
The classpack LATEX2ε package
∗ †

XML mastering for LATEX classes and packages

Peter Flynn

Silmaril Consultants

Textual Therapy Division

(peter@silmaril.ie)

May 28, 2013

Summary

LATEX document classes and packages are normally created,

maintained, and distributed in .dtx format using the ltxdoc class,
which provides facilities for modular or fragmentary coding

combined with interleaved documentation. However, the accurate

construction of these files is technically challenging.

ClassPack allows a developer to create an XML document
containing user documentation and annotated code, based on the

DocBook vocabulary (with some minor abuses). An XSLT2 script
then generates the .dtx and .ins files, ensuring that all the
relevant pieces are emitted in the correct order and in the correct

syntax.

This is experimental software, and is incomplete. It has been

successfully used in-house by the author since 2008 for several

institutional and commercial packages and classes. There are

some known deficiencies which remain to be corrected, and some

legacy code (originally included for one specific package) which

needs to be removed to an external file.

A paper describing the system has been accepted for the Balisage

markup conference 2013 in Montréal.

∗This document corresponds to classpack v. 0.77, dated 2013/05/28.
†Development has been supported by UCC Electronic Publishing Unit.

Contents
1 Introduction 4
1.1 Contents . 6

1.2 Invocation . 7

1.3 Document structure . 8

1.3.1 User documentation 8

1.3.1.1 Structure . 9

1.3.1.2 Inline markup 9

1.3.2 Annotated code . 9

1.3.3 Ancillary files . 9

1.4 Tooling up . 10

2 Setting up a ClassPack document 11
2.1 Configuration and setup . 11

2.2 Metadata . 14

2.3 Packages and related commands 17

2.3.1 Specifying packages 19

2.3.1.1 Declaring packages needed for your docu-

mentation . 19

2.3.1.2 Declaring packages needed by the class or

package itself 20

2.3.1.2.1 Specifying where in the .dtx file to
output them : 20

2.3.2 Automated settings for declared packages 21

2.3.2.1 Identifying each package 22

2.3.2.2 Automating inclusion 23

2.3.2.3 Adding extra code before or after a package 24

2.3.3 Defining commands required for documentation setup 25

2.3.4 Additional setup commands 29

2.3.5 The Manifest . 30

2.3.6 The README file . 30

3 Using ClassPack 32
3.1 Hierarchical markup . 32

3.2 Structural markup (block-level elements) 33

3.2.1 Ancillary files documented inline 34

3.2.2 Bibliography . 34

3.3 Inline markup (elements in mixed content) 36

3.4 Producing your class or package 38

3.5 Maintaining your class or package 40

4 The db2dtx program 41

2

4.1 XML Declaration and Namespace declarations 41

5 Service commands 43
5.1 TEX and other logos . 43

References 44

A The XML vocabulary 45

B Reusable XML 47

C The LATEX Project Public License 48
C.1 Preamble . 48

C.2 Definitions . 48

C.3 Conditions on Distribution and Modification 50

C.4 No Warranty . 52

C.5 Maintenance of The Work . 53

C.6 Whether and How to Distribute Works under This License 55

C.6.1 Choosing This License or Another License 55

C.6.2 A Recommendation on Modification Without Distri-

bution . 55

C.6.3 How to Use This License 56

C.6.4 Derived Works That Are Not Replacements 57

C.6.5 Important Recommendations 57

C.6.5.1 Defining What Constitutes the Work 57

Change History 58

Index 59

3

1 Introduction

LATEX document classes (templates) and packages (styles) are

traditionally distributed as pairs of .dtx and.ins files, written to the
specifications and recommendations of the doc, ltxdoc, and clsguide
packages.

• The .dtx (DocTEX) file is a literate-programming document,
containing modular code and annotations interleaved in such a

way that each fragment of code and its explanation are adjacent;

• The .ins file is an installer: when run through LATEX, it extracts
the code from the .dtx file into the relevant class (.cls),
package (.sty), and other files;

• Running LATEX on the .dtx file itself extracts and typesets the
documentation.

The construction of a .dtx document is quite complex, with a special
set of tags and conventions to allow documentation to be separately

identifiable to code. The file format relies on the documentation being

shielded by a leading percent-space (%␣) armour on each line to
prevent it being interpreted as part of the code; and the environment

tags surrounding the code itself must be shielded by four such spaces

(%␣␣␣␣). Apart from the documentation, the treatment of the code and

control statements resembles more a data specification (which in

some ways it is) than a conventional text document.

XML, particularly in its traditional ‘document’ mode, as distinct from

its use as a data exchange format, offers many similar features to

LATEX (for example, the named identification of document

components), but with a rigid and invariable syntax that can be

checked programmatically by any validating XML processor. By

contrast, a LATEX document (and more specifically, a .dtx document)
can only be proved by running it through LATEX itself: there is no

equivalent to the ‘pre-flight’ type of standalone parsing or validating

available with XML.

The DocBook vocabulary of XML is designed for technical
documentation in computing. It provides markup both for textual

documentation and for data-like structures that occur in computer
documentation, making it a viable candidate for describing a

literate-programming type of document such as DocTEX.

4

The ClassPack system is an experiment in using DocBook XML as the
storage format for LATEX class and package source code, using the

XLST2 language to transform the XML into pairs of .dtx and .ins
files. There are a number of advantages to this approach:

• XML’s syntax and document construction is extremely robust,
and the design of the language means that an XML file can be

machine-checked for errors of syntax and construction;

• XML markup is traditionally self-descriptive, with element types
being named according to what they are intended to contain. For

example, a variable name can be marked up as

<varname>foo</varname>.
While it is perfectly possible to create a \varname control
sequence (macro) to do the same in LATEX, it is rarely done.

Instead, authors have typically preferred to use visual formatting

like \textit{foo} for italics or \verb+foo+ for monospace type.
This method means the variable reference is not immediately

identifiable as containing a variable name — it could be anything;

• Given suitably-descriptive markup, sharing document fragments
between applications can be done programmatically, so a

fragment implementing a LATEX feature (with its associated

documentation) can be re-used in other class and package

applications at the XML level (eg with XInclude, or as an

external entity) without the need for manual cutting and pasting;

• There is a very wide range of software (editors and processors,
both free and non-free) available to handle XML documents,

including a lot of useful tools for document management and

information extraction.

Everything comes at a cost. The drawbacks of using XML for this

include:

• It’s another language to learn. Despite being so widespread, it’s
not yet a common skill. In particular, programmers dislike XML

because it’s a markup language, not a programming language,

and the syntax is different from that of programming languages;

• Although there is plenty of software for editing XML, it is not
well-developed for text documents in synchronous typographic

form (often called ‘WYSIWYG’); even the best or most expensive

editors are designed for XML experts, not for the average user.

5

1.1 Contents

The ClassPack framework is enabled by two principal software
components:

1. An XML vocabulary (the DocBook DTD or Schema) used for
naming the component parts of documentation and code, and

specifying where they belong and how they fit together;

2. An XSLT2 script to implement the logic of combination and

separation needed to create the .dtx and .ins files.
The XML vocabulary used is DocBook, which is in widespread use for
the documentation of computer systems, and is well-supported on all

platforms. The current system uses version 5. Although it is highly

modular and easily adapted for many purposes, only a few minor

changes have been made for its use here, but a number of element

types have been put to uses not envisaged by the developers.

This habit of using (some say, abusing) XML markup for different

purposes is very common, and often deprecated because it is usually

undocumented. This document explains what has been [ab]used and

for what reasons. Once this system settles down, a more formal

expression of the vocabulary can be made from the RNG source,

removing the parts that are not required, and making it simpler to

edit with.

The adaptation of DocBook in this version subsists mainly in the
addition of some attributes and entity declarations to allow the

conversion to LATEX of special characters and other features that

would otherwise involve extensive re-parsing of the character data

content (text). The changes also implement a few modifications to the

way the LATEX code is output by the XSLT2 program for typographical

purposes.

As an example, the entity defining the em rule character — is
declared as a LATEX tie (non-breaking space) followed by an em rule

followed by a normal space (~---␣), so that it can be used between
words — like this — without the need to worry about special spacing

in the XML, or the inadvertent breaking of a line before the rule:

can be used between words—like this—without the

If a document style requires the use of unspaced dashes, all that

needs changing is the entity declaration, not the whole document.

6

The current driver in Document Type Definition (dtd) format is listed

in section A on page 45, and is distributed as file doctexbook.dtd so
that it can be referenced as such in a document without having to

copy and paste the declarations into every document.

1.2 Invocation

To create or edit a ClassPack XML document you must have the
ClassPack DTD and the DocBook DTD installed and known to your
XML editor. The DTD customisation file, docbooktex.dtd is
distributed with this package; an RNG schema version will be

available in the future.

With the DTD, the standard procedure is to specify it in the first line

of your XML document. Your class or package documents must

therefore start with a Document Type Declaration. This can specify

the Formal Public Identifier (fpi) and the filename of the DTD:

<?xml version="1.0"?>
<!DOCTYPE book PUBLIC
"+//Silmaril//DTD DocBook 5.0 for DocTeX//EN"
"doctexbook.dtd">

or you can omit the FPI and specify the DTD as a SYSTEM keyword
instead:

<?xml version="1.0"?>
<!DOCTYPE book SYSTEM "doctexbook.dtd">

The DTD file doctexbook.dtd can be anywhere on your system: in
these examples it is assumed to be in the same directory as your

document. If you store it elsewhere, just give the full filepath, for

example:

<?xml version="1.0"?>
<!DOCTYPE book SYSTEM "/usr/local/lib/xml/dtds/doctexbook.dtd">

When you open a document starting like this, a conformant XML

editor will look for doctexbook.dtd and read it, so that it then knows
the names of all the element types that you can use, and how they fit

together into a document.

7

1.3 Document structure

Every XML document must have one outermost enclosing element

(the ‘root’ element) which holds everything else. The root element

type used in a ClassPack document is book, as described in detail
in section 2.1 on page 11.

Within the book element, the metadata (information about the
document) is held in an info element, the user documentation in a
part element with the ID of doc, and the annotated code in a second
part element, with the ID of code.
<?xml version="1.0"?>
<!DOCTYPE book SYSTEM "doctexbook.dtd">
<book>
<info>...</info>
<part xml:id="doc">...</part>
<part xml:id="code">...</part>
<part xml:id="files">...</part>

</book>

An optional third part with the ID of files can be used to include
ancillary files that are to be recreated as-is, without separate

annotation or display, such as sample data or example documents

(see section 1.3.3 on the next page).

Ancillary files that require annotating must go in the code part as
described in section 3.2.1 on page 34.

1.3.1 User documentation

The documentation for the end user is descriptive text which explains

how to use the package or class. The main division within a ClassPack

part is the chapter, which can contain sect1 sections, which can
contain sect2 subsections, and so on, as described in section 3.1 on
page 32. User documentation must go in a chapter and its
sub-elements: it must not be directly in the part.
(Because the latexdoc package is based on the article package, the
ClassPack chapter s become latexdoc \sections; the ClassPack
sect1 s become latexdoc \subsections, and so on.)

8

1.3.1.1 Structure Your document can use most of the

conventional structural features of any DocBook document:

paragraphs, lists, figures, tables, and examples of code (both

illustrative and for extraction) as described in section 3.2 on page 33.

Most of the specialist constructs of DocBook are not implemented in

ClassPack except for a few used in the info section for setup
purposes. You should refer to the list of markup in section 3.2 on

page 33 for exactly which element types do what.

1.3.1.2 Inline markup Within the text you can use much of the

conventional semantic markup provided in DocBook as described
in section 3.3 on page 36.

1.3.2 Annotated code

In the code Part, you annotate the inner workings of your package or
class. The use of the chapter and sect1 divisional structure is also
mandated here: everything within the chapters is regarded as the

package or class.

Your code can be explained in fragments, either as alternating para
and programlisting elements, or as annotation elements, each one
describing a single macro or environment or other object, and

containing para and programlisting (this makes it indexable). See
the examples in section 3.2 on page 33.

1.3.3 Ancillary files

There are two types of extractable ancillary file:

• Ancillary files to be annotated and extracted along with the class
or package file must each go in their own appendix element
immediately after the last of the chapter element of the package
or class in the code Part

• Ancillary files which just need to be extracted whole, and do not
have any separate documentation must go in the files Part as
described in section 1.3.3.

9

1.4 Tooling up

You need the following tools:

• an XML editor: I use Emacs with psgml-mode and xxml-mode,
but any competent XML editor will do

• an XSLT2 processor: I use Saxon (this also means I installed Java)
• a full installation of LATEX

• a PDF reader

• XML tools: I find the LTxml2 toolkit from Edinburgh University

invaluable for ad-hoc querying of documents.

10

2 Setting up a ClassPack document

Using ClassPack to create and maintain LATEX classes and packages
requires the following initial steps. These are only done once, at the

start of a new class or package. A few items need periodic updating,

such as the version number, when it changes; the revision history;

and the list of packages, as and when needed.

1. setting up the configuration (see section 2.1) to specify the name,

date, version, type, audience, status, and other key metadata;

2. setting up the documentary metadata (see section 2.2 on

page 14) such as the title, author, contact details, abstract, and

the initial entry in the revision history;

3. setting up the list of packages (see section 2.3 on page 17)

required for a) the documentation (see section 2.3.1.1 on
page 19) and b) the class or package itself (see section 2.3.1.2 on
page 20), plus any additional initialization commands needed for

the documentation.

Note particularly that the list of packages required by the class or
package itself is not stored inline to the code of the class or package.
It is stored separately for reasons that are explained in detail
in section 2.3 on page 17.

2.1 Configuration and setup

The book element is the outermost container for the document. It is
used to carry the configuration information in attributes, for example:

<book xml:id="classpack" arch="class" version="0" revision="71"
status="beta" conformance="LaTeX2e" condition="2011-06-27"
os="all" audience="lppl" security="0" vendor="Silmaril"
xml:base="tex/latex" xlink:role="xxx" userlevel="cls"
annotations="\raggedright" remap="a4paper,12pt">

xml:id : This must be the name of the class or package. It will be
used as the LATEX filename (with .cls or .sty and .ins added
automatically), so it should be all lowercase and must consist of

letters, digits, and hyphens only, starting with a letter.

The XML rules for IDs require this restriction, which currently

makes it impossible to use ClassPack to maintain a class or

11

packages whose name begins with a digit.

arch : The ‘architecture’ of the document, which defines the type of
file you are going to produce; this must be either "class" or
"package", corresponding exactly with the value of the
userlevel attribute below.

userlevel : The file type of the class or package document; this must
be either cls or sty, corresponding exactly with the value of the
arch attribute above.

version : The major version of the class or package. Conventionally,
development (α) or pre-release (β) versions of software start at

version zero.

revision : The sub-version or release of your class or package. This
is combined with the major version number, separated by a dot,

to produce the complete version number.

The most recent revision history entry gets tested against this

when the file is processed, and an error message is displayed if

the version numbers do not match, as a warning that you have

updated one without updating the other, and may therefore have

forgotten to document a change (see the revision element in
‘revhistory’, the last item in the list in section 2.2 on page 16).

status : The development status of the class or package, eg "alpha",
"beta", "candidate", "draft", "final", etc.

conformance : The TEX format required to process the .dtx
document. Only the value "LaTeX2e" is supported at the
moment.

condition : The version of the format identified in conformance,
expressed as an ISO date ("yyyy-mm-dd").
Note that this is not in the LATEX format (yyyy/mm/dd).

os : The operating system[s] for which the class or package is
relevant. Currently, only the value "all" is supported.

audience : The licence under which the class or package is made
available. For normal publicly-available LATEX classes or packages

which will be uploaded to CTAN, use the value "lppl" (LATEX
Project Public Licence).

A copy of the LPPL is distributed with ClassPack in a file called

lppl.xml, which must be copied or soft-linked (aliased) to each

12

directory in which you process ClassPack documents.

Classes or packages for private or commercial use will probably

need to use another value, but it is used as a filename, so a .xml
file with that name must exist in the directory in which your

ClassPack document is processed. It must contain a

DocBook chapter element containing the text of the licence,
which will be included at the end of the documentation.

security : The checksum value emitted by ltxdoc when it processes
your class or package to format your documentation. See the

documentation for the ltxdoc package for details.

Setting this to zero avoids the LATEX error message during early

development, when every edit would change the checksum. As

with the version values, you must update this value, if non-zero,

to match the one that ltxdoc reports.

vendor : Your name, or the name of the organisation responsible for
the work on this class or package.

remap : Any options to pass to the ltxdoc package, such as a4paper,
12pt, etc.
This, and the following annotations attribute, make it easier to
change the global formatting of the documentation.

annotations : Any LATEX commands required for global application at
the start of the documentation that cannot easily be included

anywhere else (eg \raggedright, \sffamily, etc).
xml:base : The name of the subdirectory where the resulting .cls or

.sty file should be installed in a TDS-compliant TEX installation,
relative to the texmf/tex/latex directory of the tree. For most
packages, this means the name of the directory you want created

by the installation .tds.zip file, in which the .cls or .sty file
will be put.

xlink:role : Optional. If this is set to a value, then the package
being written will be included in the setup for the documentation

(perhaps so that it can be used in examples), with the value of

this attribute being used as the optional argument to the

generated \usepackage command.
If the package is required with no options, use this attribute but

set it to null (""). The date constraint is added automatically,

13

using the current package date as defined by the most recent

entry in the revhistory.
Note that this only works for packages, not classes. Classes

cannot not be documented using themselves.

It is essential to get these values correct, otherwise subsequent

processing will produce unexpected results, or no results at all.

2.2 Metadata

The titling, specification of packages (separately for the

documentation and for the class or package itself), revision history,

abstract, copyright, and availability are all kept at the top of the

document in an element called info, immediately after the book
start-tag:

<info>
<cover>...</cover>
<!-- THE METADATA STARTS HERE -->
<title>XML mastering for &LaTeX; document classes...
<author>...
<copyright>...
<releaseinfo>http://latex.silmaril.ie/software</releaseinfo>
<annotation>...
<abstract>...
<revhistory>...

</info>

Of these, the cover element is the most complex, as it is [ab]used to
hold all the details of packages and settings required for the class or

package and for the production of the documentation. It therefore
gets the whole of section 2.3 on page 17 to itself.

The other metadata element types are more obvious, and largely use

the DocBook markup as intended.
title : This contains the title of the class or package in natural

language. This is not the content of the \title command in LATEX
terms, in the .dtx file, which is automatically preset to the
phrase ‘The name LATEX2ε document class’ (or ‘package’; where
name is the name of your class or package as specified in the
xml:id attribute of the book root element).

14

The title you give in this title element is the explanatory
subtitle which appears under the automatically-generated one
on the first page of the typeset documentation.

author : The author element provides identity markup for the
author[s], using a personname element for each author,
containing subelements for firstname, surname, and other forms

of naming; optionally followed by an affiliation element,
where you can identify employer or other status; address; email;

and URI, as in the following example. The name, affiliation, and

email address are used in the \author command of the .dtx file.
<author role="maintainer">
<personname>
<firstname>Peter</firstname>
<surname>Flynn</surname>

</personname>
<affiliation>

<orgname>Silmaril Consultants</orgname>
<orgdiv>Textual Therapy Division</orgdiv>

</affiliation>
<address>Cork, Ireland</address>
<email>peter@silmaril.ie</email>
<uri>http://blogs.silmaril.ie/peter</uri>
<contrib role="sponsor">UCC</contrib>

</author>

For multiple authors, you must enclose multiple author elements
(one per author) in an outer authorgroup container element.
One of the authors must be identified as the maintainer of the

package or class, by adding the role attribute with the value
maintainer.
A contrib element with a role attribute set to "sponsor" can be
added in an author block, to give the name of an organisation
sponsoring the development of the class or package.

copyright : This element lets you identify the year and the name of
the holder (you, your employer, or some other entity).
<copyright>

<year>2012</year>
<holder>Silmaril Consultants</holder>

</copyright>

releaseinfo : In the absence of other ways of identifying where to
find your class or package (assuming it will eventually find its

15

way onto CTAN), this element can be used to hold the URI of a

location where it can be downloaded, such as your personal or

business web site.

annotation : This element is used for a warning or notice you want
placed in the Preamble of the .ins file, which is used for
extracting your class or package from the .dtx file, where it will
be seen by users installing the software.

abstract : The Abstract is formatted on the front page of your
documentation. Like any abstract, it should summarise what the

class or package does, and who might want to use it.

The abstract element may start with an optional title element,
which (if present) will be used to change the value of the

\abstractname in the .dtx file (‘Summary’ is a common choice).
The rest of the abstract is just paragraphs; note that lists, block

quotations, figures, tables, etc are not allowed in an Abstract.

revhistory : This holds the top-level information about each major
and minor revision, outlining the main changes. The version

number of the most recent revision, as identified by the latest

value of the conformance attribute of the date element, must
match the version number composed from the major version and

the revision in the book root element (see ‘revision’, the fifth
item in the list in section 2.1 on page 12).

<revision version="0.72">
<date conformance="2012-02-11"/>
<revdescription>

<itemizedlist>
<title>Wrote internal documentation</title>
<listitem>
<para>Created the classpack.xml template

as an example.</para>
</listitem>

</itemizedlist>
</revdescription>

</revision>

Comments on individual changes to the code should be

documented at the code location, using the remark element
(see section 3.5 on page 40), eg

<remark version="0.70" revision="2010-05-29">Added
timestamp</remark>

16

These remark elements get collated as \changes commands, and
gathered together in the changelog by ltxdoc during processing.

2.3 Packages and related commands

As mentioned above, the cover element is used to provide a place
where packages and other LATEX preliminaries can be specified. Using

this structure means each entry is separately editable, and the same

structure is used both for packages for the documentation and
packages for the class or package itself.

It would of course have been possible just to allow a slab of LATEX code

at these points, but that would have made commenting and

documentation harder, and would also have made it more difficult to

perform an XML element-copy–element-paste or an XInclude when

using one package or class’s settings as the basis for another.

The most important reason is that specifying package lists as

separately-identifiable blocks makes it possible to automate the

invocation of frequently-used packages, parameters, options, or

settings which you may store separately for re-use (see section 2.3.2

on page 21) by adding your own modifications that you like to have

included whenever you use a particular package.

In particular, the autopackage feature added to ClassPack in v0.74
means that most packages needed for documentation are now

detected automatically on the basis of features you use in your

documentation, making it unnecessary to specify them by hand. For

example, if you use compact lists, ClassPack will detect this and add

the enumitem package for you.

The XSLT2 program also uses this markup in order to modify the

behaviour of the LATEX code at several points (such as fixing the

broken abstract formatting when the parskip package is used).

There are at least two, possibly four, sections in the cover element
where the packages, commands, and other data can be defined:

<constraintdef xml:id="docpackages">
...packages for the user documentation are defined here...
</constraintdef>

<constraintdef xml:id="startdoc">
...special commands for the user documentation go here...

17

</constraintdef>

<constraintdef xml:id="clspackages" linkend="options">
...packages needed for the class or package are defined here...
</constraintdef>

<constraintdef xml:id="manifest">
...files to add to the MANIFEST/zip file are listed here...
</constraintdef>

These exact xml:id values are mandatory when the relevant
constraintdef elements are used, as they are referenced from
elsewhere in the document by the XSLT2 program. The only variation

is that when writing a package (.sty file), the "clspackages" must
read "stypackages" instead. The first three letters are used to match
the three-letter filetype used as the value of the arch attribute that
you specified on the book root element (see ‘arch’, the second item in

the list in section 2.1 on page 12).

Each constraintdef element can hold one or (in some
circumstances, more) of the following element types:

• segmentedlist (in a docpackages, clspackages, or stypackages
type of constraintdefonly), a list structure used to specify the
packages required: see section 2.3.1 on the next page;

• cmdsynopsis, used for defining user documentation setup
commands to be placed in the Preamble. This is only meaningful
in the "docpackages" type of constraintdef: see section 2.3.3
on page 25;

• procedure, used for holding blocks of user documentation setup
commands to be placed after the Preamble (that is, at the start of
the document body, after the \begin{document} command). This
is only meaningful in the "docpackages" type of constraintdef.
Note that this is distinct from commands to be placed in the
Preamble, which are held in a more structured manner in the

cmdsynopsis element deacribed above: see section 2.3.4 on
page 29;

• simplelist, a list whose member elements are used to name
additional files to be included in the distribution zip file

(MANIFEST). This is only meaningful in a manifest type of
constraintdef: see section 2.3.5 on page 30.

18

2.3.1 Specifying packages

There are three parts to using constraintdef for this:
1. specifying packages for your user documentation

(see section 2.3.1.1);

2. specifying packages for the class or package you are writing

(see section 2.3.1.2 on the following page);

3. automating the inclusion of extra settings to be used whenever

you specify a particular package (see section 2.3.2 on page 21).

For the first two, the segmentedlist element is used. This contains a
sequence of seglistitem s, one per package, each containing a seg
element holding the package name. An optional segtitle element
may start the list, and if present, is used as a comment (for the

documentation packages) or a subheading (class or package

packages).

<segmentedlist>
<segtitle>Packages required for documentation</segtitle>
<seglistitem role="Use the Charter typeface for documentation.">

<seg version="2005-04-12">charter</seg>
</seglistitem>
<seglistitem role="Use Helvetica as the sans-serif, but scale it

to fit">
<seg role="scaled=0.8333">helvet</seg>

</seglistitem>
...

</segmentedlist>

Each seglistitem provides for a documentary comment about why
this package is required, using the role attribute. In the case of the
packages for your own class or package, this comment is reproduced

in the documentation of the code.

The package itself is specified as the content of the seg element in
each item.

Any options for the package being loaded must be supplied in the

role attribute of the seg element. If the package must conform to a

specific version, the date must be provided (in ISO format) in the

version attribute.

2.3.1.1 Declaring packages needed for your documentation
Packages required for your documentation must be included in the

19

type of list described above, in the constraintdef element that has
the xml:id value of "docpackages". Note that some packages are
automatically when certain types of formatting are implied:

see section 2.3.2.2 on page 23 for details.

The relevant \usepackage commands get included in the .dtx file
right after the \begin{document} command.
If you also want the package you are maintaining to be included in the

documentation (perhaps so you can use it for examples), remember to

set the xlink:role attribute on the book root element as described in
‘xlink:role’, the last item in the list in section 2.1 on page 13.

See section 2.3.2 on the following page for details of how to specify

package command settings that you want included by default every

time you specify a particular package.

2.3.1.2 Declaring packages needed by the class or package
itself All the packages required for the class or package being

written must be included in the type of list described above, in the

constraintdef element that has the xml:id value of "clspackages"
(for classes) or "stypackages" (for packages).

2.3.1.2.1 Specifying where in the .dtx file to output them:
Because your class or package design may include preliminary

commands needed before packages are included, the relevant

\RequirePackage commands must be added to the .dtx file in a
location that you must specify yourself. This is done by giving the
linkend attribute on the enclosing constraintdef element the value
of an xml:id which you have assigned to a chapter or section in your
annotated code.

There is no default: you must specify this link yourself, otherwise the
list of required packages will not be output.
The reason is that you may need to write some of your class or

package code (option declarations, for example, or a \LoadPackage
command), before the specified packages are loaded.

• If the chapter or section you have specified has content (text) in
it, the \RequirePackage commands are output as the content of
a new chapter or section immediately preceding or following it,

as specified by the value of the role attribute (‘before’ or ‘after’).

20

• If the chapter or section you have specified is (deliberately)
empty, the \RequirePackage commands are output as the
content of that chapter or section.

As an example, let us say you specify the constraintdef with
<constraintdef xml:id="clspackages" linkend="options" role="after">...

You must then have a chapter or section in your documented code

with the xml:id value of "options". If it is empty (no character data
content) like this:

<sect1 xml:id="options">
<title/>
<para/>

</sect1>

then the list of \RequirePackage commands will be output in its
place.

If, on the other hand, the specified section has text and code of its

own:

<sect1 xml:id="options">
<title>Options</title>
<para>text...</para>
<programlisting>

\some{code}
</programlisting>

</sect1>

then the list of \RequirePackage commands will be output
immediately after it, as a new section at the same level.

In both cases, the segtitle of the segmentedlist will be used as the
title of the section.

2.3.2 Automated settings for declared packages

There are several reasons for automating package setup:

• Many LATEX authors and designers have ‘favourite’ settings that
they like to use every time they specify a particular package.

• Some options have now become the de facto convention for their
package, (for example, the T1 option on the fontenc package).

21

• There are commands that need to be used whenever a particular
package is invoked (for example, the makeidx package means
you need to add the \makeindex command to the Preamble).

• Some packages are only needed in the documentation if a
particular formatting feature is used (for example compact list

spacing requires the enumitem package). This avoids you having

to remember to include a specific package when you use such a

feature; and to remove it if you cease to use the feature.

To help automate these, an ancillary (lookup) file called prepost.xml
is used, which is a DocBook document with a refsection root
element type containing two procedure elements, shown below.
The prepost.xml file must be in the directory specified by your
setting of the repo runtime parameter.
<refsection>
<title>Commands to use before and after packages</title>
<procedure xml:id="prepackage">
...steps...

</procedure>
<procedure xml:id="postpackage">
...steps...

</procedure>
</refsection>

The "prepackage" procedure is for material which needs to go before
a package is invoked. The "postpackage" procedure is for material
which needs to go after a package is invoked.

2.3.2.1 Identifying each package Within these procedures, each

package is identified in a step element.
• the remap attribute holds the package name;
• the condition attribute holds the type[s] of output it is intended
to be effective for, "doc", "cls", or "sty" (space-separated if
more than one);

• the role attribute holds any default options (comma-separated);
• an optional para element holds a textual description of the
package and its use. This is only meaningful for packages

marked in the condition attribute for use in the class or
package. If present, this gets output to the code documentation.

<step role="utf8x" remap="inputenc" condition="cls sty">

22

<para>UTF-8 is the default character set, to allow for use of
any character in any writing system. Some characters
are not specified for all fonts, so may have to be
specified manually.</para>

</step>

In this example, specifying inputenc in the document, in a seg element
as described in section 2.3.1 on page 19, results in the package being

added with \RequirePackage to the class or package code.

2.3.2.2 Automating inclusion Each step may contain one or
more constructorsynopsis elements which specify the condition[s]
under which the package will automatically be included without it
needing to be specified in a seg element as described in section 2.3.1
on page 19

• the condition attribute holds the name of an element type
which, if present in the documentation, will cause the package to

be included automatically;

• one or more methodparam subelements can be used to specify
attribute conditions on the element type named in the condition
attribute:

– the parameter element specifies the name of an attribute. If
no modifier element is present, the specified attribute is
simply tested for presence (Boolean test)

– a modifier element is used to specify a value for which the
attribute is tested

<step remap="dcolumn" condition="doc">
<constructorsynopsis condition="colspec">

<methodparam>
<parameter>align</parameter>
<modifier>char</modifier>

</methodparam>
</constructorsynopsis>

</step>

In the example above, a colspec element anywhere in the document
with an align attribute equal to "char" will cause the dcolumn
package to be included automatically (the package handles

decimal-column alignment).

A special case involves the use of the funcparams subelement instead
of the parameter attribute, to specify that an IDREF attribute must be

23

checked for the type of element it refers to.
<step condition="doc" remap="fmtcount">
<constructorsynopsis condition="xref">

<methodparam>
<funcparams>linkend</funcparams>
<modifier>varlistentry</modifier>

</methodparam>
<methodparam>
<funcparams>linkend</funcparams>
<modifier>listitem</modifier>

</methodparam>
</constructorsynopsis>

</step>

In this example, the fmtcount package will be included if there is an
xref element anywhere in the documentation with a linkend
attribute which points at a varlistentry or listitem element — that

is, the xml:id attribute whose value matches the linkend value is on
such an element type (the fmtcount package enables ordinal
counting, needed when making a reference to an item in a list that is

not numbered).

2.3.2.3 Adding extra code before or after a package Each

step may also contain one or more constraintdef elements
containing cmdsynopsis elements containing command elements to
hold LATEX code to be inserted, in exactly the same format as shown

in section 2.3 on page 17.

<step remap="apacite" condition="doc">
<constraintdef>

<cmdsynopsis>
<command>\AtBeginDocument{\edef\ApaciteRestoreAtCode%

{\catcode‘@=\the\catcode‘@\relax}}</command>
</cmdsynopsis>

</constraintdef>
</step>

If this step is given in the "prepackage" section, the code is inserted
before the package is included; if the step is given in the
"postpackage" section, the code is inserted after the package is
included.

A package listed in this file can be given default options by specifying

them in the role attribute of the step element. It is then unnecessary

24

to specify them additionally in the main document (although it won’t

matter, as they are checked for duplication).

2.3.3 Defining commands required for documentation setup

Documenting classes or packages will often require additional

commands to be defined in order to set up special counters or

lengths, establish conditions, or create new macros to be used in your

documentation.

This is quite different from needing to issue standard LATEX commands
in order to set existing standard LATEX values, such as
\setlength{\parskip}{5mm}. That kind of adjustment is dealt with
in section 2.3.4 on page 29.
Commands to be defined for the documentation to work must go in

cmysynopsis elements in the constraintdef element that has the
xml:id value of "docpackages", after the end of the segmentedlist
of packages.

The commands are specified with the command name (control

sequence) or environment name separately from the definition: this

allows a structure to be imposed which enables the identification and

re-use of these specifications.

In giving the commands (control sequences) that you define, you

specify just the names, with no backslash; and the definitions you

give must not have the outermost set of curly braces. Both the

backslash and the curly braces are added by the XSLT2 program

when writing the .dtx file.
Commands containing an ‘at’ sign (@) in their name or definition are
automatically enclosed in \makeatletter and \makeatother
commands.

There are several attributes which specify what you are defining, so

that the data is output to the .dtx file correctly:
Simple commands : A simple new LATEX command with a textual

expansion is defined with the command element holding the name
of the command being defined, and an arg element holding the
definition.

<cmdsynopsis>
<command>LyX</command>

25

<arg>L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX</arg>
</cmdsynopsis>

This creates the definition:

\newcommand{\LyX}{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX}

Renewed commands : If the command is a renewal of an existing
command, use a role attribute of "renew" on the command
element.

<cmdsynopsis>
<command role="renew">vstrut</command>
<arg>\vrule height1.2em depth.6667ex width0pt</arg>

</cmdsynopsis>

This creates the definition:

\renewcommand{\vstrut}{\vrule height1.2em depth.6667ex width0pt}

Plain TEX commands : A \def command in Plain TEX syntax can be
specified with the attribute xml:lang set to "TeX" on the
command element.
<cmdsynopsis xml:lang="TeX">

<command>hline</command>
<arg>\noalign{\ifnum0=‘}\fi

\@ifnextchar[{\@@hline}{\@@hline[\arrayrulewidth]}</arg>
</cmdsynopsis>

This creates the definition:

\def\hline{\noalign{\ifnum0=‘}\fi
\@ifnextchar[{\@@hline}{\@@hline[\arrayrulewidth]}

Commands with arguments : If a defined command needs
arguments, specify the number of arguments in the wordsize
attribute of the arg element:
<cmdsynopsis>
<command>componentbox</command>
<arg wordsize="2">\begin{tabular}[m]{@{}|c|@{}}\hline

\cellcolor{#1}\hbox to1em{\hss%\vrule height1em width0pt
\raisebox{.2ex}{\ttfamily\tiny#2}\hss}\\\hline

\end{tabular}</arg>
</cmdsynopsis>

This creates the definition:

26

\newcommand{\componentbox}[2]{\begin{tabular}[m]{@{}|c|@{}}\hline
\cellcolor{#1}\hbox to1em{\hss%\vrule height1em width0pt

\raisebox{.2ex}{\ttfamily\tiny#2}\hss}\\\hline
\end{tabular}

If a default first argument is required, the value must be

provided in the condition attribute of the command element.
There is no provision in this version of the software for the

specification of the extended argument array provided by the

xargs package.

Counters, lengths, and \newwrites : Counters, lengths, and
\newwrite commands can be defined by using the remap
attribute set to the value "counter", "length" or "newwrite" as
appropriate. in this case, no arg element is required unless a
counter or length is to be assigned a default value.

<cmdsynopsis>
<command remap="newwrite">fnotes</command></cmdsynopsis>

This creates the definition:

\newwrite\fnotes

However, if the length or counter needs an initial value, give it in

an arg element.
<cmdsynopsis>
<command remap="length">revmarg</command>
<arg>3cm</arg>

</cmdsynopsis>
<cmdsynopsis>
<command remap="counter">cards</command>
<arg>42</arg>

</cmdsynopsis>

This creates the definition:

\newlength{\revmarg}\setlength{\revmarg}{3cm}

References to attributes : One specialist use is predefined:
assigning the type of document (class or package) to a command:

<cmdsynopsis>
<command>classorpackage</command>
<arg remap="arch"/>

</cmdsynopsis>

27

This creates the definition:

\newcommand{\classorpackage}{...}

where [. . .] is the type of the current document. The arch
element in this case has no content, but uses the remap attribute
to specify the name of an attribute (here, arch) on the book root
element. This results in the command \classorpackage being
set equal to "class" or "package"; this value is used to provide
a value for the entity &doctype;. This entity can then be used in
shared XML documentation to refer to the current document by

type, knowing that it will be correctly translated to the type of

document when the .dtx file is created.
Environments : The same principle applies to environments as to

commands, but there are two arguments: one for the ‘before’

and one for the ‘after’:

<cmdsynopsis>
<command remap="environment">panel</command>
<arg wordsize="1" condition="\relax">\begin{Sbox}%

\begin{minipage}{3in}%
\if#1\relax\else\subsubsection*{#1}\fi</arg>

<arg>\end{minipage}\end{Sbox}%
\begin{center}\fbox{\theSbox}\end{center}%</arg>

</cmdsynopsis>

This creates the definition:

\newenvironment{panel}{%
\begin{Sbox}%

\begin{minipage}{3in}%
\if#1\relax\else\subsubsection*{#1}\fi

}{%
\end{minipage}\end{Sbox}%

\begin{center}\fbox{\theSbox}\end{center}%
}

The controls for the number of arguments and any default

argument must go on the first arg element. The same rule about
setting the role attribute to "renew" applies as for generating
commands.

28

2.3.4 Additional setup commands

Quite separately from the business of defining new commands (or

redefining existing ones) dealt with in section 2.3.3 on page 25, there

is also usually a need to issue commands that establish or reset a

value needed for the documentation.

Commands that you want implemented every time you use a

particular package should go in your prepost.xml file, as described
in section 2.3.2 on page 21. This section is for commands or settings

that only refer to the documentation for the current class or package

being written.

These commands go in the third of the types of constraintdef
element, with the xml:id value of "startdoc" because they are
output at the start of the documentation (after the
\begin{document}).
They follow exactly the same syntax as those in the prepost.xml file:
<constraintdef xml:id="startdoc">
<procedure>

<step>
<cmdsynopsis>
<command>\setcounter{tocdepth}{5}</command>
<command>\setcounter{secnumdepth}{5}</command>
<command>\def\@@doxdescribe#1#2{\endgroup

\ifdox@noprint\else\marginpar{\raggedleft
\textcolor{DarkRed}{\@nameuse{PrintDescribe#1}{#2}}}\fi
\ifdox@noindex\else\@nameuse{Special#1Index}{#2}\fi
\endgroup\@esphack\ignorespaces}</command>

</cmdsynopsis>
</step>

</procedure>
</constraintdef>

The \@@doxdescribe command is an oddity here: it appears not to
work if placed in the prepost.xml document, where it gets issued in
the Preamble; instead it goes here, where it gets issued after the

\begin{document}.

29

2.3.5 The Manifest

The fourth and last variant of the constraintdef element (with the
xml:id attribute of "manifest") is very simple. It is a list of the
names of any separate files that you want included in the Zip file that

the build command produces. This means anything other than the
.dtx, .ins, and .pdf files that get included automatically.
The content of this element is a simplelist, containing member
elements, one per file:

<constraintdef xml:id="manifest">
<simplelist>

<member>doctexbook.dtd</member>
<member>db2dtx.xsl</member>
<member>db2bibtex.xsl</member>
<member>prepost.xml</member>
<member>lppl.xml</member>
<member>decommentbbl.awk</member>

</simplelist>
</constraintdef>

2.3.6 The README file

One additional output file is produced automatically by the XSLT2

program: the plaintext README file which accompanies all classes

and packages, with a brief description of usage and installation, for

the benefit of people who cannot or will not read the PDF

documentation.

This is generated automatically from the file readme.xml, which is a
DocBook5 chapter document with some changes to the character
entities to accommodate plain text. Note that this document does not
use the doctexbook.dtd used for your normal class or package XML
document. A sample is included in the classpack distribution.

The readme.xml file uses the olink element type to act as a
placeholder for transcluded atomic information from the main

document (pending implementation of the proposed DocBook

Transclusions method). This element must have a targetptr and a
type attribute specifying (respectively) the name of the element type
and the relevant attribute in the main document. For example, to

include the name of the class or package, we use:

30

<olink targetptr="book" type="xml:id"/>

Two other element types have also had targetptr and type
attributes added: sect1 and anchor. These are used to specify the
inclusion of whole sections or fragments of the main document, such

as the Abstract or the Copyright.

The text is reformatted in plain text, omitting all markup. Only a few

element types have been implemented for this in this version: see the

ancillary XSLT2 routines in db2plaintext.xsl for details.
The resulting README file includes the Abstract from your class or

package XML document as the first section. The db2plaintext.xsl
program uses a template called normtext to reformat text. Thisnormtext
handles the conversion of entities which occur in your Abstract (those

declared in doctexbook.dtd): by default, &TeX;, &LaTeX;, and
  are catered for, but if you use any others, you must modify
the code in this template to deal with them, using a nested replace()replace()
function.

31

3 Using ClassPack

The body of your docmentation is held in a part element with the
xml:id attribute set to "doc".
The tag-set of DocBook is very large, and only a part of it is needed
for this purpose, although support for additional elements is easily

added in the XSLT2 program.

The following sections describe the elements that are currently

supported, for the hierarchical structure (chapters, sections,

subsections, etc); the block-level structure (tables, figures, lists, etc;

what DocBook refers to as the ‘pool’) and for the inline markup
(element types in mixed content, used mostly in paragraph-like

situations).

3.1 Hierarchical markup

The outline top-level structure is described in section 1.2 on page 7

and section 2.1 on page 11.

The part s do not have any title or direct textual content themselves:
they just act as containers to keep the user documentation separate

from the documented code and any other files that may be stored and

extracted.

Within a part, the major subdivision is the chapter, which translates
to a \section in the .dtx file. You should use the chapter element as
your major structural division. Each part (user documentation,

documented code, and additional files) must have at least one chapter.

Within chapters, the sections, subsections, and lower structural

divisions are identified with sect1, sect2, and so on. You can use as
many or as few of these as you feel you need to organise your writing.

In the documented code, it is a good idea to modularise the class or

package, so that you can describe each part of it in a logical and

consistent manner.

The nested arrangement of chapters containing sections conaining

subsections should already be familiar to LATEX users, although L
ATEX

itself only uses headings as separators, and has no physical

‘containment’ of the hierarchical divisions of a document in the way

that it does for the block-level structures (environments).

32

Each of these hierarchical divisions must have a title element (see
‘title’, the first item in the list in section 3.2), and can also have an

xml:id attribute to act as a target (like a LATEX \label) for
cross-referencing (see ‘xref’, the last item in the list in section 3.3 on

page 37).

<part xml:id="doc">...
<chapter xml:id="ui">
<title>User interface</title>
...
<sect1>

<title>Font selection</title>
...

</sect1>
<sect1 xml:id="margins">

<title>Margins and spacing</title>
...

</sect1>
</chapter>
...

</part>

3.2 Structural markup (block-level elements)

Within chapters, sections, subsections, etc, you can have any

arrangement or mixture of paragraphs, tables, lists, figures,

quotations, code samples, and other conventional structures that will

be familiar to you from LATEX environments.

The only requirement is that each hierarchical division must start

with a title, and must contain at least one other structural

component. Supported element types are:

title : a title, used in all chapters, [sub]sections, figures, and tables
(where it equates to a caption); and also optionally in lists,

sidebars, and other block-level element types.

para : for normal paragraphs.
itemizedlist : for bulleted lists, containing listitem s which

contain paragraphs.

orderedlist : for numbered lists; the structure is identical to an
itemizedlist.

33

variablelist : for description lists like this one (the term element in
each varlistentry holds the reference term; the descriptive
part is in the same listitem structure as for itemized and
bulleted lists.

simplelist : for plain unnumbered, unbulleted lists; each item goes

in a member element.
programlisting : for listings of code: use without attributes in the

Code section. In the Documentation section, the basic style is in

\small type, black, \ttfamily, and the following attributes
control the appearance:

wordsize either a size command or a pointsize/baseline
like 8/9

language LaTeX (default), DocBook, bash, or another
language supported by the listings package

arch framed will box the listing
remap LATEX styling commands for tokens to

emphasise
annotations comma-separated list of tokens to emphasise

figure : for Figures, containing a caption and a media element.
table : for Tables; the structure is explained in detail in ?? on

page ??.

sidebar : for sidebars.
warning : for warnings.

3.2.1 Ancillary files documented inline

These are files which you want extracted at installation time, which

you describe and show in the user documentation (the doc part).
Files which you want extracted which are not documented or shown
in the user documentation must go in the files part
(see section 1.3.3 on page 9).

3.2.2 Bibliography

If bibliographic citations and reference is required, the references

themselves must be stored in a bibliography element immediately

34

after the last chapter element in either the ‘doc’ part or the ‘code’
part. This must contain a biblioentry element for each entry you
wish to cite (for how to cite, see ‘biblioref’, the first item in the list

in section 3.3 on the next page).

<bibliography xreflabel="apacite" label="apacite">
<biblioentry xml:id="tb97" xreflabel="article">
<biblioset>

<author>
<personname>
<surname>Flynn</surname>
<firstname>Peter</firstname>

</personname>
</author>
<title>Typographers’ Inn</title>
<subtitle>Where have all the flowers gone?</subtitle>

</biblioset>
<artpagenums>21-22</artpagenums>
<title>TUGboat</title>
<volumenum>31</volumenum>
<issuenum>1</issuenum>
<date YYYY-MM-DD="2010"/>

</biblioentry>
</bibliography>

The bibliography element must have a label attribute giving the
name of the BibTEX style file to use (without the .bst filetype). The
apacite style is recommended.

If the specified style requires a LATEX style package for formatting

(often called by the same name, eg apacite, natbib, chicago, etc), this
must be given in an xreflabel attribute (without the .sty filetype).
There may also be an xlink:href attribute giving the name of the
BibTEX file (without the .bib filetype) to which the references should
be written: the default is the name of the class or package itself (as

defined in ‘xml:id’, the first item in the list in section 2.1 on page 11).

Each biblioentry element must have both an xml:id attribute by
which it can be cited with the biblioref element; and a type
attribute classifying it with one of the standard BibTEX document

types (article, book, incollection, etc)

35

3.3 Inline markup (elements in mixed content)

biblioref : a citation (bibliographic reference) to an item in the

Bibliography; the linkend attribute must be the value of the
xml:id of a biblioentry element (see section 3.2.2 on page 34);
this value is passed to a \cite command.

citetitle : the title of a document being mentioned; usually
formatted in italics or quotes; may be empty, with a linkend
attribute pointing to an entry in the Bibliography (as for

biblioref), in which case the title is automatically extracted
and formatted, or passed to a \citefield command.

code : a fragment of computer or data code, formatted in monospace
type.

emphasis : emphasis according to style, usually italics.
exceptionname : used for the keywords of RFC2119 in formal

admonishments.

filename : name of a file, a full filepath, or just a part of the name (eg
a filetype).

firstterm : the defining instance of a specialist term; this may or
may not actually be the first occurrence.

footnote : a footnote; contains a paragraph.
foreignphrase : for foreign-language expressions; identify the

language with the xml:lang attribute if the phrase is long
enough to need the babel package.

guibutton : represents a GUI
�� ��Button .

guilabel : represents a GUI Label .
guimenu : represents a GUI Menu.
guimenuitem : represents a GUI Menu item.
guisubmenu : represents a GUI Sub-menu item.

literal : marks a literal string on which no interpretation is to
be performed (markup characters like backslashes and curly

braces will not be escaped; the xml:lang attribute can be set to
the name of the language (eg "TeX", "LaTeX", etc.

36

phrase : marks a phrase used as-is (ie not a quote from anyone in

particular) by enclosing it in quotation marks.

productname : marks a product or program name, eg Emacs.
quote : marks a quote from someone by putting it in quotation marks.

replaceable : identifies text, commands, or keywords to be typed,
for which the user must substitute a meaningful value, eg

password (in italics).
systemitem : identifies generic computer-related strings such as

system commands, hostnames, Regular Expressions, etc which

need to be printed in monospace to eliminate any confusion over

1/l/I, 0/1/I, etc.

type : marks a span for which special typographical treatment is
needed. The role attribute must be set to ‘font’ and the remap
attribute must be set to the NFSS2e three-character fontname.

uri : marks a URI (formats it with the \url macro).
wordasword : marks a word that is being used as itself (usually for

purposes of clarification), so it goes in quotation marks.

xref : a cross-reference using the linkend attribute to point at some
other part of the document, which must have the matching

xml:id value; the mechanism is identical to LATEX’s

\label. . .\ref.
In addition, there are six special-purpose element types used for

functional documentation, that create the special dox package
commands for adding LATEX (and XML) terms to the index, and

highlighting them in the left-hand margin:

classname : a LATEX document class name like article
command : a LATEX or other computer command, such as \parskip; the

backslash is added automatically for the default case of LATEX;

other languages require the xml:lang attribute giving the name
of the language

envar : a LATEX environment name like enumerate
option : a LATEX option to a class, package, or command, like a4paper
package : a LATEX package name like fancybox
tag : an XML element, attribute, attribute value, or entity name: the

type is specified in the class attribute and is one of the

37

predetermined list provided automatically by DocBook (so your
XML editor will guide you)

3.4 Producing your class or package

The XSLT2 program generates a number of output files, principally

the .dtx and .ins files which are the package or class itself. A third
output is a build file, which is a bash shell script customised for the
production of the class or package you are writing. A fourth is the

MANIFEST file, used for zipping everything up for distribution,
You should therefore keep each class or package development in a

separate directory, otherwise the build file generated by one will
overwrite that generated by others.

#! /bin/bash
#
Bourne shell script to build the class file and documentation
Note the following line is wrapped here to fit the width
java -jar /usr/local/saxon/saxon9he.jar \

-o:classpack.dtx classpack.xml \
/home/peter/texmf/dev/db2dtx.xsl \
processor=/usr/local/saxon/saxon9he.jar \
appdir=/home/peter/texmf/dev \
cpdir=/home/peter/texmf/dev

yes|latex classpack.ins
pdflatex classpack.dtx
bibtex classpack
awk -f /home/peter/texmf/dev/decommentbbl.awk classpack.bbl >classpack.bdc
mv classpack.bdc classpack.bbl
pdflatex classpack.dtx
makeindex -s gind.ist -o classpack.ind classpack.idx
makeindex -s gglo.ist -o classpack.gls classpack.glo
pdflatex classpack.dtx
echo Copying files into dev tree...
mkdir -p doc/latex/classpack
mkdir -p source/latex/classpack
mkdir -p tex/latex/classpack
cp README MANIFEST classpack.pdf doc/latex/classpack
cp classpack.dtx classpack.ins source/latex/classpack
cp classpack.cls tex/latex/classpack
cp db2bibtex.xsl source/latex/classpack
cp db2dtx.xsl source/latex/classpack
cp db2plaintext.xsl source/latex/classpack

38

cp decommentbbl.awk source/latex/classpack
cp doctexbook.dtd source/latex/classpack
cp lppl.xml source/latex/classpack
cp prepost.xml source/latex/classpack
cp readme.xml source/latex/classpack
echo Zipping up files from dev tree...
zip -r --exclude=*.svn* --exclude=*.DS_Store* \

classpack-0.73.tds.zip doc/latex/classpack \
source/latex/classpack tex/latex/classpack

echo Installing working copy...
unzip -o -d ~/texmf classpack-0.73.tds.zip

Because this file will not exist the very first time you process a new

class or package, you will need to type that first (java) command by
hand. The arguments are:

1. {〈jar〉} the location of your copy of the Saxon XSLT2 processor, a
.jar file;

2. -o: the name of the .dtx file you are producing;
3. the name of the XML file you are processing;

4. the full path to the DB2DTX program;

5. the location of your copy of the Saxon XSLT2 processor (again)

as the processor parameter;
6. the directory you use for this class or package as the appdir;
7. the directory where your copy of the XSLT2 program is stored as

the cpdir parameter (along with the DTD, prepost.xml,
readme.xml, db2plaintext.xsl, and lppl.xml files) .

For subsequent runs, you just type ./build and the values and
parameters will be re-used automatically. If you ever need to run the

XSLT2 process by itself, use the command grep java build | bash
The remainder of the build tests the extraction of the class or
package, and compiles the full documentation in the standard

sequence, including any bibliography, index, or glossary.

The use of the decommentbbl.awk script on the BibTEX output is to
defeat the use of terminal percent comment characters, which upset

the ltxdoc package because of the special use of that character there.

The final stage is to create a Zip file of the class or package, which is

placed in the current working directory and then unzipped into your

39

personal TEX tree.

3.5 Maintaining your class or package

The things to control each time you make an update are:

1. on the book root element, update the version and revision
attributes

2. add a new revision element in the Revision History, setting the
version attribute to the compound of the version and revision
specified above, and setting the date subelement’s conformance
attribute to today’s date in ISO format

3. after processing the document once, set the book root element’s
security attribute to the checksum displayed by LATEX

4. process the document again (run the build script again) — the

security checksum should now match

40

4 The db2dtx program

While the core of your class or package is the DocBook XML
document, the core of the classpack system is the program that turns

your XML into .dtx and .ins files for distribution as combined code
and documentation.

The db2dtx program is written in XSLT2, a declarative language for

processing XML. It consists of a set of templates, each of which

matches a pattern in the XML document, usually an element type, or

an element type in a particular position or with a particular attribute

value or subelement.

For example, there is a template which matches the biblioref
element whenever it occurs. This puts three things into the output:

1. the command \cite{ with its opening curly brace;
2. the value of the link to the bibliographic entry;

3. the closing } curly brace.
<xsl:template match="db:biblioref">
<xsl:text>\cite{</xsl:text>
<xsl:value-of select="@linkend"/>
<xsl:text>}</xsl:text>

</xsl:template>

The advantage of using a declarative language is that you don’t need

to know when and where each element will occur: XSLT2 will find

them as they come up in processing, and apply the template when it

happens. It’s basically a case of ‘when you see one of these, do this’.
The next few sections of this document describe each part of the

program and how it produces your class or package files.

4.1 XML Declaration and Namespace declarations

The program starts in the usual way with the XML Declaration and

the xsl:stylesheet start-tag with the Namespace declarations.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:db="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"

41

version="2.0">

Note that this is an XSLT2 program and requires an XSLT2 processor.

<!-- db2dtx.xsl
XSL script to transform DocBook5 documentation and code of a
LaTeX package or class file into a DocTeX (.dtx and .ins)
distribution.
Full processing command chain is output to file ’build’
Note this requires an XSLT2 processor (eg Saxon9 or above)

-->

We identify the version of the program, output methods, parameters,

and the single xsl:include file: the db2bibtex.xsl module for
handling bibliographic formatting.

<xsl:variable name="thisversion">
<xsl:text>14.7</xsl:text>

</xsl:variable>

<xsl:output method="text"/>
<xsl:output method="text" name="textFormat"/>

<xsl:include href="db2bibtex.xsl"/>
<xsl:include href="db2plaintext.xsl"/>

This is incomplete: the remainder of the program is not yet included

here.

42

5 Service commands

As ClassPack itself is not a document class or package per
se, there is no operating code.
However, there are some ancillary commands commonly

used in documentation which should be expected by authors

of classes and packages using ClassPack.

This section therefore implements classpack.sty, which
gets invoked automatically via its entry in prepost.xml.

IndexColumns The doctex package uses a default three-column index,
which is too narrow for most purposes. We therefore make

the index in two columns, and space them slightly farther

apart.

1 \setcounter{IndexColumns}{2}
2 \setlength{\columnsep}{3pc}

5.1 TEX and other logos

TEX and L
ATEX are defined in the L

ATEX kernel, but most of the

others are not. The following definitions are taken from the

ltugboat package, used for typesetting the TUGboat journal.

\ConTeXt ConTEXt is a typography and typesetting system meant to

provide users easy and consistent access to advanced

typographical control (Anon, n.d.).

3 \def\ConTeXt{C\kern-.0333emon\-\kern-.0667em\TeX\kern-.0333emt}

43

References

Anon. (n.d.). ConTEXt. Wikipedia. Retrieved 27 March 2013,
from http://en.wikipedia.org/wiki/ConTeXt

44

A The XML vocabulary

There are currently no changes to the DocBook element
structure.

book The DTD is a driver implementing a number of entity

declarations to ease the transformation to LATEX.

4 <!ENTITY % db5dtd SYSTEM "/dtds/docbook/docbook-5.0/dtd/docbook.dtd">
5 <!ATTLIST date YYYY-MM-DD CDATA #IMPLIED>
6 <!ATTLIST blockquote units CDATA #IMPLIED
7 begin CDATA #IMPLIED
8 end CDATA #IMPLIED>
9 <!ATTLIST quote units CDATA #IMPLIED
10 begin CDATA #IMPLIED
11 end CDATA #IMPLIED>
12 <!ELEMENT html:form EMPTY>
13 <!ENTITY ampers "\&#38;">
14 <!ENTITY BiBTeX "\BibTeX{}">
15 <!ENTITY BibTeX "\BibTeX{}">
16 <!ENTITY BIBTeX "\BibTeX{}">
17 <!ENTITY ConTeXt "\ConTeXt{}">
18 <!ENTITY LaTeX "\LaTeX{}">
19 <!ENTITY LaTeX2e "\LaTeXe{}">
20 <!ENTITY XeTeX "\XeTeX{}">
21 <!ENTITY LyX "\LyX{}">
22 <!ENTITY METAFONT "\MF{}">
23 <!ENTITY METAPOST "\MP{}">
24 <!ENTITY TeX "\TeX{}">
25 <!ENTITY bsol "{\texttt{\textbackslash}}">
26 <!ENTITY date "\filedate{}">
27 <!ENTITY degree "\textdegree{}">
28 <!ENTITY doctype "\classorpackage{}">
29 <!ENTITY filler "\hfil{}">
30 <!ENTITY frac12 "\nicefrac12">
31 <!ENTITY frac13 "\nicefrac13">
32 <!ENTITY frac23 "\nicefrac23">
33 <!ENTITY hellip "\dots{}">
34 <!ENTITY mdash "~--- ">
35 <!ENTITY mldr "\dotfill{}">

45

36 <!ENTITY nbsp "~">
37 <!ENTITY ndash "--">
38 <!ENTITY percnt "\%">
39 <!ENTITY square "\raisebox{-1pt}{\Square}">
40 <!ENTITY thinsp "\thinspace{}">
41 <!ENTITY times "×">
42 <!ENTITY specialUuml ’{\normalfont\"{\fontfamily{cdr}\selectfont U}}’>
43 <!ENTITY verbar "\menusep{}">
44 <!ENTITY version "\fileversion{}">
45 <!-- call the main DTD --> %db5dtd;

46

B Reusable XML

In the last item in the list in section 1 on page 5, I said that

one of the benefits of using XML for software generation and

documentation was the re-usability of the data. Here are a

couple of simple examples.

46 $ lxprintf -e productname "%s\n" . classpack.xml |\
47 sort | uniq -c | sort -k 1nr

Checking that all element types have been described!

47

C The LATEX Project Public License

Everyone is allowed to distribute verbatim copies of this license

document, but modification of it is not allowed.

C.1 Preamble

The LATEX Project Public License (LPPL) is the primary license under

which the LATEX kernel and the base L
ATEX packages are distributed.

You may use this license for any work of which you hold the copyright

and which you wish to distribute. This license may be particularly

suitable if your work is TEX-related (such as a L
ATEX package), but it is

written in such a way that you can use it even if your work is unrelated

to TEX.

The section Whether and How to Distribute Works under This License,
below, gives instructions, examples, and recommendations for authors

who are considering distributing their works under this license.

This license gives conditions under which a work may be distributed

and modified, as well as conditions under which modified versions of

that work may be distributed.

We, the LATEX3 Project, believe that the conditions below give you the

freedom to make and distribute modified versions of your work that

conform with whatever technical specifications you wish while

maintaining the availability, integrity, and reliability of that work. If you

do not see how to achieve your goal while meeting these conditions,

then read the document cfgguide.tex and modguide.tex in the base
LATEX distribution for suggestions.

C.2 Definitions

In this license document the following terms are used:

Work : Any work being distributed under this License.

48

Derived Work : Any work that under any applicable law is derived

from the Work.

Modification : Any procedure that produces a Derived Work under
any applicable law — for example, the production of a file

containing an original file associated with the Work or a significant

portion of such a file, either verbatim or with modifications and/or

translated into another language.

Modify : To apply any procedure that produces a Derived Work under
any applicable law.

Distribution : Making copies of the Work available from one person to

another, in whole or in part. Distribution includes (but is not

limited to) making any electronic components of the Work

accessible by file transfer protocols such as FTP or HTTP or by

shared file systems such as Sun’s Network File System (NFS).

Compiled Work : A version of the Work that has been processed into a
form where it is directly usable on a computer system. This

processing may include using installation facilities provided by the

Work, transformations of the Work, copying of components of the

Work, or other activities. Note that modification of any installation

facilities provided by the Work constitutes modification of the

Work.

Current Maintainer : A person or persons nominated as such within
the Work. If there is no such explicit nomination then it is the

‘Copyright Holder’ under any applicable law.

Base Interpreter : A program or process that is normally needed for

running or interpreting a part or the whole of the Work.

A Base Interpreter may depend on external components but these

are not considered part of the Base Interpreter provided that each

external component clearly identifies itself whenever it is used

interactively. Unless explicitly specified when applying the license

to the Work, the only applicable Base Interpreter is a

‘LATEX-Format’ or in the case of files belonging to the ‘L
ATEX-format’

a program implementing the ‘TEX language’.

49

C.3 Conditions on Distribution and Modification

1. Activities other than distribution and/or modification of the Work

are not covered by this license; they are outside its scope. In

particular, the act of running the Work is not restricted and no

requirements are made concerning any offers of support for the

Work.

2. You may distribute a complete, unmodified copy of the Work as

you received it. Distribution of only part of the Work is considered

modification of the Work, and no right to distribute such a Derived

Work may be assumed under the terms of this clause.

3. You may distribute a Compiled Work that has been generated from

a complete, unmodified copy of the Work as distributed under

Clause item 2 above above, as long as that Compiled Work is

distributed in such a way that the recipients may install the

Compiled Work on their system exactly as it would have been

installed if they generated a Compiled Work directly from the

Work.

4. If you are the Current Maintainer of the Work, you may, without

restriction, modify the Work, thus creating a Derived Work. You

may also distribute the Derived Work without restriction,

including Compiled Works generated from the Derived Work.

Derived Works distributed in this manner by the Current

Maintainer are considered to be updated versions of the Work.

5. If you are not the Current Maintainer of the Work, you may modify

your copy of the Work, thus creating a Derived Work based on the

Work, and compile this Derived Work, thus creating a Compiled

Work based on the Derived Work.

6. If you are not the Current Maintainer of the Work, you may

distribute a Derived Work provided the following conditions are

met for every component of the Work unless that component

clearly states in the copyright notice that it is exempt from that

condition. Only the Current Maintainer is allowed to add such

statements of exemption to a component of the Work.

(a) If a component of this Derived Work can be a direct

50

replacement for a component of the Work when that

component is used with the Base Interpreter, then, wherever

this component of the Work identifies itself to the user when

used interactively with that Base Interpreter, the replacement

component of this Derived Work clearly and unambiguously

identifies itself as a modified version of this component to the

user when used interactively with that Base Interpreter.

(b) Every component of the Derived Work contains prominent

notices detailing the nature of the changes to that component,

or a prominent reference to another file that is distributed as

part of the Derived Work and that contains a complete and

accurate log of the changes.

(c) No information in the Derived Work implies that any persons,

including (but not limited to) the authors of the original

version of the Work, provide any support, including (but not

limited to) the reporting and handling of errors, to recipients

of the Derived Work unless those persons have stated

explicitly that they do provide such support for the Derived

Work.

(d) You distribute at least one of the following with the Derived

Work:

i. A complete, unmodified copy of the Work; if your

distribution of a modified component is made by offering

access to copy the modified component from a designated

place, then offering equivalent access to copy the Work

from the same or some similar place meets this condition,

even though third parties are not compelled to copy the

Work along with the modified component;

ii. Information that is sufficient to obtain a complete,

unmodified copy of the Work.

7. If you are not the Current Maintainer of the Work, you may

distribute a Compiled Work generated from a Derived Work, as

long as the Derived Work is distributed to all recipients of the

Compiled Work, and as long as the conditions of Clause item 6

above, above, are met with regard to the Derived Work.

51

8. The conditions above are not intended to prohibit, and hence do

not apply to, the modification, by any method, of any component

so that it becomes identical to an updated version of that

component of the Work as it is distributed by the Current

Maintainer under Clause item 4 above, above.

9. Distribution of the Work or any Derived Work in an alternative

format, where the Work or that Derived Work (in whole or in part)

is then produced by applying some process to that format, does

not relax or nullify any sections of this license as they pertain to

the results of applying that process.

10. (a) A Derived Work may be distributed under a different license

provided that license itself honors the conditions listed in

Clause item 6 above above, in regard to the Work, though it

does not have to honor the rest of the conditions in this

license.

(b) If a Derived Work is distributed under a different license, that

Derived Work must provide sufficient documentation as part

of itself to allow each recipient of that Derived Work to honor

the restrictions in Clause item 6 above above, concerning

changes from the Work.

11. This license places no restrictions on works that are unrelated to

the Work, nor does this license place any restrictions on

aggregating such works with the Work by any means.

12. Nothing in this license is intended to, or may be used to, prevent

complete compliance by all parties with all applicable laws.

C.4 No Warranty

There is no warranty for the Work. Except when otherwise stated in

writing, the Copyright Holder provides the Work ‘as is’, without

warranty of any kind, either expressed or implied, including, but not

limited to, the implied warranties of merchantability and fitness for a

particular purpose. The entire risk as to the quality and performance of

the Work is with you. Should the Work prove defective, you assume the

52

cost of all necessary servicing, repair, or correction.

In no event unless required by applicable law or agreed to in writing

will The Copyright Holder, or any author named in the components of

the Work, or any other party who may distribute and/or modify the

Work as permitted above, be liable to you for damages, including any

general, special, incidental or consequential damages arising out of any

use of the Work or out of inability to use the Work (including, but not

limited to, loss of data, data being rendered inaccurate, or losses

sustained by anyone as a result of any failure of the Work to operate

with any other programs), even if the Copyright Holder or said author

or said other party has been advised of the possibility of such damages.

C.5 Maintenance of The Work

The Work has the status ‘author-maintained’ if the Copyright Holder

explicitly and prominently states near the primary copyright notice in

the Work that the Work can only be maintained by the Copyright

Holder or simply that it is ‘author-maintained’.

The Work has the status ‘maintained’ if there is a Current Maintainer

who has indicated in the Work that they are willing to receive error

reports for the Work (for example, by supplying a valid e-mail address).

It is not required for the Current Maintainer to acknowledge or act

upon these error reports.

The Work changes from status ‘maintained’ to ‘unmaintained’ if there

is no Current Maintainer, or the person stated to be Current Maintainer

of the work cannot be reached through the indicated means of

communication for a period of six months, and there are no other

significant signs of active maintenance.

You can become the Current Maintainer of the Work by agreement with

any existing Current Maintainer to take over this role.

If the Work is unmaintained, you can become the Current Maintainer of

the Work through the following steps:

1. Make a reasonable attempt to trace the Current Maintainer (and

the Copyright Holder, if the two differ) through the means of an

53

Internet or similar search.

2. If this search is successful, then enquire whether the Work is still

maintained.

(a) If it is being maintained, then ask the Current Maintainer to

update their communication data within one month.

(b) If the search is unsuccessful or no action to resume active

maintenance is taken by the Current Maintainer, then

announce within the pertinent community your intention to

take over maintenance. (If the Work is a LATEX work, this could

be done, for example, by posting to news:comp.text.tex.)
3. (a) If the Current Maintainer is reachable and agrees to pass

maintenance of the Work to you, then this takes effect

immediately upon announcement.

(b) If the Current Maintainer is not reachable and the Copyright

Holder agrees that maintenance of the Work be passed to you,

then this takes effect immediately upon announcement.

4. If you make an ‘intention announcement’ as described in item 2b

above above and after three months your intention is challenged

neither by the Current Maintainer nor by the Copyright Holder

nor by other people, then you may arrange for the Work to be

changed so as to name you as the (new) Current Maintainer.

5. If the previously unreachable Current Maintainer becomes

reachable once more within three months of a change completed

under the terms of item 3b above or item 4 above, then that

Current Maintainer must become or remain the Current

Maintainer upon request provided they then update their

communication data within one month.

A change in the Current Maintainer does not, of itself, alter the fact

that the Work is distributed under the LPPL license.

If you become the Current Maintainer of the Work, you should

immediately provide, within the Work, a prominent and unambiguous

statement of your status as Current Maintainer. You should also

announce your new status to the same pertinent community as

in item 2b above above.

54

C.6 Whether and How to Distribute Works under
This License

This section contains important instructions, examples, and

recommendations for authors who are considering distributing their

works under this license. These authors are addressed as ‘you’ in this

section.

C.6.1 Choosing This License or Another License

If for any part of your work you want or need to use distribution
conditions that differ significantly from those in this license, then do

not refer to this license anywhere in your work but, instead, distribute

your work under a different license. You may use the text of this license

as a model for your own license, but your license should not refer to the

LPPL or otherwise give the impression that your work is distributed

under the LPPL.

The document modguide.tex in the base LATEX distribution explains the
motivation behind the conditions of this license. It explains, for

example, why distributing LATEX under the GNU General Public License

(GPL) was considered inappropriate. Even if your work is unrelated to

LATEX, the discussion in modguide.tex may still be relevant, and authors
intending to distribute their works under any license are encouraged to

read it.

C.6.2 A Recommendation on Modification Without Distribution

It is wise never to modify a component of the Work, even for your own

personal use, without also meeting the above conditions for

distributing the modified component. While you might intend that such

modifications will never be distributed, often this will happen by

accident — you may forget that you have modified that component; or it

may not occur to you when allowing others to access the modified

version that you are thus distributing it and violating the conditions of

this license in ways that could have legal implications and, worse,

55

cause problems for the community. It is therefore usually in your best

interest to keep your copy of the Work identical with the public one.

Many works provide ways to control the behavior of that work without

altering any of its licensed components.

C.6.3 How to Use This License

To use this license, place in each of the components of your work both

an explicit copyright notice including your name and the year the work

was authored and/or last substantially modified. Include also a

statement that the distribution and/or modification of that component

is constrained by the conditions in this license.

Here is an example of such a notice and statement:

%%% pig.dtx
%%% Copyright 2005 M. Y. Name
%%
%% This work may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% http://www.latex-project.org/lppl.txt
%% and version 1.3 or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This work has the LPPL maintenance status ‘maintained’.
%%
%% The Current Maintainer of this work is M. Y. Name.
%%
%% This work consists of the files pig.dtx and pig.ins
%% and the derived file pig.sty.

Given such a notice and statement in a file, the conditions given in this

license document would apply, with the ‘Work’ referring to the three

files pig.dtx, pig.ins, and pig.sty (the last being generated from
pig.dtx using pig.ins), the ‘Base Interpreter’ referring to any
‘LATEX-Format’, and both ‘Copyright Holder’ and ‘Current Maintainer’

referring to the person M. Y. Name.

56

If you do not want the Maintenance section of LPPL to apply to your

Work, change ‘maintained’ above into ‘author-maintained’. However,

we recommend that you use ‘maintained’ as the Maintenance section

was added in order to ensure that your Work remains useful to the

community even when you can no longer maintain and support it

yourself.

C.6.4 Derived Works That Are Not Replacements

Several clauses of the LPPL specify means to provide reliability and

stability for the user community. They therefore concern themselves

with the case that a Derived Work is intended to be used as a

(compatible or incompatible) replacement of the original Work. If this

is not the case (e.g., if a few lines of code are reused for a completely

different task), then clauses 6b and 6d shall not apply.

C.6.5 Important Recommendations

C.6.5.1 Defining What Constitutes the Work The LPPL requires

that distributions of the Work contain all the files of the Work. It is

therefore important that you provide a way for the licensee to

determine which files constitute the Work. This could, for example, be

achieved by explicitly listing all the files of the Work near the copyright

notice of each file or by using a line such as:

%% This work consists of all files listed in manifest.txt.

in that place. In the absence of an unequivocal list it might be

impossible for the licensee to determine what is considered by you to

comprise the Work and, in such a case, the licensee would be entitled

to make reasonable conjectures as to which files comprise the Work.

57

Change History

v0.71

General: First time this was

used to document itself: The

title element and subtitle

element are now subsumed

beneath the generated title

in the output.. 1

v0.72

General: Wrote internal doc-

umentation: Created the

classpack.xml template as

an example.. 1

v0.73

General: Added readme.xml

and db2plaintext.xsl:

This implements dynamic

README generation.. 1

v0.74

General: Added experimen-

tal autopackage: This im-

plements automated pack-

age inclusion based on the

markup used by the author.. 1

v0.75

General: Added secondary

files: Secondary output files

possible; reversed usage of

role attribute on keywords;. 1

v0.76

General: Modified documenta-

tion: Started working on

Makefile. 1

v0.77

General: Removed unwanted

definitions: classorpack-

age. 1

58

Index

Numbers written in italic refer to the page where the corresponding

entry is described; numbers underlined refer to the code line of the

definition; numbers in roman refer to the code lines where the entry is

used.

Symbols
\& . 13, 38

\- . 3

\␣ . 46

B
\BibTeX 14–16

book (dtd) 4

C
\columnsep 2

\ConTeXt 3, 17

counters:

IndexColumns 1

D
Document Type Definition see DTD
\dotfill 35

\dots . 33

DTD . 6, 7
DTDs/Schemas:

book . 4

F
\filedate 26

\fileversion 44

\fontfamily 42

Formal Public Identifier . . see FPI
FPI . 7, 7
functions:

replace() 31

I
IndexColumns (counter) 1

L
\LaTeX . 18

\LaTeXe 19

\LyX . 21

M
\menusep 43

\MF . 22

\MP . 23

N
\nicefrac 30–32

\normalfont 42

normtext (template) 31

R
\raisebox 39

replace() (function) 31

S
\Square 39

T
templates:

normtext 31
\textbackslash 25

\textdegree 27

\texttt 25

\thinspace 40

X
\XeTeX . 20

59

