same is true for the -wd
switch, and the -o switch takes priority over it.

Note that using -o as above is equivalent to using

latexindent.pl myfile.tex > output.tex

You can call the -o switch with the name of the output file without an extension; in this case,
latexindent.pl will use the extension from the original file. For example, the following two calls
to latexindent.pl are equivalent:

latexindent.pl myfile.tex -o=output

latexindent.pl myfile.tex -o=output.tex

You can call the -o switch using a + symbol at the beginning; this will concatenate the name of the in-
put file and the text given to the —o switch. For example, the following two calls to latexindent.pl
are equivalent:

latexindent.pl myfile.tex -o=+new

latexindent.pl myfile.tex -o=myfilenew.tex

You can call the -o switch using a ++ symbol at the end of the name of your output file; this tells
latexindent.pl to search successively for the name of your output file concatenated with 0, 1,...
while the name of the output file exists. For example,

latexindent.pl myfile.tex -o=output++

tells latexindent.pl to output to outputO.tex, but if it exists then output to outputl.tex, and
SO on.

Calling latexindent.pl with simply

latexindent.pl myfile.tex -o=++

1Users of version 2.* should note the subtle change in syntax

3.2 From the command line 17

tells it to output to myfileO. tex, but if it exists then output to myfilel.tex and so on.

The + and ++ feature of the -o switch can be combined; for example, calling

latexindent.pl myfile.tex -o=+out++

tells latexindent.pl to output to myfileoutO.tex, but if it exists, then trymyfileoutl. tex, and
so on.

There is no need to specify a file extension when using the ++ feature, but if you wish to, then you
should include it after the ++ symbols, for example

latexindent.pl myfile.tex -o=+out++.tex

See appendix L on page 173 for details of how the interface has changed from Version 2.2 to Version
3.0 for this flag.

-s, -silent

latexindent.pl -s myfile.tex

latexindent.pl myfile.tex -s

Silent mode: no output will be given to the terminal.

-t, -trace

latexindent.pl -t myfile.tex

latexindent.pl myfile.tex -t

Tracing mode: verbose output will be given to indent.log. This is useful if latexindent.pl has
made a mistake and you're trying to find out where and why. You might also be interested in learning
about latexindent.pl’s thought process - if so, this switch is for you, although it should be noted
that, especially for large files, this does affect performance of the script.

-tt, —-ttrace

latexindent.pl -tt myfile.tex

latexindent.pl myfile.tex -tt

More detailed tracing mode: this option gives more details to indent . log than the standard trace
option (note that, even more so than with -t, especially for large files, performance of the script will
be affected).

-1, -local[=myyaml.yaml,other.yaml,...]

latexindent. -1 myfile.tex

latexindent. -l=myyaml.yaml myfile.tex

latexindent. -1 myyaml.yaml myfile.tex

latexindent. -1 first.yaml,second.yaml,third.yaml myfile.tex
latexindent. -l=first.yaml,second.yaml,third.yaml myfile.tex

latexindent. myfile.tex -1=first.yaml,second.yaml,third.yaml

latexindent.pl will always load defaultSettings.yaml (rhymes with camel) and if it is called
with the -1 switch and it finds localSettings.yaml in the same directory as myfile.tex, then, if
not found, it looks for localSettings.yaml (and friends, see Section 4.2 on page 24) in the current

J: 2021-03-14 working directory, then these settings will be added to the indentation scheme. Information will be

given in indent.log on the success or failure of loading localSettings.yaml.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

3.2 From the command line 18

The -1 flag can take an optional parameter which details the name (or names separated by com-
mas) of a YAML file(s) that resides in the same directory as myfile.tex; you can use this op-
tion if you would like to load a settings file in the current working directory that is not called
localSettings.yaml. In fact, you can specify both relative and absolute paths for your YAML files;
for example

latexindent.pl -1=../../myyaml.yaml myfile.tex

latexindent.pl -1=/home/cmhughes/Desktop/myyaml.yaml myfile.tex
latexindent.pl -1=C:\Users\cmhughes\Desktop\myyaml.yaml myfile.tex

You will find a lot of other explicit demonstrations of how to use the -1 switch throughout this
documentation,

You can call the -1 switch with a ‘4’ symbol either before or after another YAML file; for example:

latexindent.pl -l=+myyaml.yaml myfile.tex
latexindent.pl -1 "+ myyaml.yaml" myfile.tex
latexindent.pl -l=myyaml.yaml+ myfile.tex

which translate, respectively, to

latexindent.pl -l=localSettings.yaml,myyaml.yaml myfile.tex
latexindent.pl -l=localSettings.yaml,myyaml.yaml myfile.tex
latexindent.pl -l=myyaml.yaml,localSettings.yaml myfile.tex

Note that the following is not allowed:

latexindent.pl -l+myyaml.yaml myfile.tex

and

latexindent.pl -1 + myyaml.yaml myfile.tex

will only load localSettings.yaml, and myyaml.yaml will be ignored. If you wish to use spaces
between any of the YAML settings, then you must wrap the entire list of YAML files in quotes, as
demonstrated above.

You may also choose to omit the yaml extension, such as

latexindent.pl -l=localSettings,myyaml myfile.tex

-y, —yaml=yaml settings

latexindent.pl myfile.tex -y="defaultIndent: ’’"
latexindent.pl myfile.tex -y="defaultIndent:_’’ ,maximumIndentation:’’"
latexindent.pl myfile.tex -y="indentRules: one: ’\t\t\t\t’"

latexindent.pl myfile.tex
-y="modifylLineBreaks:environments:EndStartsOnOwnLine:3’ -m

latexindent.pl myfile.tex
-y="modifyLineBreaks:environments:one:EndStartsOnOwnLine:3’ -m

You can specify YAML settings from the command line using the -y or ~yaml switch; sample demon-
strations are given above. Note, in particular, that multiple settings can be specified by separating
them via commas. There is a further option to use a ; to separate fields, which is demonstrated in
Section 4.3 on page 25.

3.2 From the command line 19

U: 2017-08-21

N: 2018-01-13

Any settings specified via this switch will be loaded after any specified using the -1 switch. This is
discussed further in Section 4.4 on page 25.

-d, -onlydefault

latexindent.pl -d myfile.tex

Only defaultSettings.yaml: you might like to read Section 5 before using this switch. By de-
fault, latexindent.pl will always search for indentconfig.yaml or .indentconfig.yaml in
your home directory. If you would prefer it not to do so then (instead of deleting or renaming
indentconfig.yaml or .indentconfig.yaml) you can simply call the script with the -d switch;
note that this will also tell the script to ignore localSettings.yaml even if it has been called with
the -1 switch; latexindent.pl will also ignore any settings specified from the -y switch.

-c, —cruft=<directory>

latexindent.pl -c=/path/to/directory/ myfile.tex

If you wish to have backup files and indent . 1og written to a directory other than the current working
directory, then you can send these ‘cruft’ files to another directory. Note the use of a trailing forward
slash.

If the cruft directory does not exist, latexindent .pl will attempt to create it.
-g, —logfile=<name of log file>

latexindent.pl -g=other.log myfile.tex
latexindent.pl -g other.log myfile.tex

latexindent.pl --logfile other.log myfile.tex
latexindent.pl myfile.tex -g other.log

By default, latexindent . pl reports information to indent . 1og, but if you wish to change the name
of this file, simply call the script with your chosen name after the -g switch as demonstrated above.

If latexindent.pl can not open the log file that you specify, then the script will operate, and no log
file will be produced; this might be helpful to users who wish to specify the following, for example

latexindent.pl -g /dev/null myfile.tex

-sl, -screenlog

latexindent.pl -sl myfile.tex

latexindent.pl -screenlog myfile.tex

Using this option tells 1atexindent . pl to output the log file to the screen, as well as to your chosen
log file.

-m, -modifylinebreaks

latexindent.pl -m myfile.tex

latexindent.pl -modifylinebreaks myfile.tex

One of the most exciting developments in Version 3.0 is the ability to modify line breaks; for full
details see Section 6 on page 77

latexindent.pl can also be called on a file without the file extension, for example

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

3.2 From the command line 20

N: 2018-01-13

U: 2018-01-13

N: 2019-07-13

N: 2019-07-13

N: 2019-0

N

-13

latexindent.pl myfile

and in which case, you can specify the order in which extensions are searched for; see Listing 36 on
page 27 for full details.

STDIN

cat myfile.tex | latexindent.pl

cat myfile.tex | latexindent.pl -

latexindent.pl will allow input from STDIN, which means that you can pipe output from other
commands directly into the script. For example assuming that you have content in myfile.tex,
then the above command will output the results of operating upon myfile.tex.

If you wish to use this feature with your own local settings, via the -1 switch, then you should finish
your call to latexindent.pl with a - sign:

cat myfile.tex | latexindent.pl -l=mysettings.yaml -

Similarly, if you simply type latexindent.pl at the command line, then it will expect (STDIN) input
from the command line.

latexindent.pl

Once you have finished typing your input, you can press
e CTRL+D on Linux
* CTRL+Z followed by ENTER on Windows
to signify that your input has finished. Thanks to [9] for an update to this feature.

-r, -replacement

latexindent.pl -r myfile.tex

latexindent.pl -replacement myfile.tex

You can call latexindent . pl with the -r switch to instruct it to perform replacements/substitutions
on your file; full details and examples are given in Section 7 on page 126.

-rv, -replacementrespectverb

latexindent.pl -rv myfile.tex
latexindent.pl -replacementrespectverb myfile.tex

You can instruct latexindent.pl to perform replacements/substitutions by using the -rv switch,
but will respect verbatim code blocks; full details and examples are given in Section 7 on page 126.

-rr, -onlyreplacement

latexindent.pl -rr myfile.tex

latexindent.pl -onlyreplacement myfile.tex

You can instruct latexindent.pl to skip all of its other indentation operations and only perform
replacements/substitutions by using the -rr switch; full details and examples are given in Section 7
on page 126.

-k, -check

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

3.3 From arara 21

latexindent.pl -k myfile.tex

latexindent.pl -check myfile.tex

N: 2021-09-16 You can instruct latexindent.pl to check if the text after indentation matches that given in the
original file.

The exit code of latexindent.pl is O by default. If you use the -k switch then
« if the text after indentation matches that given in the original file, then the exit code is 0;

* if the text after indentation does not match that given in the original file, then the exit code is
1.

The value of the exit code may be important to those wishing to, for example, check the status of
the indentation in continuous integration tools such as GitHub Actions. Full details of the exit codes
of latexindent.pl are given in Table 1.

A simple diff will be given in indent.log.

-kv, -checkv

latexindent.pl -kv myfile.tex

latexindent.pl -checkv myfile.tex

N: 2021-09-16
: The check verbose switch is exactly the same as the -k switch, except that it is verbose, and it will
output the (simple) diff to the terminal, as well as to indent.log.

-n, -lines=MIN-MAX

latexindent.pl -n 5-8 myfile.tex

latexindent.pl -lines 5-8 myfile.tex

N: 2021-09-16 . . . ST i1l e .
: The lines switch instructs latexindent . p1 to operate only on specific line ranges withinmyfile. tex.

Complete demonstrations are given in Section 8.

-GCString

latexindent.pl --GCString myfile.tex

instructs latexindent.pl to load the Unicode: : GCString module. This should only be necessary
if you find that the alignment at ampersand routine (described in Section 5.5) does not work for
your language. Further details are given in appendix A.3.

3.3 From arara

Using latexindent.pl from the command line is fine for some folks, but others may find it easier to
use from arara; you can find the arara rule for latexindent.pl and its associated documentation
at[1].

3.4 Summary of exit codes

Assuming that you call latexindent.pl onmyfile.tex

latexindent.pl myfile.tex

then latexindent.pl can exit with the exit codes given in Table 1.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

3.4 Summary of exit codes

22

TABLE 1: Exit codes for latexindent.pl

exit code

indentation status

success; if -k or -kv active, indented text matches original
success; if -version, -vversion or ~help, no indentation performed
success, and -k or -kv active; indented text different from original

ANV WN |~ O

failure, defaultSettings.yaml could not be read
failure, myfile.tex not found

failure, myfile.tex exists but cannot be read

failure, -w active, and back-up file cannot be written
failure, -c active, and cruft directory could not be created

XXXNXX| XS

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

N: 2023-01-01

4.1

SECTION 4

indentconfig.yaml, local settings and the -y
switch

The behaviour of latexindent.pl is controlled from the settings specified in any of the YAML files
that you tell it to load. By default, latexindent.pl will only load defaultSettings.yaml, but
there are a few ways that you can tell it to load your own settings files.

We focus our discussion on indentconfig.yaml, but there are other options which are detailed in
appendix H.

indentconfig.yaml and .indentconfig.yaml

latexindent.pl will always check your home directory for indentconfig.yaml and . indentconfig.yaml
(unless it is called with the -d switch), which is a plain text file you can create that contains the
absolute paths for any settings files that you wish latexindent.pl to load. There is no difference be-

tween indentconfig.yaml and . indentconfig.yaml, other than the fact that . indentconfig.yaml

is a ‘hidden’ file; thank you to [5] for providing this feature. In what follows, we will use indentconfig.yaml,
but it is understood that this could equally represent .indentconfig.yaml. If you have both files

in existence then indentconfig.yaml takes priority.

For Mac and Linux users, their home directory is /username while Windows (Vista onwards) is
C:\Users\username” Listing 32 shows a sample indentconfig.yanl file.

LISTING 32: indentconfig.yaml (sample)

Paths to user settings for latexindent.pl

#

Note that the settings will be read in the order you

specify here- each successive settings file will overwrite
the variables that you specify

paths:

- /home/cmhughes/Documents/yamlfiles/mysettings.yaml

- /home/cmhughes/folder/othersettings.yaml

- /some/other/folder/anynameyouwant.yaml
C:\Users\chughes\Documents\mysettings.yaml
C:\Users\chughes\Desktop\test spaces\more spaces.yaml

Note that the .yaml files you specify in indentconfig.yaml will be loaded in the order in which
you write them. Each file doesn’t have to have every switch from defaultSettings.yaml; in fact,
I recommend that you only keep the switches that you want to change in these settings files.

To get started with your own settings file, you might like to save a copy of defaultSettings.yaml
in another directory and call it, for example, mysettings.yaml. Once you have added the path to
indentconfig.yaml you can change the switches and add more code-block names to it as you see
fit — have a look at Listing 33 for an example that uses four tabs for the default indent, adds the
tabbing environment/command to the list of environments that contains alignment delimiters; you
might also like to refer to the many YAML files detailed throughout the rest of this documentation.

2If you’re not sure where to put indentconfig.yaml, don’t worry latexindent.pl will tell you in the log file exactly
where to put it assuming it doesn’t exist already.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

4.2 localSettings.yaml and friends 24

N: 2021-06-19

U: 2021-03-14

4.2

LISTING 33: mysettings.yaml (example)

Default value of indentation
defaultIndent: "\t\t\t\t"

environments that have tab delimiters, add more
as needed
lookForAlignDelims:

tabbing: 1

You can make sure that your settings are loaded by checking indent.log for details - if you have
specified a path that latexindent.pl doesn’t recognise then you’ll get a warning, otherwise you’ll
get confirmation that latexindent.pl has read your settings file °.

Warning!

When editing . yaml files it is extremely important to remember how sensitive they are
to spaces. I highly recommend copying and pasting from defaultSettings.yaml
when you create your first whatevernameyoulike.yaml file.

If latexindent.pl can not read your .yaml file it will tell you so in indent.log.

If you find that latexindent.pl does not read your YAML file, then it might be as a result of the
default commandline encoding not being UTF-8; normally this will only occur for Windows users. In
this case, you might like to explore the encoding option for indentconfig.yaml as demonstrated
in Listing 34.

LISTING 34: The encoding option for indentconfig.yaml

encoding: GB2312
paths:
- D:\cmh\latexindent.yaml

Thank you to [15] for this contribution; please see appendix J on page 171 and details within [42]
for further information.

localSettings.yaml and friends

The -1 switch tells latexindent.pl to look for localSettings.yaml and/or friends in the same
directory as myfile.tex. For example, if you use the following command

latexindent.pl -1 myfile.tex

then latexindent.pl will search for and then, assuming they exist, load each of the following files
in the following order:

1. localSettings.yaml
2. latexindent.yaml
3. .localSettings.yaml
4. latexindent.yaml

These files will be assumed to be in the same directory as myfile.tex, or otherwise in the current
working directory. You do not need to have all of the above files, usually just one will be sufficient.
In what follows, whenever we refer to localSettings.yaml it is assumed that it can mean any of
the four named options listed above.

If you'd prefer to name your localSettings.yaml file something different, (say, mysettings.yaml
as in Listing 33) then you can call latexindent.pl using, for example,

3Windows users may find that they have to end .yam1 files with a blank line

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

4.3 The -y|yaml switch 25

:2017-08-21

4.3

4.4

latexindent.pl -l=mysettings.yaml myfile.tex

Any settings file(s) specified using the -1 switch will be read after defaultSettings.yaml and,
assuming they exist, any user setting files specified in indentconfig.yaml.

Your settings file can contain any switches that you’d like to change; a sample is shown in Listing 35,
and you’ll find plenty of further examples throughout this manual.

LISTING 35: localSettings.yaml (example)

verbatim environments - environments specified
here will not be changed at all!
verbatimEnvironments:

cmhenvironment: O

myenv: 1

You can make sure that your settings file has been loaded by checking indent.log for details; if it
can not be read then you receive a warning, otherwise you’ll get confirmation that latexindent.pl

has read your settings file.

The -y|yaml switch

You may use the -y switch to load your settings; for example, if you wished to specify the settings
from Listing 35 using the -y switch, then you could use the following command:

latexindent.pl -y="verbatimEnvironments:cmhenvironment:0;myenv:1" myfile.tex

Note the use of ; to specify another field within verbatimEnvironments. This is shorthand, and
equivalent, to using the following command:

latexindent.pl
-y="verbatimEnvironments:cmhenvironment:0,verbatimEnvironments:myenv:1"
myfile.tex

You may, of course, specify settings using the -y switch as well as, for example, settings loaded using
the -1 switch; for example,

latexindent.pl -l=mysettings.yaml
verbatimEnvironments:cmhenvironment:0;myenv:1" myfile.tex

-y=

Any settings specified using the -y switch will be loaded after any specified using indentconfig.yaml
and the -1 switch.

If you wish to specify any regex-based settings using the -y switch, it is important not to use quotes
surrounding the regex; for example, with reference to the ‘one sentence per line’ feature (Section 6.2
on page 93) and the listings within Listing 369 on page 96, the following settings give the option to
have sentences end with a semicolon

latexindent.pl -m

—--yaml="modifyLineBreaks:oneSentencePerLine:sentencesEndWith:other:\;’

Settings load order

latexindent.pl loads the settings files in the following order:
1. defaultSettings.yaml is always loaded, and can not be renamed;

2. anyUserSettings.yaml and any other arbitrarily-named files specified in indentconfig.yaml;

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

4.4 Settings load order

26

3. localSettings.yaml but only if found in the same directory as myfile.tex and called with
-1 switch; this file can be renamed, provided that the call to latexindent.pl is adjusted
accordingly (see Section 4.2). You may specify both relative and absolute paths to other YAML
files using the -1 switch, separating multiple files using commas;

4. any settings specified in the -y switch.

A visual representation of this is given in Figure 1.

[defaultSett ings .ya.ml}

1 ':

-------- latexindent.pl }-------- [indentconf ig.ya.ml} --------
2 T

.

'3

[localSettings .ya.mlJ

FIGURE 1: Schematic of the load order described in Section 4.4; solid lines represent mandatory files, dotted
lines represent optional files. indentconfig.yaml can contain as many files as you like. The files
will be loaded in order; if you specify settings for the same field in more than one file, the most recent

takes priority.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

SECTION 5

defaultSettings.yaml

latexindent.pl loads its settings from defaultSettings.yaml. The idea is to separate the be-
haviour of the script from the internal working — this is very similar to the way that we separate
content from form when writing our documents in KIX.

If youlookin defaultSettings.yaml you’'ll find the switches that govern the behaviour of latexindent . pl.
If you're not sure where defaultSettings.yaml resides on your computer, don’t worry as indent . log

will tell you where to find it. defaultSettings.yaml is commented, but here is a description of

what each switch is designed to do. The default value is given in each case; whenever you see integer

in this section, assume that it must be greater than or equal to 0 unless otherwise stated.

For most of the settings in defaultSettings.yaml that are specified as integers, then we under-
stand O to represent ‘off’ and 1 to represent ‘on’. For fields that allow values other than 0 or 1, it is
hoped that the specific context and associated commentary should make it clear which values are
allowed.

fileExtensionPreference: (fields)

latexindent.pl can be called to act on a file without specifying the file extension. For example we
can call

latexindent.pl myfile

in which case the script will look for myfile with the extensions specified in fileExtensionPreference
in their numeric order. If no match is found, the script will exit. As with all of the fields, you should
change and/or add to this as necessary.

LISTING 36: fileExtensionPreference

47 fileExtensionPreference:

48 .tex: 1
49 .sty: 2
50 .cls: 3
51 .bib: 4

Calling latexindent.pl myfile with the (default) settings specified in Listing 36 means that the
script will first look for myfile.tex, then myfile.sty, myfile.cls, and finally myfile.bib in
order”.

5.1 Backup and log file preferences

backupExtension: (extension name)

If you call latexindent.pl with the -w switch (to overwrite myfile.tex) then it will create a
backup file before doing any indentation; the default extension is . bak, so, for example, myfile.bak0
would be created when calling latexindent.pl myfile.tex for the first time.

By default, every time you subsequently call latexindent.pl with the -w to act upon myfile.tex,
it will create successive back up files: myfile.bakl, myfile.bak2, etc.

“Throughout this manual, listings shown with line numbers represent code taken directly from defaultSettings.yaml.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.1 Backup and log file preferences 28

onlyOneBackUp: (integer)

If you don’t want a backup for every time that you call latexindent.pl (so youdon’t wantmyfile.bak1,
myfile.bak?2, etc) and you simply want myfile.bak (or whatever you chose backupExtension to
be) then change onlyOneBackUp to 1; the default value of onlyOneBackUp is O.

maxNumberOfBackUps: (integer)

Some users may only want a finite number of backup files, say at most 3, in which case, they can
change this switch. The smallest value of maxNumber0fBackUps is O which will not prevent backup
files being made; in this case, the behaviour will be dictated entirely by on1yOneBackUp. The default
value of maxNumber0fBackUps is 0.

cycleThroughBackUps: (integer)

Some users may wish to cycle through backup files, by deleting the oldest backup file and keeping
only the most recent; for example, with maxNumber0fBackUps: 4, and cycleThroughBackUps
set to 1 then the copy procedure given below would be obeyed.

copy myfile.bakl to myfile.bakO
copy myfile.bak2 to myfile.bakl

copy myfile.bak3 to myfile.bak2
copy myfile.bak4 to myfile.bak3

The default value of cycleThroughBackUps is 0.

logFilePreferences: (fields)

latexindent.pl writes information to indent . log, some of which can be customized by changing
logFilePreferences; see Listing 37. If you load your own user settings (see Section 4 on page 23)
then latexindent.pl will detail them in indent . log; you can choose not to have the details logged
by switching showEveryYamlRead to 0. Once all of your settings have been loaded, you can see the
amalgamated settings in the log file by switching showAmalgamatedSettings to 1, if you wish.

LISTING 37: logFilePreferences

91 1logFilePreferences:

92 showEveryYamlRead: 1
93 showAmalgamatedSettings: O
94 showDecorationStartCodeBlockTrace: O
95 showDecorationFinishCodeBlockTrace: 0O
96 endLogFileWith: ’-———————————-—- ¢
97 showGitHubInfoFooter: 1
98 Dumper :
99 Terse: 1
100 Indent: 1
101 Useqq: 1
102 Deparse: 1
103 Quotekeys: 0O
104 Sortkeys: 1
105 Pair: " => "
N: 2018-01-13 When either of the trace modes (see page 17) are active, you will receive detailed information in

indent.log. You can specify character strings to appear before and after the notification of a found
code block using, respectively, showDecorationStartCodeBlockTrace and showDecorationFinishCodeBlockTra
A demonstration is given in appendix I on page 170.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.2 Verbatim code blocks 29

U: 2021-03-14

U: 2021-06-19

N: 2021-10-30

The log file will end with the characters given in endLogFileWith, and will report the GitHub
address of latexindent.pl to the log file if showGitHubInfoFooter is set to 1.

Note: latexindent.pl no longer uses the log4perl module to handle the creation of the logfile.

Some of the options for Perl’s Dumper module can be specified in Listing 37; see [33] and [32] for
more information. These options will mostly be helpful for those calling latexindent.pl with the
-tt option described in Section 3.2.

5.2 Verbatim code blocks

verbatimEnvironments: (fields)

A field that contains a list of environments that you would like left completely alone — no indentation
will be performed on environments that you have specified in this field, see Listing 38.

LISTING 38: verbatimEnvironments LISTING 39: verbatimCommands
109 verbatimEnvironments: 115 verbatimCommands:
110 verbatim: 1 116 verb: 1
111 1stlisting: 1 117 lstinline: 1
112 minted: 1

Note that if you put an environment in verbatimEnvironments and in other fields such as lookForAlignDelims
or noAdditionalIndent then latexindent.pl will always prioritize verbatimEnvironments.

You can, optionally, specify the verbatim field using the name field which takes a regular expression
as its argument; thank you to [18] for contributing this feature.

example 10 For demonstration, then assuming that your file contains the environments latexcode, latexcodex,

pythoncode and pythoncode*, then the listings given in Listings 40 and 41 are equivalent.

LISTING 40: nameAsRegex1.yaml LISTING 41: nameAsRegex2.yaml
verbatimEnvironments: verbatimEnvironments:
latexcode: 1 nameAsRegex:
latexcode*: 1 name: ’\wt+code*?’
pythoncode: 1 lookForThis: 1

pythoncodex*: 1
With reference to Listing 41:

* the name field as specified here means any word followed by the word code, optionally fol-
lowed by *;

* we have used nameAsRegex to identify this field, but you can use any description you like;

* the lookForThis field is optional, and can take the values O (off) or 1 (on); by default, it
is assumed to be 1 (on).

verbatimCommands: (fields)

N: 2021-10-30

A field that contains a list of commands that are verbatim commands, for example \1stinline; any
commands populated in this field are protected from line breaking routines (only relevant if the -m
is active, see Section 6 on page 77).

With reference to Listing 39, by default latexindent.pl looks for \verb immediately followed by
another character, and then it takes the body as anything up to the next occurrence of the character;
this means that, for example, \verb!x+3! is treated as a verbatimCommands.

You can, optionally, specify the verbatimCommands field using the name field which takes a regular
expression as its argument; thank you to [18] for contributing this feature.

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.2 Verbatim code blocks 30

For demonstration, then assuming that your file contains the commands verbinline, myinline

example 11
then the listings given in Listings 42 and 43 are equivalent.

LISTING 42: nameAsRegex3.yaml LISTING 43: nameAsRegex4.yaml

verbatimCommands: verbatimCommands :
verbinline: 1 nameAsRegex:

myinline: 1 name: ’\w+inline’
lookForThis: 1
With reference to Listing 43:
* the name field as specified here means any word followed by the word inline;
* we have used nameAsRegex to identify this field, but you can use any description you like;
* the lookForThis field is optional, and can take the values O (off) or 1 (on); by default, it
is assumed to be 1 (on). -

noIndentBlock: (fields)

If you have a block of code that you don’t want latexindent.pl to touch (even if it is not a verbatim-
like environment) then you can wrap it in an environment from noIndentBlock; you can use any

name you like for this, provided you populate it as demonstrate in Listing 44.

LISTING 44: noIndentBlock

122 nolIndentBlock:
123 noindent: 1
124 cmhtest: 1

Of course, you don’t want to have to specify these as null environments in your code, so you use them
with a comment symbol, %, followed by as many spaces (possibly none) as you like; see Listing 45

for example.

LISTING 45: noIndentBlock.tex

% \begin{noindent}
some before text
this code
won’t
be touched
by
latexindent.pl!
some after text
% \end{noindent}

Important note: it is assumed that the noindent block statements specified in this way appear on

their own line.

example 12 The noIndentBlock fields can also be specified in terms of begin and end fields. We use the
N: 2021-06-19 code in Listing 46 to demonstrate this feature.

LISTING 46: noIndentBlockl.tex

some before text
this code
won’t
be touched
by
latexindent.pl!
some after text

The settings given in Listings 47 and 48 are equivalent:

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.2 Verbatim code blocks 31

LISTING 47: noindentl.yaml LISTING 48: noindent2.yaml LISTING 49: noindent3.yaml
noIndentBlock: noIndentBlock: noIndentBlock:
demo: demo: demo:
begin: ’some\hbefore’ begin: ’some\hbefore’ begin: ’some\hbefore’
body: ’.%?’ end: ’some\hafter\htext’ body: ’.%?’
end: ’some\hafter\htext’ end: ’some\hafter\htext’
lookForThis: 1 lookForThis: 0O

example 13

N: 2021-10-30

example 14

Upon running the commands

latexindent.pl -1 noindentl.yaml noindentl

latexindent.pl -1 noindent2.yaml noindentl

then we receive the output given in Listing 50.

LISTING 50: noIndentBlockl.tex using Listing 47 or Listing 48

some before text
this code
won’t
be touched
by
latexindent.pl!
some after text

The begin, body and end fields for noIndentBlock are all regular expressions. If the body field is
not specified, then it takes a default value of .*? which is written explicitly in Listing 47. In this
context, we interpret .*? in words as the fewest number of characters (possibly none) until the ‘end’
field is reached.

The lookForThis field is optional, and can take the values O (off) or 1 (on); by default, it is assumed
to be 1 (on).

Using Listing 49 demonstrates setting 1ookForThis to O (off); running the command

latexindent.pl -1 noindent3.yaml noindentl

gives the output in Listing 51.

LISTING 51: noIndentBlockl.tex using Listing 49

some before text
this code

won’t

be touched

by
latexindent.pl!
some after text

We will demonstrate this feature later in the documentation in Listing 572.

You can, optionally, specify the noIndentBlock field using the name field which takes a regular
expression as its argument; thank you to [18] for contributing this feature.

For demonstration, then assuming that your file contains the environments testnoindent, testnoindentx*
then the listings given in Listings 52 and 53 are equivalent.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.3 filecontents and preamble 32

LISTING 52: nameAsRegex5.yaml LISTING 53: nameAsRegex6.yaml
noIndentBlock: nolIndentBlock:
mytest: nameAsRegex:
begin: ’\\begin\{testnoindent*7\}’ name: ’\w+noindent*7’
end: ’\\end\{testnoindent*?7\}’ lookForThis: 1

With reference to Listing 53:

* the name field as specified here means any word followed by the word noindent, optionally
followed by *;

* we have used nameAsRegex to identify this field, but you can use any description you like;

* the lookForThis field is optional, and can take the values O (off) or 1 (on); by default, it
is assumed to be 1 (on).

5.3 filecontents and preamble

fileContentsEnvironments: (field)

Before latexindent.pl determines the difference between preamble (if any) and the main doc-
ument, it first searches for any of the environments specified in fileContentsEnvironments, see
Listing 54. The behaviour of 1atexindent.pl on these environments is determined by their location
(preamble or not), and the value indentPreamble, discussed next.

LISTING 54: fileContentsEnvironments

128 fileContentsEnvironments:
129 filecontents: 1
130 filecontents*: 1

indentPreamble: 0|1

The preamble of a document can sometimes contain some trickier code for latexindent.pl to op-
erate upon. By default, latexindent .pl won't try to operate on the preamble (as indentPreamble
is set to 0, by default), but if you'd like latexindent.pl to try then change indentPreamble to 1.

lookForPreamble: (fields)

Not all files contain preamble; for example, sty, cls and bib files typically do not. Referenc-
ing Listing 55, if you set, for example, .tex to O, then regardless of the setting of the value of
indentPreamble, preamble will not be assumed when operating upon .tex files.

LISTING 55: lookForPreamble

136 lookForPreamble:

137 .tex: 1
138 .sty: O
139 .cls: O
140 .bib: 0

preambleCommandsBeforeEnvironments: 0|1

Assuming that latexindent.pl is asked to operate upon the preamble of a document, when this
switch is set to 0 then environment code blocks will be sought first, and then command code blocks.
When this switch is set to 1, commands will be sought first. The example that first motivated this
switch contained the code given in Listing 56.

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.4 Indentation and horizontal space 33

LISTING 56: Motivating preambleCommandsBeforeEnvironments

preheadhook={\begin{mdframed}[style=myframedstylel},
postfoothook=\end{mdframed},

5.4 Indentation and horizontal space

defaultIndent: (horizontal space)

This is the default indentation used in the absence of other details for the code block with which
we are working. The default value is \t which means a tab; we will explore customisation beyond
defaultIndent in Section 5.8 on page 53.

If you're interested in experimenting with latexindent.pl then you can remove all indentation by
setting defaultIndent: "".

removeTrailingWhitespace: (fields)

Trailing white space can be removed both before and after processing the document, as detailed in
Listing 57; each of the fields can take the values 0 or 1. See Listings 460 to 462 on page 113 for
before and after results. Thanks to [3] for providing this feature.

LISTING 57: removeTrailingWhitespace LISTING 58: removeTrailingWhitespace (alt)
153 removeTrailingWhitespace: removeTrailingWhitespace: 1
154 beforeProcessing: 0
155 afterProcessing: 1
N: 2017-06-28 You can specify removeTrailingWhitespace simply as O or 1, if you wish; in this case, latexindent .pl

will set both beforeProcessing and afterProcessing to the value you specify; see Listing 58.

5.5 Aligning at delimiters

lookForAlignDelims: (fields)

This contains a list of code blocks that are operated upon in a special way by latexindent.pl (see
Listing 59). In fact, the fields in 1lookForAlignDelims can actually take two different forms: the
basic version is shown in Listing 59 and the advanced version in Listing 62; we will discuss each in
turn.

LISTING 59: lookForAlignDelims (basic)

lookForAlignDelims:
tabular: 1
tabularx: 1
longtable: 1
array: 1
matrix: 1

Specifying code blocks in this field instructs latexindent.pl to try and align each column by its
alignment delimiters. It does have some limitations (discussed further in Section 10), but in many
cases it will produce results such as those in Listings 60 and 61; running the command

latexindent.pl tabularl.tex

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.5 Aligning at delimiters 34

U: 2018-01-13

N: 2017-06-19

N: 2017-06-19

N: 2018-01-13

N: 2018-01-13

gives the output given in Listing 61.

LISTING 60: tabularl.tex LISTING 61: tabularl.tex default output
\begin{tabular}{cccc} \begin{tabular}{cccc}
1& 2 &3 &4\\ 1 &2 &3 &4 \\
5% &6 &\\ 5& &6& \\
\end{tabular} \end{tabular}

If you find that latexindent.pl does not perform satisfactorily on such environments then you
can set the relevant key to 0, for example tabular: 0; alternatively, if you just want to ignore
specific instances of the environment, you could wrap them in something from noIndentBlock (see
Listing 44 on page 30).

If, for example, you wish to remove the alignment of the \\ within a delimiter-aligned block, then
the advanced form of lookForAlignDelims shown in Listing 62 is for you.

LISTING 62: lookForAlignDelims (advanced)

158 lookForAlignDelims:

159 tabular:

160 delims: 1

161 alignDoubleBackSlash: 1

162 spacesBeforeDoubleBackSlash: 1
163 multiColumnGrouping: O

164 alignRowsWithoutMaxDelims: 1
165 spacesBeforeAmpersand: 1

166 spacesAfterAmpersand: 1

167 justification: left

168 alignFinalDoubleBackSlash: 0O
169 dontMeasure: 0O

170 delimiterRegEx: (7<!\\) (&)

171 delimiterJustification: left
172 lookForChildCodeBlocks: 1

173 alignContentAfterDoubleBackSlash: 0
174 spacesAfterDoubleBackSlash: 1
175 tabularx:

176 delims: 1

Note that you can use a mixture of the basic and advanced form: in Listing 62 tabular and tabularx
are advanced and longtable is basic. When using the advanced form, each field should receive at
least 1 sub-field, and can (but does not have to) receive any of the following fields:

delims: binary switch (0 or 1) equivalent to simply specifying, for example, tabular: 1in
the basic version shown in Listing 59. If delims is set to O then the align at ampersand routine
will not be called for this code block (default: 1);

alignDoubleBackSlash: binary switch (0 or 1) to determine if \\ should be aligned (default:
1);

spacesBeforeDoubleBackSlash: optionally, specifies the number (integer > 0) of spaces to
be inserted before \\ (default: 1);

multiColumnGrouping: binary switch (0 or 1) that details if latexindent.pl should group
columns above and below a \multicolumn command (default: 0);

alignRowsWithoutMaxDelims: binary switch (0 or 1) that details if rows that do not contain
the maximum number of delimiters should be formatted so as to have the ampersands aligned
(default: 1);

spacesBeforeAmpersand: optionally specifies the number (integer > 0) of spaces to be placed
before ampersands (default: 1);

spacesAfterAmpersand: optionally specifies the number (integer > 0) of spaces to be placed
After ampersands (default: 1);

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.5 Aligning at delimiters 35

:2018-01-13 * justification: optionally specifies the justification of each cell as either left or right (default:
left);
: 2020-03-21 * alignFinalDoubleBackSlash optionally specifies if the final double backslash should be used for

alignment (default: 0);

: 2020-03-21 * dontMeasure optionally specifies if user-specified cells, rows or the largest entries should not
be measured (default: 0);

: 2020-03-21 * delimiterRegEx optionally specifies the pattern matching to be used for the alignment delimiter
(default: (?<!1\\) (&) ?);

: 2020-03-21 * delimiterJustification optionally specifies the justification for the alignment delimiters (default:
left); note that this feature is only useful if you have delimiters of different lengths in the same
column, discussed in Section 5.5.4;

:2021-12-13 * lookForChildCodeBlocks optionally instructs latexindent.pl to search for child code blocks
or not (default: 1), discussed in Section 5.5.5;

: 2023-05-01 * alignContentAfterDoubleBackSlash optionally instructs latexindent . p1 to align content after
double back slash (default: 0), discussed in Section 5.5.6;

: 2023-05-01 * spacesAfterDoubleBackSlash optionally specifies the number (integer > 0) of spaces to be
placed after the double back slash when alignContentAfterDoubleBackSlash is active; demon-
strated in Section 5.5.6.

example 15 We will explore most of these features using the file tabular?2. tex in Listing 63 (which contains a
\multicolumn command), and the YAML files in Listings 64 to 70; we will explore alignFinalDoubleBackSlash
in Listing 91; the dontMeasure feature will be described in Section 5.5.3, and delimiterRegEx
in Section 5.5.4.

LISTING 63: tabular2.tex

\begin{tabular}{cccc}

A& B&C &D\\
AAAY BBB & CCC &DDD\\
\multicolumn{2}{c}{first heading} & \multicolumn{2}{c}{second heading}\\
one& two & three &four\\
five& &six &\\
seven & \\
\end{tabular}
LISTING 64: tabular2.yaml LISTING 65: tabular3.yaml
lookForAlignDelims: lookForAlignDelims:
tabular: tabular:
multiColumnGrouping: 1 alignRowsWithoutMaxDelims: O
LISTING 66: tabular4.yaml LISTING 67: tabular5.yaml
lookForAlignDelims: lookForAlignDelims:
tabular: tabular:
spacesBeforeAmpersand: 4 spacesAfterAmpersand: 4
LISTING 68: tabular6.yaml LISTING 69: tabular?7.yaml
lookForAlignDelims: lookForAlignDelims:
tabular: tabular:
alignDoubleBackSlash: 0 spacesBeforeDoubleBackSlash: 0

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.5 Aligning at delimiters

LISTING 70: tabular8.yaml

lookForAlignDelims:
tabular:
justification: "right"

On running the commands

latexindent. tabular2.

latexindent. tabular2. tabular2.yaml

latexindent. tabular2. tabular3.yaml

latexindent. tabular2. tabular2.yaml,tabular4.yaml

latexindent. tabular2. tabular2.yaml,tabular5.yaml
latexindent. tabular2. tabular2.yaml,tabular6.yaml
latexindent. tabular2. tabular2.yaml,tabular7.yaml
latexindent. tabular2. tabular2.yaml,tabular8.yaml

we obtain the respective outputs given in Listings 71 to 78.

LISTING 71: tabular2.tex default output

\begin{tabular}{cccc}

A & B & C & D \\

AAA & BBB & CCC & DDD \\

\multicolumn{2}{c}{first heading} & \multicolumn{2}{c}{second heading} A\

one & two & three & four \\

five & & six & A\

seven & N\
\end{tabular}

LISTING 72: tabular2.tex using Listing 64

\begin{tabular}{cccc}

A & B & C & D \\

AAA & BBB & CCC & DDD \\

\multicolumn{2}{c}Hfirst heading} & \multicolumn{2}{c}{second heading} \\

one & two & three & four \\

five & & six & A\

seven & \\
\end{tabular}

LISTING 73: tabular2.tex using Listing 65

\begin{tabular}{cccc}

A &B &C & D A\

AAA & BBB & CCC & DDD \\

\multicolumn{2}{c}{first heading} & \multicolumn{2}{c}{second heading} \\

one & two & three & four A\

five & & six & \\

seven & A\
\end{tabular}

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.5 Aligning at delimiters

37

LISTING 74: tabular2.tex using Listings 64 and 66
\begin{tabular}{cccc}
A & B & C & D \\
AAA & BBB & CCC & DDD A\
\multicolumn{2}{c}{first heading} & \multicolumn{2}{c}{second heading} \\
one & two & three & four \\
five & & six & A\
seven & A\
\end{tabular}
LISTING 75: tabular2.tex using Listings 64 and 67
\begin{tabular}{cccc}
A & B & c & D \\
AAA & BBB & cCcC & DDD \\
\multicolumn{2}{c}{first heading} & \multicolumn{2}{c}{second heading} \\
one & two & three & four \\
five & & six & \\
seven & \\
\end{tabular}
LISTING 76: tabular2.tex using Listings 64 and 68
\begin{tabular}{cccc}
A & B & C & D \\
AAA & BBB & CCC & DDD \\

\multicolumn{2}{c}{first heading}
one & two

& \multicolumn{2}{c}{second heading} \\
& three & four \\

five & & six & \\
seven & \\
\end{tabular}
LISTING 77: tabular2.tex using Listings 64 and 69
\begin{tabular}{cccc}
A & B & C & D \\
AAA & BBB & CCC & DDD \\
\multicolumn{2}{c}first heading} & \multicolumn{2}{c}{second heading}\\
one & two & three & four A\
five & & six & \\
seven & \\
\end{tabular}
LISTING 78: tabular2.tex using Listings 64 and 70
\begin{tabular}{cccc}
A& B C& D \\
AAA & BBB & CCC & DDD \\
\multicolumn{2}{c}{first heading} & \multicolumn{2}{c}{second heading} \\
one & two & three & four \\
five & & six & \\
seven & \\

\end{tabular}

Notice in particular:

* in both Listings 71 and 72 all rows have been aligned at the ampersand, even those that
do not contain the maximum number of ampersands (3 ampersands, in this case);

e in Listing 71 the columns have been aligned at the ampersand;

* in Listing 72 the \multicolumn command has grouped the 2 columns beneath and above it,

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.5 Aligning at delimiters 38

5.5.1

U: 2021-06-19

example 16

because multiColumnGrouping is set to 1 in Listing 64;

 inListing 73 rows 3 and 6 have not been aligned at the ampersand, because alignRowsWithoutMaxDelims
has been to set to 0 in Listing 65; however, the \\ have still been aligned,;

* in Listing 74 the columns beneath and above the \multicolumn commands have been
grouped (because multiColumnGrouping is set to 1), and there are at least 4 spaces before
each aligned ampersand because spacesBeforeAmpersand is set to 4;

 in Listing 75 the columns beneath and above the \multicolumn commands have been
grouped (because multiColumnGrouping is set to 1), and there are at least 4 spaces after
each aligned ampersand because spacesAfterAmpersand is set to 4;

* in Listing 76 the \\ have not been aligned, because alignDoubleBackSlash is set to O,
otherwise the output is the same as Listing 72;

* in Listing 77 the \\ have been aligned, and because spacesBeforeDoubleBackSlash is
set to 0, there are no spaces ahead of them; the output is otherwise the same as Listing 72;

* inListing 78 the cells have been right-justified; note that cells above and below the \multicol
statements have still been group correctly, because of the settings in Listing 64.

lookForAlignDelims: spacesBeforeAmpersand

The spacesBeforeAmpersand can be specified in a few different ways. The basic form is demon-
strated in Listing 66, but we can customise the behaviour further by specifying if we would like this
value to change if it encounters a leading blank column; that is, when the first column contains only
zero-width entries. We refer to this as the advanced form.

We demonstrate this feature in relation to Listing 79; upon running the following command

latexindent.pl alignedl.tex -o=+-default

then we receive the default output given in Listing 80.

LISTING 79: alignedl.tex LISTING 80: alignedl-default.tex
\begin{aligned} \begin{aligned}
& a & b, \\ & a &b, \\
& c & d. & c & d.
\end{aligned} \end{aligned}

The settings in Listings 81 to 84 are all equivlanent; we have used the not-yet discussed noAdditionalIndent
field (see Section 5.8 on page 53) which will assist in the demonstration in what follows.

LISTING 81: sbal.yaml LISTING 82: sba2.yaml
noAdditionalIndent: noAdditionalIndent:
aligned: 1 aligned: 1
lookForAlignDelims: lookForAlignDelims:
aligned: 1 aligned:

spacesBeforeAmpersand: 1

LISTING 83: sba3.yaml LISTING 84: sba4.yaml
noAdditionalIndent: noAdditionalIndent:
aligned: 1 aligned: 1
lookForAlignDelims: lookForAlignDelims:
aligned: aligned:
spacesBeforeAmpersand: spacesBeforeAmpersand:
default: 1 leadingBlankColumn: 1

Upon running the following commands

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.5 Aligning at delimiters 39

example 17

latexindent.pl alignedl.tex -1 sbal.yaml
latexindent.pl alignedl.tex -1 sba2.yaml

latexindent.pl alignedl.tex -1 sba3.yaml
latexindent.pl alignedl.tex -1 sba4.yaml

then we receive the (same) output given in Listing 85; we note that there is one space before each
ampersand.

LISTING 85: alignedl-modl.tex

\begin{aligned}
& a & b, \\

& c & d.
\end{aligned}

We note in particular:

Listing 81 demonstrates the basic form for lookForAlignDelims; in this case, the default
values are specified as in Listing 62 on page 34;

Listing 82 demonstrates the advanced form for lookForAlignDelims and specified spacesBeforeAmpersand.
The default value is 1;

Listing 83 demonstrates the new advanced way to specify spacesBeforeAmpersand, and
for us to set the default value that sets the number of spaces before ampersands which
are not in leading blank columns. The default value is 1.

We note that leadingBlankColumn has not been specified in Listing 83, and it will inherit
the value from default;

Listing 84 demonstrates spaces to be used before amperands for leading blank columns. We
note that default has not been specified, and it will be set to 1 by default.

We can customise the space before the ampersand in the leading blank column of Listing 85 by
using either of Listings 86 and 87, which are equivalent.

LISTING 86: sbab.yaml LISTING 87: sba6.yaml

noAdditionalIndent: noAdditionalIndent:
aligned: 1 aligned: 1
lookForAlignDelims: lookForAlignDelims:
aligned: aligned:
spacesBeforeAmpersand: spacesBeforeAmpersand:

leadingBlankColumn: O leadingBlankColumn: O

default: 1

Upon running

latexindent.pl alignedl.tex -1 sbab5.yaml

latexindent.pl alignedl.tex -1 sba6.yaml

then we receive the (same) output given in Listing 88. We note that the space before the amper-
sand in the leading blank column has been set to 0 by Listing 87.

We can demonstrated this feature further using the settings in Listing 90 which give the output
in Listing 89.

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.5 Aligning at delimiters 40

LISTING 88: alignedl-mod5.tex LISTING 89: alignedl.tex using LISTING 90: sba7.yaml

\begin{aligned} Listing 90 noAdditionalIndent:

& a & b, \\ \begin{aligned} aligned: 1

& c & d. & a& b, \\ lookForAlignDelims:

\end{aligned} & c& d. aligned:

\end{aligned} spacesBeforeAmpersand:

leadingBlankColumn: 3
default: O

5.5.2 lookForAlignDelims: alignFinalDoubleBackSlash
There may be times when a line of a code block contains more than \\, and in which case, you may
want the final double backslash to be aligned.

example 18 We explore the alignFinalDoubleBackSlash feature by using the file in Listing 91. Upon run-
N: 2020-03-21 ning the following commands

latexindent.pl tabular4.tex -o=+-default

latexindent.pl tabular4.tex -o=+-FDBS
-y="lookForAlignDelims:tabular:alignFinalDoubleBackSlash:1"

then we receive the respective outputs given in Listing 92 and Listing 93.

LISTING 91: tabular4.tex LISTING 92: tabular4-default.tex LISTING 93: tabular4-FDBS.tex
\begin{tabular}{lc} \begin{tabular}{lc} \begin{tabular}{lc}

Name & \shortstack{Hi \\ Lo} \\ Name & \shortstack{Hi \\ Lo} \\ Name & \shortstack{Hi \\ Lo} \\

Foo & Bar \\ Foo & Bar \\ Foo & Bar \\
\end{tabular} \end{tabular} \end{tabular}

We note that in:

* Listing 92, by default, the first set of double back slashes in the first row of the tabular
environment have been used for alignment;

* Listing 93, the final set of double backslashes in the first row have been used, because we
specified alignFinalDoubleBackSlash as 1. .

As of Version 3.0, the alignment routine works on mandatory and optional arguments within com-
mands, and also within ‘special’ code blocks (see specialBeginEnd on page 47).

example 19 Assuming that you have a command called \matrix and that it is populated within 1ookForAlignDelims
(which it is, by default), and that you run the command

latexindent.pl matrixl.tex

then the before-and-after results shown in Listings 94 and 95 are achievable by default.

LISTING 94: matrixl.tex LISTING 95: matrix1.tex default output
\matrix [\matrix [
1&2 &3\ 1&2¢&3\\
4454614 4 &5 &6l{
7&8 &9\\ 7 &8 &9 \\
10&11&12 10 & 11 & 12
} }

If you have blocks of code that you wish to align at the & character that are not wrapped in, for
example, \begin{tabular} ... \end{tabular}, then you can use the mark up illustrated in Listing 96;
the default output is shown in Listing 97. Note that the %* must be next to each other, but that there
can be any number of spaces (possibly none) between the * and \begin{tabular}; note also that

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.5 Aligning at delimiters 41

you may use any environment name that you have specified in lookForAlignDelims.

LISTING 96: align-block.tex LISTING 97: align-block.tex default output
%* \begin{tabular} %* \begin{tabular}
1&2&3&4\\ 1&2&3&4\\
5& &6& \\ 5& &6& \\
%* \end{tabular} %* \end{tabular}

With reference to Table 2 on page 54 and the, yet undiscussed, fields of noAdditionalIndent
and indentRules (see Section 5.8 on page 53), these comment-marked blocks are considered
environments.

5.5.3 lookForAlignDelims: the dontMeasure feature

N: 2020-03-21 The lookForAlignDelims field can, optionally, receive the dontMeasure option which can be spec-
ified in a few different ways.

example 20 We will explore this feature in relation to the code given in Listing 98; the default output is shown

in Listing 99.
LISTING 98: tabular-DM.tex LISTING 99: tabular-DM.tex default output
\begin{tabular}{cccc} \begin{tabular}{cccc}
aaaaaa¥bbbbb&ccc&dd\\ aaaaaa & bbbbb & ccc & dd \\
11&42&33&4\\ 11 & 2 & 33 &4 \\
5&66&7&8 5 & 66 &7 &8
\end{tabular} \end{tabular}

The dontMeasure field can be specified as largest, and in which case, the largest element will
not be measured; with reference to the YAML file given in Listing 101, we can run the command

latexindent.pl tabular-DM.tex -l=dontMeasurel.yaml

and receive the output given in Listing 100.

LISTING 100: tabular-DM.tex using LISTING 101: dontMeasurel.yaml
Listing 101 - -
lookForAlignDelims:

\begin{tabular}{cccc} tabular:

aaaaaa & bbbbb & ccc & dd \\ dontMeasure: largest

11 &2 & 33 &4 A\

5 &66&7 &8
\end{tabular}

We note that the largest column entries have not contributed to the measuring routine.

example 21 The dontMeasure field can also be specified in the form demonstrated in Listing 103. On running
the following commands,

latexindent.pl tabular-DM.tex -l=dontMeasure2.yaml

we receive the output in Listing 102.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.5 Aligning at delimiters

42

LISTING 102: tabular-DM.tex using LISTING 103: dontMeasure2.yaml
Listing 103 or Listing 105 ; ;
lookForAlignDelims:
\begin{tabular}{cccc} tabular:
aaaaaa & bbbbb & ccc & dd \\ dontMeasure:
11 &2 & 33 & 4 A\ - aaaaaa
5 &66&7 &8 - bbbbb
\end{tabular} - ccc
- dd

We note that in Listing 103 we have specified entries not to be measured, one entry per line.

example 22 The dontMeasure field can also be specified in the forms demonstrated in Listing 105 and List-
ing 106. Upon running the commands

latexindent.pl tabular-DM.tex -l=dontMeasure3.yaml

latexindent.pl tabular-DM.tex -l=dontMeasure4.yaml

we receive the output given in Listing 104

LISTING 104: tabular-DM.tex using LISTING 105: dontMeasure3.yaml LISTING 106: dontMeasure4.yaml
Listing 105 or Listing 105 - - - -
lookForAlignDelims: lookForAlignDelims:
\begin{tabular}{cccc} tabular: tabular:
aaaaaa & bbbbb & ccc & dd \\ dontMeasure: dontMeasure:
11&2 &33&4 N\ - -
5 466 &7 &8 this: aaaaaa regex: [a-z]
\end{tabular} applyTo: cell applyTo: cell
this: bbbbb
- ccc
- dd

We note that in:

* Listing 105 we have specified entries not to be measured, each one has a string in the this
field, together with an optional specification of applyTo as cell;

* Listing 106 we have specified entries not to be measured as a regular expression using the
regex field, together with an optional specification of applyTo as cell field, together with
an optional specification of applyTo as cell.

In both cases, the default value of applyTo is cell, and does not need to be specified.

example 23 We may also specify the applyTo field as row, a demonstration of which is given in Listing 108;
upon running

latexindent.pl tabular-DM.tex -l=dontMeasureb.yaml

we receive the output in Listing 107.

LISTING 107: tabular-DM.tex using LISTING 108: dontMeasureb.yaml
Listing 108 ; .
lookForAlignDelims:

\begin{tabular}{cccc} tabular:

aaaaaa & bbbbb & ccc & dd \\ dontMeasure:

11 &2 &334&4 A\ -

5 466 &7 &8 this: aaaaaa&bbbbb&ccc&dd\\
\end{tabular} applyTo: row

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.5 Aligning at delimiters 43

example 24 Finally, the applyTo field can be specified as row, together with a regex expression. For example,
for the settings given in Listing 110, upon running

latexindent.pl tabular-DM.tex -l=dontMeasure6.yaml

we receive the output in Listing 109.

LISTING 109: tabular-DM.tex using LISTING 110: dontMeasure6.yaml
Listing 110 - -
lookForAlignDelims:

\begin{tabular}{cccc} tabular:

aaaaaa & bbbbb & ccc & dd \\ dontMeasure:

11&2 &33&4 \\ =

5 &66&7 &8 regex: [a-z]
\end{tabular} applyTo: row

5.5.4 lookForAlignDelims: the delimiterRegEx and delimiterJustification feature
N: 2020-03-21 The delimiter alignment will, by default, align code blocks at the ampersand character. The be-
haviour is controlled by the delimiterRegEx field within lookForAlignDelims; the default value
is » (?<!\\) (&) ’, which can be read as: an ampersand, as long as it is not immediately preceded by a
backslash.

Warning!

Important: note the ‘capturing’ parenthesis in the (&) which are necessary; if you
intend to customise this field, then be sure to include them appropriately.

example 25 We demonstrate how to customise this with respect to the code given in Listing 111; the default
output from latexindent.pl is given in Listing 112.

LISTING 111: tabbing.tex LISTING 112: tabbing.tex default output
\begin{tabbing} \begin{tabbing}
aa \= Dbb \= cc \=dd \= ee \\ aa \= Dbb \= cc \=dd \= ee \\
\>2\> 1 \> 7 \> 3 \\ A\>2\> 1 \> 7 \> 3 \\
\>3 \> 2\>8\> 3 \\ \>3 \> 2\>8\> 3 \\
\>4 \>2 \\ \>4 \>2 \\
\end{tabbing} \end{tabbing}

Let’s say that we wish to align the code at either the \= or \>. We employ the settings given in
Listing 114 and run the command

latexindent.pl tabbing.tex -l=delimiterRegEx1l.yaml

to receive the output given in Listing 113.

LISTING 113: tabbing.tex using LISTING 114: delimiterRegEx1.yaml
Listing 114 . .
lookForAlignDelims:
\begin{tabbing} tabbing:
aa \= bb \= cc \= dd \= ee \\ delimiterRegEx: > (\\(7:=]>))’

\N>2 \>1 \>7 \>3 \\

\>3 \>2 \>8 \>3 \\

\>4 \>2 A\
\end{tabbing}

We note that:
* in Listing 113 the code has been aligned, as intended, at both the \= and \>;

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.5 Aligning at delimiters 44

* in Listing 114 we have heeded the warning and captured the expression using grouping
parenthesis, specified a backslash using \\ and said that it must be followed by either = or

>,

L]
example 26 We can explore delimiterRegEx a little further using the settings in Listing 116 and run the
command
latexindent.pl tabbing.tex -l=delimiterRegEx2.yaml
to receive the output given in Listing 115.
LISTING 115: tabbing.tex using LISTING 116: delimiterRegEx2.yaml
Listing 116 - -
lookForAlignDelims:
\begin{tabbing} tabbing:
aa \= bb \= cc \=dd \= ee \\ delimiterRegEx: ’(\\>)’
\>2\>1\>7\>3 \\
\>3\>2\>8\>3 \\
\> 4 \> 2 \\
\end{tabbing}
We note that only the \> have been aligned. -
example 27 Of course, the other lookForAlignDelims options can be used alongside the delimiterRegEx;
regardless of the type of delimiter being used (ampersand or anything else), the fields from
Listing 62 on page 34 remain the same; for example, using the settings in Listing 118, and running
latexindent.pl tabbing.tex -l=delimiterRegEx3.yaml
to receive the output given in Listing 117.
LISTING 117: tabbing.tex using LISTING 118: delimiterRegEx3.yaml
Listing 118 - -
lookForAlignDelims:
\begin{tabbing} tabbing:
aa\=bb\=cc\=dd\=ee \\ delimiterRegEx: > (\\(?:=]>))"
\>2 \>1 \>7 \>3 \\ spacesBeforeAmpersand: 0
\>3 \>2 \>8 \>3 \\ spacesAfterAmpersand: 0
\>4 \>2 AR
\end{tabbing}
L]
example 28 It is possible that delimiters specified within delimiterRegEx can be of different lengths. Con-
sider the file in Listing 119, and associated YAML in Listing 121. Note that the Listing 121 specifies
the option for the delimiter to be either # or \>, which are different lengths. Upon running the
command
latexindent.pl tabbingl.tex -l=delimiterRegEx4.yaml -o=+-mod4
we receive the output in Listing 120.
LISTING 119: tabbingl.tex LISTING 120: tabbingl-mod4.tex LISTING 121:
\begin{tabbing} \begin{tabbing} delimiterRegEx4.yaml
1#22\>333\\ 1 #22 \>333 \\ lookForAlignDelims:
xxx#aaa#yyyyy\\ xxx # aaa # yyyyy \\ tabbing:
CHHENN # # & \\

. delimiterRegEx: ’ (#|\\>)’
\end{tabbing} \end{tabbing}

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.5 Aligning at delimiters 45

example 29

5.5.5

N: 2021-12-13
example 30
5.5.6

N: 2023-05-01

example 31

You can set the delimiter justification as either 1left (default) or right, which will only have effect
when delimiters in the same column have different lengths. Using the settings in Listing 123 and
running the command

latexindent.pl tabbingl.tex -l=delimiterRegEx5.yaml -o=+-mod5

gives the output in Listing 122.

LISTING 122: tabbingl-mod5.tex LISTING 123: delimiterRegEx5.yaml

\begin{tabbing} lookForAlignDelims:

1 #22 \>333 \\ tabbing:

xxx # aaa # yyyyy \\ delimiterRegEx: > (#[\\>)’

. # #& AR delimiterJustification: right
\end{tabbing}

Note that in Listing 122 the second set of delimiters have been right aligned - it is quite subtle!

lookForAlignDelims: lookForChildCodeBlocks

There may be scenarios in which you would prefer to instruct latexindent.pl not to search for
child blocks; in which case setting 1ookForChildCodeBlocks to O may be a good way to proceed.

Using the settings from Listing 101 on page 41 on the file in Listing 124 and running the command

latexindent.pl tabular-DM-1.tex -l=dontMeasurel.yaml -o=+-modl

gives the output in Listing 125.

LISTING 124: tabular-DM-1.tex LISTING 125: tabular-DM-1-mod1.tex

\begin{tabular}{cc} \begin{tabular}{cc}
1&2\only<2->{\\ 1 & 2\only<2->{ \\
3&4%} 3 & 4}
\end{tabular} \end{tabular}

We can improve the output from Listing 125 by employing the settings in Listing 127

latexindent.pl tabular-DM-1.tex -l=dontMeasurela.yaml -o=+-modla

which gives the output in Listing 127.

LISTING 126: tabular-DM-1-modla.tex LISTING 127: dontMeasurela.yaml

\begin{tabular}{cc} lookForAlignDelims:

1 & 2\only<2->{ \\ tabular:

3 &4} dontMeasure: largest
\end{tabular} lookForChildCodeBlocks: 0

lookForAlignDelims: alignContentAfterDoubleBackSlash

You can instruct latexindent to align content after the double back slash. See also Section 6.3.2
on page 115.

We consider the file in Listing 128, and the default output given in Listing 129.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

239
240
241
242
243
244
245
246

N:

5.6 Indent after items, specials and headings

46

LISTING 128: tabularb.tex

LISTING 129: tabularb5-default.tex

\begin{tabular}{cc} \begin{tabular}{cc}
1 &2 1 &2
\\ aa & bbb \\ aa & bbb
\\ ccc&ddd \\ ccc&ddd
\end{tabular} \end{tabular}

Using the settings given in Listing 131 and running

latexindent.pl -s tabular5.tex -1 alignContentAfterDBS1 -o=+-modl

gives the output in Listing 130.

LISTING 130: tabular5-modl.tex

\begin{tabular}{cc}

\\
\\

LISTING 131: alignContentAfterDBS1.yaml

lookForAlignDelims:

1 &2 tabular:

aa & bbb

alignContentAfterDoubleBackSlash: 1

ccc & ddd

\end{tabular}

example 32

2023-05-01

many spaces to insert after the double backslash; the default is 1.

When using the alignContentAfterDoubleBackSlash feature, then you can also specify how

Starting from Listing 128 and using the the settings given in Listing 133

latexindent.pl -s tabular5.tex -1 alignContentAfterDBS2 -o=+-mod2

gives the output in Listing 132.

LISTING 132: tabular5-mod2.tex

\begin{tabular}{cc}

\\
\\

LISTING 133: alignContentAfterDBS2.yaml

lookForAlignDelims:

1 &2 tabular:

aa & bbb
ccc & ddd

\end{tabular}

5.6 Indent after items, specials and headings

indentAfterItems: (fields)

alignContentAfterDoubleBackSlash: 1
spacesAfterDoubleBackSlash: 3

The environment names specified in indentAfterItems tell latexindent.pl to look for \item
commands; if these switches are set to 1 then indentation will be performed so as indent the code

after each item. A demonstration is given in Listings 135 and 136

LISTING 134: indentAfterItems LISTING 135: itemsl.tex

indentAfterItems: \begin{itemize}

itemize:

1 \item some text here

itemizex*: 1 some more text here

enumerate: 1 some more text here
enumeratex*: 1 \item another item
description: 1 some more text here
description*: 1 \end{itemize}

list:

1

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

LISTING 136: itemsl.tex default
output

\begin{itemize}
\item some text here
some more text here
some more text here
\item another item
some more text here
\end{itemize}

5.6 Indent after items, specials and headings 47

itemNames: (fields)

If you have your own item commands (perhaps you prefer to use myitem, for example) then you
can put populate them in itemNames. For example, users of the exam document class might like to
add parts to indentAfterItems and part to itemNames to their user settings (see Section 4 on
page 23 for details of how to configure user settings, and Listing 33 on page 24

in particular .)

LISTING 137: itemNames

252 itemNames:
253 item: 1
254 myitem: 1

specialBeginEnd: (fields)

U: 2017-08-21

example 33

The fields specified in specialBeginEnd are, in their default state, focused on math mode begin
and end statements, but there is no requirement for this to be the case; Listing 138 shows the default
settings of specialBeginEnd.

LISTING 138: specialBeginEnd

258 specialBeginEnd:

259 displayMath:

260 begin: (7<!\\)\\\[# \[but *notx \\[

261 end: \\\] # \]

262 lookForThis: 1

263 inlineMath:

264 begin: (7<!I\$) (?<!\\)\$(?!\$) # $ but *not* \$ or $$
265 end: (7<!'\\)\$(?'\$) # $ but *not* \$ or $$
266 lookForThis: 1

267 displayMathTeX:

268 begin: \$\$ # $$

269 end: \$\$ # $$

270 lookForThis: 1

271 specialBeforeCommand: O

The field displayMath represents \[...\], inlineMath represents $...$ and displayMathTex
represents $$...$$. You can, of course, rename these in your own YAML files (see Section 4.2 on
page 24); indeed, you might like to set up your own special begin and end statements.

A demonstration of the before-and-after results are shown in Listings 139 and 140; explicitly,
running the command

latexindent.pl speciall.tex -o=+-default

gives the output given in Listing 140.

LISTING 139: speciall.tex before LISTING 140: speciall.tex default
The function f has formula ITLy oIS
\ [The function f has formula
f(x)=x"2. \[
\] f(x)=x"2.
If you like splitting dollars, \]
$ If you like splitting dollars,
g(x)=£f(2x) $
$ g(x)=£f(2x)
$

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.6 Indent after items, specials and headings 48

For each field, lookForThis is set to 1 by default, which means that latexindent.pl will look for
this pattern; you can tell latexindent.pl not to look for the pattern, by setting 1ookForThis to 0.

N: 2017-08-21 There are examples in which it is advantageous to search for specialBeginEnd fields before search-
ing for commands, and the specialBeforeCommand switch controls this behaviour.

example 34 For example, consider the file shown in Listing 141.

LISTING 141: speciallR.tex

\begin{equation}
\left[

\sqrt{

a+b

}

\right]
\end{equation}

Now consider the YAML files shown in Listings 142 and 143

LISTING 142: specialsLeftRight.yaml LISTING 143:
e Tl specialBeforeCommand.yaml
leftRightSquare: specialBeginEnd:
begin: ’\\left\[’ specialBeforeCommand: 1

end: ’\\right\]’
lookForThis: 1

Upon running the following commands

latexindent.pl speciallLR.tex -l=specialsLeftRight.yaml

latexindent.pl speciallR.tex -l=specialsLeftRight.yaml,specialBeforeCommand.yaml

we receive the respective outputs in Listings 144 and 145.

LISTING 144: specialLR.tex using LISTING 145: specialLR.tex using
Listing 142 Listings 142 and 143
\begin{equation} \begin{equation}
\left[\left[
\sqrt{ \sqrt{
a+b a+b
} }
\right] \right]
\end{equation} \end{equation}

Notice that in:
 Listing 144 the \left has been treated as a command, with one optional argument;

* Listing 145 the specialBeginEnd pattern in Listing 142 has been obeyed because List-
ing 143 specifies that the specialBeginEnd should be sought before commands.

N: 2018-04-27 You can,optionally, specify the middle field for anything that you specify in specialBeginEnd.

example 35 For example, let’s consider the .tex file in Listing 146.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.6 Indent after items, specials and headings 49

N: 2018-08-13

LISTING 146: special2.tex

\If
something O
\ElsIf
something 1
\E1lsIf
something 2
\E1lsIf
something 3
\Else
something 4
\EndIf

Upon saving the YAML settings in Listings 148 and 150 and running the commands

latexindent.pl special2.tex -l=middle

latexindent.pl special2.tex -l=middlel

then we obtain the output given in Listings 147 and 149.

LISTING 147: special2.tex using LISTING 148: middle.yaml
Listing 148 - -
specialBeginEnd:
\If If:
something 0 begin: ’\\If’
\ElsIf middle: ’\\ElsIf’
something 1 end: ’\\EndIf’
\ElsIf lookForThis: 1
something 2
\ElsIf
something 3
\Else
something 4
\EndIf
LISTING 149: special2.tex using LISTING 150: middlel.yaml
Listing 150 - -
specialBeginEnd:
\If If:
something O begin: ’\\If’
\E1lsIf middle:
something 1 - °\\ElsIf’
\ElsIf - ’\\Else’
something 2 end: ’\\EndIf’
\E1lsIf lookForThis: 1
something 3
\Else
something 4
\EndIf

We note that:
* in Listing 147 the bodies of each of the E1sif statements have been indented appropriately;
* the Else statement has not been indented appropriately in Listing 147 — read on!

» we have specified multiple settings for the middle field using the syntax demonstrated in
Listing 150 so that the body of the Else statement has been indented appropriately in

Listing 149. -

You may specify fields in specialBeginEnd to be treated as verbatim code blocks by changing
lookForThis to be verbatim.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.6 Indent after items, specials and headings

example 36 For example, beginning with the code in Listing 151 and the YAML in Listing 152, and running

latexindent.pl special3.tex -l=special-verbl

then the output in Listing 151 is unchanged.

LISTING 151: special3.tex and output LISTING 152: special-verbl.yaml
using Listing 152))
specialBeginEnd:

\[displayMath:

special code lookForThis: verbatim
blocks

can be
treated

as verbatim\]

We can combine the specialBeginEnd with the lookForAlignDelims feature.

example 37 We begin with the code in Listing 153.

LISTING 153: special-align.tex

\begin{tikzpicture}
\path (A) edge node {0,1,L}(B)
edge node {1,1,R} (C)
(B) edge [loop abovelnode {1,1,L}(B)
edge node {0,1,L}(C)
(C) edge node {0,1,L}(D)
edge [bend left]lnode {1,0,R}(E)
(D) edgel[loop below] node {1,1,R}(D)
edge node {0,1,R}(A)
(E) edgelbend left] node {1,0,R} (4);
\end{tikzpicture}

Let’s assume that our goal is to align the code at the edge and node text; we employ the code
given in Listing 155 and run the command

latexindent.pl special-align.tex -1 edge-nodel.yaml -o=+-modl

to receive the output in Listing 154.

LISTING 154: special-align.tex using Listing 155 LISTING 155: edge-nodel.yaml
\begin{tikzpicture} specialBeginEnd:
\path (A) edge node {0,1,L}(B) path:
edge node {1,1,R} (C) begin: ’\\path’
(B) edge [loop above] node {1,1,L}(B) end: ’;°
edge node {0,1,L}(C) lookForThis: 1
(C) edge node {0,1,L}(D) specialBeforeCommand: 1
edge [bend left] mnode {1,0,R}(E)
(D) edge [loop below] node {1,1,R}(D) lookForAlignDelims:
edge node {0,1,R}(A) path:
(E) edge [bend left] mnode {1,0,R} (A); delimiterRegEx: ’(edgelnode)’
\end{tikzpicture}

The output in Listing 154 is not quite ideal. We can tweak the settings within Listing 155 in order
to improve the output; in particular, we employ the code in Listing 157 and run the command

latexindent.pl special-align.tex -1 edge-node2.yaml -o=+-mod2

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.6 Indent after items, specials and headings 51
to receive the output in Listing 156.
LISTING 156: special-align.tex using Listing 157 LISTING 157: edge-node2.yaml
\begin{tikzpicture} specialBeginEnd:
\path (A) edge node {0,1,L} (B) path:
edge node {1,1,R} (C) begin: ’\\path’
(B) edge [loop above] node {1,1,L} (B) end: ’;°
edge node {0,1,L} (C) specialBeforeCommand: 1
(C) edge node {0,1,L} (D)
edge [bend left] mnode {1,0,R} (E) lookForAlignDelims:
(D) edge [loop below] node {1,1,R} (D) path:
edge node {0,1,R} () delimiterRegEx:
(E) edge [bend left] mnode {1,0,R} (4); > (edge Inode\h*\{ [0-9,A-Z]+\})’
\end{tikzpicture}
|
U: 2021-06-19 The lookForThis field can be considered optional; by default, it is assumed to be 1, which is demon-

strated in Listing 157.

indentAfterHeadings: (fields)

This field enables the user to specify indentation rules that take effect after heading commands such
as \part, \chapter, \section, \subsection*, or indeed any user-specified command written in this

LISTING 158: indentAfterHeadings

field.”
281 indentAfterHeadings:
282 part:
283 indentAfterThisHeading: 0O
284 level: 1
285 chapter:
286 indentAfterThisHeading: 0O
287 level: 2
288 section:
289 indentAfterThisHeading: 0O
290 level: 3

The default settings do not place indentation after a heading, but you can easily switch them on
by changing indentAfterThisHeading from O to 1. The level field tells latexindent.pl the
hierarchy of the heading structure in your document. You might, for example, like to have both

section and subsection set with level:

deep.

3 because you do not want the indentation to go too

You can add any of your own custom heading commands to this field, specifying the level as ap-
propriate. You can also specify your own indentation in indentRules (see Section 5.8 on page 53);
you will find the default indentRules contains chapter: " " which tells latexindent.pl simply
to use a space character after chapter headings (once indent is set to 1 for chapter).

example 38

For example, assuming that you have the code in Listing 160 saved into headings1.yaml, and

that you have the text from Listing 159 saved into headings1.tex.

5There is a slight difference in interface for this field when comparing Version 2.2 to Version 3.0; see appendix L on

page 173 for details.

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.6 Indent after items, specials and headings 52

LISTING 159: headingsl.tex LISTING 160: headings1.yaml
\subsection{subsection title} indentAfterHeadings:
subsection text subsection:
subsection text indentAfterThisHeading: 1
\paragraph{paragraph title} level: 1
paragraph text paragraph:
paragraph text indentAfterThisHeading: 1
\paragraph{paragraph title} level: 2

paragraph text
paragraph text

If you run the command

latexindent.pl headingsl.tex -l=headingsl.yaml

then you should receive the output given in Listing 161.

LISTING 161: headings1.tex using LISTING 162: headingsl.tex second
Listing 160 modification
\subsection{subsection title} \subsection{subsection title}
—subsection text —subsection text
—subsection text —subsection text
—\paragraph{paragraph title} \paragraph{paragraph title}
— . _paragraph text —_paragraph text
— . _paragraph text —_paragraph text
—\paragraph{paragraph title} \paragraph{paragraph title}
— . _paragraph text —paragraph text
— . _paragraph text —_paragraph text

Now say that you modify the YAML from Listing 160 so that the paragraph level is 1; after running

latexindent.pl headingsl.tex -l=headingsl.yaml

you should receive the code given in Listing 162; notice that the paragraph and subsection are at
the same indentation level.

maximumIndentation: (horizontal space)

N: 2017-08-21

example 39

You can control the maximum indentation given to your file by specifying the maximumIndentation
field as horizontal space (but not including tabs). This feature uses the Text: : Tabs module [46],
and is off by default.

For example, consider the example shown in Listing 163 together with the default output shown
in Listing 164.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.7 The code blocks known latexindent.pl

example 40

N: 2019-07-13

5.7

5.8

LISTING 163: mult-nested.tex

LISTING 164: mult-nested.tex
default output

\begin{one}
one \begin{one}
\begin{two} —_one
two — \begin{two}
\begin{three} — —_two
three — . \begin{three}
\begin{four} — . three
four — . \begin{four}
\end{four} - . four
\end{three} — . \end{four}
\end{two} ——_\end{three}
\end{one} — \end{two}
\end{one}
]
Now say that, for example, you have the max-indentationl.yaml from Listing 166 and that
you run the following command:
latexindent.pl mult-nested.tex -l=max-indentationl
You should receive the output shown in Listing 165.
LISTING 165: mult-nested.tex using LISTING 166: max-indentationl.yaml
Listing 166 ! .
maximumIndentation: " "
\begin{one}
_one
u\begin{two}
utwo
u\begin{three}
Lthree
u\begin{four}
yfour
u\end{four}
u\end{three}
u\end{two}
\end{one}
|

Comparing the output in Listings 164 and 165 we notice that the (default) tabs of indentation have
been replaced by a single space.

In general, when using the maximumIndentation feature, any leading tabs will be replaced by equiv-
alent spaces except, of course, those found in verbatimEnvironments (see Listing 38 on page 29)
or noIndentBlock (see Listing 44 on page 30).

The code blocks known latexindent.pl

As of Version 3.0, latexindent . pl processes documents using code blocks; each of these are shown
in Table 2.

We will refer to these code blocks in what follows. Note that the fine tuning of the definition of the
code blocks detailed in Table 2 is discussed in Section 9 on page 141.

noAdditionallndent and indentRules

latexindent.pl operates on files by looking for code blocks, as detailed in Section 5.7; for each
type of code block in Table 2 on the next page (which we will call a (thing) in what follows) it
searches YAML fields for information in the following order:

1. noAdditionalIndent for the name of the current (thing);

2. indentRules for the name of the current (thing);

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules 54

TABLE 2: Code blocks known to latexindent.pl

Code block characters allowed in name example
\begin{myenv}
. " A-ZE\0-9 \\ body of myenv
environments a-z *0-9_ \end{myenv}
[
. inherits name from parent (e.g environment t text
optionalArguments P (g opt arg tex
name)]
{
inherits name from parent (e.g environment mand arg text
mandatoryArguments
name) }
commands +a-zA-Z@*0-9_\: \mycommand {arguments)
keyEqualsValuesBracesBrackets a-zA-Z@\x0-9_\/ . \h\{\}:\#- my key/.style={arguments)
namedGroupingBracesBrackets 0-9\.a-zA-Z@*>< in(arguments)
{or [or, or \& or)
UnNamedGroupingBracesBrackets No name! or (or $ followed by
(arguments)
\ifnum...
. . @a-zA-Z but must begin with either 1
\fFlseFi a z .u ust beg eithe \else
\if of \eif e
\fi

\begin{enumerate}

. User specified, see Listings 134 and 137 on \item
items

page 46 and on page 47 \end{enumerate}
\ [
specialBeginEnd User specified, see Listing 138 on page 47 \] T
\chapter{title}
afterHeading User specified, see Listing 158 on page 51 \s ('e Ct ion{title}
\begin{filecontents}
filecontents User specified, see Listing 54 on page 32 \end{filecontents?}

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules 55

3. noAdditionalIndentGlobal for the type of the current (thing);
4. indentRulesGlobal for the type of the current (thing).

Using the above list, the first piece of information to be found will be used; failing that, the value
of defaultIndent is used. If information is found in multiple fields, the first one according to
the list above will be used; for example, if information is present in both indentRules and in
noAdditionalIndentGlobal, then the information from indentRules takes priority.

We now present details for the different type of code blocks known to latexindent.pl, as detailed
in Table 2 on the preceding page; for reference, there follows a list of the code blocks covered.

5.8.1 Environments and their arguments. 55
5.8.2 Environments withitems 62
5.8.3 Commands with arguments, 63
5.8.4 ifelseficodeblocks 65
5.8.5 specialBeginEnd codeblocks. 66
5.8.6 afterHeadingcodeblocks. 67
5.8.7 Theremainingcodeblocks 69
5.8.7.1 keyEqualsValuesBracesBrackets 69
5.8.7.2 namedGroupingBracesBrackets 70
5.8.7.3 UnNamedGroupingBracesBrackets 70
5.8.7.4 filecontents 71
5.8.8 Summary e 71

5.8.1 Environments and their arguments

There are a few different YAML switches governing the indentation of environments; let’s start with
the code shown in Listing 167.

LISTING 167: myenv.tex

\begin{outer}
\begin{myenv}
body of environment
body of environment
body of environment
\end{myenv}
\end{outer}

noAdditionalIndent: (fields)

example 41 If we do not wish myenv to receive any additional indentation, we have a few choices available
to us, as demonstrated in Listings 168 and 169.

LISTING 169:
myenv-noAdd2.yaml

LISTING 168:
myenv-noAddl.yaml

noAdditionallndent : noAdditionalIndent:
myenv: 1 nyenv:
yenv: body: 1

On applying either of the following commands,

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.8 noAdditionallndent and indentRules

example 42

example 43

latexindent.pl myenv.tex -1 myenv-noAddl.yaml

latexindent.pl myenv.tex -1 myenv-noAdd2.yaml

we obtain the output given in Listing 170; note in particular that the environment myenv has not
received any additional indentation, but that the outer environment has still received indenta-
tion.

LISTING 170: myenv.tex output (using either Listing 168 or Listing 169)

\begin{outer}
\begin{myenv}
body of environment
body of environment
body of environment
\end{myenv}
\end{outer}

Upon changing the YAML files to those shown in Listings 171 and 172, and running either

latexindent.pl myenv.tex -1 myenv-noAdd3.yaml

latexindent.pl myenv.tex -1 myenv-noAdd4.yaml

we obtain the output given in Listing 173.

LISTING 171: myenv-noAdd3.yaml LISTING 172: myenv-noAdd4.yaml
noAdditionalIndent: noAdditionalIndent:
myenv: O myenv:
body: 0O

LISTING 173: myenv.tex output (using either Listing 171 or Listing 172)

\begin{outer}
\begin{myenv}
body of environment
body of environment
body of environment
\end{myenv}
\end{outer}

Let’s now allow myenv to have some optional and mandatory arguments, as in Listing 174.

LISTING 174: myenv-args.tex

\begin{outer}
\begin{myenv} [%
optional argument text
optional argument text]Y
{ mandatory argument text
mandatory argument text}
body of environment
body of environment
body of environment
\end{myenv}
\end{outer}

Upon running

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules

57

example 44

latexindent.pl -l=myenv-noAddl.yaml myenv-args.tex

we obtain the output shown in Listing 175; note that the optional argument, mandatory argument
and body all have received no additional indent. This is because, when noAdditionalIndent
is specified in ‘scalar’ form (as in Listing 168), then all parts of the environment (body, optional
and mandatory arguments) are assumed to want no additional indent.

LISTING 175: myenv-args.tex using Listing 168

\begin{outer}
\begin{myenv} [/
optional argument text
optional argument textl’
{ mandatory argument text
mandatory argument text}
body of environment
body of environment
body of environment
\end{myenv}

\end{outer}

We may customise noAdditionalIndent for optional and mandatory arguments of the myenv
environment, as shown in, for example, Listings 176 and 177.

LISTING 176: myenv-noAdd5.yaml LISTING 177: myenv-noAdd6.yaml
noAdditionalIndent: noAdditionalIndent:
myenv: myenv:
body: 0O body: 0O
optionalArguments: 1 optionalArguments: O
mandatoryArguments: O mandatoryArguments: 1

Upon running

latexindent.pl myenv.tex -1 myenv-noAdd5.yaml

latexindent.pl myenv.tex -1 myenv-noAdd6.yaml

we obtain the respective outputs given in Listings 178 and 179. Note that in Listing 178 the text
for the optional argument has not received any additional indentation, and that in Listing 179
the mandatory argument has not received any additional indentation; in both cases, the body has
not received any additional indentation.

LISTING 178: myenv-args.tex using LISTING 179: myenv-args.tex using
Listing 176 Listing 177
\begin{outer} \begin{outer}
\begin{myenv} [/ \begin{myenv} [/,
optional argument text optional argument text
optional argument text]/ optional argument text],
{ mandatory argument text { mandatory argument text
mandatory argument text} mandatory argument text}
body of environment body of environment
body of environment body of environment
body of environment body of environment
\end{myenv} \end{myenv}
\end{outer} \end{outer}

indentRules: (fields)

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules

58

example 45

example 46

example 47

We may also specify indentation rules for environment code blocks using the indentRules field;

see, for example, Listings 180 and 181.

LISTING 180: myenv-rulesi.yaml

LISTING 181: myenv-rules2.yaml

indentRules: indentRules:
myenv: " " myenv :
body: " "

On applying either of the following commands,

latexindent.pl myenv.tex -1 myenv-rulesl.yaml

latexindent.pl myenv.tex -1 myenv-rules2.yaml

we obtain the output given in Listing 182; note in particular that the environment myenv has
received one tab (from the outer environment) plus three spaces from Listing 180 or 181.

LISTING 182: myenv.tex output (using either Listing 180 or Listing 181)

\begin{outer}
—\begin{myenv}

— uubodyof ienvironment
— uubodyof ienvironment
—uuubodyof ienvironment
— \end{myenv}
\end{outer}

If you specify a field in indentRules using anything other than horizontal space, it will be ignored.

Returning to the example in Listing 174 that contains optional and mandatory arguments. Upon

using Listing 180 as in

latexindent.pl myenv-args.tex -l=myenv-rulesl.yaml

we obtain the output in Listing 183; note that the body, optional argument and mandatory argu-

ment of myenv have all received the same customised indentation.

LISTING 183: myenv-args.tex using Listing 180

\begin{outer}

— \begin{myenv}[%

— Luuuuuoptional jargument, text

— Luuuuuoptional, argument text]’
— vuu{umandatory argument, text
___uuuuuumandatoryuargumentutext}
— uubodyof ienvironment
—uuubodyof jenvironment
—uuubodyof ienvironment

— \end{myenv}

\end{outer}

You can specify different indentation rules for the different features using, for example, List-

ings 184 and 185

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules 59

LISTING 184: myenv-rules3.yaml LISTING 185: myenv-rulesd.yaml

indentRules: indentRules:
myenv : . myenv:
bédy .on n bOdy L n
ti : 1A tg: "M mandatoryArguments:
optionalArguments: "\t\t .,

After running

latexindent.pl myenv-args.tex -1 myenv-rules3.yaml

latexindent.pl myenv-args.tex -1 myenv-rules4.yaml

then we obtain the respective outputs given in Listings 186 and 187.

LISTING 186: myenv-args.tex using LISTING 187: myenv-args.tex using

Listing 184 Listing 185

\begin{outer} \begin{outer}

— \begin{myenv}[% — \begin{myenv}[%

— Luuuoptional, argumenttext — . Luuoptional argument text

— Luuuoptional, argument, text]y, — — Luuoptional argument text]’

— yuu{umandatory argument text — vuufumandatory argument, text

— . uumandatory argument, text} — . uwmandatory argument text}

— uuubodyof ienvironment — uubodyof ienvironment

— uuubodyof ienvironment —uubodyof environment

—vuubodyof ienvironment —uuubodyof ienvironment

— \end{myenv} — \end{myenv}

\end{outer} \end{outer}

Note that in Listing 186, the optional argument has only received a single space of indentation,
while the mandatory argument has received the default (tab) indentation; the environment body
has received three spaces of indentation.

In Listing 187, the optional argument has received the default (tab) indentation, the manda-
tory argument has received two tabs of indentation, and the body has received three spaces of
indentation.

noAdditionalIndentGlobal: (fields)

Assuming that your environment name is not found within neither noAdditionalIndent nor indentRules,
the next place that latexindent.pl will look is noAdditionalIndentGlobal, and in particular for
the environments key (see Listing 188).

LISTING 188: noAdditionalIndentGlobal

339 noAdditionallndentGlobal:
340 environments: O # 0/1

example 48 Let’s say that you change the value of environments to 1 in Listing 188, and that you run

latexindent.pl myenv-args.tex -1 env-noAdditionalGlobal.yaml

latexindent.pl myenv-args.tex -1 myenv-rulesl.yaml,env-noAdditionalGlobal.yaml

The respective output from these two commands are in Listings 189 and 190; in Listing 189
notice that both environments receive no additional indentation but that the arguments of myenv
still do receive indentation. In Listing 190 notice that the outer environment does not receive
additional indentation, but because of the settings from myenv-rules1.yaml (in Listing 180 on
the previous page), the myenv environment still does receive indentation.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules

60

example 49

LISTING 189: myenv-args.tex using
Listing 188

LISTING 190: myenv-args.tex using
Listings 180 and 188

\begin{outer}
\begin{myenv}[%
optional argument text
optional argument text]’
{ mandatory argument text
mandatory argument textl}
body of environment
body of environment
body of environment

\begin{outer}
\begin{myenv} [/
optional argument text
optional argument text]’
{ mandatory argument text
mandatory argument text}
body of environment
body of environment
body of environment

\end{myenv} \end{myenv}
\end{outer} \end{outer}
In fact, noAdditionalIndentGlobal also contains keys that control the indentation of optional
and mandatory arguments; on referencing Listings 191 and 192
LISTING 191: LISTING 192:
opt-args—-no-add-glob.yaml mand-args-no-add-glob.yaml
noAdditionalIndentGlobal: noAdditionalIndentGlobal:
optionalArguments: 1 mandatoryArguments: 1
we may run the commands
latexindent.pl myenv-args.tex -local opt-args-no-add-glob.yaml
latexindent.pl myenv-args.tex -local mand-args-no-add-glob.yaml
which produces the respective outputs given in Listings 193 and 194. Notice that in Listing 193
the optional argument has not received any additional indentation, and in Listing 194 the manda-
tory argument has not received any additional indentation.
LISTING 193: myenv-args.tex using LISTING 194: myenv-args.tex using
Listing 191 Listing 192
\begin{outer} \begin{outer}
\begin{myenv}[% \begin{myenv}[%
optional argument text optional argument text
optional argument text]’ optional argument textl’
{ mandatory argument text { mandatory argument text
mandatory argument text} mandatory argument textl}
body of environment body of environment
body of environment body of environment
body of environment body of environment
\end{myenv} \end{myenv}
\end{outer} \end{outer}

indentRulesGlobal: (fields)

The final check that latexindent.pl will make is to look for indentRulesGlobal as detailed in

Listing 195.

LISTING 195: indentRulesGlobal
355 indentRulesGlobal:
356 environments: 0 # 0/h-space

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules

61

example 50

If you change the environments field to anything involving horizontal space, say " ", and then
run the following commands

latexindent.pl myenv-args.tex -1 env-indentRules.yaml

latexindent.pl myenv-args.tex -1 myenv-rulesl.yaml,env-indentRules.yaml

then the respective output is shown in Listings 196 and 197. Note that in Listing 196, both
the environment blocks have received a single-space indentation, whereas in Listing 197 the
outer environment has received single-space indentation (specified by indentRulesGlobal),

but myenv has received "
on page 58.

v, as specified by the particular indentRules for myenv Listing 180

LISTING 196: myenv-args.tex using

Listing 195

LISTING 197: myenv-args.tex using
Listings 180 and 195

\begin{outer}

u\begin{myenv} [%
uuuuuoptional jargument text
uuuLuoptional, argument text]’
uu{umandatoryuargumentutext
uuuuumandatory argument, text}
uubodyjof ,environment
uubodyof ienvironment
uubodyof jenvironment
u\end{myenv}

\end{outer}

\begin{outer}

u\begin{myenv} [/
uuuuuuuoptional jargument text
uuuLLLuoptional argument, text]’
uuuu{umandatoryuargumentutext
uuuuuuumandatoryargument, text}
uuuubodyof lenvironment
uuuubodyof ienvironment
uuuubodyof ienvironment
u\end{myenv}

\end{outer}

example 51
Listings 198 and 199

You can specify indentRulesGlobal for both optional and mandatory arguments, as detailed in

LISTING 198:

opt-args—indent-rules—-glob.yaml

LISTING 199:
mand-args—-indent-rules-glob.yaml

indentRulesGlobal:
optionalArguments: "\t\t"

Upon running the following commands

indentRulesGlobal:
mandatoryArguments: "\t\t"

latexindent.pl myenv-args.tex -local opt-args-indent-rules-glob.yaml

latexindent.pl myenv-args.tex -local mand-args-indent-rules-glob.yaml

we obtain the respective outputs in Listings 200 and 201. Note that the optional argument in
Listing 200 has received two tabs worth of indentation, while the mandatory argument has done

so in Listing 201.

LISTING 200: myenv-args.tex using
Listing 198

\begin{outer}

— \begin{myenv}[%

— . . . optional argument text
— . . optional argument textl’
— . { mandatory argument text

— . mandatory argument text}
—body of environment

— . body of environment

— . body of environment

— \end{myenv}

\end{outer}

LISTING 201: myenv-args.tex using
Listing 199

\begin{outer}

—\begin{myenv}[%

— . optional argument text

— . optional argument textlV

——{ mandatory argument text
mandatory argument textl}

—body of environment

— . body of environment

— . body of environment

— \end{myenv}

\end{outer}

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules 62

5.8.2

example 52

example 53

Environments with items

With reference to Listings 134 and 137 on page 46 and on page 47, some commands may contain
item commands; for the purposes of this discussion, we will use the code from Listing 135 on
page 46.

Assuming that you’ve populated itemNames with the name of your item, you can put the item name
into noAdditionalIndent as in Listing 202, although a more efficient approach may be to change
the relevant field in itemNames to O.

Similarly, you can customise the indentation that your item receives using indentRules, as in
Listing 203

LISTING 202: item-noAddl.yaml LISTING 203: item-rulesl.yaml
noAdditionalIndent: indentRules:
item: 1 item: " "

itemNames:
item: O

Upon running the following commands

latexindent.pl itemsl.tex -local item-noAddl.yaml

latexindent.pl itemsl.tex -local item-rulesl.yaml

the respective outputs are given in Listings 204 and 205; note that in Listing 204 that the text
after each item has not received any additional indentation, and in Listing 205, the text after
each item has received a single space of indentation, specified by Listing 203.

LISTING 204: itemsl.tex using LISTING 205: itemsl.tex using
Listing 202 Listing 203
\begin{itemize} \begin{itemize}
\item some text here —_\item some text_here
some more text here —__some_more text here
some more text here — . ,some_more text here
\item another item — \item another item
some more text here —__some_more text here
\end{itemize} \end{itemize}
Alternatively, you might like to populate noAdditionalIndentGlobal or indentRulesGlobal
using the items key, as demonstrated in Listings 206 and 207. Note that there is a need to
‘reset/remove’ the item field from indentRules in both cases (see the hierarchy description
given on page 53) as the item command is a member of indentRules by default.
LISTING 206: LISTING 207:
items-noAdditionalGlobal.yaml items-indentRulesGlobal.yaml
indentRules: indentRules:
item: O item: O
noAdditionalIndentGlobal: indentRulesGlobal:
items: 1 items: " "
Upon running the following commands,
latexindent.pl itemsl.tex -local items-noAdditionalGlobal.yaml
latexindent.pl itemsl.tex -local items-indentRulesGlobal.yaml
the respective outputs from Listings 204 and 205 are obtained; note, however, that all such item
commands without their own individual noAdditionalIndent or indentRules settings would
behave as in these listings.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules 63

5.8.3

example 54

example 55

Commands with arguments

Let’s begin with the simple example in Listing 208; when latexindent.pl operates on this file,
the default output is shown in Listing 209. ¢

LISTING 208: mycommand.tex LISTING 209: mycommand.tex default
\mycommand output
{ \my command
mand arg text {
mand arg text} mand arg text
L mand arg text}
opt arg text L
opt arg text opt arg text
] opt arg text
]

As in the environment-based case (see Listings 168 and 169 on page 55) we may specify noAdditionalIndent
either in ‘scalar’ form, or in ‘field’ form, as shown in Listings 210 and 211

LISTING 210: mycommand-noAdd1.yaml LISTING 211: mycommand-noAdd2.yaml
noAdditionalIndent: noAdditionalIndent:
mycommand: 1 mycommand :
body: 1

After running the following commands,

latexindent.pl mycommand.tex -1 mycommand-noAddl.yaml

latexindent.pl mycommand.tex -1 mycommand-noAdd2.yaml

we receive the respective output given in Listings 212 and 213

LISTING 212: mycommand.tex using LISTING 213: mycommand.tex using
Listing 210 Listing 211
\mycommand \mycommand
{ {
mand arg text mand arg text
mand arg text} mand arg text}
[[
opt arg text opt arg text
opt arg text opt arg text
]]

Note that in Listing 212 that the ‘body’, optional argument and mandatory argument have all
received no additional indentation, while in Listing 213, only the ‘body’ has not received any
additional indentation. We define the ‘body’ of a command as any lines following the command
name that include its optional or mandatory arguments.

9The command code blocks have quite a few subtleties, described in Section 5.9 on page 71.

We may further customise noAdditionalIndent for mycommand as we did in Listings 176 and 177
on page 57; explicit examples are given in Listings 214 and 215.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules

64

LISTING 214: mycommand-noAdd3.yaml LISTING 215: mycommand-noAdd4.yaml
noAdditionalIndent: noAdditionalIndent:
mycommand : mycommand :
body: O body: O
optionalArguments: 1 optionalArguments: O
mandatoryArguments: O mandatoryArguments: 1

After running the following commands,

latexindent.pl mycommand.tex -1 mycommand-noAdd3.yaml

latexindent.pl mycommand.tex -1 mycommand-noAdd4.yaml

we receive the respective output given in Listings 216 and 217.

LISTING 216: mycommand.tex using LISTING 217: mycommand.tex using
Listing 214 Listing 215
\mycommand \mycommand
{ {
mand arg text mand arg text
mand arg text} mand arg text}
L [
opt arg text opt arg text
opt arg text opt arg text
]]

example 56 Attentive readers will note that the body of mycommand in both Listings 216 and 217 has received
no additional indent, even though body is explicitly set to 0 in both Listings 214 and 215. This is
because, by default, noAdditionalIndentGlobal for commands is set to 1 by default; this can
be easily fixed as in Listings 218 and 219.

LISTING 218: mycommand-noAdd5.yaml LISTING 219: mycommand-noAdd6.yaml
noAdditionalIndent: noAdditionalIndent:
mycommand : mycommand :
body: 0O body: 0O
optionalArguments: 1 optionalArguments: O
mandatoryArguments: O mandatoryArguments: 1
noAdditionalIndentGlobal: noAdditionalIndentGlobal:
commands: O commands: O

After running the following commands,

latexindent.pl mycommand.tex -1 mycommand-noAdd5.yaml

latexindent.pl mycommand.tex -1 mycommand-noAdd6.yaml

we receive the respective output given in Listings 220 and 221.

LISTING 220: mycommand.tex using LISTING 221: mycommand.tex using
Listing 218 Listing 219
\mycommand \mycommand
{ {
mand arg text mand arg text
mand arg text} mand arg text}
[[
opt arg text opt arg text
opt arg text opt arg text
]]

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules 65

Both indentRules and indentRulesGlobal can be adjusted as they were for environment code
blocks, as in Listings 184 and 185 on page 59 and Listings 195, 198 and 199 on pages 60-61.

5.8.4 ifelsefi code blocks

example 57 Let’s use the simple example shown in Listing 222; when latexindent.pl operates on this file,
the output as in Listing 223; note that the body of each of the \if statements have been indented,
and that the \else statement has been accounted for correctly.

LISTING 222: ifelsefil.tex LISTING 223: ifelsefil.tex default
\ifodd\radius output
\ifnum\radius<14 \ifodd\radius
\pgfmathparse{100-(\radius)*4}; \ifnum\radius<14
\else \pgfmathparse{100- (\radius) *4};
\pgfmathparse{200-(\radius)*3}; \else
\Ei\fi \pgfmathparse{200- (\radius) *3};

\fi\fi

It is recommended to specify noAdditionalIndent and indentRules in the ‘scalar’ form only
for these type of code blocks, although the ‘field’ form would work, assuming that body was
specified. Examples are shown in Listings 224 and 225.

LISTING 224: ifnum-noAdd.yaml LISTING 225: ifnum-indent-rules.yaml
noAdditionalIndent: indentRules:
ifnum: 1 ifnum: " "

After running the following commands,

latexindent.pl ifelsefil.tex -local ifnum-noAdd.yaml

latexindent.pl ifelsefil.tex -1 ifnum-indent-rules.yaml

we receive the respective output given in Listings 226 and 227; note that in Listing 226, the
ifnum code block has not received any additional indentation, while in Listing 227, the ifnum
code block has received one tab and two spaces of indentation.

LISTING 226: ifelsefil.tex using LISTING 227: ifelsefil.tex using
Listing 224 Listing 225
\ifodd\radius \ifodd\radius

\ifnum\radius<14 — \ifnum\radius<14
\pgfmathparse{100-(\radius) *4}; — vu\pgfmathparse{100- (\radius) *4};
\else — \else

\pgfmathparse{200-(\radius) *3}; — vu\pgfmathparse{200- (\radius) *3};
\fi\fi — \fi\fi

example 58 We may specifynoAdditionalIndentGlobal and indentRulesGlobal as in Listings 228 and 229.

LISTING 228: LISTING 229:
ifelsefi-noAdd-glob.yaml ifelsefi-indent-rules—global.yaml
noAdditionalIndentGlobal: indentRulesGlobal:
ifElseFi: 1 ifElseFi: " "

Upon running the following commands

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules 66

latexindent.pl ifelsefil.tex -local ifelsefi-noAdd-glob.yaml

latexindent.pl ifelsefil.tex -1 ifelsefi-indent-rules-global.yaml

we receive the outputs in Listings 230 and 231; notice that in Listing 230 neither of the ifelsefi
code blocks have received indentation, while in Listing 231 both code blocks have received a
single space of indentation.

LISTING 230: ifelsefil.tex using LISTING 231: ifelsefil.tex using
Listing 228 Listing 229
\ifodd\radius \ifodd\radius
\ifnum\radius<14 u\ifnum\radius<14
\pgfmathparse{100- (\radius)*4}; uu\pgfmathparse{100-(\radius)*4};
\else u\else
\pgfmathparse{200- (\radius) *3}; uu\pgfmathparse{200-(\radius)*3};
\fi\fi U\Ei\fi
example 59 We can further explore the treatment of ifElseFi code blocks in Listing 232, and the associ-
U: 2018-04-27 ated default output given in Listing 233; note, in particular, that the bodies of each of the ‘or
statements’ have been indented.
LISTING 232: ifelsefi2.tex LISTING 233: ifelsefi2.tex default
\ifcase#l output
zerol, \ifcase#1
\or zero,
one, \or
\or one’,
twol \or
\or two’,
three/, \or
\else three,
default \else
\fi default
\fi

5.8.5 specialBeginEnd code blocks

Let’s use the example from Listing 139 on page 47 which has default output shown in Listing 140
on page 47.

example 60 It is recommended to specify noAdditionalIndent and indentRules in the ‘scalar’ form for
these type of code blocks, although the ‘field’ form would work, assuming that body was specified.
Examples are shown in Listings 234 and 235.

LISTING 234: displayMath-noAdd.yaml LISTING 235:
noAdditionalTndent : displayMath-indent-rules.yaml
displayMath: 1 indentRules:

displayMath: "\t\t\t"

After running the following commands,

latexindent.pl speciall.tex -local displayMath-noAdd.yaml

latexindent.pl speciall.tex -1 displayMath-indent-rules.yaml

we receive the respective output given in Listings 236 and 237; note that in Listing 236, the
displayMath code block has not received any additional indentation, while in Listing 237, the
displayMath code block has received three tabs worth of indentation.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules

67

example 61

5.8.6

example 62

LISTING 236: speciall.tex using

LISTING 237: speciall.tex using

Listing 234 Listing 235

The function f has formula The function f has formula

\ [\ [

f(x)=x"2. — f(x)=x"2.

\] \]

If you like splitting dollars, If you like splitting dollars,

$ $

g(x)=£(2x) —g(x)=f(2x)
$ $
]

We may specifynoAdditionalIndentGlobal and indentRulesGlobal as in Listings 238 and 239.
LISTING 238: special-noAdd-glob.yaml LISTING 239:

noAdditional TndentGlobal: special-indent-rules—-global.yaml

specialBeginEnd: 1 indentRulesGlobal:
specialBeginEnd: " "
Upon running the following commands
latexindent.pl speciall.tex -local special-noAdd-glob.yaml
latexindent.pl speciall.tex -1 special-indent-rules-global.yaml
we receive the outputs in Listings 240 and 241; notice that in Listing 240 neither of the special
code blocks have received indentation, while in Listing 241 both code blocks have received a
single space of indentation.
LISTING 240: speciall.tex using LISTING 241: speciall.tex using
Listing 238 Listing 239

The function f has formula The, function $£f$_has formula

\[\ [

f(x)=x"2. L (x)=x"2.

\] \]

If you like splitting dollars, If you,like splitting dollars,

$ $

g(x)=£(2x) ug (x)=£f(2x)

$ $

afterHeading code blocks

Let’s use the example Listing 242 for demonstration throughout this Section. As discussed on page 52,
by default 1atexindent.pl will not add indentation after headings.

LISTING 242: headings2.tex

\paragraph{paragraph
title}

paragraph text
paragraph text

On using the YAML file in Listing 244 by running the command

latexindent.pl headings2.tex -1 headings3.yaml

we obtain the output in Listing 243. Note that the argument of paragraph has received (default)
indentation, and that the body after the heading statement has received (default) indentation.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules 68

LISTING 243: headings?2.tex using LISTING 244: headings3.yaml
Listing 244))
indentAfterHeadings:
\paragraph{paragraph paragraph:
title} indentAfterThisHeading: 1
paragraph text level: 1

paragraph text

If we specify noAdditionalIndent as in Listing 246 and run the command

latexindent.pl headings2.tex -1 headings4.yaml

then we receive the output in Listing 245. Note that the arguments and the body after the heading
of paragraph has received no additional indentation, because we have specified noAdditionalIndent
in scalar form.

LISTING 245: headings2.tex using LISTING 246: headings4.yaml
Listing 246) -
indentAfterHeadings:
\paragraph{paragraph paragraph:
title} indentAfterThisHeading: 1
paragraph text level: 1
paragraph text noAdditionalIndent:
paragraph: 1
]
example 63 Similarly, if we specify indentRules as in Listing 248 and run analogous commands to those
above, we receive the output in Listing 247; note that the body, mandatory argument and content
after the heading of paragraph have all received three tabs worth of indentation.
LISTING 247: headings?2.tex using Listing 248 LISTING 248: headingsb.yaml
\paragraph{paragraph indentAfterHeadings:
title} paragraph:
————paragraph text indentAfterThisHeading: 1
— . paragraph text level: 1
indentRules:
paragraph: "\t\t\t"
]
example 64 We may, instead, specify noAdditionalIndent in ‘field’ form, as in Listing 250 which gives the
output in Listing 249.
LISTING 249: headings?2.tex using LISTING 250: headings6.yaml
Listing 250 - -
indentAfterHeadings:
\paragraph{paragraph paragraph:
title} indentAfterThisHeading: 1
paragraph text level: 1
paragraph text noAdditionalIndent:
paragraph:
body: 0O
mandatoryArguments: O
afterHeading: 1
]

example 65 Analogously, we may specify indentRules as in Listing 252 which gives the output in Listing 251;
note that mandatory argument text has only received a single space of indentation, while the body
after the heading has received three tabs worth of indentation.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.8 noAdditionallndent and indentRules
LISTING 251: headings2.tex using LISTING 252: headings7.yaml
Listing 252 - -
indentAfterHeadings:
\paragraph{paragraph paragraph:
— . title} indentAfterThisHeading: 1
— . paragraph text level: 1
— . paragraph text indentRules:
paragraph:
mandatoryArguments: " "
afterHeading: "\t\t\t"
example 66 Finally, let’s consider noAdditionalIndentGlobal and indentRulesGlobal shown in Listings 254
and 256 respectively, with respective output in Listings 253 and 255. Note that in Listing 254
the mandatory argument of paragraph has received a (default) tab’s worth of indentation, while
the body after the heading has received no additional indentation. Similarly, in Listing 255, the
argument has received both a (default) tab plus two spaces of indentation (from the global rule
specified in Listing 256), and the remaining body after paragraph has received just two spaces

of indentation.

LISTING 253: headings2.tex using
Listing 254

LISTING 254: headings8.yaml

\paragraph{paragraph
title}

paragraph text

paragraph text

indentAfterHeadings:
paragraph:
indentAfterThisHeading: 1
level: 1
noAdditionalIndentGlobal:
afterHeading: 1

LISTING 255: headings?2.tex using

LISTING 256: headings9.yaml

Listing 256 - -
indentAfterHeadings:
\paragraph{paragraph paragraph:
— _utitlel} indentAfterThisHeading: 1
uuparagraph text level: 1
uuparagraph, text indentRulesGlobal:
afterHeading: " "
5.8.7 The remaining code blocks
Referencing the different types of code blocks in Table 2 on page 54, we have a few code blocks
yet to cover; these are very similar to the commands code block type covered comprehensively in
Section 5.8.3 on page 63, but a small discussion defining these remaining code blocks is necessary.
5.8.7.1 keyEqualsValuesBracesBrackets

latexindent.pl defines this type of code block by the following criteria:

* it must immediately follow either { OR [OR , with comments and blank lines allowed.

¢ then it has a name made up of the characters detailed in Table 2 on page 54;

e then an = symbol;

* then at least one set of curly braces or square brackets (comments and line breaks allowed

throughout).
See the keyEqualsValuesBracesBrackets: follow and keyEqualsValuesBracesBrackets:
N: 2019-07-13 name fields of the fine tuning section in Listing 556 on page 141
example 67 An example is shown in Listing 257, with the default output given in Listing 258.

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.8 noAdditionallndent and indentRules 70

LISTING 257: pgfkeysl.tex LISTING 258: pgfkeysl.tex default
\pgfkeys{/tikz/.cd, CITieL
start coordinate/.initial={0, \pgfkeys{/tikz/.cd,
\vertfactor}, __start coordinate/.initial={0,
} — . \vertfactor},
}

In Listing 258, note that the maximum indentation is three tabs, and these come from:
* the \pgfkeys command’s mandatory argument;
* the start coordinate/.initial key’s mandatory argument;

* the start coordinate/.initial key’s body, which is defined as any lines following the
name of the key that include its arguments. This is the part controlled by the body field for
noAdditionalIndent and friends from page 53.

5.8.7.2 namedGroupingBracesBrackets

This type of code block is mostly motivated by tikz-based code; we define this code block as follows:

* it must immediately follow either horizontal space OR one or more line breaks OR { OR [OR $
OR) OR (

* the name may contain the characters detailed in Table 2 on page 54;

* then at least one set of curly braces or square brackets (comments and line breaks allowed
throughout).

See the NamedGroupingBracesBrackets: followandNamedGroupingBracesBrackets: name
N: 2019-07-13 fields of the fine tuning section in Listing 556 on page 141

example 68 A simple example is given in Listing 259, with default output in Listing 260.

LISTING 259: childl.tex LISTING 260: child1l.tex default output
\coordinate \coordinate
child[grow=down]{ child[grow=down]{
edge from parent [antiparticle] — . edge from parent [antiparticle]
node [above=3pt] {C} — . node [above=3pt] {C}
} —}

In particular, latexindent . pl considers child, parent and node all to be namedGroupingBracesBrackets®.
Referencing Listing 260, note that the maximum indentation is two tabs, and these come from:

* the child’s mandatory argument;

* the child’s body, which is defined as any lines following the name of the namedGroupingBracesBrackets
that include its arguments. This is the part controlled by the body field fornoAdditionalIndent
and friends from page 53.

%You may like to verify this by using the -tt option and checking indent .1log!

5.8.7.3 UnNamedGroupingBracesBrackets

occur in a variety of situations; specifically, we define this type of code block as satisfying the follow-
ing criteria:

* it must immediately follow either { OR [OR , OR & OR) OR (OR $;

* then at least one set of curly braces or square brackets (comments and line breaks allowed
throughout).

See the UnNamedGroupingBracesBrackets: follow field of the fine tuning section in Listing 556
N: 2019-07-13 on page 141

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.9 Commands and the strings between their arguments

71

example 69

5.8.7.4

5.8.8

An example is shown in Listing 261 with default output give in Listing 262.

LISTING 261: psforeachl.tex

LISTING 262: psforeachl.tex default

\psforeach{\row}{/

{3,2.8,2.7,3,3.1}},%
.8,1,1

3 3 ’2,233}3%

output

\psforeach{\row}{%

—{

- {3,2.8,2.7,3,3.1}},%
—{2.8,1,1.2,2,3},%

}

Referencing Listing 262, there are three sets of unnamed braces. Note also that the maximum
value of indentation is three tabs, and these come from:

* the \psforeach command’s mandatory argument;

* the first un-named braces mandatory argument;

* the first un-named braces body, which we define as any lines following the first open-
ing { or [that defined the code block. This is the part controlled by the body field for
noAdditionalIndent and friends from page 53.

Users wishing to customise the mandatory and/or optional arguments on a per-name basis for the
UnNamedGroupingBracesBrackets should use always-un-named.

filecontents

code blocks behave just as environments, except that neither arguments nor items are sought.

Summary

Having considered all of the different types of code blocks, the functions of the fields given in List-

ings 263 and 264 should now make sense.

LISTING 263: noAdditionalIndentGlobal

339 noAdditionalIndentGlobal:

340
341
342
343
344
345
346
347
348
349
350
351

environments:
commands: 1

optionalArguments: O
mandatoryArguments: O

ifElseFi: O
items: O

keyEqualsValuesBracesBrackets: 0
namedGroupingBracesBrackets: 0
UnNamedGroupingBracesBrackets: 0
specialBeginEnd: O

afterHeading:
filecontents:

5.9

0 0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

0
0

H OH H H H HHEHHHEHRH

355
356

357

358

359

360

361

362

363

364

365

366

367

LISTING 264: indentRulesGlobal

indentRulesGlobal:
environments: O #
0/h-space
commands: O #
0/h-space
optionalArguments: O #
0/h-space
mandatoryArguments: O #
0/h-space
ifElseFi: O #
0/h-space
items: O #
0/h-space
keyEqualsValuesBracesBrackets: 0 #
0/h-space
namedGroupingBracesBrackets: 0 #
0/h-space
UnNamedGroupingBracesBrackets: 0 #
0/h-space
specialBeginEnd: O #
0/h-space
afterHeading: O #
0/h-space
filecontents: O #
0/h-space

Commands and the strings between their arguments

The command code blocks will always look for optional (square bracketed) and mandatory (curly
braced) arguments which can contain comments, line breaks and ‘beamer’ commands <. *?> between

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

5.9 Commands and the strings between their arguments

72

U: 2018-04-27

them. There are switches that can allow them to contain other strings, which we discuss next.

commandCodeBlocks: (fields)

The commandCodeBlocks field contains a few switches detailed in Listing 265.

LISTING 265: commandCodeBlocks

370 commandCodeBlocks:

371 roundParenthesesAllowed: 1
372 stringsAllowedBetweenArguments:
373 =

374 amalgamate: 1

375 - node

376 - at

377 - to

378 - decoration

379 - \+\+

380 = \=\=

381 - \#\#\d

382 commandNameSpecial:

383 =

384 amalgamate: 1

385 - ’@ifnextchar\[’

roundParenthesesAllowed: 0|1

example 70 The need for this field was mostly motivated by commands found in code used to generate images

in PSTricks and tikz; for example, let’s consider the code given in Listing 266.

LISTING 266: pstricksl.tex LISTING 267: pstricksl default output
\defFunction[algebraic]{torus}(u,v) \defFunction[algebraic]{torus}(u,v)
{(2+cos(u)) *xcos (v+\Pi)} {(2+cos(u))*cos(v+\Pi)}
{(2+cos(u))*sin(v+\Pi)} {(2+cos(u))*sin(v+\Pi)}

{sin(w)} {sin(w)}

Notice that the \defFunction command has an optional argument, followed by a mandatory
argument, followed by a round-parenthesis argument, (u, v).

By default, because roundParenthesesAllowed is set to 1 in Listing 265, then latexindent.pl
will allow round parenthesis between optional and mandatory arguments. In the case of the code
in Listing 266, latexindent.pl finds all the arguments of defFunction, both before and after

(u,v).

The default output from running latexindent.pl on Listing 266 actually leaves it unchanged
(see Listing 267); note in particular, this is because of noAdditionalIndentGlobal as discussed
on page 64.

Upon using the YAML settings in Listing 269, and running the command

latexindent.pl pstricksl.tex -1 noRoundParentheses.yaml

we obtain the output given in Listing 268.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.9 Commands and the strings between their arguments

example 71

LISTING 268: pstricksl.tex using LISTING 269:
Listing 269 noRoundParentheses.yaml
\defFunction[algebraic]{torus}(u,v) commandCodeBlocks:
{(2+cos(u)) *cos (v+\Pi)} roundParenthesesAllowed: O
{(2+cos(u))*sin(v+\Pi)}
{sin(w}

Notice the difference between Listing 267 and Listing 268; in particular, in Listing 268, because
round parentheses are not allowed, latexindent.pl finds that the \defFunction command fin-
ishes at the first opening round parenthesis. As such, the remaining braced, mandatory, argu-
ments are found to be UnNamedGroupingBracesBrackets (see Table 2 on page 54) which, by
default, assume indentation for their body, and hence the tabbed indentation in Listing 268.

Let’s explore this using the YAML given in Listing 271 and run the command

latexindent.pl pstricksl.tex -1 defFunction.yaml

then the output is as in Listing 270.

LISTING 270: pstricksl.tex using LISTING 271: defFunction.yaml
Listing 271)
indentRules:
\defFunction[algebraic]{torus}(u,v) defFunction:
ul(2+cos(u))*cos (v+\Pi)} body: " "
u{(2+cos(u)) *sin(v+\Pi)}
u{sin(w}

Notice in Listing 270 that the body of the defFunction command i.e, the subsequent lines contain-
ing arguments after the command name, have received the single space of indentation specified
by Listing 271.

stringsAllowedBetweenArguments: (fields)

example 72

tikz users may well specify code such as that given in Listing 272; processing this code using
latexindent.pl gives the default output in Listing 273.

LISTING 272: tikz-nodel.tex LISTING 273: tikz-nodel default output
\draw[thin] \draw[thin]
(c) tolin=110,0ut=-90] (¢) tol[in=110,0ut=-90]
++(0,-0.5cm) ++(0,-0.5cm)
node [below,align=left,scale=0.5] node [below,align=left,scale=0.5]

With reference to Listing 265 on the preceding page, we see that the strings
to, node, ++

are all allowed to appear between arguments; importantly, you are encouraged to add further
names to this field as necessary. This means that when latexindent.pl processes Listing 272,
it consumes:

* the optional argument [thin]

* the round-bracketed argument (c) because roundParenthesesAllowed is 1 by default
* the string to (specified in stringsAllowedBetweenArguments)

* the optional argument [in=110, out=-90]

* the string ++ (specified in stringsAllowedBetweenArguments)

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

73

5.9 Commands and the strings between their arguments 74

* the round-bracketed argument (0,-0.5cm) because roundParenthesesAllowed is 1 by
default

* the string node (specified in stringsAllowedBetweenArguments)

* the optional argument [below,align=left,scale=0.5]

(]
example 73 We can explore this further, for example using Listing 275 and running the command
latexindent.pl tikz-nodel.tex -1 draw.yaml
we receive the output given in Listing 274.
LISTING 274: tikz-nodel.tex using LISTING 275: draw.yaml
Listing 275)
indentRules:
\draw [thin] draw:
uu(e)utoin=110, out=-90] body: " "
Lut++(0,-0.5cm)
uunode [below,align=left,scale=0.5]
Notice that each line after the \draw command (its ‘body’) in Listing 274 has been given the
appropriate two-spaces worth of indentation specified in Listing 275.
Let’s compare this with the output from using the YAML settings in Listing 277, and running the
command
latexindent.pl tikz-nodel.tex -1 no-strings.yaml
given in Listing 276.
LISTING 276: tikz-nodel.tex using LISTING 277: no-strings.yaml
Listing 277
commandCodeBlocks:
\draw [thin]
(c) tol[in=110,0out=-90] stringsAllowedBetweenArguments:
++(0,-0.5cm) 0
node [below,align=left,scale=0.5]
In this case, latexindent.pl sees that:
* the \draw command finishes after the (c), as stringsAllowedBetweenArguments has
been set to O so there are no strings allowed between arguments;
* it finds a namedGroupingBracesBrackets called to (see Table 2 on page 54) with argu-
ment [in=110, out=-90]
* it finds another namedGroupingBracesBrackets but this time called node with argument
[below,align=left,scale=0.5] -
U: 2018-04-27 Referencing Listing 265 on page 72, , we see that the first field in the stringsAllowedBetweenArguments

is amalgamate and is set to 1 by default. This is for users who wish to specify their settings in mul-
tiple YAML files. For example, by using the settings in either Listing 278 orListing 279 is equivalent
to using the settings in Listing 280.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.9 Commands and the strings between their arguments 75

LISTING 278: amalgamate-demo.yaml LISTING 279: LISTING 280:
S amalgamate-demol.yaml amalgamate-demo2.yaml
commandCodeBlocks: commandCodeBlocks:
stringsAllowedBetweenArguments:
- ’more’ stringsAllowedBetweenArguments: stringsAllowedBetweenArguments:
- ’strings’ - -
= ’here’ amalgamate: 1 amalgamate: 1
- ’more’ - ’node’
- ’strings’ - ’at’
= lnErag” - ’to’
- ’decoration’
= 7\+\+;
= 9 __)
- ’more’
- ’strings’
= lnEpeg?

We specify amalgamate to be set to 0 and in which case any settings loaded prior to those specified,
including the default, will be overwritten. For example, using the settings in Listing 281 means that
only the strings specified in that field will be used.

LISTING 281: amalgamate-demo3.yaml

commandCodeBlocks:
stringsAllowedBetweenArguments:

amalgamate: O
- ’further’
- ’settings’

It is important to note that the amalgamate field, if used, must be in the first field, and specified
using the syntax given in Listings 279 to 281.

example 74 We may explore this feature further with the code in Listing 282, whose default output is given

in Listing 283.
LISTING 282: for-each.tex LISTING 283: for-each default
\foreach \x/\y in {0/1,1/2}{ output
body of foreach \foreach \x/\y in {0/1,1/2}{
} body of foreach
}
Let’s compare this with the output from using the YAML settings in Listing 285, and running the
command
given in Listing 284.
LISTING 284: for-each.tex using LISTING 285: foreach.yaml
Listing 285
commandCodeBlocks:
\foreach \x/\y in {0/1,1/2}{
body of foreach stringsAllowedBetweenArguments:
} -
amalgamate: O
- \\x\/\\y’
P—4 ln J

You might like to compare the output given in Listing 283 and Listing 284. Note,in particular, in

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

5.9 Commands and the strings between their arguments 76

Listing 283 that the foreach command has not included any of the subsequent strings, and that
the braces have been treated as a namedGroupingBracesBrackets. In Listing 284 the foreach
command has been allowed to have \x/\y and in between arguments because of the settings
given in Listing 285. -

commandNameSpecial: (fields)

U: 2018-04-27

example 75

There are some special command names that do not fit within the names recognised by 1latexindent . pl,
the first one of which is \@ifnextchar[. From the perspective of latexindent.pl, the whole of the
text \@ifnextchar[is a command, because it is immediately followed by sets of mandatory argu-
ments. However, without the commandNameSpecial field, latexindent.pl would not be able to
label it as such, because the [is, necessarily, not matched by a closing].

For example, consider the sample file in Listing 286, which has default output in Listing 287.

LISTING 286: ifnextchar.tex LISTING 287: ifnextchar.tex
\parbox{ default output
\@ifnextchar[{arg 1}{arg 2} \parbox{

} \@ifnextchar[{arg 1}{arg 2}

}

Notice that in Listing 287 the parbox command has been able to indent its body, because latexindent .pl
has successfully found the command \@ifnextchar first; the pattern-matching of latexindent.pl
starts from the inner most <thing> and works outwards, discussed in more detail on page 124.

For demonstration, we can compare this output with that given in Listing 288 in which the settings
from Listing 289 have dictated that no special command names, including the \@ifnextchar[
command, should not be searched for specially; as such, the parbox command has been unable
to indent its body successfully, because the \@ifnextchar [command has not been found.

LISTING 288: ifnextchar.tex using LISTING 289: no-ifnextchar.yaml
Listing 289
commandCodeBlocks:
\parbox{ commandNameSpecial: 0
\@ifnextchar[{arg 1}{arg 2}
}

The amalgamate field can be used for commandNameSpecial, just as for stringsAllowedBetweenArguments.
The same condition holds as stated previously, which we state again here:

Warning!

Itis important to note that the amalgamate field, if used, in either commandNameSpecial
or stringsAllowedBetweenArguments must be in the first field, and specified using
the syntax given in Listings 279 to 281.

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

SECTION 6

The -m (modifylinebreaks) switch

All features described in this section will only be relevant if the -m switch is used.

6.1

6.2

6.3

Text WEaPPING . « . o o o o e e e e e e e e e e e e e e e e e e e 79
6.1.1 TeXt Wrap: OVEIVIEW . .+« v v v v it e e e e et e e e e e e e e et e e e et 79
6.1.2 Text wrap: simpleexamples 80
6.1.3 Text wrap: blocksFollowexamples 81
6.1.4 Text wrap: blocksBeginWith examples 85
6.1.5 Text wrap: blocksEndBefore examples 87
6.1.6 Text wrap: trailing commentsandspaces 88
6.1.7 Text wrap: when before/after 89
6.1.8 Text wrap: Wrapping COMmMEentS o v v v vt v i it e e e et e e e e oo 91
6.1.9 Text wrap: huge, tabstop and separator 92
oneSentencePerLine: modifying line breaks for sentences 93
6.2.1 oneSentencePerLine: overview e 94
6.2.2 oneSentencePerLine: sentencesFollow 96
6.2.3 oneSentencePerLine: sentencesBeginWith 97
6.2.4 oneSentencePerLine: sentencesEndWith, ..., 98
6.2.5 Features of the oneSentencePerLine routine 99
6.2.6 oneSentencePerLine: text wrapping and indenting sentences. 101

6.2.7 oneSentencePerLine: text wrapping and indenting sentences, when before/after104

6.2.8 oneSentencePerLine: text wrapping sentences and comments 105
Poly-switChes o e e e 105
6.3.1 Poly-switches for environments 106

6.3.1.1 Adding line breaks: BeginStartsOnOwnLine and BodyStartsOnOwn-

Line 106

6.3.1.2 Adding line breaks: EndStartsOnOwnLine and EndFinishesWithLine-
Break e 108
6.3.1.3 poly-switches 1, 2, and 3 only add line breaks when necessary 110
6.3.1.4 Removing line breaks (poly-switchessetto—1) 111
6.3.1.5 About trailing horizontal space 113
6.3.1.6 poly-switch line break removal and blank lines 113
6.3.2 Poly-switches for double backslash 115
6.3.2.1 Double backslash startson own line 115
6.3.2.2 Double backslash finishes with line break 116

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

78

6.3.2.3 Double backslash poly-switches for specialBeginEnd 117
6.3.2.4 Double backslash poly-switches for optional and mandatory arguments117
6.3.2.5 Double backslash optional square brackets 118
6.3.3 Poly-switches for other code blocks 119
6.3.4 Partnering BodyStartsOnOwnLine with argument-based poly-switches 121
6.3.5 Conflicting poly-switches: sequential code blocks 122
6.3.6 Conflicting poly-switches: nested code blocks 123

modifylinebreaks: (fields)

‘\|"

s,

TR

*
.
“aa

As of Version 3.0, latexindent.pl has the -m switch, which permits latexindent.pl to modify
line breaks, according to the specifications in the modifyLineBreaks field. The settings in this field
will only be considered if the -m switch has been used. A snippet of the default settings of this field is
shown in Listing 290.

LISTING 290: modifyLineBreaks
—m

500 modifyLineBreaks:
501 preserveBlankLines: 1 # 0/1
502 condenseMultipleBlankLinesInto: 1 # 0/1

Having read the previous paragraph, it should sound reasonable that, if you call latexindent.pl
using the -m switch, then you give it permission to modify line breaks in your file, but let’s be clear:

Warning!

If you call latexindent.pl with the -m switch, then you are giving it permission
to modify line breaks. By default, the only thing that will happen is that multiple
blank lines will be condensed into one blank line; many other settings are possible,
discussed next.

preserveBlankLines: 0|1

This field is directly related to poly-switches, discussed in Section 6.3. By default, it is set to 1, which
means that blank lines will be protected from removal; however, regardless of this setting, multiple
blank lines can be condensed if condenseMultipleBlankLinesInto is greater than 0, discussed
next.

condenseMultipleBlankLinesInto: (positive integer)

example 76

Assuming that this switch takes an integer value greater than 0, latexindent.pl will condense
multiple blank lines into the number of blank lines illustrated by this switch.

As an example, Listing 291 shows a sample file with blank lines; upon running

latexindent.pl myfile.tex -m -o=+-modl

the output is shown in Listing 292; note that the multiple blank lines have been condensed into
one blank line, and note also that we have used the -m switch!

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

6.1 Text Wrapping 79
LISTING 291: mlbl.tex LISTING 292: mlbl-modl.tex
before blank line before blank line
after blank line
after blank line after blank line
after blank line

6.1 Text Wrapping

N: 2022-03-13

The text wrapping routine has been over-hauled as of V3.16; I hope that the interface is simpler, and
most importantly, the results are better.

The complete settings for this feature are given in Listing 293.

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

LISTING 293: textWrapOptions =

textWrapOptions:
columns: 0O
multipleSpacesToSingle: 1
removeBlockLineBreaks: 1

when: before # before/after
comments:
wrap: O # 0/1
inheritLeadingSpace: 0 # 0/1
blocksFollow:
headings: 1 # 0/1
commentOnPreviousLine: 1 # 0/1
par: 1 # 0/1
blankLine: 1 # 0/1
verbatim: 1 # 0/1
filecontents: 1 # 0/1
other: \\\]|\\item(?:\h|\[) # regex
blocksBeginWith:
A-7: 1 # 0/1
a-z: 1 # 0/1
0-9: 0 # 0/1
other: 0 # regex
blocksEndBefore:
commentOnOwnLine: 1 # 0/1
verbatim: 1 # 0/1
filecontents: 1 # 0/1
other: \\begin\{|\\\[|\\end\{ # regex
huge: overflow # forbid mid-word line breaks

separator: "'

6.1.1 Text wrap: overview

An overview of how the text wrapping feature works:

1.

N: 2023-01-01

2
3.
4

the default value of columns is 0, which means that text wrapping will not happen by default;

. it happens after verbatim blocks have been found;

it happens after the oneSentencePerLine routine (see Section 6.2);

. it can happen before or after all of the other code blocks are found and does not operate on

a per-code-block basis; when using before this means that, including indentation, you may
receive a column width wider than that which you specify in columns, and in which case you
probably wish to explore after in Section 6.1.7;

. code blocks to be text wrapped will:

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

6.1 Text Wrapping 80

(a) follow the fields specified in blocksFollow
(b) begin with the fields specified in blocksBeginWith
(c) end before the fields specified in blocksEndBefore

6. setting columns to a value > 0 will text wrap blocks by first removing line breaks, and then
wrapping according to the specified value of columns;

7. setting columns to —1 will only remove line breaks within the text wrap block;

8. by default, the text wrapping routine will remove line breaks within text blocks because removeBlockLineBreak
is set to 1; switch it to O if you wish to change this;

9. about trailing comments within text wrap blocks:

(a) trailing comments that do not have leading space instruct the text wrap routine to connect
the lines without space (see Listing 331);

(b) multiple trailing comments will be connected at the end of the text wrap block (see List-
ing 335);

(c) the number of spaces between the end of the text wrap block and the (possibly combined)
trailing comments is determined by the spaces (if any) at the end of the text wrap block
(see Listing 337);

10. trailing comments can receive text wrapping ; examples are shown in Section 6.1.8 and Sec-
tion 6.2.8.

We demonstrate this feature using a series of examples.

6.1.2 Text wrap: simple examples

example 77 Let’s use the sample text given in Listing 294.

LISTING 294: textwrapl.tex

Here 1is a line of text that will be wrapped by latexindent.pl.

Here is a line of text that will be wrapped by latexindent.pl.

We will change the value of columns in Listing 296 and then run the command

latexindent.pl -m -1 textwrapl.yaml textwrapl.tex

then we receive the output given in Listing 295.

LISTING 295: textwrapl-modl.tex LISTING 296: textwrapl.yaml
Here is a line of modifyLineBreaks:

text that will be textWrapOptions:

wrapped by columns: 20

latexindent.pl.

Here is a line of
text that will be
wrapped by
latexindent.pl.

example 78 If we set columns to —1 then latexindent.pl remove line breaks within the text wrap block,

and will not perform text wrapping. We can use this to undo text wrapping.

Starting from the file in Listing 295 and using the settings in Listing 297

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

Text Wrapping

LISTING 297: textwraplA.yaml —

modifyLineBreaks:
textWrapOptions:
columns: -1

and running

latexindent.pl -m -1 textwraplA.yaml textwrapl-modl.tex

gives the output in Listing 298.

LISTING 298: textwrapl-modlA.tex

Here is a line of text that will be wrapped by latexindent.pl.

Here is a line of text that will be wrapped by latexindent.pl.

example 79 By default, the text wrapping routine will convert multiple spaces into single spaces. You can
change this behaviour by flicking the switch multipleSpacesToSingle which we have done in
Listing 300

Using the settings in Listing 300 and running

latexindent.pl -m -1 textwraplB.yaml textwrapl-modl.tex

gives the output in Listing 299.

LISTING 299: textwrapl-modiB.tex LISTING 300: textwraplB.yaml
Here,yisya linegof modifyLineBreaks:

textthat, will, be textWrapOptions:

wrapped by columns: 20
latexindent.pl. multipleSpacesToSingle: 0

Here_ is a line of
textythat will be
wrapped, by
latexindent.pl.

We note that in Listing 299 the multiple spaces have not been condensed into single spaces.

6.1.3 Text wrap: blocksFollow examples
We examine the blocksFollow field of Listing 293.

example 80 Let’s use the sample text given in Listing 301.

LISTING 301: tw-headingsl.tex

\section{my headingl}\label{mylabell}
text to

be
wrapped from the first section
\subsection{subheading}
text to

be
wrapped from the first section

We note that Listing 301 contains the heading commands section and subsection. Upon run-
ning the command

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.1 Text Wrapping 82
latexindent.pl -m -1 textwrapl.yaml tw-headingsl.tex
then we receive the output given in Listing 302.
LISTING 302: tw-headingsl-modl.tex
\section{my heading}\label{mylabell}
text to be wrapped
from the first
section
\subsection{subheading}
text to be wrapped
from the first
section
We reference Listing 293 on page 79 and also Listing 158 on page 51:
* in Listing 293 the headings field is set to 1, which instructs latexindent.pl to read the
fields from Listing 158 on page 51, regardless of the value of indentAfterThisHeading or level;
* the default is to assume that the heading command can, optionally, be followed by a 1abel
command.
If you find scenarios in which the default value of headings does not work, then you can explore
the other field.
We can turn off headings as in Listing 304 and then run
latexindent.pl -m -1 textwrapl.yaml,bf-no-headings.yaml tw-headingsl.tex
gives the output in Listing 303, in which text wrapping has been instructed not to happen follow-
ing headings.
LISTING 303: tw-headingsl-mod2.tex LISTING 304: bf-no-headings.yaml
—-m
\section{my heading}\label{mylabell} modifyLineBreaks:
text to textWrapOptions:
be blocksFollow:
wrapped from the first section headings: 0
\subsection{subheading}
text to
be
wrapped from the first section

example 81

Let’s use the sample text given in Listing 305.

LISTING 305: tw-commentsl.tex

% trailing comment
text to
be
wrapped following first comment
% another comment
text to
be
wrapped following second comment

We note that Listing 305 contains trailing comments. Upon running the command

latexindent.pl -m -1 textwrapl.yaml tw-commentsl.tex

[git] = main @7632037 « 2023-07-14 = () = VV3.22.2

6.1 Text Wrapping 83

then we receive the output given in Listing 306.

LISTING 306: tw-commentsl-modil.tex

% trailing comment
text to be wrapped
following first
comment

% another comment
text to be wrapped
following second
comment

With reference to Listing 293 on page 79 the commentOnPreviousLine field is set to 1, which
instructs latexindent.pl to find text wrap blocks after a comment on its own line.

We can turn off comments as in Listing 308 and then run

latexindent.pl -1 textwrapl.yaml,bf-no-comments.yaml tw-commentsl.tex

gives the output in Listing 307, in which text wrapping has been instructed not to happen follow-
ing comments on their own line.

LISTING 307: tw-commentsl-mod2.tex LISTING 308: bf-no-comments.yaml =
% trailing comment modifyLineBreaks:
text to textWrapOptions:
be blocksFollow:
wrapped following first comment commEmt P engline: @
% another comment
text to
be

wrapped following second comment
|

Referencing Listing 293 on page 79 the blocksFollow fields par, blankline, verbatimand filecontents
fields operate in analogous ways to those demonstrated in the above.

The other field of the blocksFollow can either be 0 (turned off) or set as a regular expression.
The default value is set to \\\1 [\\item(?:\h|\[) which can be translated to backslash followed by a
square bracket or backslash item followed by horizontal space or a square bracket, or in other words,
end of display math or an item command.

example 82 Let’s use the sample text given in Listing 309.

LISTING 309: tw-disp-mathl.tex

text to
be
wrapped before display math
\[y=x\]
text to
be

wrapped after display math

We note that Listing 309 contains display math. Upon running the command

latexindent.pl -m -1 textwrapl.yaml tw-disp-mathl.tex

then we receive the output given in Listing 310.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.1 Text Wrapping 84

LISTING 310: tw-disp-mathl-modl.tex

text to be wrapped

before display math
\[y =x\]

text to be wrapped

after display math

With reference to Listing 293 on page 79 the other field is set to \\\1, which instructs latexindent .pl
to find text wrap blocks after the end of display math.

We can turn off this switch as in Listing 312 and then run

latexindent.pl -m -1 textwrapl.yaml,bf-no-disp-math.yaml tw-disp-mathl.tex

gives the output in Listing 311, in which text wrapping has been instructed not to happen follow-

ing display math.
LisTING 311: LISTING 312:
tw-disp-mathl-mod2.tex bf-no-disp-math.yaml =
text to be wrapped modifyLineBreaks:
before display math textWrapOptions:
\[y = x\] blocksFollow:
text to other: 0
be

wrapped after display math

Naturally, you should feel encouraged to customise this as you see fit. .

The blocksFollow field deliberately does not default to allowing text wrapping to occur after begin
environment statements. You are encouraged to customize the other field to accommodate the
environments that you would like to text wrap individually, as in the next example.

example 83 Let’s use the sample text given in Listing 313.

LISTING 313: tw-bf-myenvl.tex

text to
be
wrapped before myenv environment
\begin{myenv}
text to
be
wrapped within myenv environment
\end{myenv}
text to
be
wrapped after myenv environment

We note that Listing 313 contains myenv environment. Upon running the command

latexindent.pl -m -1 textwrapl.yaml tw-bf-myenvl.tex

then we receive the output given in Listing 314.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.1 Text Wrapping

85

LISTING 314: tw-bf-myenvi-modl.tex

text to be wrapped
before myenv
environment
\begin{myenv}
text to
be
wrapped within myenv environment
\end{myenv}
text to
be
wrapped after myenv environment

We note that we have not received much text wrapping. We can turn do better by employing

Listing 316 and then run

latexindent.pl -m -1 textwrapl.yaml,tw-bf-myenv.yaml tw-bf-myenvl.tex

which gives the output in Listing 315, in which text wrapping has been implemented across the

file.
LISTING 315: LISTING 316: tw-bf-myenv.yaml
tw-bf-myenvi-mod2.tex) . =
modifyLineBreaks:
text to be wrapped textWrapOptions:
before myenv blocksFollow:
environment other: |-
\begin{myenv} (7x)
text to be wrapped \\\1]

within myenv
environment
\end{myenv}
text to be wrapped
after myenv
environment

6.1.4

example 84

Text wrap: blocksBeginWith examples

|

\\item(?:\h|\[)

I

\\begin\{myenv\} # <--- new bit
| # <--- new bit
\\end\{myenv\} # <--- new bit

We examine the blocksBeginWith field of Listing 293 with a series of examples.

By default, text wrap blocks can begin with the characters a-z and A-Z.

If we start with the file given in Listing 317

LISTING 317: tw-0-9.tex

123 text to
be
wrapped before display math
\[y = x\]
456 text to
be
wrapped after display math

and run the command

latexindent.pl -m -1 textwrapl.yaml tw-0-9.tex

then we receive the output given in Listing 318 in which text wrapping has not occurred.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.1 Text Wrapping

86

example 85

LISTING 318: tw-0-9-modl.tex

123 text to

be

wrapped before display math
\[y=x\]

456 text to

be

wrapped after display math

We can allow paragraphs to begin with 0-9 characters by using the settings in Listing 320 and
running

latexindent.pl -m -1 textwrapl.yaml,bb-0-9-yaml tw-0-9.tex

gives the output in Listing 319, in which text wrapping has happened.

LISTING 319: tw-0-9-mod2.tex LISTING 320: bb-0-9.yaml.yaml
123 text to be modifyLineBreaks:
w?apped before textWrapOptions:
display math blocksBeginWith:
\[y = x\] 0-9: 1

456 text to be
wrapped after
display math

Let’s now use the file given in Listing 321

LISTING 321: tw-bb-announcel.tex

% trailing comment
\announce{announce text}
and text
to be
wrapped before
goes here

and run the command

latexindent.pl -m -1 textwrapl.yaml tw-bb-announcel.tex

then we receive the output given in Listing 322 in which text wrapping has not occurred.

LISTING 322: tw-bb-announcel-modl.tex

% trailing comment
\announce{announce text}
and text

to be

wrapped before

goes here

We can allow \announce to be at the beginning of paragraphs by using the settings in Listing 324
and running

latexindent.pl -m -1 textwrapl.yaml,tw-bb-announce.yaml tw-bb-announcel.tex

gives the output in Listing 323, in which text wrapping has happened.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.1 Text Wrapping

87

6.1.5

example 86

LISTING 323: LISTING 324: tw-bb-announce.yaml

tw-bb-announcel-mod2.tex . . =
) . modifyLineBreaks:
% trailing comment textWrapOptions:
\announce{announce blocksBeginWith:

text} and text to other: ’\\announce’
be wrapped before
goes here

Text wrap: blocksEndBefore examples

We examine the blocksEndBefore field of Listing 293 with a series of examples.

Let’s use the sample text given in Listing 325.

LISTING 325: tw-be-equation.tex

before
equation

text
\begin{align}
1& 2 \\
3&4
\end{align}
after
equation
text

We note that Listing 325 contains an environment. Upon running the command

latexindent.pl -m -1 textwraplA.yaml tw-be-equation.tex

then we receive the output given in Listing 326.

LISTING 326: tw-be-equation-modl.tex

before equation text

\begin{align}
1&2\\
3& 4

\end{align}

after

equation

text

With reference to Listing 293 on page 79 the other field is set to \\begin\{|\\\ [|\\end\{, which
instructs latexindent.pl to stop text wrap blocks before begin statements, display math, and
end statements.

We can turn off this switch as in Listing 327 and then run

latexindent.pl -m -1 textwraplA.yaml,tw-be-equation.yaml tw-be-equation.tex

gives the output in Listing 328, in which text wrapping has been instructed not to stop at these
statements.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.1 Text Wrapping 88

LISTING 327: tw-be-equation.yaml -

modifyLineBreaks:
textWrapOptions:
blocksEndBefore:
other: 0O

LISTING 328: tw-be-equation-mod2.tex

before equation text \beginf{align} 1 & 2 \\ 3 & 4 \end{align} after equation text

Naturally, you should feel encouraged to customise this as you see fit.

6.1.6 Text wrap: trailing comments and spaces

We explore the behaviour of the text wrap routine in relation to trailing comments using the following
examples.

example 87 The file in Listing 329 contains a trailing comment which does have a space infront of it.

Running the command

latexindent.pl -m tw-tcl.tex -1 textwraplA.yaml -o=+-modl

gives the output given in Listing 330.

LISTING 329: tw-tcl.tex LISTING 330: tw-tcl-modl.tex
foo, % foo barl
bar
example 88 The file in Listing 331 contains a trailing comment which does not have a space infront of it.
Running the command
latexindent.pl -m tw-tc2.tex -1 textwraplA.yaml -o=+-modl
gives the output in Listing 332.
LISTING 331: tw-tc2.tex LISTING 332: tw-tc2-modl.tex
foo, foobar’,
bar
We note that, because there is not a space before the trailing comment, that the lines have been
joined without a space.
example 89 The file in Listing 333 contains multiple trailing comments.
Running the command
latexindent.pl -m tw-tc3.tex -1 textwraplA.yaml -o=+-modl
gives the output in Listing 334.
LISTING 333: tw-tc3.tex LISTING 334: tw-tc3-modl.tex
foo 1 foo barthree}, 172
bar’,2
three

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.1 Text Wrapping 89

example 90

example 91

example 92

6.1.7

N: 2023-01-01

example 93

The file in Listing 335 contains multiple trailing comments.

Running the command

latexindent.pl -m tw-tc4.tex -1 textwraplA.yaml -o=+-modl

gives the output in Listing 336.

LISTING 335: tw-tc4.tex LISTING 336: tw-tc4-modl.tex
foo %1 foo barthree’1%2%3
bar’2
three’,3
The file in Listing 337 contains multiple trailing comments.
Running the command
latexindent.pl -m tw-tcb.tex -1 textwraplA.yaml -o=+-modl
gives the output in Listing 338.
LISTING 337: tw-tcb.tex LISTING 338: tw-tcb-modl.tex
fooll foobarthree %1%2%3
bar2
three %3
The space at the end of the text block has been preserved.
The file in Listing 339 contains multiple trailing comments.
Running the command
latexindent.pl -m tw-tc6.tex -1 textwraplA.yaml -o=+-modl
gives the output in Listing 340.
LISTING 339: tw-tc6.tex LISTING 340: tw-tc6-modl.tex
fooll foobar %1
bar
The space at the end of the text block has been preserved.

Text wrap: when before/after

The text wrapping routine operates, by default, before the code blocks have been found, but this
can be changed to after:

* before means it is likely that the columns of wrapped text may exceed the value specified in
columns;

* after means it columns of wrapped text should not exceed the value specified in columns.

We demonstrate this in the following examples. See also Section 6.2.7.

Let’s begin with the file in Listing 341.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.1 Text Wrapping

LISTING 341: textwrap8.tex

This paragraph

has line breaks throughout its paragraph;
we would like to combine

the textwrapping

and paragraph removal routine.
\begin{myenv}

This paragraph

has line breaks throughout its paragraph;
we would like to combine

the textwrapping

and paragraph removal routine.
\end{myenv}

Using the settings given in Listing 343 and running the command

latexindent.pl textwrap8.tex -o=+-modl.tex -l=tw-beforel.yaml -m

gives the output given in Listing 342.

LISTING 342: textwrap8-modl.tex LISTING 343: tw-beforel.yaml

This paragraph has line breaks defaultIndent: ’> °
throughout its paragraph; we would

like to combine the textwrapping modifyLineBreaks:
and paragraph removal routine. textWrapOptions:
\begin{myenv} columns: 35
This paragraph has line breaks when: before # <!-——————
throughout its paragraph; we would blocksFollow:
like to combine the textwrapping other: \\begin\{myenv\}
and paragraph removal routine.
\end{myenv}

e e e B B B e P
5 10 15 20 25 30 35 40

We note that, in Listing 342, that the wrapped text has exceeded the specified value of columns
(35) given in Listing 343. We can affect this by changing when; we explore this next.

example 94 We continue working with Listing 341.

Using the settings given in Listing 345 and running the command

latexindent.pl textwrap8.tex -o=+-mod2.tex -l=tw-afterl.yaml -m

gives the output given in Listing 344.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.1 Text Wrapping 91

LISTING 344: textwrap8-mod2.tex LISTING 345: tw-afterl.yaml
-m
This paragraph has line breaks defaultIndent: °>
throughout its paragraph; we would
like to combine the textwrapping modifyLineBreaks:
and paragraph removal routine. textWrapOptions:

\begin{myenv}
This paragraph has line breaks
throughout its paragraph; we
would like to combine the
textwrapping and paragraph
removal routine.

\end{myenv}

e e e e e P P PR
5 10 15 20 25 30 35 40

columns: 35
when: after # <l-——-——
blocksFollow:

other: \\begin\{myenv\}

We note that, in Listing 344, that the wrapped text has obeyed the specified value of columns
(35) given in Listing 345.

6.1.8 Text wrap: wrapping comments
N: 2023-01-01 You can instruct latexindent.pl to apply text wrapping to comments ; we demonstrate this with
examples, see also Section 6.2.8.

example 95 We use the file in Listing 346 which contains a trailing comment block.

LISTING 346: textwrap9.tex

My first sentence
% first comment

% second
%third comment

% fourth

Using the settings given in Listing 348 and running the command

latexindent.pl textwrap9.tex -o=+-modl.tex -l=wrap-commentsl.yaml -m

gives the output given in Listing 347.

LISTING 347: textwrap9-modl.tex LISTING 348: wrap-commentsl.yaml

My first sentence

modifyLineBreaks:
% first comment second third textWrapOptions:
% comment fourth columns: 35
B e e e e e] connents:
5 10 15 20 25 30 35 40 wrap: 1 #<!-—————

We note that, in Listing 347, that the comments have been combined and wrapped because of the
annotated line specified in Listing 348.

example 96 We use the file in Listing 349 which contains a trailing comment block.

LISTING 349: textwraplO.tex

My first sentence
% first comment
% second

%third comment

% fourth

Using the settings given in Listing 351 and running the command

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.1 Text Wrapping

92

latexindent.pl textwraplO.tex -o=+-modl.tex -l=wrap-commentsl.yaml -m

gives the output given in Listing 350.

LISTING 350: textwraplO-modl.tex LISTING 351: wrap-commentsl.yaml
My first sentence modifyLineBreaks:
% first comment second third textWrapOptions:
% comment fourth columns: 35
il R Bl B Bl B el B comments:
5 10 15 20 25 30 35 40 e Y E—

We note that, in Listing 350, that the comments have been combined and wrapped because of the
annotated line specified in Listing 351, and that the space from the leading comment has not
been inherited; we will explore this further in the next example.

example 97 We continue to use the file in Listing 349.
Using the settings given in Listing 353 and running the command
latexindent.pl textwraplO.tex -o=+-mod2.tex -l=wrap-comments2.yaml -m
gives the output given in Listing 352.
LISTING 352: textwrapl0-mod2.tex LISTING 353: wrap-comments2.yaml
My first sentence modifyLineBreaks:
% first comment second third textWrapOptions:
% comment fourth columns: 35
e e e e B e et Bl conments:
5 10 15 20 25 30 35 40 wrap: 1 B e
inheritLeadingSpace: 1 #<!---——---
We note that, in Listing 352, that the comments have been combined and wrapped and that the
leading space has been inherited because of the annotated lines specified in Listing 353.

6.1.9

U: 2021-07-23

example 98

Text wrap: huge, tabstop and separator

The default value of huge is overflow, which means that words will not be broken by the text
wrapping routine, implemented by the Text: :Wrap [47]. There are options to change the huge
option for the Text::Wrap module to either wrap or die. Before modifying the value of huge,
please bear in mind the following warning:

Warning!

Changing the value of huge to anything other than overflow will slow down
latexindent.pl significantly when the -m switch is active.

Furthermore, changing huge means that you may have some words or commands(!)
split across lines in your .tex file, which may affect your output. I do not
recommend changing this field.

For example, using the settings in Listings 355 and 357 and running the commands

latexindent.pl -m textwrap4.tex -o=+-mod2A -1 textwrap2A.yaml

latexindent.pl -m textwrap4.tex -o=+-mod2B -1 textwrap2B.yaml

gives the respective output in Listings 354 and 356.

[git] = main @ 7632037 = 2023-07-14 =) = VV3.22.2

6.2 oneSentencePerLine: modif