bib2gls: a command line Java
application to convert .bib files to
glossaries-extra.sty resource files

Nicola Talbot
dickimaw-books.com

Version 3.2 2022-11-24

The bib2gls command line application can be used to extract glossary infor-
mation stored in a .bib file and convert it into glossary entry definitions that
can be read using glossaries-extra’s \GlsXtrLoadResources command. When
used in combination with the record package option, bib2gls can select only
those entries that have been used in the document, as well as any dependent
entries, which reduces the TgX resources required by not defining unnecessary
commands.

Since bib2gls can also sort and collate the recorded locations present in the
.aux file, it can simultaneously by-pass the need to use makeindex or xindy,
although bib2gls can be used together with an external indexing application if
required. (For example, if a custom xindy rule is needed.)

An additional build may be required to ensure the locations are up-to-date
as the page-breaking may be slightly different on the first KIgX run due to the
unknown references being replaced with ?? which can be significantly shorter
than the actual text produced when the reference is known.

Note that bib2gls is a Java application, and requires at least Java 8.! Addition-
ally, glossaries-extra must be at least version 1.12. (Although the latest version is
recommended.) This application was developed in response to the question “Is
there a program for managing glossary tags?” on TgX on StackExchange [17].
The .Dbib file can be managed in an application such as JabRef.

If you already have a .tex file containing entry definitions using commands
like \newglossaryentry then you can use the supplementary tool convert-
gls2bib to convert the entries to the .bib format required by bib2gls. See
chapter 7 for further details.

'The List.sort method used to sort the entries was only introduced to Java 8.

https://www.dickimaw-books.com/
http://tex.stackexchange.com/q/342544
http://tex.stackexchange.com/q/342544

The supplementary file “glossaries-extra and bib2gls: An Introductory Guide”
(bib2gls-begin.pdf) is an introductory guide to the glossaries-extra package,
which you may prefer to start with if you are unfamiliar with the glossaries and
glossaries-extra packages.

Additional resources:
« bib2gls gallery.
+ bib2gls FAQ
TUGboat articles:
+ Glossaries with bib2gls, issue 40:1, 2019.
« bib2gls: selection, cross-references and locations, issue 41:3, 2020.

« bib2gls: sorting, issue 42:2, 2021.

https://www.dickimaw-books.com/gallery/#bib2gls
https://www.dickimaw-books.com/faq.php?category=bib2gls
http://tug.org/TUGboat/tb40-1/tb124talbot-bib2gls.pdf
http://tug.org/TUGboat/tb41-3/tb129talbot-bib2gls-more.pdf
http://tug.org/TUGboat/Contents/contents42-2.html

Contents

Glossary

1 Introduction
1.1 ExampleUse
1.2 Logical Divisions: type vs groupvsparent
1.3 DefiningaNew Glossary
1.4 Resource Sets e
1.5 Indexing
1.6 Security L
1.7 Localisation
1.8 Conditional DocumentBuild
1.9 Manual Installation

2 TgX Parser Library

Command Line Options

3.1

3.2

3.3

Common Options e
—=help(or-h)
—=version (Or =V) e
-=debug [(n)]
—--no-debug (or —-nodebug)
—=Verbose e e
--no-verbose (or ——noverbose)
——quiet (O =q) . « « v o o
-—silent
--locale (lang) (or -1 (lang))
—=group (OF =€) .« « v i e e e e e e e e e e
TTNOTEIOUD « v v e b e e e e e e e e e e e e e
File Options
--dir (dirname) (or -d (dirname))
--log-file (filename) (or -t (filename))
-—tex-encoding (name)
Interpreter Options
--break-space e
--no-break-space L L e
--custom-packages (list)
--ignore-packages (list) (or -k (list))

XX

PR

10
11
15
16
16
17
18

34

35

3.6

Contents

-—interpret 35
--no-interpret L 35
--list-known-packages oo 35
--packages (list) (or =p (list)) 35
—--support-unicode-script L Lo oL 36
--no-support-unicode-script o 0L 36
--obey-aux-catcode Lo L oo 36
--no-obey-aux-catcode L Lo 37
Record Options 37
-—cite-as-record e 37
--no-cite—-as-record e 37
--collapse-same-location-range, 37
--no—collapse-same-location-range 37
--map-format (map:value list) (or -m (map:value list)) 37
--merge-nameref-on (rule) 39
--merge-wrglossary-recordso 40
--no-merge-wrglossary-records 40
——record-count (Or =C) e 40
--no-record-count L oo 41
—--record-count-unit (or-n) 41
--no-record-count-unit L 0oL 41
--record-count-rule {rulej(or -r {rule}) 41
--retain-formats (list) 42
--no-retain-formats oo 42
Bib File Options 42
--warn-non-bib-fields o 000 42
--no-warn-non-bib-fields o000 43
--warn-unknown-entry-types oL oo 43
--no-warn-unknown-entry-types 43
Field Options 43
--no—expand-fields 43
-—expand-fields o 43
--mfirstuc-protection (list)|all (or —u (list)[all) 43
--no-mfirstuc-protection oo oL 44
--mfirstuc-math-protection. L. 44
--no-mfirstuc-math-protection 45
--nested-link-check (list)lnone 45
--no-nested-link-check 0000 45
--shortcuts (value) 45
——trim-fields 45
-—trim-only-fields (list) 46
-—trim-except-fields (list) 46
--no-trim-fieldso 46

ii

Contents

3.7 Other Options e 46
--force-cross-resource-refs (or-x) 46
--no—force-cross-resource-refs oo 46
—-provide—glossarieso e 47
--no-provide-glossaries oL 47
--replace—quotes L e 47
--no-replace—quotes Lo 47

4 .bib Format 48

41 Encoding 48

42 Comments e 49

43 Fields e 49

44 Standard Entry Types 57
Ostring e e 57
@preamble L e 57

4.5 Single Entry Types 62
@entry e e e 62
O@symbol e e e 63
Onumber e 64
@index L e e 64
@indexplural 65
@abbreviation L 66
QacCTOonYmM . . . v v v i e e e 67
Qcontributoro e 68

46 DualEntry Types 68
@dualentry e 75
O@dualindexentry 77
O@dualindexabbreviation Lo o 79
@dualindexsymbol 30
@dualindexnumbero e 84
@dualabbreviationentry L o oL 84
@dualentryabbreviation L L. 85
@dualsymbol 86
@dualnumber e 86
@dualabbreviation o e 87
@dualacronym e e e e 92

4.7 Tertiary Entry Types 92
Otertiaryindexabbreviationentry, 93

48 Multi-Entry Types o 94
@bibtexentry L e 94
Oprogenitor e 98
@spawnindex e 101
O@spawnindexplural Lo e 101
@spawnentry e 101

1ii

Contents

@spawnabbreviation oo oo 101
@SPaWnaCTONYIM v v v vt v e e e e e e e e e e e e e e e 101
@spawnsymbol L. 102
@spawnnumber L L 102
O@spawndualindexentry oo 102

49 CompoundEntrySets 102
Qcompoundset e e 106
Resource File Options 107
51 General Options 111
charset=(encoding-name) 111
interpret-preamble=(boolean) 111
write-preamble=(boolean) 111
set-widest=(boolean) 112
entry-type-aliases=(key=valuelist) 113
unknown-entry-alias=(value) 115
action=(value) 115

5.2 SelectionOptions 117
sre=(list) . .. 117
selection=(value) 118
match=(key=value list) 121
match-op=(value) 122
not-match=(key=value list) 122
match-action=(value) 122
limit=(number) 123

5.3 Hierarchical Options 123
save-child-count=(boolean) 123
save-sibling-count=(boolean) 125
save-root-ancestor=(boolean) 125
flatten=(boolean) 125
flatten-lonely=(value) 126
flatten-lonely-rule=(value) 132
strip-missing-parents=(boolean) 133
missing-parents=(value) 133
missing-parent-category=(value) 135
group-level=(value) 135
merge-small-groups=(n)ttt 136

54 Master Documents L o 137
Master=(Name) i 139
master-resources=(list) 140

5.5 Fieldand Label Options 141
Label Options 141
interpret-label-fields=(boolean) 141
labelify=(list) 141

iv

Contents

labelify-list=(list) 143
labelify-replace=(list) 143
label-prefix=(tag) o i 145
duplicate-label-suffix=(value) 146
record-label-prefix=(tag) 146
cs-label-prefix=(tag) 147
ext-prefixes=(list) 148
prefix-only-existing=(boolean) 149
save-original-id=(value) 149
save-original-id-action=(value) 150
save-definition-index=(boolean) 150
save-use-index=(boolean) 150
dependency-fields=(list) 151
Assignments L e 153
group=(label) 153
category=(value) 154
type=(value) 155
trigger—type=(type) 157
progenitor-type=(type) 157
progeny—type=(type) 157
adopted-parent-field={type) 157
abbreviation-name-fallback=(field) 157
ignore-fields=(list) 157
field-aliases=(key=valuelist) 158
replicate-fields=(key=valuelist) 159
replicate-override={(boolean)} 160
replicate-missing-field-action={{value)} 160
counter=(value) 161
copy-action-group-field=(value) 161
copy-alias—to-see=(boolean) 161
save-from-see=(value) 161
save-from-seealso=(value) 162
save-from-alias=(value) 162
save-crossref-tail=(value) 162
save-original-entrytype=(value) 163
save-original-entrytype-action=(value) 163
Field Adjustments 164
post-description-dot=(value) 164
strip-trailing-nopost=(boolean) 165
check-end-punctuation={list) 165
sort-label-list=(list) 167
prune-xr=(boolean) 172
prune-see-match=(key=value list) 173
prune-see-op=(value) 175

5.6

5.7

Contents

prune-seealso-match=(key=valuelist) 175
prune-see-op=(value) 175
prune-iterations=(number) 175
bibtex-contributor-fields=(list) 176
contributor-order=(value) 176
encapsulate-fields={(key=valuelist)} 177
encapsulate-fields*={(key=valuelist)} 178
format-integer-fields={(key=value list)} 178
format-decimal-fields={(key=valuelist)} 179
interpret-fields={{list)} 179
interpret-fields-action={(value)} 181
hex-unicode-fields={{list)} 181
date-time-fields=(list) 182
date-fields=(list) 182
time-fields=(list) 182
date-time-field-format=(value) 182
date-field-format=(value) 183
time-field-format=(value) 183
date-time-field-locale=(value) 183
date-field-locale=(value) 183
time-field-locale=(value) 183
Prefix Fields 183
prefix-fields=(list) 184
append-prefix-field=(value) 184
append-prefix-field-cs={(es) 184
append-prefix-field-exceptions=(sequence) 184
append-prefix-field-cs-exceptions=(sequence) 184
append-prefix-field-nbsp-match={pattern) 185
Case-Changing 185
no-case-change-cs={list) 193
word-boundaries=(list) 193
short-case-change=(value) 194
long-case-change=(value) 194
name-case-change=(value) 194
description-case-change=(value) 194
field-case-change={(key=value list)} 194
Plurals 195
short-plural-suffix=(value) 197
dual-short-plural-suffix=(value) 197
Location List Options 197
save-locations=(value) 201
save-loclist=(boolean) 202
save-primary-locations=(value) 202
save-principal-locations=(value) 202

Vi

5.8

5.9

Contents

primary-location-formats=(list) 203
principal-location-formats=({list) 203
primary-loc-counters=(value) 208
principal-loc-counters=(value) 208
merge-ranges=(boolean) 210
min-loc-range=(value) 210
max-loc—diff=(value) 213
suffixF=(value) 214
suffixFF=(value) 214
compact-ranges=(value) 214
see=(value) 215
seealso=(value) 215
alias=(value) 215
alias-loc=(value) 215
loc—prefix=(value) 216
loc-prefix—def=(value) 217
loc—suffix=(value) 218
loc—suffix—def=(value) 218
loc—counters=(list) 218
save-index-counter=(value) 220
Supplemental Locations 223
supplemental-locations=(basename) 224
supplemental-selection=(value) 227
supplemental-category=(value) 228
Sorting 228
sort=(value) 230

NoSortField 230

Alphabet 235

Letter NonLocale) 236

Letter-Number 237

Numerical L 241

Date-Time 242
shuffle=(seed) 243
sort-field=(fleld) 243
missing-sort-fallback=(field) 244
custom-sort-fallbacks={(key=value list)} 245
entry-sort-fallback=(fleld) 247
abbreviation-sort-fallback=(field) 249
symbol-sort-fallback=(field) 249
bibtexentry-sort-fallback=(fleld) 250
field-concat-sep=(value) 250
trim-sort=(boolean) 251
sort-replace=(list) 251
sort-rule=(value) 252

vii

5.10

Contents

break-at=(0ption) 254
break-marker=(marker) 256
break-at-match=(key=valuelist) 256
break-at-match-op=(value) 256
break-at-not-match=(key=value list) 256
sort-number-pad=(number) 257
sort-pad-plus=(marker) 257
sort-pad-minus=(marker) 257
identical-sort-action=(value) 257
sort-suffix=(value) 258
sort-suffix-marker=(value) 263
encapsulate-sort={csname} 263
strength=(value) 263
decomposition=(value) 264
letter-number-rule=(value) 264
letter-number-punc-rule=(value) 265
numeric-sort-pattern=(value) 267
numeric-locale=(value) 267
date-sort-locale=({value) 267
date-sort-format=(value) 267
group-formation=(value) 269
Secondary Glossary L 270
secondary=(value) 270
secondary-match=(key=value list) 273
secondary-not-match=(key=value list) 273
secondary-match-op=(value) 273
secondary-match-action=(value) 273
secondary-missing-sort-fallback={field) 273
secondary-trim-sort=(boolean) 273
secondary-sort-replace={list) 273
secondary-sort-rule=(value) 273
secondary-break-at=(value) L. ... 274
secondary-break-marker=(marker) 274

secondary-break-at-match=(key=value list) 274

secondary-break-at-match-op=(value) 274

secondary-break-at-not-match=(key=value list) 274
secondary-sort-number-pad=(number) 274
secondary-sort-pad-plus=(marker) 274
secondary-sort-pad-minus=(marker) 274
secondary-identical-sort-action={value) 274
secondary-sort-suffix=(value) 274
secondary-sort-suffix-marker=(value) 274
secondary-strength=(value) 275
secondary-decomposition=(value) 275

viil

5.11

Contents

secondary-letter-number-rule=(value) 275
secondary-letter-number-punc-rule={value) 275
secondary-numeric-sort-pattern=(value) 275
secondary-numeric-locale=(value) 275
secondary-date-sort-locale=(value) 275
secondary-date-sort-format=(value) 275
secondary-group-formation=(value) 275
Dual Entries 275
General Dual Settings 275
dual-prefix=(value) 275
primary-dual-dependency=(boolean) 276
combine-dual-locations=(value) 276
DualFields 278
dual-type=(value) 278
dual-category=(value) 279
dual-counter=(value) 279
dual-short-case-change=(value) 280
dual-long-case-change=(value) 280
dual-field=(value) 280
dual-date-time-field-format=(value) 281
dual-date-field-format=(value) 281
dual-time-field-format=(value) 281
dual-date-time-field-locale=(value) 281
dual-date-field-locale=(value) 281
date-time-field-locale=(value) 281
Dual Sorting 281
dual-sort=(value) 281
dual-sort-field=(fleld) 282
dual-missing-sort-fallback=(fleld) 282
dual-trim-sort=(boolean) 282
dual-sort-replace=(list) 282
dual-sort-rule=(value) 282
dual-break-at=(value) 282
dual-break-marker=(marker) 282
dual-break-at-match=(key=valuelist) 282
dual-break-at-match-op=(value) 282
dual-break-at-not-match=(key=valuelist) 283
dual-sort-number-pad=(number) 283
dual-sort-pad-plus=(marker) 283
dual-sort-pad-minus=(marker) 283
dual-identical-sort-action=(value) 283
dual-sort-suffix=(value) 283
dual-sort-suffix-marker=(value) 283
dual-strength=(value) 283

ix

Contents

dual-decomposition=(value) 283
dual-letter-number-rule=({value) 283
dual-letter-number-punc-rule=(value) 283
dual-numeric-sort-pattern=(value) 283
dual-numeric-locale=(value) 284
dual-date-sort-locale=(value) 284
dual-date-sort-format=(value) 284
dual-group-formation=(value) 284

Dual Mappings o i 284
dual-entry-map={{(list])},{(list2)}} 284
dual-abbrv-map={{{list))},{{list2)}} 285
dual-abbrventry-map={{(list1)}, {<ll$t2> 285
dual-symbol-map={{(list])} ,{{list2)}} 286
dual-indexentry-map={{(list])},{(list2)}} 286
dual-indexsymbol-map={{{list])} , {{list2)}} 286
dual-indexabbrv-map={{(list1)},{(list2)}} 286

Dual Back-Links o 287
dual-entry-backlink={(boolean)} 287
dual-abbrv-backlink={(boolean)} 287
dual-symbol-backlink={(boolean)} 288
dual-abbrventry-backlink={(boolean)} 288
dual-entryabbrv-backlink={(boolean)} 288
dual-indexentry-backlink={(boolean)} 288
dual-indexsymbol-backlink={(boolean)} 288
dual-indexabbrv-backlink={(boolean)} 289
dual-backlink={(boolean)} 289

5.12 Tertiary Entries o 289
tertiary-prefix={(value)} 289
tertiary-type={(value)} 289
tertiary-category={(value)} 289
5.13 Compound (Combined or Multi) Entries 289
compound-options-global={(boolean)} 290
compound-dependent={(boolean)} 290
compound-add-hierarchy={(boolean)} 290
compound-has-records={(boolean)} 291
compound-adjust-name={{value)} 291
compound-main-type={(value)} 292
compound-other-type={{value)} 292
compound-type-override={(boolean)}, 293
compound-write-def={(value)} 293
6 Provided Commands 294
6.1 Entry Definitions 294
\bibglsnewentry 294

Contents

\bibglsnewsymbol 295
\bibglsnewnumber 295
\bibglsnewindex 296
\bibglsnewindexplural 296
\bibglsnewabbreviation 296
\bibglsnewacronym 297
\bibglsnewdualentry i 297
\bibglsnewdualindexentry 297
\bibglsnewdualindexentrysecondary 297
\bibglsnewdualindexsymbol 298
\bibglsnewdualindexsymbolsecondary 298
\bibglsnewdualindexnumber 298
\bibglsnewdualindexnumbersecondary 298
\bibglsnewdualindexabbreviation 299
\bibglsnewdualindexabbreviationsecondary 299
\bibglsnewdualabbreviationentry 300
\bibglsnewdualabbreviationentrysecondary 300
\bibglsnewdualentryabbreviation 300
\bibglsnewdualentryabbreviationsecondary 301
\bibglsnewdualsymbol 301
\bibglsnewdualnumber 301
\bibglsnewdualabbreviation. 302
\bibglsnewdualacronymot 302
\bibglsnewtertiaryindexabbreviationentry 302
\bibglsnewtertiaryindexabbreviationentrysecondary 303
\bibglsnewbibtexentry 303
\bibglsnewcontributor 303
\bibglsnewprogenitor 304
\bibglsnewspawnindex 304
\bibglsnewspawnedindex 304
\bibglsnewspawnindexplural 304
\bibglsnewspawnedindexplural 305
\bibglsnewspawnentry 305
\bibglsnewspawnedentry 305
\bibglsnewspawnabbreviation 305
\bibglsnewspawnedabbreviation 306
\bibglsnewspawnacronym oo v v v v vt 306
\bibglsnewspawnedacCronymo ... 306
\bibglsnewspawnsymbol 306
\bibglsnewspawnedsymbol 307
\bibglsnewspawnnumber 307
\bibglsnewspawnednumber 307
\bibglsnewspawndualindexentry 307
\bibglsnewspawndualindexentrysecondary 308

X1

6.2

6.3

6.4

Contents

Compound Entry Sets 308
\bibglsdefcompoundset 308
Location Lists and Cross-References 308
\bibglsseesep o i i e e e 308
\bibglsseealsSoSep v v v v i e e e e e e 309
\bibglsaliassep 309
\bibglsSuSesee i 309
\bibglsuseseealsoo i it 309
\bibglsusealiasot ii 309
\bibglsdelimN 309
\bibglslastDelimN i 310
\bibglscompact 310
\bibglspassim 310
\bibglspassimname 310
\bibglsrange e 311
\bibglsinterloper 311
\bibglspostlocprefix 311
\bibglslocprefix 312
\bibglspagename 313
\bibglspagesnameottt 313
\bibglslocsuffix 313
\bibglslocationgroupo vt 313
\bibglslocationgroupsSep« v v v v i e 314
\bibglsprimary e 315
\bibglsprimarylocationgroup 315
\bibglsprimarylocationgroupsep« v v v v i 315
\bibglssupplemental 316
\bibglssupplementalsublist 316
\bibglssupplementalsep, 316
\bibglssupplementalsubsep 317
\bibglshrefchar, 317
\bibglshrefunicode 317
\bibglshexunicodechar 317
Letter Groups e 317
\bibglssetlastgrouptitle 319
\bibglshypergroup 320
Top-Level GroupsOnly 320

\bibglssetlettergrouptitle 320

\bibglslettergroup v v v i 321

\bibglslettergrouptitle 321

\bibglssetothergrouptitle 323

\bibglsothergroup v iii 323

\bibglsothergrouptitle 324

\bibglssetemptygrouptitle 324

xii

Contents

\bibglsemptygroup 324
\bibglsemptygrouptitle 324
\bibglssetnumbergrouptitle 324
\bibglsnumbergroup 324
\bibglsnumbergrouptitle 325
\bibglssetdatetimegrouptitle 325
\bibglsdatetimegroup 325
\bibglsdatetimegrouptitle 325
\bibglssetdategrouptitle 326
\bibglsdategroup 326
\bibglsdategrouptitle 326
\bibglssettimegrouptitle 326
\bibglstimegroup 327
\bibglstimegrouptitle 327
\bibglssetunicodegrouptitle 327
\bibglsunicodegroup 327
\bibglsunicodegrouptitle 328
\bibglssetmergedgrouptitle 329
\bibglsmergedgroup o it 329
\bibglsmergedgrouptitle 329
\bibglsmergedgroupfmt 329
Hierarchical Groups 329
\bibglsgrouplevel 330
\bibglshiersubgrouptitle 330
\bibglssetlettergrouptitlehier 330
\bibglslettergrouphier 330
\bibglslettergrouptitlehier 331
\bibglssetothergrouptitlehier 331
\bibglsothergrouphier 331
\bibglsothergrouptitlehier 331
\bibglssetemptygrouptitlehier 331
\bibglsemptygrouphier 331
\bibglsemptygrouptitlehier, 332
\bibglssetnumbergrouptitlehier 332
\bibglsnumbergrouphier 332
\bibglsnumbergrouptitlehier 332
\bibglssetdatetimegrouptitlehier 332
\bibglsdatetimegrouphier 333
\bibglsdatetimegrouphierfinalargs 333
\bibglsdatetimegrouptitlehier 333
\bibglsdatetimegrouptitlehierfinalargs. 333
\bibglssetdategrouptitlehier 334
\bibglsdategrouphier 334
\bibglsdategrouptitlehier 334

xiii

6.5

6.6

Contents

\bibglssettimegrouptitlehier 334

\bibglstimegrouphier 334

\bibglstimegrouptitlehier 335

\bibglssetunicodegrouptitlehier 335

\bibglsunicodegrouphier 335

\bibglsunicodegrouptitlehier 335

\bibglssetmergedgrouptitlehier 335

\bibglsmergedgrouphier 336

\bibglsmergedgrouptitlehier 336

\bibglsmergedgrouphierfmt 336
Flattened Entries 337
\bibglsflattenedhomograph 337
\bibglsflattenedchildpresort 338
\bibglsflattenedchildpostsort 338
Other 339
\bibglssettotalrecordcount 339
\bibglssetrecordcount 339
\bibglssetlocationrecordcount 339
\bibglshyperlink 340
\bibglssetwidest 340
\bibglssetwidestfortype 340
\bibglssetwidestfallback 341
\bibglssetwidestfortypefallback 341
\bibglssetwidesttoplevelfallback 341
\bibglssetwidesttoplevelfortypefallback 341
\bibglscontributorlist 342
\bibglscontributor, 342
\bibglsdatetime 342
\bibglsdatet 343
\bibglstime 343
\bibglsprimaryprefixlabel 343
\bibglsdualprefixlabel 343
\bibglstertiaryprefixlabel 344
\bibglsexternalprefixlabel 344
\bibglshashchar 344
\bibglsunderscorechar 344
\bibglsdollarchar 344
\bibglsampersandchar 344
\bibglscircumchar 345
\bibglsaposchar 345
\bibglsdoublequotechar 345
\bibglsuppercase 345
\bibglslowercase i 345
\bibglstitlecase 345

Xiv

Contents

\bibglsfirstuc 346
\bibglsdefinitionindex 346
\bibglsuseindex 346
7 Converting Existing .tex to .bib 347
7.1 Command Line Arguments 347
-—texenc (encoding) 347
--bibenc (encoding) 347
--space-sub (replacement) (or -s (replacement)) 347
——ignore-sort e 348
—-no—ignore—sort L 348
—-ignore-type e 348
—-no-ignore-typeo 348
——split-on-type (Or —=t) 348
--no-split-on-type 348
-—ignore-category 349
—-no—ignore—category i e e e 349
—-split-on-category (Or —=C) i 349
--no-split-on-category 349
--ignore-fields (list) (or —f (list)) 349
——preamble-only (Or =pP) o i 350
--no-preamble-only L 350
——absorb-see e 350
--no—absorb-see L o 350
--index-conversion (Or —i) 350
--no-index-conversiono 350
--locale (languagetag) 350
——overwrite e 351
—-no-overwrite Lo e 351
-—silent 351
—=VerbOoSe e 351
-—debug 351
——help(or-h) 351
—=VersSion (OF =V) . . . v v v vt i e e e e e e e 351
7.2 Recognised Commands 351
\glsexpandfields 352
\glsnoexpandfields 352
\glssetexpandfield 352
\glssetnoexpandfield 353
\newglosSsaryentryot 353
\provideglossaryentry 353
\longnewglosSSaryentry oo i ittt 353
\longprovideglossaryentry 354
\DeWLerm 354

XV

Contents

\newabbreviation 355

\DEWACTONYM . . o v v vttt e e e e e e e e e e e e e e 355

\glsxtrnewsymbol 356

\glsxtrnewnumber 356

\newdualentry 357
Examples 359
no-interpret-preamble.bib. L o oo oo 359
interpret-preamble.bibo oo Lo oo 360
interpret-preamble2.bib oo 360
constants.bib 361
chemicalformula.bib Lo 364
bacteria.bib Lo 368
baseunits.bib L o 370
derivedunits.bibo oo 372
people.bib L 373
books.bib L 379
films.bib e 382
citatioms.bib L 388
mathgreek.bib o o 389
bigmathsymbols.bib. 394
mathsrelations.bib. L Lo 398
binaryoperators.bib Lo 400
unaryoperators.bib. oL Lo 401
mathsobjects.bib 402
miscsymbols.bib Lo o 406
markuplanguages.bib Lo Lo 410
usergroups.bib Lo 412
animals.bib. oo 417
minerals.bib L L 419
vegetables.bibo 421
terms.bib L 423
topics.bib L 424
sample-hierarchical.tex oo L. 424
sample-nested.tex e 425
sample-constants.tex L Lo oL 430
sample-chemical.tex L 435
sample-bacteria.tex Lo e 438
sample-unitsl.tex e 442
sample-units2.tex L 445
sample-units3.tex 448
sample-media.tex L L L 453
sample-people.tex L L L 457
sample-authors.tex. L L e 465

XVi

Contents

sample-citations.tex o L o 469
sample-msymbols.tex L L Lo 474
sample-maths.tex Lo 476
sample-textsymbols.tex L Lo L 481
sample-textsymbols2.tex L L Lo 484
sample-markuplanguages.tex 0oL 487
sample-usergroups.tex oo 491
sample-multil.tex 499
sample-multi2.tex 510
Package Option Summary 536
General Command Summary 542
Bibliography 613
Index 615

XVii

List of Tables

2.1 Glossary-Related Commands Implemented by the bib2gls Interpreter . .. 22
4.1 Fields Provided by glossaries-extra 51
4.2 Fields Provided by bib2gls 52
4.3 Fields Provided by glossaries-prefix 52
4.4 Fields Provided by glossaries-accsupp L. 52
45 FieldsSetbybib2gls 53
4.6 Internal Fields Set by glossaries or glossaries-extra or bib2gls 55
47 Compound SetFields 55
5.1 Summary of Available Sort Options: No Sort Field 231
5.2 Summary of Available Sort Options: Alphabet 231
5.3 Summary of Available Sort Options: Letter (Non-Locale) 231
5.4 Summary of Available Sort Options: Letter-Number 231
5.5 Summary of Available Sort Options: Numerical 232
5.6 Summary of Available Sort Options: Date-Time 232

XViii

List of Figures

5.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23

Regular letter comparison vs letter-number comparison 238
sample-hierarchical.pdf oL 426
sample-nested.pdf oo o 431
sample-constants.pdf L L L Lo 436
sample-chemical.pdf o oo 439
sample-bacteria.pdfo oo 443
sample-unitsl.pdf 446
sample-units2.pdf L 449
sample-units3.pdf 453
sample-media.pdf L Lo 458
sample-people.pdf 466
sample-authors.pdf L oL 470
sample-citations.pdf oo o oo 474
sample-msymbols.pdf Lo o 477
sample-maths.pdf Lo 482
sample-textsymbols.pdfo oL 485
sample-textsymbols2.pdf L Lo 488
sample-markuplanguages.pdf Lo oL 492
sample-usergroups.pdf L L oo 500
sample-multil.pdf (pages1to4) 511
sample-multil.pdf (pages5to8) 512
sample-multi2.pdf (pages1to4) 533
sample-multi2.pdf (pages5to8) 534
sample-multi2.pdf (pages9and12) 535

XixX

Glossary

Ancestor

An entry’s parent or an ancestor of the parent. See section 5.3.

Child Entry

An entry in a hierarchical glossary that is linked to, but one level down from, its asso-
ciated parent entry. See section 5.3.

Compound (Combined or Multi) Entry

A compound entry corresponds to the \multiglossaryentry command. This defines
a label that represents a set of entries that have already been defined. This label can
then be used in commands like \mgls as a shortcut for using \gls for each element
in the set. The main label is the main element in the set. The “other labels” are all the
other (not-main) elements. See section 4.9.

Cross-reference Field

A field used for cross-referencing another entry: see, seealsoand alias. Other fields
can be identified as a list of dependent entry labels with dependency-fields.

Cross-resource Reference

A reference from a recorded entry provided in one resource set to an unrecorded entry
in another resource set. See section 1.4.

Definition Index

An index (starting from 0) that’s incremented every time a new entry object is created
within bib2gls. This relates to the order of definitions within the .bib files. Each
dual entry and spawned entry will increment the underlying counter but only when
they are created, which may not happen until after all .bib files for the resource set
have been parsed.

Discarded Record
A record that is discarded because either it is identical to another record or it conflicts
with another record.

Dual Entry

The duplicate entry created from a dual-entry type (such as @dualentry). This dupli-
cate is based on the primary entry with modifications made according to various set-
tings. With tertiary entry types, the dual entry represents two entries: the secondary
and tertiary. See section 4.6.

XX

Glossary

Dual List

The bib2gls list of dual entries, which is sorted according to the dual-sort resource
option. The entries may or may not be assigned to the same glossary, and the list may
only be a subset of entries. If dual-sort={combine} is used then all entries will be
in the main list and there won’t be a dual list.

Encoding

A text format that maps a byte or sequence of bytes to a character. See section 4.1
and --tex-encoding for the .bib file encoding and charset for the .glstex file
encoding. See also the blog article Binary Files, Text Files and File Encodings for further
information about file encodings in general.

Flat Glossary

A glossary that has no hierarchy. That is, there are no child entries. See section 5.3.

Hierarchical Glossary

A glossary where the entries are ranked according to some classification. Level 0 indi-
cates top-level entries, level 1 indicates child entries that have a level 0 parent, level 2
indicates child entries that have a level 1 parent, and so on. See section 5.3.

Homograph
Each word in a set of words that all have the same spelling but different meanings. For
example, lead (to guide someone) and lead (metallic element) are homographs.
Identical Collator Strength
A collator strength value that indicates that all differences are considered significant
during comparison.
Ignored Glossary

A glossary defined with commands like \newignoredglossary. An ignored glossary
doesn’t have an associated title (so if one is required it needs to be explicitly set),
and isn’t picked up by iterative commands such as \printunsrtglossaries. See
section 1.3.

Ignored Record

A record with the format glsignore or glstriggerrecordformat. This record in-
dicates that the entry should be considered for selection with any of the “recorded”
selection options, but the record should not be added to the location list.

Location

The value of the indexing counter when an entry is recorded. By default, this is the page
counter. Each location has an associated format or encapsulating command (ENcAP),
which is the name of a formatting command that should be used to encapsulate the
location’s value in the location list. The default is glsnumberformat.

XX1

https://dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/

Glossary

Location List

Formatted list of locations obtained from an entry’s records. This won’t include ig-
nored or discarded records, and a run of locations may be compressed into a range.
See section 5.7 and section 6.3.

Lonely Child Entry
A child entry that has no selected siblings. See section 5.3.

Main Document
The principal document that has its own glossary but the location lists may also contain
external locations obtained from a supplemental document.

Main Entry

The originating entry from which the spawned entries are created. A main entry may
be a dual-entry type, consisting of a primary entry and dual entry. (Not to be confused
with the main glossary or the main label of a compound entry.)

Main Glossary

The default glossary in the document identified by \glsdefaulttype (which will have
the label main unless nomain is used). If nomain is used then \glsdefaulttype will
be set to the label of the first glossary to be defined.

Main Label or Element (Compound Entry)

The main element in the set that defines a compound entry.

Main (or Primary) List
The bib2gls list of primary entries, which is sorted according to the sort resource
option. The entries may or may not be assigned to the same glossary, and the list may
only be a subset of entries. If dual-sort={combine} is used, then the main list will
also contain all the dual entries.

Master Document
A main or principal document that contains a glossary with entries referenced by
smaller documents that don’t have their own glossary. See section 5.4.

Multi-entry Type

An entry type that can spawn multiple primary entries. Some multi-entry types can
also spawn a dual entry. See section 4.8. For the glossaries-extra “multi (compound or
combined) entries” that are defined with \multiglossaryentry see compound entry.

Order of Use Index

The record index is a value (starting from 0) that’s incremented every time a record
is created while parsing the .aux file. The first time a non-ignored record is added to

XX1i

Glossary

a given entry, the record index is assigned to that entry’s order of use index. So the
index provides a relative order of use. So if entryl is the first entry to be indexed, it
will have order of use index 0. If entry1 is then indexed twice more and then entry?2 is
indexed, then entry2’s order of use index will be 3.

Other Label or Element (Compound Entry)

The non-main elements in the set that defines a compound entry.

Parent Entry
An entry in a hierarchical glossary that is linked to, but one level up from, its associated
child entry. See section 5.3.

Primary Collator Strength
A collator strength value that indicates only primary differences are considered signif-
icant during comparison. This is locale dependant, but typically different base letters
are considered a primary difference.

Primary Entry
The original entry created from a dual-entry type (such as @dualentry) or the entry
from single-entry types (such as @entry) or spawned entries.

Primary (or Principal) Glossary
A glossary that contains entries that have the type field set to that glossary’s label.
Note that a primary glossary may contain both primary and dual entries.

Principal (or Primary) Location

A special location (record) which indicates the principal or primary place in the doc-
ument where the entry is mentioned or discussed. The location is identified by the
principal or primary format (principal-location-formats).

Progenitor

The main entry for the @progenitor entry type.

Progeny
The spawned entries for the @progenitor entry type.

Record

Recording is bib2gls’s equivalent of indexing. When the record package option is
set, each time an entry is indexed in the document (using commands like \gls or
\glstext) a record is added to the .aux file that makes a note of the entry label, the
location, the counter that was used to obtain the location, and (optionally) hyperlink
information. A record may be ignored or discarded but, regardless of this, if an entry
has at least one record it will be considered for selection for any of the “recorded”
selection options.

XX1ii

Glossary

Record Count

An entry’s record count is the total number of records (including discarded and ig-
nored) written to the .aux file that are associated with the entry. It’s also possible to
have sub-totals for each record counter.

Recorded Entry

An entry that has one or more records.

Resource Command

\glsxtrresourcefile or \GlsXtrLoadResources.

Resource Set

The set of options and entries associated with a resource command. See section 1.4.

Secondary Collator Strength

A collator strength value that indicates only primary and secondary differences are
considered significant during comparison. This is locale dependant. For example, in
some languages different accented forms of the same base letter may be considered a
secondary difference.

Secondary Entry

For the tertiary entry types, such as @tertiaryindexabbreviationentry, there are
only actually two objects defined within bib2gls: the primary and the dual, but the
code that is written in the . glstex file for the dual entry actually defines two entries,
which are the secondary and tertiary entries. This should not be confused with the
secondary glossary. See section 4.7.

Secondary Glossary
A secondary glossary is one that contains labels of entries that have been defined for
another glossary. The actual entry’s type field will be set to the primary glossary.

Sibling Entry
Two or more child entries are siblings if they all share the same parent entry. See
section 5.3.

Spawned Entry

A duplicate entry created from a multi-entry type (such as @spawnentry).

Sub-entry

A child entry. More specifically, when contrasted with sub-sub-entry etc, this may
refer to level 1 entries (which have a parent that is a top-level entry). See section 5.3.

Supplemental (or Supplementary) Document

A related document from which supplemental records are obtained.

XX1V

Glossary

Supplemental Record

A record obtained from another document. See section 5.8.

Tertiary Collator Strength

A collator strength value that indicates only primary, secondary and tertiary differ-
ences are considered significant during comparison. This is locale dependant. For
example, different cases of the same base letter may be considered a tertiary differ-
ence.
Tertiary Entry
An entry that isn’t defined as a separated object within bib2gls, but is defined within
the . glstex file as a by-product of the dual definition code for tertiary entry types.
Top-level Entry

An entry that doesn’t have a parent entry. See section 5.3.

Unrecorded Entry

An entry that doesn’t have any records.

XXV

1 Introduction

If you have extensively used the glossaries [14] or glossaries-extra [13] package, you may have
found yourself creating a large . tex file containing many definitions that you frequently use
in documents. This file can then simply be loaded using \input or \loadglsentries, but a
large file like this can be difficult to maintain and if the document only actually uses a small
proportion of those entries, the document build is unnecessarily slow due to the time and
resources taken on defining the unwanted entries.

The aim of bib2gls is to allow the entries to be stored in a . bib file, which can be main-
tained using a reference system such as JabRef. The document build process can now be
analogous to that used with bibtex (or biber), where only those entries that have been
recorded in the document (and possibly their dependent entries) will be extracted from the
.bib file. Since bib2gls can also perform hierarchical sorting and can collate location lists,
it doubles as an indexing application, which means that the makeglossaries step can be
skipped. Note that bib2gls doesn’t warn you if an entry that’s referenced in the document
doesn’t exist in any of the supplied .bib files, but instead relies on the glossaries-extra pack-
age to generate the warning. So at the end of the document build check the .1log file for
warnings.

You can’t use \glsaddall with bib2gls as that command works by iterating over all de-
fined entries and calling \glsadd{(label)}. On the first BKIgX run there are no entries defined,
so \glsaddall does nothing. If you want to select all entries, just use selection={all}
instead (which has the advantage over \glsaddall in that it doesn’t create a redundant
location for each entry).

Note that bib2gls requires the extension package glossaries-extra and can’t be used with
just the base glossaries package, since it requires some of the extension commands. See the
glossaries-extra user manual [13] for information on the differences between the basic pack-
age and the extended package, as some of the default settings are different.

Since the information used by bib2gls is written to the .aux file, it’s not possible to run
bib2gls through TgX’s shell escape while the .aux file is open for write access. (The .aux
file is closed after the end document hook, so it can’t be deferred with \AtEndDocument.)
This means that if you really want to run bib2gls through \write18 it must be done in the
preamble with \immediate. For example:

\immediate\write18{bib2gls \jobname}

As from version 1.14 of glossaries-extra, this can be done automatically with the automake
option if the . aux file exists. (Remember that this will require the shell escape to be enabled.)

1.1 Example Use

1.1 Example Use

The glossary entries are stored in a .bib file. For example, the file entries.bib might
contain:

@entry{bird,
name={bird},
description = {feathered animal}

3

@abbreviation{html,
short="html",
long={hypertext markup language}

3

@symbol{v,

name={\vec{v}},
text={\vec{v}},
description={a vector}

}

@index{goose,plural="geese"}
Here’s an example document that uses this data:

\documentclass{article}
\usepackage [record]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
sort={en-GB}/, sort according to 'en-GB' locale

]

\begin{document}
\Gls{bird} and \gls{goosel}.
Symbol: \gls{v}.
Abbreviation: \gls{html}.

\printunsrtglossaries
\end{document}

If this document is called myDoc . tex, the build process is:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

1.1 Example Use

(This manual assumes pdflatex for simplicity. Replace with latex, xelatex or lualatex
as appropriate.) If you want letter groups (either headed, with styles like indexgroup, or just a
blank line separator with nogroupskip={false}) then you need to use the --group switch:

pdflatex myDoc
bib2gls --group myDoc
pdflatex myDoc

You can have multiple instances of \GlsXtrLoadResources. For example

\documentclass{article}
\usepackage [record, index,abbreviations,symbols]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={entry}},% only select Qentry
type={main}), put these entries in the 'main' glossary

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={abbreviation}},’% only select @abbreviation
type={abbreviations}), put these in the 'abbreviations' glossary

\GlsXtrLoadResources|[
src={entries},% data in entries.bib
sort={letter—case},’, case-sensitive letter sort
match={entrytype={symbol}},’% only select @symbol
type={symbols}’, put these entries in the 'symbols' glossary

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={index}},% only select Qindex
type={index}’, put these entries in the 'index' glossary

\begin{document}
\Gls{bird} and \gls{goosel}.
Symbol: \gls{v}. Abbreviation: \gls{html}.

1.2 Logical Divisions: type vs group vs parent

\printunsrtglossaries
\end{document}

There are more examples provided in chapter 8.

Note that there’s no need to called xindy or makeindex since bib2gls automatically sorts
the entries and collates the locations after selecting the required entries from the .bib file
and before writing the temporary file that’s input with \glsxtrresourcefile (or the more
convenient shortcut \GlsXtrLoadResources).! This means the entries are already defined
in the correct order, and only those entries that are required in the document are defined, so
\printunsrtglossary (or \printunsrtglossaries) may be used. (The “unsrt” part of
the command name indicates that all defined entries should be listed in the order of definition
from glossaries-extra’s point of view, see the supplementary document “glossaries-extra and
bib2gls: An Introductory Guide” (bib2gls-begin.pdf) for further details.)

If you don’t provide a value with the record option, then record={only} is assumed. This
saves the same indexing information that’s used with the \makeglossaries and \make-
noidxglossaries methods (described in the main glossaries user manual [14]). As from
glossaries-extra version 1.37, you can instead use record={nameref}, which saves some
extra information for each location that’s not available for the other indexing methods. See
--merge-nameref-on for further details.

If you additionally want to use an indexing application, such as xindy, you need the pack-
age option record={alsoindex} and use \makeglossaries and \printglossary (or the
iterative \printglossaries) as usual. This requires a more complicated build process:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

(The entries aren’t defined until the second EKIEX run, so the indexing files required by xindy
or makeindex can’t be created until then.) In this case, bib2gls is simply being used to fetch
the entry definitions from one or more .bib files, with the sorting and collating performed
by the other indexing application (so the resource option list would need sort={none} and
save-locations={false}). In general, it’s best to avoid this hybrid method unless you
have a particular set of xindy rules that can’t be replicated with bib2gls.

1.2 Logical Divisions: type vs group vs parent

If you have a document with many terms that need listing, it’s likely that you may want to
divide the terms into separate blocks or units for easier reading. There are three fields that
are used for this.

'This document will mostly use the more convenient \GlsXtrLoadResources.

1.2 Logical Divisions: type vs group vs parent

type The highest division is the glossary to which the entry belongs. The glossary must
first be defined (see section 1.3) with an associated label used to identify it. The title
is assigned to the glossary when it is defined or it can be overridden with the title
key. The glossary is displayed using \printunsrtglossary and the title is placed in
a sectioning command by default.

bib2gls does not provide any means of sorting glossary types. If you use
\printunsrtglossaries the order will be according to the order in which the
glossaries were defined. You may use \printunsrtglossary to list individual
glossaries in your own preferred order.

group The entries within a glossary can form groups as a by-product of the sorting method.
This must be enabled with the -—group switch and isn’t available for the sort methods
listed in table 5.1. The group label is stored in the group field. This is an internal field
that typically shouldn’t be set in the .bib file.

You can specify your own custom groups but if you do so you must ensure that the
terms are ordered in such a way that they are gathered according to group. This is
typically done by splitting the glossary into blocks using a separate \GlsXtrLoad-
Resources with the group option set. You control the order of the groups by your
ordering of \GlsXtrLoadResources. The group title can be assigned using \glsxtr-
setgrouptitle within the document.

bib2gls does not sort by group title. At most it can sort by the group label (by
changing the sort-field) but this is usually an indication that you actually
have a hierarchical glossary and you ought to be using the parent field instead.
(Compare sample-textsymbols.tex and sample-textsymbols2.tex.)

parent An entry may have one or more sub-entries. Most of the sort methods will produce
a hierarchical ordering that ensures that the sub-entries are listed immediately after
their parent entry. The parent entry is identified by the parent field which should
contain the parent’s label.

bib2gls sorts the parent and child entries using the same comparator. The sort
methods listed in table 5.1 disregard the hierarchical level, which can result in
child entries becoming detached from their parent entry. The other methods
sort hierarchically using the same comparator but take the hierarchical level
into account.

\.

Suppose you have a mixture of terms, abbreviations and symbols, then you might want
to have three glossaries that are listed in the table of contents. In this case, you use the
type field or the type resource option. The ordering of the glossaries is determined by the
ordering of the \printunsrtglossary commands within the document. For example:

1.2 Logical Divisions: type vs group vs parent

\printunsrtglossary
\printunsrtglossary[type={abbreviations}]
\printunsrtglossary[type={symbols}]

Suppose that your list of terms spans many pages and you feel it would be helpful to the
reader to split it up into letter groups then you would need to run bib2gls with the --group
switch and use a glossary style that supports letter groups for that glossary. For example:

\printunsrtglossary[style={indexgroupl}]

Suppose that your list of symbols consists of pictographs, Latin characters and Greek char-
acters and you want them grouped together in that order. Then you would use a separate
\GlsXtrLoadResources for each block and assign your own custom group. This means
ensuring that each resource set only selects the terms for that group. The simplest way of
doing this is to have a separate .bib file for each set. For example:

\glsxtrsetgrouptitle{pictographs}{Pictographs}
\glsxtrsetgrouptitle{latinsymbols}{Latin Characters}
\glsxtrsetgrouptitle{greeksymbols}{Greek Characters}
\GlsXtrLoadResources|[
src={generalsymbols},’% data in generalsymbols.bib
group={pictographs},
type={symbols}
]
\GlsXtrLoadResources|[
src={latinsymbols},’ data in latinsymbols.bib
group={latin},
type={symbols}
]
\GlsXtrLoadResources|[
src={greeksymbols},’, data in greeksymbols.bib
group={greek},
type={symbols}
]

Suppose instead that you have many of these logical blocks and you want them ordered
according to the block title. In this case you have a hierarchical glossary and you need to use
the parent field. You then need to select an appropriate glossary style.

If you only want to have a single .bib file that contains all your entries and you want to
share it across multiple documents then the most flexible approach is to use custom fields
and entry types that can be aliased according to the needs of the resource sets.

For example, the file entries.bib:

% Encoding: UTF-8

@indexplural{latin,text={Latin character}}

1.2 Logical Divisions: type vs group vs parent

@indexplural{greek,text={Greek character}}
@indexplural{pictograph}

@symbol{fx,
name={\ensuremath{f (x)}},
description={function of x},
identifier={latin}

}

@symbol{f'x,
name=\ensuremath{f' (x)},
description={derivative of \gls{fx}},
identifier={latin}

by

O@symbol{pi,
name={\ensuremath{\pi}},
description={ratio of circumference to diameter},
identifier={greek}

}

O@symbol{heart,
name={\ensuremath{\heartsuit}},
description={heart},
identifier={pictograph}

}

O@symbol{diamond,
name={\ensuremath{\diamondsuitl}},
description={diamond},
identifier={pictograph}

}

@abbreviation{html,
short={html},
long={hypertext markup languagel},
identifier={markuplanguage}

3

O@abbreviation{xml,
short={xml},
long={extensible markup language},
identifier={markuplanguage}

}

1.2 Logical Divisions: type vs group vs parent

@entry{duck,
name={duck},
description={a waterbird with webbed feet},
identifier={animal}

3

@entry{parrot,
name={parrot},
description={mainly tropical bird with bright plumage},
identifier={animal}

}

This has a custom field identifier. This will be ignored by bib2gls unless defined or
aliased in the document.

Here’s an example document that creates three glossary types (the default main glossary
and the glossaries created with the abbreviations and symbols options). They are listed
in the order of \printunsrtglossary and their titles are added to the table of contents.

The custom identifier fields are ignored for the main and abbreviation glossaries, but
they are aliased for the symbols to the group field. Since I've split the symbols glossary into
blocks with each block only containing entries that have the same group value, this isn’t a
problem. It also won’t trigger a warning with -~-warn-non-bib-fields as it’s being aliased
rather than set in the .bib file. The blocks appear in the same order as the corresponding
\GlsXtrLoadResources commands. The title for each block is provided in the document
using \glsxtrsetgrouptitle.

\documentclass{article}
\usepackage [record,abbreviations,symbols]{glossaries-extra}t

\renewcommand{\GlsXtrDefaultResourceOptions}{
selection={all},src={entries},save-locations={false}}

\GlsXtrLoadResources[type={main},match={entrytype=entry’}]
\GlsXtrLoadResources[type={abbreviations},
match={entrytype=abbreviation}]

\glsxtrsetgrouptitle{pictograph}{Pictographs}

\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=group},
match={group=pictographl]

\glsxtrsetgrouptitle{latin}{Latin Characters}
\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=group},

1.2 Logical Divisions: type vs group vs parent

match={group=latin}]

\glsxtrsetgrouptitle{greek}{Greek Characters}
\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=group},
match={group=greek}]

\begin{document}

\tableofcontents
\printunsrtglossary[type={abbreviations}]
\printunsrtglossary
\printunsrtglossary[type={symbols},style={treegroup}]
\end{document}

In the above example document, the symbols list is divided into three groups, listed in the
order: Pictographs, Latin characters and Greek characters. If you want these titles ordered
alphabetically then you need a hierarchical structure instead. This can be obtained by aliasing
the custom identifier field to parent:

\documentclass{article}

\usepackage [record,stylemods={topic},abbreviations,symbols]{glossaries-
extra}

\renewcommand{\GlsXtrDefaultResourceOptions}{%
selection={all},src={entries},save-locations={false}}

\GlsXtrLoadResources[type={main},match={entrytype=entryl}]
\GlsXtrLoadResources[type={abbreviations},
match={entrytype=abbreviation}]

\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=parent},
match={entrytype=symbol,entrytype=indexplural}]

\begin{document}

\tableofcontents
\printunsrtglossary[type={abbreviations}]
\printunsrtglossary
\printunsrtglossary[type={symbols}, style={topic}]
\end{document}

The style used for the symbols list is now topic rather than treegroup. This results in a slightly
different appearance. You can select the most appropriate style according to your needs (see
the gallery of predefined styles [15]). The topic ordering is now: Greek characters, Latin
characters and Pictographs.

1.3 Defining a New Glossary

1.3 Defining a New Glossary

Some of the examples in this manual use \newglossary* to define a new glossary type and
some use \newignoredglossary or \newignoredglossary*. Why the starred forms and
why define an ignored glossary?

The base glossaries package was originally designed to work with makeindex. Support
for xindy was later added, but both require three files per glossary type: the transcript file
(created by the indexing application), the file written by EIEX (and input by the indexing
application) and the file input by EIEX (and written by the indexing application). So when a
new glossary is defined with \newglossary, this not only defines internal control sequences
that store the list of entry labels associated with that glossary, the title and the entry format
but also has to define internal control sequences that store the three file extensions. The
starred form \newglossary* is just a shortcut that forms the extensions from the glossary
label. For the purposes of bib2gls, this is simpler than the unstarred version since the
extensions are now irrelevant as they are only applicable to makeindex and xindy. (Unless,
of course, you are using a hybrid method with record={alsoindex}.)

Since some users wanted the ability to define entries that were common enough to not
be worth including in any glossary lists, the concept of an ignored glossary was introduced,
defined with \newignoredglossary. This only requires an internal control sequence to
store the list of entry labels associated with that glossary® and the associated internal com-
mand that governs the way that commands like \gls are displayed for that glossary type.
Since this type of glossary has no associated files, it can’t be used with \printglossary and
therefore isn’t included in the list of glossary labels that’s iterated over by commands like
\printglossaries. Since there’s no glossary list (and therefore no targets), \newignored-
glossary additionally disables hyperlinks for that glossary type, but it doesn’t disable in-
dexing. The indexing macro is still called, but because there’s no associated file to write to,
it has no effect. With bib2gls, the indexing is written to the .aux file and so does have an
effect.

Although ignored glossaries can’t be used with \printglossary, they can be used with
\printunsrtglossary, which is designed to work without any indexing, but you need to
explicitly set the title in the optional argument to override the default. Ignored glossaries
still can’t be used in \printunsrtglossaries, since they’re not included in the list that
this command iterates over.

So \newignoredglossary (or \provideignoredglossary) is useful with bib2gls if
you’re happy to use \printunsrtglossary with the type and title options as it reduces
the overall number of internal control sequences. Ignored glossaries are also useful for stand-
alone definitions (\glsxtrglossentry) or with \printunsrtinnerglossary as no title is
required in those cases (see sample-nested.tex for an example).

Since there is now the possibility of targets (created within \printunsrtglossary or
\printunsrtinnerglossary or \glsxtrglossentry), it’s convenient to have an ignored
glossary that doesn’t suppress the hyperlinks, which can be obtained with the starred form
\newignoredglossary* provided by glossaries-extra (or \provideignoredglossaryx).

2All entries must be assigned to a glossary. If you don’t use the type field the default is used.

10

1.4 Resource Sets

Some resource options, such as master, secondary and trigger-type, need to ensure
that a required glossary is defined. In this case, bib2gls uses \provideignoredglossary*
in the . glstex file even if -—no-provide-glossaries is set. If you haven’t already defined
that glossary in the document with \newglossary*, you’ll need to set the title in the optional
argument of \printunsrtglossary if you don’t want the default. The glossary won’t be
defined on the first run (if the definition is only provided in the .glstex file) but \print-
unsrtglossary will just give a warning if the type is undefined so it won’t interrupt the
document build.

If you want bib2gls to automatically provide unknown glossaries for all entries that have
the type field set (unrelated to the master, secondary and trigger—type options) then use
the --provide-glossaries switch.

The base glossaries package provides a command that can be used to test the existence of
a glossary:

\ifglossaryexists{(label)}{(true)}{(false)}

The unstarred version considers ignored glossaries as non-existent (and so will do (false) for
an ignored glossary). As from v4.46, this command now has a starred version \ifglossary-
exists* that considers ignored glossaries as existing (and so will do (true) for an ignored
glossary). In the event that you have an older version of glossaries, the glossaries-extra pack-
age (v1.44+) will provide the starred form if it hasn’t been defined. (In general, it’s best to
have up-to-date versions of both glossaries and glossaries-extra.)

1.4 Resource Sets

Each instance of \glsxtrresourcefile or \GlsXtrLoadResources in the document rep-
resents a resource set. Each resource set has one or more associated . bib files that provides
the data for that set. Command line switches (chapter 3) are applied to all resource sets. Re-
source options (chapter 5) are only applied to that specific resource set. Each resource set is
processed in stages:

Stage 1 (Initialisation) Occurs after the .aux file has been read, this stage parses the re-
source option list and ensures options are valid and don’t cause a conflict. The tran-
script will show the message

Initialising resource (resource-name)

at this point.

Stage 2 (Parsing) All the .bib files associated with the resource set are parsed. Entry
aliases (identified by entry-type-aliases) are performed. The multi-entry types,
such as @bibtexentry and @progenitor, spawn their associated primary entries.
Preamble information (provided by @preamble) is saved but is not interpreted at this
stage. The transcript will show the message

11

1.4 Resource Sets

Parsing bib files for resource (resource-name)

at this point.

Stage 3 (Processing Entries) The transcript will show the message
Processing resource (resource-name)

at this point. For each entry that was found in the corresponding set of .bib files:
« Records are transferred to aliases if required (alias-1loc).
« Field checks and modifications are performed:
— field aliases are performed (field-aliases);

- known fields identified with save-original-idand save-original-entrytype
are set (internal fields that don’t have a corresponding key for use with \new-
glossaryentry aren’t set until the . glstex file is written);

- ignored fields (identified by ignore-fields) are removed;

- case-changes (for example, short-case-change) are performed, except for
the name field and fields identified with field-case-change;

- suffixes are appended if required (for example, with short-plural-suffix);

— field replications are made (replicate-fields), and any of the above case-
change or suffixes required on the replicated fields are performed,

— the group field is assigned if group={(label)} is set;

- any variables (identified by @string) are expanded (if not already done in
any of the previous steps);

— any fields that have been identified by bibtex-contributor-fields are
converted;

— any fields that have been identified with encapsulate-fields are con-
verted;

— any fields that have been identified with encapsulate-fields* are con-
verted;

- any fields that must be converted into a label form (1abelify or labelify
-1list) are processed;

- any fields identified by dependency-fields are parsed for dependent en-
tries;

- any fields whose value must be a label are interpreted if interpret-label
-fields is set;

— the parent field is adjusted according to the label prefix settings (1abel
-prefix etc);

12

1.4 Resource Sets

- \makefirstuc protection is applied according to -~-mfirstuc-protection
and --mfirstuc-math-protection;

— fields are parsed for commands like \gls or \glshyperlink and also checked
for nested links if ——nested-1ink-check is set;

— the description field is adjusted according to strip-trailing-nopost;
- end punctuation is checked according to check-end-punctuation;

- name adjustment is performed if compound-adjust-name is set (and the cri-
teria is met);

- name case-change is performed if name-case-change is set;
— if copy-alias-to-see={true} the alias is copied to the see field;
- general field case changes identified by field-case-change are performed;

- any fields that have been identified with interpret-fields are replaced
with their interpreted values;

— any fields that have been identified with hex-unicode-fields will have
Unicode characters replaced;

— check for nonumberlist.
« The dual version (if appropriate) is created.

« Records are added to the entry’s location list (or transferred to the dual/primary
according to combine-dual-locations).

« The type, category and counter fields are set according to type, dual-type,
category, dual-category, counter and dual-counter.

« Filtering is applied (according to options like match butnot selectionor limit).
« Required fields are checked for existence.

+ Dependencies are registered (if selection={recorded and deps}orselection
={recorded and deps and see}).

« Any fields that have been identified by date-time-fields, date-fields or
time-fields are converted.

If selection={recorded and deps and see} then any recorded entries that have
been cross-referenced by an unrecorded entry, will register a dependency with the
unrecorded entry.

The compound entry options compound-dependent and compound-add-hierarchy
are implemented, if enabled.

Finally, supplemental records are added to entries.

Stage 4 (Selection, Sorting, Writing) Entries are selected from the list according to the
selection setting, sorting is performed (if required), truncation is applied (if 1imit
is set) and the .glstex file is written. The transcript will show the message

13

1.4 Resource Sets

Selecting entries for resource (resource-name)
or (if master)
Processing master (resource-name)

at this point.

Parent entries must always be in the same resource set as their child entries. (They may be
defined in different . bib files as long as all those . bib files are listed in the same src.) Other
forms of dependencies may be in a different resource set under certain circumstances. These
types of dependencies are instances of commands such as \gls being found (for example,
in the description field), or the cross-reference fields (see, seealso or alias or fields
identified with dependency-fields) in recorded entries that reference unrecorded entries.

The “cross-referenced by” dependencies enabled with selection={recorded and deps
and see} (where an unrecorded entry references a recorded entry through the cross-reference
fields) aren’t supported across resource sets (even with -~-force-cross-resource-refs).

A cross-resource reference is a reference from a recorded entry provided in one resource
set to an unrecorded entry in another resource set. Since the contents of each resource set’s
preamble must be processed before fields can be interpreted and one resource set’s preamble
may contain definitions that override another, cross-resource references can’t be supported
if fields containing cross-referencing information need to be interpreted.

The cross-resource reference mode determines whether or not bib2gls can support cross-
resource references. If enabled, the message

Cross-resource references allowed.

will be written to the transcript otherwise the message is
Cross-resource references disabled.

The mode can only be enabled if the following condition is satisfied:

« the interpreter is off (--no-interpret), or

. every resource set either doesn’t have a preamble (@preamble) or has interpret
-preamble={false} set.

If you know the preamble contents won’t cause a problem, you can force the cross-resource
references mode on with ——-force-cross-resource-refs.

If you don’t use either selection={recorded and deps} or selection={recorded
and deps and see} then the dependencies aren’t picked up for that resource set (and so
can’t be cross-referenced from another resource set).

Trails don’t work with cross-resource references. For example, if entry A has been recorded
and depends on entry B that hasn’t been recorded, then B can be picked up from a different
resource set, but if A and B are in the same resource set and B is dependent on C' which is
in a different resource set then C' won’t be picked up if it hasn’t been recorded because B
hasn’t been recorded and is in a different resource set.

If the cross-resource reference mode is enabled then stage 3 and stage 4 are processed in
separate loops, otherwise they are processed in the same loop.

14

1.5 Indexing

1.5 Indexing

The dual index entries such as @dualindexentry (described in section 4.6) are designed to
provide a way of including an entry in a glossary (with a description) and also include the
term (without the description) in an index. Additional terms that should only appear in the
index can be defined with @index. (See, for example, the sample-multil.tex and sample
-multi2.tex sample files.)

Although bib2gls is designed to create indexes as well as glossary lists using the same
interface (\gls etc), it is possible to have a mixture of bib2gls and \index. For example:

\documentclass{report}

\usepackage{makeidx}
\usepackage [record] {glossaries-extra}

\makeindex
\GlsXtrLoadResources[src={entries}]

\glssetcategoryattribute{general}{dualindex}{true}
\glssetcategoryattribute{symbol}{dualindex}{true}
\glssetcategoryattribute{abbreviation}{dualindex}{true}

\glssetcategoryattribute{general}{indexname}{hyperbf}
\glssetcategoryattribute{symbol}{indexname}{hyperbf}
\glssetcategoryattribute{abbreviation}{indexname}{hyperbf}

\begin{document}
\chapter{Example}
\gls{bird}, \gls{html}, \gls{v} and \glspl{goosel}.

\printunsrtglossaries
\printindex
\end{document}

If the document is called myDoc . tex then the document build is:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
makeindex myDoc.idx
pdflatex myDoc

This requires an additional KIgX call between bib2gls and makeindex since the entries must
be defined before they can be indexed (and they can’t be defined until bib2gls creates the
associated .glstex files).

15

1.6 Security

Note that this method will use the sort value obtained by bib2gls as the (sort) part within
\index{(sort)@(actual)}. Be careful if you use makeindex as this can result in Unicode char-
acters appearing in the sort value, which makeindex doesn’t support. The (actual) part is
given by \glsentryname{(label)}. (You can change the (sort) and (actual) parts by redefin-
ing \glsxtrautoindexassignsort and \glsxtrautoindexentry. See the glossaries-extra
manual for further details.)

1.6 Security

TgX Live come with security settings openin_any and openout_any that, respectively, gov-
ern read and write file access (in addition to the operating system’s file permissions). bib2gls
uses kpsewhich to determine these values and honours them. MikTeX doesn’t use these set-
tings, so if these values are unset, bib2gls will default to a (any) for openin_any and p
(paranoid) for openout_any.

The only external processes that are run by bib2gls are calls to kpsewhich to check the se-
curity settings and locate files on TgX’s path. These are started with Java’s ProcessBuilder
class so there should be no issues with spaces or shell special characters in the argument. The
--debug switch will write the process call in the transcript file and will delimit the argument
in the log with single quote characters for convenience, but the process isn’t actually called
in that way.

bib2gls creates files with the extension . glstex, which are input by \glsxtrresource-
file (and therefore by the shortcut \GlsXtrLoadResources). This extension is fixed and
is imposed by both bib2gls and \glsxtrresourcefile. bib2gls also creates a transcript
file with the default extension .glg. This may be overridden by the --log-file switch, but
bib2gls always forbids write access to any file with the following extensions: .tex, .1tx,
.sty, .cls, .bib, .dtx, .ins, .def and .1df.

1.7 Localisation

The messages produced by bib2gls are fetched from a resource file called bib2gls-(lang)
.xml, where (lang) is a valid Internet Engineering Task Force (1IETF) language tag.

The appropriate file is searched for in the following order, where (locale) is the operating
system’s locale or the value supplied by the --1ocale switch:

1. (lang) exactly matches (locale). For example, my locale is en-GB, so bib2gls will first
search for bib2gls-en-GB.xml. This file doesn’t exist, so it will try again.

2. If (locale) has an associated script, the next try is with (lang) set to (lang code)-(script)
where (lang code) is the two letter ISO language code and (script) is the script code.
For example, if (locale) is st-RS-Latn then bib2gls will search for bib2gls-sr-
Latn.xml if bib2gls-sr-RS-Latn.xml doesn’t exist.

3. The final attempt is with (lang) set to just the two letter ISO language code. For ex-
ample, bib2gls-sr.xml.

16

1.8 Conditional Document Build

If there is no match, bib2gls will fallback on the English resource file bib2gls-en.xml.
(Currently only bib2gls-en.xml exists as my language skills aren’t up to translating it. Any
volunteers who want to provide other language resource files would be much appreciated.)

Note that if you use the loc-prefix={true} option, the textual labels (“Page” and “Pages”
in English) will be taken from the resource file. In the event that the loaded resource file
doesn’t match the document language, you will have to manually set the correct translation
(in English, this would be 1oc-prefix={Page,Pages}). The default definition of \bibgls-
passim is also obtained from the resource file.

1.8 Conditional Document Build

If you are using a document build method that tries to determine whether or not bib2gls
should be run, you can find the information by searching the . aux file for instances of

\glsxtr@resource{(options)}{(filename)}

Each instance corresponds to an instance of \glsxtrresourcefile where (filename) is the
base name of the .glstex file that bib2gls needs to create for this resource set. If the
(options) part is missing the src option, then (filename) also indicates the base name for the
.bib file.

So the simplest check to determine if bib2gls needs to be run is to test if the .aux file
contains \glsxtrQresource. For example, with arara version 4.0:

% arara: bib2gls if found("aux", "glsxtr@resource")

A sophisticated method could check if (filename) . glstex is missing or is older than the
document . tex file for each instance of \glsxtr@resource found in the . aux file.

It might also be possible, although far more complex, to parse the (options) part in each
instance of \glsxtr@resource for src and determine if the corresponding . bib file or files
are newer than the .tex file.

It’s not possible to determine if the location lists require updating, just as it’s not possible
to do this for the table of contents (Toc), list of figures, list of tables etc. (Or, if it could be
implemented, the required code would make the document build far more complicated.)

In general, the basic algorithm is:

1. Run ETEX (or PDFEIEX etc).

2. If \glsxtr@resource is found in the .aux file then:
a) run bib2gls;
b) run KIEX (or PDFEIRX etc).

3. If \@istfilename is found in the .aux file then:

a) run makeglossaries (or makeglossaries-1lite);
b) run KIgX (or PDFETEX etc).

This allows for the record={alsoindex} package option. See also “Incorporating make-
glossaries or makeglossaries-lite or bib2gls into the document build” [12].

17

https://www.dickimaw-books.com/latex/buildglossaries
https://www.dickimaw-books.com/latex/buildglossaries

1.9 Manual Installation

1.9 Manual Installation

If you are unable to install bib2gls through your TgX package manager, you can install
manually using the instructions below. Replace (TEXMF) with the path to your local or
home TEXMF tree (for example, ~/texmf).

Copy the files provided to the following locations:

« (TEXMF)/scripts/bib2gls/bib2gls. jar (Java application.)

TEXMF)/scripts/bib2gls/convertgls2bib. jar (Java application.)

=

)
)
XMF)/scripts/bib2gls/texparserlib. jar (Java library.)
)
)

TEXMF)/doc/support/bib2gls/bib2gls.pdf (This document.)

(
{
« (TEXMF)/scripts/bib2gls/resources/bib2gls-en.xml (English resource file.)
(
(

TEXMF)/doc/support/bib2gls/bib2gls-begin.pdf (Introductory guide.)

If you use the Unix man command, copy the bib2gls.1 and convertgls2bib.1 files to the
appropriate location.

If you are using a Unix-like system, there are also bash scripts provided called bib2gls.sh
and convertgls2bib. sh. Either copy then directly to somewhere on your path without the
.sh extension, for example:

cp bib2gls.sh ~/bin/bib2gls
cp convertgls2bib.sh ~/bin/convertgls2bib

or copy the files to (TEXMF)/scripts/bib2gls/ and create a symbolic link to them called
just bib2gls and convertgls2bib from somewhere on your path, for example:

cp bib2gls.sh ~/texmf/scripts/bib2gls/

cp convertgls2bib.sh ~/texmf/scripts/bib2gls/

cd ~/bin

1n -s ~/texmf/scripts/bib2gls/bib2gls.sh bib2gls

1n -s ~/texmf/scripts/bib2gls/convertgls2bib.sh convertgls2bib

The texparserlib. jar file isn’t an application but is a library used by both bib2gls. jar
and convertgls2bib. jar, and so needs to be in the same class path. (The library is in a
separate GitHub repository [10] as it’s also used by some of my other applications.)

Windows users can create a .bat file that works in a similar way to the bash scripts. To
do this, create a file called bib2gls.bat that contains the following:

QECHO OFF

FOR /F "tokens=+" %%I IN ('kpsewhich --progname=bib2gls --format=texmfscripts
bib2gls.jar') DO SET JARPATH=Y%I

java -Djava.locale.providers=CLDR,JRE -jar "} JARPATHJ" %x

18

https://github.com/nlct/texparser

1.9 Manual Installation

Save this file to somewhere on your system’s path. (Similarly for convertgls2bib.) Note
that TgX distributions for Windows usually convert . jar files to executables.

You may need to refresh TgX’s database to ensure that kpsewhich can find the . jar files.
To test that the application has been successfully installed, open a command prompt or ter-
minal and run the following command:

bib2gls —--version
convertgls2bib --version

This should display the version information for both applications.

19

2 TgX Parser Library

The bib2gls application requires the TgX Parser Library texparserlib. jar' which is used
to parse the .aux and .bib files.

With the --interpret switch on (default), this library is also used to interpret the sort
value when it contains a backslash \ or a tilde ~ or a dollar symbol $ or braces { } (and when
the sort option is not unsrt or none or use).’

The other cases that the interpreter is used for are:

o when set-widest is used to determine the width of the name field;

« if labelify or labelify-1list are set the identified field values are first interpreted
(if they contain \ { } ~ or $) before being converted to labels;

o if interpret-label-fields={true}l is set and the parent, category, type, group,
seealso or alias fields contain \ or { or } the interpreter is used since these fields
must be just a label (other special characters aren’t checked as they won’t expand to
characters allowed in a label).

Information in the .aux file is parsed for specific commands but the arguments of those
commands are not interpreted so, for example, UTF-8 characters that occur in any resource
options will need to be detokenized when using inputenc to prevent expansion when they
are written to the . aux file. (In some options, such as sort-rule, you can use \glshex(hex)
syntax to specify a UTF-8 character.)

The -—no-interpret switch will turn off the interpreter, but the library will still be used
to parse the .aux and .bib files. Note that the see field doesn’t use the interpreter with
interpret-label-fields={true} asit may legitimately contain BIEX code in the optional
tag part (such as \seealsoname or \alsoname).

The parser has a different concept of expansion to TgX and will expand some things that
aren’t expanded by EIgX (such as \MakeUppercase and \char) and won’t expand other com-
mands that would be expanded by KIEX (such as commands defined in terms of complicated
internals).

If you get a StackOverflowError while a field is being interpreted (with a long stack
trace that contains repeated file names and line numbers) then it’s likely you have an infinite
loop. For example, this can be triggered if a field contains \foo that has been defined as:

'https://github.com/nlct/texparser

?The other special characters are omitted from the check: the comment symbol % is best avoided in field values,
the subscript and superscript characters _ and ~ should either be encapsulated by $ or by \ensuremath,
which will be picked up by the check for $ or \, and the other special characters would indicate something
too complex for the interpreter to handle.

20

https://github.com/nlct/texparser

2 TgX Parser Library

\def\foo{\foo}

This will obviously also cause an error in the BTgX document as well (unless the document
has a different definition that doesn’t have this unbounded recursion).

The texparserlib. jar library is not a TgX engine and there are plenty of situations
where it doesn’t work. In particular, in this case it’s being used in a fragmented context
without knowing most of the packages used by the document or any custom commands or
environments provided within the document.

bib2gls can detect from the log file a small number of packages that the parser recog-
nises. Note that in some cases there’s only very limited support. For example, siunitx’s \si
command is recognised but other commands from that package aren’t. See -—~1ist-known
-packages (page 35) for further details.

Since the parser doesn’t have a full set of commands available within the ETgX document,
when it encounters \renewcommand it won’t check if the command is undefined. If the
command isn’t defined, it will simply behave like \newcommand. Whereas with \provide-
command the parser will only define the command if it’s unrecognised.

The interpreter has its own internal implementation of the glossary-related commands
listed in table 2.1. These may be overridden by custom packages provided with the --custom
-packages switch. Note that commands that reference an entry, such as \glsentryname,
aren’t guaranteed to work across resource sets and will only be able to look up field values
that are known to bib2gls. (For example, the name field for abbreviations is typically set by
the associated abbreviation style, which isn’t available to bib2gls.)

If a command isn’t recognised, you can provide it in the @preamble and use \char to map
a symbol to the most appropriate Unicode character. For example, suppose your document
loads a package that provides symbols for use on maps, such as \Harbour, \Battlefield
and \Stadium, then you can provide versions of these commands just for bib2gls’s use:*

Opreamble{"\providecommand{\Harbour}{\char"2693}
\providecommand{\Battlefield}{\char"2694}
\providecommand{\Stadium}{\char"26BD}"}

Since these use \providecommand, they won’t overwrite the document’s version (provided
these commands have been defined before \GlsXtrLoadResources). Alternatively, you
can instruct bib2gls to not write the @preamble contents to the resource file using write
—-preamble={false}. Now you can either sort these symbols by their Unicode values (sort
={letter-casel) or provide a custom rule that recognises these Unicode characters (for ex-
ample, sort={custom}, sort-rule={\glshex2694 < \glshex2693 < \glshex26BD}).

TgX syntax can be quite complicated and, in some cases, far too complicated for simple
regular expressions. The TgX parser library performs better than a simple pattern match, and
that’s the purpose of texparserlib. jar and why it’s used by bib2gls (and by convert-
gls2bib). When the --debug mode is on, any warnings or errors triggered by the interpreter
will be written to the transcript prefixed with texparserlib: (the results of the conversions
will be included in the transcript as informational messages prefixed with texparserlib:
even with —-no-debug).

>These commands won’t work with PDFKIEX, as the \char values are too large, but they’re fine for bib2gls.

21

2 TgX Parser Library

Table 2.1: Glossary-Related Commands Implemented by the bib2gls Interpreter

\bibglsampersandchar
\bibglscontributorlist
\bibglsdollarchar
\bibglshyperlink
\bibglstitlecase
\glsbackslash
\Glsentryfirst
\glsentrylong
\Glsentrylongpl
\glsentryplural
\Glsentryshort
\glsentrysymbol
\Glsentrysymbolplural
\glsentrytitlecase
\glsentryuserii
\Glsentryuseriii
\glsentryuserv
\Glsentryuservi
\glspercentchar
\glsxtrhiername
\GLSxtrhiername
\glsxtrprovidecommand
\GLSxtrusefield

\bibglscircumchar
\bibglsdate
\bibglsfirstuc
\bibglslowercase
\bibglsunderscorechar
\glsclosebrace
\glsentryfirstplural
\Glsentrylong
\glsentryname
\Glsentryplural
\glsentryshortpl
\Glsentrysymbol
\glsentrytext
\glsentryuseri
\Glsentryuserii
\glsentryuseriv
\Glsentryuserv
\glshyperlink
\glstildechar
\Glsxtrhiername
\GLSXTRhiername
\glsxtrusefield

22

\bibglscontributor
\bibglsdatetime
\bibglshashchar
\bibglstime
\bibglsuppercase
\glsentryfirst
\Glsentryfirstplural
\glsentrylongpl
\Glsentryname
\glsentryshort
\Glsentryshortpl
\glsentrysymbolplural
\Glsentrytext
\Glsentryuseri
\glsentryuseriii
\Glsentryuseriv
\glsentryuservi
\glsopenbrace

\GlsXtrEnableInitialTagging

\GlsXtrhiername
\glsxtrhiernamesep
\Glsxtrusefield

2 TgX Parser Library

For example, suppose the .bib file includes:

@preambleq

"\providecommand{\mtx} [1]{\boldsymbol{#1}}
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}
\providecommand{\imaginary}{i}"}

Q@entry{M,
name={{}\mtx{M}},
text={\mtx{M}},
description={a matrix}

}

Qentry{v,
name={{}\vec{v}},
text={\vec{v}},
description={a vector}

}

Qentry{s,
name={{}\set{S}3},
text={\set{S}},
description={a set}

b

@entry{card,

name={{}$\card{S}r$},

text={\card{S}},

description={the cardinality of the set \set{S}}
}

Q@entry{i,
name={{}\imaginary},
text={\imaginary},
description={square root of minus one ($\sqrt{-1}$)}

3

(The empty group at the start of the name fields protects against the possibility that the gloss-
name category attribute might be set to firstuc, which automatically converts the first letter
of the name to upper case when displaying the glossary. See also -——-mfirstuc-protection
and --mfirstuc-math-protection.)

None of these entries have a sort field so the name is used. If the entry type had been
Osymbol instead, the fallback would be the entry’s label. This means that with @symbol
instead of @entry, and the default sort-field={sort}, and with sort={letter-case},

23

2 TgX Parser Library

these entries will be defined in the order: M, S, card, i, v (since this is the case-sensitive letter
order of the labels) whereas with sort-field={letter-nocase}, the order will be: card,
i, M, S, v (since this is the case-insensitive letter order of the labels).

However, with @entry, the fallback field will be taken from the name which in the above
example contains TEX code, so bib2gls will use texparserlib. jar to interpret this code.
The library has several different ways of writing the processed code. For simplicity, bib2gls
uses the library’s HTML output and then strips the HTML markup and trims any leading
or trailing spaces. The library method that writes non-ASCII characters using “&x(hex); ”
markup is overridden by bib2gls to just write the actual Unicode character, which means
that the letter-based sorting options will sort according to the integer value (hex) rather than
the string “ &x (hex) ; ”.

The interpreter is first passed the code provided with @preamble:

\providecommand{\mtx}[1]{\boldsymbol{#1}}
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}
\providecommand{\imaginary}{i}

(unless interpret-preamble={false}). This means that the provided commands are now
recognised by the interpreter when it has to parse the fields later.

In the case of the M entry in the example above, the code that’s passed to the interpreter
is:

{3\mtx{M}

The transcript (. glg) file will show the results of the conversion:
texparserlib: {}\mtx{M} -> M

So the sort value for this entry is set to “M”. The font change (caused by math-mode and
\boldsymbol) has been ignored. The sort value therefore consists of a single Unicode char-
acter 0x4D (Latin upper case letter “M”, decimal value 77).

For the v entry, the code is:

{I\vec{v}

The transcript shows:

texparserlib: {}\vec{v} -> ¥

€29

So the sort value for this entry is set to “ v 7, which consists of two Unicode characters 0x76
(Latin lower case letter “v”, decimal value 118) and 0x20D7 (combining right arrow above,
decimal value 8407).

For the set entry, the code is:

{}\set{S}

The transcript shows:

24

2 TgX Parser Library

texparserlib: {}\set{S} -> S

So the sort value for this entry is set to “S” (again ignoring the font change). This consists
of a single Unicode character 0x53 (Latin upper case letter “S”, decimal value 83).
For the card entry, the code is:

{}\card{sS}

The transcript shows:
texparserlib: {}\card{S} -> [S|

So the sort value for this entry is set to “ | S| ” (the | characters from the definition of \card
provided in @preamble have been included, but the font change has been discarded). In this
case the sort value consists of three Unicode characters 0x7C (vertical line, decimal value
124), 0x53 (Latin upper case letter “S”, decimal value 83) and 0x7C again. If interpret
-preamble={false} had been used, \card wouldn’t be recognised and would be discarded
leaving just “S” as the sort value.

(Note that if \vert is used instead of | then it would be converted into the mathematical
operator 0x2223 and result in a different order.)

For the i entry, the code is:

{}\imaginary
The transcript shows:
texparserlib: {}\imaginary -> i

So the sort value for this entry is set to “i”. If interpret-preamble={false} had been
used, \imaginary wouldn’t be recognised and would be discarded, leaving an empty sort
value.

This means that in the case of the default sort-field={sort} with sort={letter-
casel, these entries will be defined in the order: M (M), S (S), i (¢), v (¥) and card (|S|). In
this case, the entries have been sorted according to the character codes. If you run bib2gls
with --verbose the decimal character codes will be included in the transcript. For this ex-
ample:

i-> 'i' [105]

card -> '[|S|' [124 83 124]
M -> 'M'" [77]

S -> 'S' [83]

v -> 'v' [118 8407]

The --group option (in addition to --verbose) will place the letter group in parentheses
before the character code list:

25

2 TgX Parser Library

i->'i" (1) [105]
card -> '[|S|' [124 83 124]
M => M (M) [77]
S —> 's' (S) [83]
v => 'v' (v) [118 8407]
(Note that the card entry doesn’t have a letter group since the vertical bar character isn’t
considered a letter.)

If sort={letter-nocase} is used instead then, after conversion by the interpreter, the
sort values will all be changed to lower case. The order is now: i (), M (M), S (S), v (¥) and
card (|S|). The transcript (with --verbose) now shows

i -> 'i' [105]
card -> '[s|' [124 115 124]
M -> 'm' [109]
S -> 's' [115]

—

v => 'v' [118 8407]
With --group (in addition to —-verbose) the letter groups are again included:

i —> it (I) [105]
card -> 'Is|' [124 115 124]
M -> 'm' (M) [109]
S -> 's' (8) [115]
v -> '¥' (V) [118 8407]
Note that the letter groups are upper case not lower case. Again the card entry doesn’t have
an associated letter group.

If a locale-based sort is used, the ordering will follow the locale’s alphabet rules. For
example, with sort={en} (English, no region or variant), the order becomes: card (|S|), i
(2), M (M), S (S) and v (V). The transcript (with —-verbose) shows the collation keys instead:

i->"'i'" [092 0 0 0 0]
card -> '[S|' [0 66 0 102 0 66 0 0 0 O]
M->'M'" [096 00 0 0]
S ->'s' [0102 0 0 0 0]

—

v -=> 'v' [0 105 0 0 0 0]

Again the addition of the —-group switch will show the letter groups.*
Suppose I add a new symbol to my .bib file:

O@symbol{angstrom,
name={\AA},
description={\AA ngstr\"om}
}

For more information on collation keys see the CollationKey class in Java’s API [2].

26

http://docs.oracle.com/javase/8/docs/api/java/text/CollationKey.html

2 TgX Parser Library

and I also use this entry in the document.” Then with sort={en}, the order is: card (|S|),
angstrom (A), i (i), M (M), S (S), and v (7). The --group switch shows that the angstrom
entry (A) has been placed in the “A” letter group.

However, if I change the locale to sort={sv}, the angstrom entry is moved to the end of
the list and the ——group switch shows that it’s been placed in the “A” letter group.

If you are using Java 8, you can set the java.locale.providers property [8] to use the
Unicode Common Locale Data Repository (cLDR) locale provider, which has more extensive
support for locales than the native Java Runtime Environment (JRE). For example:

java.locale.providers=CLDR, JRE

This should be enabled by default for Java 9. The property can either be set in a script that
runs bib2gls, for example,

java -Djava.locale.providers=CLDR,JRE,SPI -jar "$jarpath" "$a@"

(where $jarpath is the path to the bib2gls. jar file and "$@" is the argument list) or you
can set the property as the default for all Java applications by adding the definition to the
JAVA_TOOL_OPTIONS environment variable [9]. For example, in a bash shell:

export JAVA_TOOL_OPTIONS='-Djava.locale.providers=CLDR, JRE,SPI'
or in Windows:

set JAVA_TOOL_OPTIONS=-Djava.locale.providers=CLDR, JRE,SPI

>A better method is to use siunitx instead.

27

3 Command Line Options

The syntax of bib2gls is:
bib2gls [(options)] (filename)

where (filename) is the name of the .aux file. (The extension may be omitted.) Only one
(filename) is permitted. Available options are listed below.

3.1 Common Options

--help (or -h)
Display the help message and quit.

--version (or -v)

Display the version information and quit. As from v2.5, this now includes the version number
of the texparserlib. jar library.

--debug [(n)]

Switch on debugging mode. If (n) is present, it must be a non-negative integer indicating
the debugging level. If omitted 1 is assumed. This option also switches on the verbose mode.
A value of 0 is equivalent to -—no-debug.

--no-debug (or --nodebug)
Switches off the debugging mode.

--verbose

Switches on the verbose mode. This writes extra information to the terminal and transcript

file.

--no-verbose (or --noverbose)

Switches off the verbose mode. This is the default behaviour. Some messages are written to
the terminal. To completely suppress all messages (except errors), switch on the silent mode.
For additional information messages, switch on the verbose mode.

28

3.1 Common Options

--quiet (or -q)

Suppresses all messages except for errors that would normally be written to the terminal.
Warnings and informational messages are written to the transcript file, which can be in-
spected afterwards.

--silent

Synonym of --quiet.

--locale (lang) (or -1 (lang))

Specify the preferred language resource file, where (lang) is a valid 1ETF language tag. This
option requires an appropriate bib2gls-(lang).xml resource file otherwise bib2gls will
fallback on English. This also sets the default document locale when sort={doc} is used
and the document doesn’t have any language support. Note that sort={locale} uses the
Java Virtual Machine’s (jvm) default locale and is not governed by this switch.

If a document doesn’t have any locale support or has support for more than one language
then it’s best to explicitly set the required locale in the appropriate resource set.

~—group (or -g)

The glossaries-extra record package option automatically creates a new internal field called
group. If the -—group switch is used with the default group={auto} option then, when
sorting, bib2gls will try to determine the group for each entry and assign it to the group
field. (Some sort options ignore this setting.) This value will be picked up by \print-
unsrtglossary if group headings are required (for example with the indexgroup style) or
if group separators are required (for example, the index style with the default nogroupskip
={false}). If you don’t require grouping within the glossary, there’s no need to use this
switch. Note that this switch doesn’t automatically select an appropriate glossary style.

If you want sub-groups, you will need to use the group-level resource option and en-
sure you have glossaries-extra v1.49+. Small groups can be merged with the merge-small
—groups resource option.

The group field should typically not be set in the . bib file and will trigger a warning if
found. The explicit use of the group key will override bib2gls’s normal group forma-
tion behaviour, which can cause unexpected results. The custom use of the group field
requires some care. As a general rule, if you find yourself wanting to use the group
field in the . bib file, then the chances are that what you actually have is a hierarchi-
cal glossary (list of topics) and what you really need is the parent field. Compare the
example files sample-textsymbols.tex and sample-textsymbols2.tex. See also
section 1.2.

There are eight types of groups:

29

3.1 Common Options

letter group The first non-ignored character of the sort value is alphabetic. This type of
group occurs when using the alphabetic sort methods listed in table 5.2 or with the
letter sort methods listed in table 5.3 or with the letter-number sort methods listed in
table 5.4. The group label is obtained from \bibglslettergroup.

non-letter group (or symbol group) The first non-ignored character of all the sort values
within this group are non-alphabetical. This type of group occurs when using the
alphabetic sort methods listed in table 5.2 or with the letter sort methods listed in
table 5.3 or with the letter-number sort methods listed in table 5.4. The alphabetic sort
methods ignore many punctuation characters, so an entry that has a non-alphabetic
initial character in the sort value may actually be placed in a letter group. The group
label is obtained from \bibglsothergroup.

empty group The sort value is empty when sorting with an alphabetical, letter or letter-
number method, typically a result of the original value consisting solely of commands
that bib2gls can’t interpret. The group label is obtained from \bibglsemptygroup.

number group The entries were sorted by one of the numeric comparisons listed in ta-
ble 5.5. The group label is obtained from \bibglsnumbergroup.

date-time group The entries were sorted by one of the date-time comparisons listed in
table 5.6 (where both date and time are present). The group label is obtained from
\bibglsdatetimegroup.

date group The entries were sorted by one of the date comparisons (where the time is omit-
ted). The group label is obtained from \bibglsdategroup.

time group The entries were sorted by one of the time comparisons (where the date is omit-
ted). The group label is obtained from \bibglstimegroup.

custom group The group label is explicitly set either by aliasing a field (with field-aliases)
or by using the group={(label)} resource option. You will need to use \glsxtrset-
grouptitle in the document to provide an associated title if the (label) isn’t the same
as the title. Remember that the label can’t contain any active characters, so you can’t
use non-ASCII characters in (label) with inputenc (but you can use non-ASCII alphanu-
merics with fontspec).

The letter group titles will typically have the first character converted to upper case for
the alphabet sort methods (table 5.2). A “letter” may not necessarily be a single character
(depending on the sort rule), but may be composed of multiple characters, such as a digraph
(two characters) or trigraph (three characters).

For example, if the sort rule recognises the digraph “dz” as a letter, then it will be converted
to “Dz” for the group title. There are some exceptions to this. For example, the Dutch digraph
“ij” should be “IJ” rather than “Ij”. This is indicated by the following line in the language
resource file:

<entry key="grouptitle.case.ij">IJ</entry>

30

3.1 Common Options

If there isn’t a grouptitle.case.(lc) key (where (lc) is the lower case version), then only
the first character will be converted to upper case otherwise the value supplied by the re-
source file is used. This resource key is only checked for the alphabetical comparisons listed
in table 5.2. If the initial part of the sort value isn’t recognised as a letter according to the
sort rule, then the entry will be in a non-letter group (even if the character is alphabetical).

The letter (table 5.3) and letter-number (table 5.4) methods only select the first character
of the sort value for the group. If the character is alphabetical® then it will be a letter group
otherwise it’s a non-letter group. The case-insensitive ordering (such as sort={letter-
nocase}) will convert the letter group character to upper case. The case-sensitive ordering
(such as sort={letter-case}) won’t change the case.

Glossary styles with navigational links to groups (such as indexhypergroup) require an
extra run for the ordinary \makeglossaries and \makenoidxglossaries methods. For
example, for the document myDoc . tex:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc
pdflatex myDoc

On the first pdflatex call, there’s no glossary. On the second pdflatex, there’s a glossary
but the glossary must be processed to find the group information, which is written to the
.aux file as

\@gls@hypergroup{(type)}H (group id)}

The third pdflatex reads this information and is then able to create the navigation links.
With bib2gls, if the type is provided (through the type field or via options such as type
and dual-type) then this information can be determined when bib2gls is ready to write
the . glstex file, which means that the extra KIEX run isn’t necessary. If bib2gls doesn’t
know the glossary type then it will fallback on the original method which requires an extra
EIEX run.
For example:

\documentclass{article}

\usepackage [colorlinks] {hyperref}

\usepackage [record,abbreviations,style={indexhypergroup}]{glossaries-
extral

\GlsXtrLoadResources [src={entries},’, data in entries.bib
type={main}), put these entries in the 'main' glossary

]

\GlsXtrLoadResources [src={abbrvs},% data in abbrvs.bib
type={abbreviations}), put entries in the 'abbreviations' glossary

]

according to Java’s Character.isAlphabetic(int) method

31

3.2 File Options

Here the type is set and bib2gls can detect that hyperref has been loaded, so if the -—group
switch is used, then the group hyperlinks can be set (using \bibglshypergroup). This
means that the build process is just:

pdflatex myDoc
bibtex --group myDoc
pdflatex myDoc

Note that this requires glossaries v4.32+. If your version of glossaries is too old then bib2gls
can’t override the default behaviour of glossary-hypernav’s \glsnavhypertarget.

If hyperref isn’t loaded or the —-group switch isn’t used or the type isn’t set or your
version of glossaries is too old, then the information can’t be saved in the . glstex file.

For example:

\documentclass{article}

\usepackage [colorlinks]{hyperref}

\usepackage [record,abbreviations,style={indexhypergroup}]{glossaries-
extra}

\GlsXtrLoadResources[src={entries}]’, data in entries.bib
\GlsXtrLoadResources[src={abbrvs}]), data in abbrvs.bib

This requires the build process:

pdflatex myDoc
bibtex —--group myDoc
pdflatex myDoc
pdflatex myDoc

because the group hyperlink information can’t be determined by bib2gls, so it’s best to
always set the type if you want hyper-group styles, and make sure you have an up-to-date
version of glossaries (and glossaries-extra).

—--no-group

Don’t automatically set the group field with group={auto} (default). The glossary won’t
have groups even if a group style, such as indexgroup, is used (unless the group field is set
to a custom value).

3.2 File Options

--dir (dirname) (or -d (dirname))

By default bib2gls assumes that the output files should be written in the current working
directory. The input . bib files are assumed to be either in the current working directory or
on TgX’s path (in which case kpsewhich will be used to find them).

32

3.2 File Options

If your .aux file isn’t in the current working directory (for example, you have run TgX
with —output-directory) then you need to take care how you invoke bib2gls.

Suppose I have a file called test-entries.bib that contains my entry definitions and a
document called mydoc. tex that selects the . bib file using:

\GlsXtrLoadResources[src={test-entries}]

(test-entries.bib is in the same directory as mydoc.tex). If I compile this document
using

pdflatex -output-directory tmp mydoc

then the auxiliary file mydoc.aux will be written to the tmp sub-directory. The resource
information is listed in the . aux file as

\glsxtr@resource{src={test-entries}}{mydoc}

IfI run bib2gls from the tmp directory, then it won’t be able to find the test-entries.bib
file (since it’s in the parent directory).
If I run bib2gls from the same directory as mydoc.tex using

bib2gls tmp/mydoc

then the .aux file is found and the transcript file is tmp/mydoc.glg (since the default path
name is the same as the . aux file but with the extension changed to . glg) but the output file
mydoc.glstex will be written to the current directory.

This works fine from TgX’s point of view as it can find the . glstex file, but it may be that
you’d rather the . glstex file was tidied away into the tmp directory along with all the other
files. In this case you need to invoke bib2gls with the --dir or -d option:

bib2gls -d tmp mydoc

--log-file (filename) (or -t (filename))

Sets the name of the transcript file. By default, the name is the same as the . aux file but with
a .glg extension. Note that if you use bib2gls in combination with xindy or makeindex,
you will need to change the transcript file name to prevent conflict.

--tex-encoding (name)

bib2gls tries to determine the character encoding to use for the output files. If the document
has loaded the inputenc package then bib2gls can obtain the value of the encoding from the
.aux file. This is then converted to a name recognised by Java. For example, utf8 will be
mapped to UTF-8. If the fontspec package has been loaded, glossaries-extra will assume the
encoding is ut£8 and write that value to the .aux file.

If neither package has been loaded, bib2gls will assume the yjvm’s default encoding (iden-
tified by the file.encoding property). If this is incorrect or if bib2gls can’t work out

33

3.3 Interpreter Options

the appropriate mapping then you can specify the correct encoding using --tex-encoding
(name) where (name) is the encoding name (such as UTF-8).

If you have a problem with non-ASCII characters not displaying correctly in your docu-
ment:

+ Check that the file encoding of your document .tex file (or files) has been correctly
set by your text editor.

 Check that your document supports that encoding (for example, through the inputenc
package).

+ Check bib2gls’s transcript file (. glg) for the line that starts
TeX character encoding:

This should be followed by the encoding used by bib2gls when creating the . glstex
files. If this is incorrect use -—tex-encoding.

+ Check that the encoding of the . bib files (set by your text editor or bibliographic man-
agement system) matches the encoding line in the .bib file or the charset resource
option.

3.3 Interpreter Options

--break-space

The interpreter treats a tilde character ~ as a normal space. Similarly \nobreakspace just
produces a space.

--no-break-space

The interpreter treats a tilde character ~ as a non-breakable space (default). Similarly \nobreakspace
produces a non-breakable space character (0x00A0).

--custom-packages (list)

Instruct the interpreter to parse the package files identified in (list). The package files need
to be quite simple. When this switch is used, the interpreter can recognise \ProvidesPack-
age, \DeclareOptions (and \DeclareOptionsx*), \ProcessOptions, \PackageError and
\RequirePackage, but it can’t deal with complicated code. In the case of \RequirePack-
age, support will also be governed by --custom-packages. This option has a cumulative
action.

34

3.3 Interpreter Options

--ignore-packages (list) (or -k (list))

This option is cumulative. When the document .1log file is parsed for known packages,
bib2gls will skip the check for any listed in (list). Note that this option simply instructs
bib2gls to ignore the package information in the log file. Any packages that are identified
with --packages will be passed to the interpreter if support is available, even if the package
is also listed in --ignore-packages. Note that unknown packages can’t be included in the
ignored (list).

-—interpret

Switch on the interpreter mode (default). See chapter 2 for more details.

--no-interpret

Switch off the interpreter mode. See chapter 2 for more details about the interpreter.

--list-known-packages

This option will list all the packages supported by the TgX parser library and will then exit
bib2gls. The results are divided into two sections: those packages that are searched for
in the .log file and those packages that aren’t searched for in the .1log file but have some
support available. Some of the support is very limited. Package options aren’t detected. The
transcript file is always searched for glossaries-extra to ensure that the version is new enough
to support bib2gls.

Packages that fall into the first category are: amsmath, amssymb, bpchem, fontenc, fontspec,
fourier, hyperref, lipsum, MnSymbol, mhchem, natbib, pifont, siunitx (limited), stix, textcase,
textcomp, tipa, upgreek and wasysym. (You can omit checking for specific packages with
--ignore-packages.) These are packages that provide commands that might be needed
within entry fields. The check for fontspec is to simply determine whether or not UTF-8
characters are allowed in labels (for 1abelify and labelify-1list).

Packages that fall into the second category are: booktabs, color, datatool-base (very lim-
ited), datatool (very limited), etoolbox (very limited), graphics, graphicx, ifthen, jmlrutils,
mfirstuc-english, probsoln, shortvrb, and xspace. These are less likely to be needed within
fields and so aren’t checked for by default. If they are needed then you can instruct bib2gls
to support them with --packages.

Note that mfirstuc is always automatically loaded, but mfirstuc-english is not implemented
unless explicitly requested with —-packages mfirstuc-english.

If you’re wondering about the selection, the texparserlib. jar library was originally
written for another application that required support for some of them.

--packages (list) (or -p (list))

Instruct the interpreter to assume the packages listed in (list) have been used by the docu-
ment. This option has a cumulative action so --packages "wasysym,pifont" is the same

35

3.3 Interpreter Options

as ——packages wasysym --packages pifont.

Note that there’s only a limited number of packages supported by the TgX parser library.
This option is provided for cases where you’re using a command from a package that the
interpreter doesn’t support but it happens to have the same name and meaning as a command
from a package that the interpreter does support. You can also use it to provide support for
known packages that aren’t checked for when the .1log file is parsed. If you want bib2gls
to parse an unsupported package use -~-custom-packages.

—--support-unicode-script

Text superscript (\textsuperscript) and subscript (\textsubscript) will use Unicode
super/subscript characters if available (default). For example,

(2)

will be converted to °, which consists of: 0x207D (superscript left parenthesis) 0x00B2 (su-
perscript two) 0x207E (superscript right parenthesis). If the entire contents of the argument
can’t be represented by Unicode characters, the interpreter uses <sup> and <sub> markup,
which is then stripped by bib2gls. For example,

(2,3)
will be converted to
^(2,3)

(since there’s no superscript comma). The markup is stripped leaving just (2,3).

Superscripts and subscripts in maths mode always use markup regardless of this setting.
Some supported packages that use = or _ as shortcuts within an encapsulating command
may internally use the same code as \textsuperscript and \textsubscript, in which
case they will be sensitive to this setting.

—--no-support-unicode-script

Text superscript (\textsuperscript) and subscript (\textsubscript) won’t use Unicode
super/subscript characters. Note that if other commands are provided that expand to Unicode
superscript or subscript characters, then they won’t be affected by this setting. For example,
if \superiortwo is defined as

\providecommand{\superiortwo}{\char"B2}

then it will be interpreted as 0x00B2 (superscript two) even if this setting is on.

--obey-aux-catcode

By default, the .aux parser ignores category code changing commands. This option will
instruct the parser to implement the category code, but note that it can only do this for
known commands that the parser is able to implement.

36

3.4 Record Options

--no-obey-aux-catcode

Instructs the . aux parser to ignore category code changing commands. (Default.)

3.4 Record Options

-—-cite—-as-record

Treat instances of \citation{(label)} found in the .aux file as though it was actually an
ignored record:

\glsxtr@record{(label)}{}{page}{glsignore}{}

Note that \citation{*} will always be skipped. Use selection={all} to select all entries.
This switch is most useful in conjunction with @bibtexentry (page 94).

--no-cite—-as-record

Don’t check for instances of \citation in the .aux file (default).

--collapse-same-location-range

Collapse any explicit range into a normal record if the start and end locations are the same
(default). This record will be treated as a normal location that can be merged with neigh-
bouring locations, regardless of merge-ranges.

--no-collapse-same-location-range

Don’t collapse any explicit range into a normal record if the start and end locations are the
same. The explicit range will only be able to merge with neighbouring locations if merge
-ranges={true}l.

--map-format (map:value list) (or -m (map:value list))

This sets up the rule of precedence for partial location matches (see section 5.7). The argu-
ment may be a comma-separated list of (map) : (value) pairs. Alternatively, you can have
multiple instances of —-map-format (map): (value) which have a cumulative effect.

For example,

bib2gls --map-format "emph:hyperbf" mydoc

This essentially means that if there’s a record conflict involving emph, try replacing emph
with hyperbf and see if that resolves the conflict.

Note that if the conflict includes a range formation, the range takes precedence. The map-
ping tests are applied as the records are read. For example, suppose the records are listed in
the .aux file as:

37

3.4 Record Options

\glsxtr@record{gls.sample}{}{paget{emph}{3}
\glsxtrOrecord{gls.sample}{}{page}t{hypersf}{3}
\glsxtr@record{gls.sample}{}{page}t{hyperbf}{3}

and bib2gls is invoked with
bib2gls —--map-format "emph:hyperbf,hypersf:hyperit" mydoc
or
bib2gls --map-format emph:hyperbf --map-format hypersf:hyperit mydoc
then bib2gls will process these records as follows:
1. Accept the first record (emph) since there’s currently no conflict. (This is the first record

for page 3 for the entry given by gls.sample.)

2. The second record (hypersf) conflicts with the existing record (emph). Neither has the
format glsnumberformat or glsignore so bib2gls consults the mappings provided
by --map-format.

+ The hypersf format (from the new record) is mapped to hyperit, so bib2gls
checks if the existing record has this format. In this case it doesn’t (the format is
emph). So bib2gls moves on to the next test:

+ The emph format (from the existing record) is mapped to hyperbf, so bib2gls
checks if the new record has this format. In this case it doesn’t (the format is
hypersf).

Since the provided mappings haven’t resolved this conflict, the new record is
discarded with a warning. Note that there’s no look ahead to the next record.

(There may be other records for other entries also used on page 3 interspersed
between these records.)

3. The third record (hyperbf) conflicts with the existing record (emph). Neither has the
format glsnumberformat or glsignore so bib2gls again consults the mappings pro-
vided by -—-map-format.

+ The new record’s hyperbf format has no mapping provided, so bib2gls moves
on to the next test:

+ The existing record’s emph format has a mapping provided (hyperbf). This matches
the new record’s format, so the new record takes precedence.

This means that the location list ends up with the hyperbf location for page 3.
If, on the other hand, the mappings are given as
--map-format "emph:hyperit,hypersf:hyperit,hyperbf:hyperit"

then all the three conflicting records (emph, hypersf and hyperbf) will end up being replaced
by a single record with hyperit as the format.

Multiple conflicts will typically be rare as there’s usually little reason for more than two
or three different location formats within the same list. (For example, glsnumberformat as
the default and hyperbf or hyperit for a principal location.)

38

3.4 Record Options

--merge-nameref-on (rule)

The record={nameref} package option (introduced to glossaries-extra version 1.37) pro-
vides extra information in the record when indexing, obtained from \@currentlabelname,
\@currentHref and \theHentrycounter. Instead of writing the record as:

\glsxtrOrecord{(label) }{(prefix)}{{counter)}{(format)}{(location)}

the record is written as:

\glsxtr@record@nameref{(label)}{(prefix)}{(counter)}{(format)}{(location)}{ (title)}
{(href) }{(hcounter)}

If hyperref hasn’t been loaded (title) and (href) will always be empty. The most reliable
target is given by (counter) . (hcounter), where (counter) is the associated counter name and
(hcounter) is obtained from \theHentrycounter, which is set to the hyper target command
\theH(counter) during indexing. Since this information can’t be included in the location
when indexing with makeindex or xindy, the base glossaries package tries to obtain a prefix
from which the target name can be formed. This doesn’t work if \theH(counter) can’t be
formed from (prefix)\the(counter), which results in broken links. Since bib2gls doesn’t
have the same restrictions, the actual target can be included in the record. You can then
customize the document to choose whether to use (href’) (to link to the nearest anchor) or
(hcounter) to link to the place where the indexing counter was incremented.
The nameref record will be written to the location list using:

\glsxtrdisplaylocnameref{(prefix)}{(counter)}{(format)}{(location)}{(title)}
{(href) }{(hcounter)}{(file)}

The (file) part will be empty for normal internal locations, and will be set to the correspond-
ing file name for supplemental locations.

With hyperref, (title) is initially empty. The (href) will be Doc-Start at the start of the
document and is updated globally on every instance of \refstepcounter. The (title) is
updated locally by certain commands, such as \section or \caption. This means that the
(href) may not always correspond to the (title), so using the record={nameref} package
option can have unpredictable results if the (title) is used as link text with (href) as the
target.

For compactness, bib2gls tries to merge duplicate or near duplicate records. There are
four possible rules that it will use for nameref records, identified by (rule) in the --merge
-nameref-on switch:

« location: merge records that match on the (prefix), (counter) and (location) parts (as
regular records);

« title: merge records that match on the (counter) and (title) parts;
« href: merge records that match on the (counter) and (href) parts;

« hcounter: merge records that match on the (counter) and (hcounter) parts.

The default (rule) is hcounter. Note that for all rules the (counter) must match. See the
“Nameref Record” section of the glossaries-extra user manual for further details.

39

3.4 Record Options

--merge-wrglossary-records

For use with the indexcounter package option (glossaries-extra v1.29+), this switch merges
an entry’s wrglossary records for the same page location. This is the default setting. (See also
save-index-counter.)

--no-merge-wrglossary-records

Don’t merge an entry’s wrglossary records. This means that you may end up with duplicate
page numbers in the entry’s location list, but they will link to different parts of the page.

--record-count (or -c)

Switch on record counting. This will ensure that when each entry is written to the .glstex
file, bib2gls will additionally set the following fields

« recordcount: set to the total number of records found for the entry;

« recordcount. (counter): set to the total number of records found for the entry for the
given counter.

These fields can then be used with the \rgls-like commands.
This option is governed by the --record-count-rule, which can be used to exclude
certain types of records from the count. The default rule is all, which includes all ignored

records.
The default behaviour of

\rgls [(options)]1{(label)} [{insert)]

is to check the recordcount field against the recordcount attribute value. This attribute can
be set with

\GlsXtrSetRecordCountAttribute{(category list) }{(value)}

where (category list) is a comma-separated list of category labels and (value) is a positive
integer. If the value of the recordcount field is greater than (value) then \rgls behaves
like \gls, otherwise it does

\rglsformat{(label)} [(insert)]

instead. If the use of \rglsformat is triggered in this way, then \rgls writes a record to the
.aux file with the format set to glstriggerrecordformat. This ensures that the record
count is correct on the next run, but the record isn’t added to the location list as bib2gls
recognises it as a special ignored record. Note that the entry will still appear in the usual
glossary unless you assign it to a different one with trigger-type.

If the recordcount attribute hasn’t been set \rgls behaves like \gls. (That is, \rgls uses
the same internal command used by \gls.) You can use \glsxtrenablerecordcount to
redefine \gls to \rgls, so that you can continue to use \gls without having to switch
command name.

For example:

40

3.4 Record Options

\GlsXtrLoadResources[
src={abbrevs},’, entries defined in abbrevs.bib
trigger-type={ignored},
category={abbreviation}
]
\glsxtrenablerecordcount
\GlsXtrSetRecordCountAttribute{abbreviation}{1}

See the glossaries-extra user manual [13] for further details.

Take care not to confuse the recordcount field with the indexed field. The indexed
field keeps a running total of the number of times an entry has been recorded so far,
and is updated every time the entry is indexed during the current EIEX run. The
recordcount field stores the total number of records obtained by bib2gls from the
.aux file.

--no-record-count

Switch off record counting. (Default.)

--record-count-unit (or -n)

Automatically implements —-record-count and additionally sets the recordcount . {counter) .
(location) fields. These fields can then be used with the \rgls-like commands. This option
is governed by --record-count-rule, to determine which records should be counted.

--no-record-count-unit
Switches off unit record counting. (Default.) Note that you need --no-record-count to

completely switch off record counting.

--record-count-rule {rule} (or -r {rule})

Automatically implements -—record-count and sets the rule that determines which records
should contribute to the count. The (rule) may be one of:

+ all or a: these keywords indicate that all records should be included in the count

(default).

» non-ignored or n: these keywords indicate that ignored records should be excluded
in the count.

« c/(regex)/: only records where the associated counter name matches the regular ex-
pression (regex) should be included in the count.

41

3.5 Bib File Options

« £/(regex)/: only records where the associated format matches the regular expression
(regex) should be included in the count.

o £/(format-regex)/c/(counter-regex)/{op): this combines the format and counter name
match. The trailing (op) is optional. If present, it should be one of the keywords: and
(boolean AND) or or (boolean OR). If omitted, and is assumed.

For example:
bib2gls --record-count-rule 'f/.*(bf|it)/c/(sub)?section/or' myDoc

This will only count records where the format matches the regular expression .*(bf|it)
(for example, hyperbf or hyperit) or the counter name matches section or subsection
(but not subsubsection, since the expressions are anchored).

This syntax doesn’t permit the use of the sequence /c/ appearing in the regular expres-
sions, but both the format and counter name are either control sequence names or are a
substring of a control sequence name, so they should typically just be alphabetical strings.

--retain-formats (list)

It’s possible that you may not want to lose certain location formats, even if it means hav-
ing duplicate locations. For example, if you want to move a principal location using save
-principal-locations={remove}. In which case, use this switch with a comma-separated
list of formats that should be retained. Note that exact duplicates will still be merged. This
switch has a cumulative effect.

Take care if you use this switch and you have an explicit range with coincident start and
end locations. If the principal record is between the start and end format markers then the
range can’t collapse to an ordinary record. (You may need to use merge-ranges={true}.)

--no-retain-formats

Normal location merging rules apply (default).

3.5 Bib File Options

--warn-non-bib-fields

If any internal fields are found in the . bib file, this setting will issue a warning as their use
can cause unexpected results. The fields checked for are those listed in Tables 4.5 and 4.6
with a few exceptions, notably type and sort. Ideally you shouldn’t need to use sort as
there should be an appropriate fallback set up to use if sort isn’t set, such as the label for
symbols or the name for terms or the short form for abbreviations.

This is the default setting and was added as some users were confused over which fields
could be used in the .bib file. The use of these fields can break bib2gls’s normal behaviour
and cause unexpected results.

42

3.6 Field Options

The check is performed before field aliasing, so it’s possible to alias a field to an internal
field, such as group, without triggering this warning. If you do this you need to make sure
you have taken appropriate precautions to avoid unexpected results.

--no-warn-non-bib-fields

Switches off the check for non-bib fields. If you use this option you need to make sure you
have taken appropriate precautions to avoid unexpected results.

--warn-unknown-entry-types

If any unknown entry types are found in the .bib file, bib2gls will issue a warning with
this option set (default).

--no-warn-unknown-entry-types

This option will suppress the warning if an unknown entry types are found in the .bib file.

3.6 Field Options

--no-expand-fields

By default, \newglossaryentry and similar commands expand field values (except for name,
symbol and description). This is useful if constructing field values programmatically (for
example in a loop) but can cause a problem if certain fragile commands are included in the
field.

The switch --no-expand-fields makes bib2gls write \glsnoexpandfields to the
.glstex file, which switches off the expansion. Since bib2gls is simply fetching the data
from .bib files, it’s unlikely that this automatic expansion is required and since it can also
be problematic this option is on by default. You can switch it off with -—expand-fields.

--expand-fields

Don’t write \glsnoexpandfields to the .glstex file, allowing fields to expand when the
entries are defined. Remember that this doesn’t include the name, symbol or description
fields, which need to have their expansion switched on with \glssetexpandfield before
the entries are defined (that is, before using \GlsXtrLoadResources).

--mfirstuc-protection (list)|all (or -u (list)|all)

If you have mfirstuc v2.08+, glossaries v4.50+ and glossaries-extra v1.49+ then this setting
shouldn’t be required any more as there’s now better sentence-case handling. If these ver-
sions are detected in the . 1og file then the default will switch to -——no-mfirstuc-protection

43

3.6 Field Options

otherwise the default is ~-mfirstuc-protection. If this causes any problems, use ~—mfirstuc
—-protection to re-enable this setting. The information below relates to older versions.
Commands like \G1s use \makefirstuc provided by the mfirstuc package. This command
has limitations and one of the things that can break it is the use of a referencing command
at the start of its argument. The glossaries-extra package has more detail about the problem
in the “Nested Links” section of the user manual [13]. If a glossary field starts with one of
these problematic commands, the recommended method (if the command can’t be replaced)
is to insert an empty group in front of it.
For example, the following definition

\newabbreviation{shtml}{shtml}{\glsps{ssi} enabled \glsps{short}{html}}

will cause a problem for \Gls{shtml} on first use. The above example would be written in
a .bib file as:

O@abbreviation{shtml,

short={shtml},

long={\glsps{ssi} enabled \glsps{html}}
}

The default mfirstuc protection will automatically insert an empty group before \glsps
{ssi} when writing the definition in the .glstex file.

The argument for this switch should either be a comma-separated list of fields or the key-
word all (which indicates all fields). bib2gls will automatically insert an empty group at
the start of the listed fields that start with a problematic command, and a warning will be
written to the transcript. Unknown fields are skipped even if they’re included in the list. An
empty argument is equivalent to —~-no-mfirstuc-protection. The default value is all.

--no-mfirstuc-protection

Switches off the mfirstuc protection mechanism described above.

--mfirstuc-math-protection

If you have mfirstuc v2.08+, glossaries v4.50+ and glossaries-extra v1.49+ then this setting
shouldn’t be required any more as there’s now better sentence-case handling. If these ver-
sions are detected in the .log file then the default will switch to ——no-mfirstuc-math
-protection. If this causes any problems, use -—-mfirstuc-math-protection to re-enable
this setting. The information below relates to older versions.

This setting works in the same way as ——-mfirstuc-protection but guards against fields
starting with inline maths ($...$). For example, if the name field starts with x and the
glossary style automatically tries to convert the first letter of the name to upper case, then
this will cause a problem.

With --mfirstuc-math-protection set, bib2gls will automatically insert an empty
group at the start of the field and write a warning in the transcript. This setting is on by
default.

44

3.6 Field Options

--no-mfirstuc-math-protection

Switches off the above.

--nested-link-check (list)|none

By default, bib2gls will parse certain fields for potential nested links. (See the section
“Nested Links” in the glossaries-extra user manual [13].)

The default set of fields to check are: name, text, plural, first, firstplural, long,
longplural, short, shortplural and symbol.

You can change this set of fields using ~-nested-1link-check (value) where (value) may
be none (don’t parse any of the fields) or a comma-separated list of fields to be checked.

--no-nested-link-check

Equivalent to —~—nested-link-check none.

--shortcuts (value)

Some entries may reference another entry within a field, using commands like \gls, so
bib2gls parses the fields for these commands to determine dependent entries to allow them
to be selected even if they haven’t been used within the document. The shortcuts package
option provided by glossaries-extra defines various synonyms, such as \ac which is equiv-
alent to \gls. By default the value of the shortcuts option will be picked up by bib2gls
when parsing the .aux file. This then allows bib2gls to additionally search for those short-
cut commands while parsing the fields.

You can override the shortcuts setting using -—shortcuts (value) (where (value) may
take any of the allowed values for the shortcuts package option), but in general there is
little need to use this switch.

-—trim-fields
Trim leading and trailing spaces from all field values. For example, if the . bib file contains:

@entry{sample,
name = {sample},
description = {

an example
}
+

This will cause spurious spaces in the description field. Using --trim-fields will auto-
matically trim the values before writing the . glstex file.

Note that even without this trimming option on, fields that are set as keys within \1long-
newglossaryentry or the optional argument of \newabbreviation will automatically have

45

3.7 Other Options

the leading and trailing spaces internally trimmed by the xkeyval package, so this trimming
action only affects fields that aren’t set in this way, such as the description, long and
short fields. If you specifically require a space at the start or end of a field then use a spac-
ing command, such as \, or \space or ~.

--trim-only-fields (list)

Only trim leading and trailing spaces from the fields identified in the comma-separated (list).
This option has a cumulative effect but is cancelled by -—no-trim-fields (which switches
off all trimming) and by --trim-fields (which switches on trimming for all fields). This
option may not be used with ——trim-except-fields.

For example, to only trim the description field:

bib2gls —--trim-only-fields description myDoc

--trim-except-fields (list)

Trim all leading and trailing spaces from fields except those identified in the comma-separated

(list). This option has a cumulative effect but is cancelled by --no-trim-fields (which

switches off all trimming) and by ——trim-fields (which switches on trimming for all fields).

This option may not be used with ——trim-only-fields. See the above note about xkeyval.
For example, to trim all fields except short and long:

bib2gls --trim-except-fields short,long myDoc
Or

bib2gls --trim-except-fields short --trim-except-fields long myDoc

--no-trim-fields

Don’t trim any leading or trailing spaces from field values (but see the above note about
xkeyval). This is the default setting.

3.7 Other Options

--force-cross-resource-refs (or -x)

Force cross-resource reference mode on (see section 1.4).

--no-force-cross-resource-refs

Don’t force cross-resource reference mode on (default). The mode will be enabled if applica-
ble (see section 1.4).

46

3.7 Other Options

--provide-glossaries

This setting will make bib2gls add the line
\provideignoredglossary*{(type)}

to the . glstex file before an entry is defined where that entry has the type field set to an
unknown glossary type (bib2gls can detect from the .aux file all glossaries that have been
defined with \newglossary but not those defined with \newignoredglossary).

This ensures that the glossary exists, but the use of \provideignoredglossary (rather
than \newignoredglossary) will prevent an error if the glossary has already been defined.

--no-provide-glossaries

This setting prevents bib2gls from providing unknown glossaries, except in a few docu-
mented situations (the master, trigger-type and secondary options). This is the default
since it’s a useful way of detecting misspelt glossary labels. It’s harder to detect the problem
if a misspelt label has caused an entry to be added to a hidden glossary.

--replace—-quotes

Single and double-quote characters (' and ") will be written as \bibglsaposchar and \bib-
glsdoublequotechar in field values and group information written to the .glstex file.

--no-replace—-quotes

Single and double-quote characters (' and ") will be written as those actual characters (de-

fault).

47

4 .bib Format

bib2gls recognises certain entry types. Any unrecognised types will be ignored and a warn-
ing will be written to the transcript file. Entries are defined in the usual .bib format:

@(entry-type){(id),
(field-name-1) = {(text)},

Zﬁeld—name-n) = {(text)}
}

where (entry-type) is the entry type (listed below), (field-name-1), ..., (field-name-n) are the
field names and (id) is a unique label. The label can’t contain any spaces or commas, and
most special characters are forbidden. The hyphen character and some other punctuation
characters are allowed by bib2gls, but you need to make sure that your document hasn’t
made them active. In general it’s best to stick with alpha-numeric labels. The field values
may be delimited by braces {(text)} or double-quotes " (text)".

The 1label-prefix option can be used to instruct bib2gls to insert prefixes to the labels
((id)) when the data is read. Remember to use these prefixes when you reference the entries
in the document, but don’t include them when you reference them in the .bib file. There
are some special prefixes that have a particular meaning to bib2gls: “dual.” and “ext(n).”
where (n) is a positive integer. In the first case, dual. references the dual element of a dual
entry (see @dualentry). This prefix will be replaced by the value of the dual-prefix option.
The ext(n). prefix is used to reference an entry from a different set of resources (loaded by
another \GlsXtrLoadResources command). This prefix is replaced by the corresponding
element of the list supplied by ext-prefixes, but this is only supported if the cross-resource
reference mode is enabled (see section 1.4).

In the event that the sort value falls back on the label, the original label supplied in the
.bib file is used, not the prefixed label.

4.1 Encoding

Avoid non-ASCII characters in the (id) if your document uses the inputenc package. (This
isn’t a problem for XgIEX or LuaKIgX, but you still need to avoid special characters.) You
can set the character encoding in the .bib file using:

% Encoding: (encoding-name)

where (encoding-name) is the name of the character encoding. For example:

48

4.2 Comments

% Encoding: UTF-8

You can also set the encoding using the charset option, but it’s simpler to include the above
comment on the first line of the .bib file. (This comment is also searched for by JabRef to
determine the encoding, so it works for both applications.) If you don’t use either method
bib2gls will have to search the entire .bib file, which is inefficient and you may end up
with a mismatched encoding.

Note that recent changes to the BIEX kernel now allow non-ASCII characters in labels
when using commands such as \1abel (with inputenc). The commands used by the glossaries
package are more complicated, but changes have been made in glossaries v4.47 and glossaries-
extra v1.46 to help support this, however it hasn’t been fully tested.

4.2 Comments

The original .bib file format as defined by BiTEX doesn’t have a designated comment char-
acter, but instead treats anything outside of @({entry){(data)} as unwanted material that’s
ignored. This can catch out users who try to do something like:

hOmisc{sample, title={Sample} }
In this case, the percent character is simply discarded and the line is treated as:
Omisc{sample, title={Sample} }

Some applications that parse .bib files are less tolerant of unwanted material. In the case
of bib2gls, the percent character is treated as a comment character and other unwanted
material should be omitted. Avoid using comments within field values. Comments are best
placed outside of entry definitions.

The most common type of comment is the encoding comment, described above. BBIEX’s
Qcomment is also supported by bib2gls for general comments, but not for the encoding.

4.3 Fields

Each entry type may have required fields, optional fields and ignored fields. These are set
using a key=value list within @(entry-type){(id), (fields)} in the .bib file. Most keys recog-
nised by \newglossaryentry may be used as a field unless bib2gls considers them an
internal field (see below). In general, you shouldn’t need to use the sort field.

If an optional field is missing and bib2gls needs to access it for some reason, bib2gls
will try to fallback on another value. The actual fallback value depends on the entry type.
The most common fallback is that used if the sort field is missing, which is typically the
case. This approach allows different entry types to have different fields used for sorting.

Predefined fields for use in .bib files are listed in Tables 4.1, 4.2, 4.3 and 4.4. If you add
any custom keys in your document using \glsaddkey or \glsaddstoragekey, those com-
mands must be placed before the first use of \G1sXtrLoadResources to ensure that bib2gls
recognises them as a valid field name.

49

4.3 Fields

Internal fields that may be assigned within the document (the BIEX assignment code hav-
ing been written by bib2gls in the .glstex file) are listed in Table 4.5. These typically
shouldn’t be used in the .bib file. Some of these fields can be set for a particular docu-
ment using a resource option, such as type or group. With ——warn-non-bib-fields set,
bib2gls will check for internal fields that can cause interference with its normal operations
and will warn if any are found in the .bib file.

There are also some fields that are set and used by glossaries or glossaries-extra listed in Ta-
ble 4.6 that aren’t recognised by bib2gls. In most cases these fields don’t have a designated
key and are only intended for internal use by bib2gls or by the glossaries or glossaries-extra
package. Note that the value of the sort field written to the . bib file doesn’t always exactly
match the sort value used by bib2gls (which is stored in bib2gls@sort). Any special char-
acters found in the sort value are always substituted before writing the .bib file to avoid
syntax errors.

Any unrecognised fields will be ignored by bib2gls. This is more convenient than using
\input or \loadglsentries, which requires all the keys used in the file to be defined,
regardless of whether or not you actually need them in the document.

Other entries can be cross-referenced using the see, seealso or alias fields or by using
commands like \gls or \glsxtrp in any of the recognised fields. These will automatically
be selected if the selection setting includes dependencies, but you may need to rebuild the
document to ensure the location lists are correct. Use of the \glssee command will create
an ignored record and the see field will be set to the relevant information. If an entry has
the see field already set, any instance of \glssee in the document for that entry will be
appended to the see field (provided you have at least v1.14 of glossaries-extra). In general,
it’s best just to use the see field and not use \glssee.

The seealso key was only added to glossaries-extra v1.16, but this field may be used with
bib2gls even if you only have version 1.14 or 1.15. If the key isn’t available, seealso={(xr-
list)} will be treated as see={ [\seealsoname] (xr-list) } (the resource option seealso won’t
have an effect). You can’t use both see and seealso for the same entry with bib2gls. Note
that the seealso field doesn’t allow for the optional [(tag)] part. If you need a different tag,
either use see or change the definition of \seealsoname or \glsxtruseseealsoformat.
Note that, unless you are using xindy, \glsxtrindexseealso just does \glssee[\see-
alsoname], and so will be treated as see rather than seealso by bib2gls. Again, it’s better
to just use the seealso field directly.

You can identify an arbitrary field as containing a list of dependent entry labels with
dependency-fields. This instructs bib2gls to parse the listed fields for dependencies in a
similar manner to the see field, but it doesn’t add any information to the cross-referencing

part of the location list. The option may be used in combination with the see or seealso
fields.

50

Field
alias

category
description

descriptionplural

first
firstplural
long

longplural
name
nonumberlist

parent
plural
see

seealso
short

shortplural
symbol
symbolplural
text

userl

user?

user3

user4

userb

user6

4.3 Fields

Table 4.1: Fields Provided by glossaries-extra

Description

The entry with this field set is a synonym of the entry whose
label is given by this field.

The entry’s category label.

The description displayed in the glossary.

The plural form of the description.

The text to display on first use with \gls{(label)}.

The text to display on first use with \glspl{(label)}.

The long form of an abbreviation. (Set internally by commands
like \newabbreviation.)

The plural long form of an abbreviation.

The name displayed in the glossary.

Used to suppress the location list for a specific entry. Its value
may only be true or false. Technically this isn’t actually a field
as its value isn’t saved so it can’t be referenced or modified after
the entry has been defined.

The parent entry’s label. See section 1.2.

The text to display on subsequent use of \glspl{(label)}.
General purpose cross-reference (syntax:

see={ [(tag)] (xr-list)}).

Cross-reference related entries (syntax: seealso={(xr-list)}).
The short form of an abbreviation. (Set internally by commands
like \newabbreviation.)

The plural short form of an abbreviation.

The associated symbol.

The plural form of the associated symbol.

The text to display on subsequent use of \gls{(label)}.

A general purpose user field.

A general purpose user field.

A general purpose user field.

A general purpose user field.

A general purpose user field.

A general purpose user field.

51

4.3 Fields

Table 4.2: Fields Provided by bib2gls

Field
adoptparents

dualdescription
duallong
duallongplural

dualprefix

dualprefixfirst

dualprefixfirstplural

dualprefixplural

dualshort

dualshortplural

Description

The list of adopted parents for entries spawned by
Oprogenitor. (Field only available for use in .bib file
within @progenitor-like entries.)

May be used to identify a dual description

The long form of a dual abbreviation mapped by
Q@dualabbreviation.

The plural long form of a dual abbreviation mapped by
O@dualabbreviation.

The dual of the prefix field. This field isn’t provided with a
key or associated command, but can be accessed as an
internal field

The dual of the prefixfirst field. This field isn’t provided
with a key or associated command, but can be accessed as
an internal field

The dual of the prefixfirstplural field. This field isn’t
provided with a key or associated command, but can be
accessed as an internal field

The dual of the prefixplural field. This field isn’t
provided with a key or associated command, but can be
accessed as an internal field

The short form of a dual abbreviation mapped by
Odualabbreviation.

The plural short form of a dual abbreviation mapped by
O@dualabbreviation.

Table 4.3: Fields Provided by glossaries—prefix

Field

prefix
prefixfirst
prefixfirstplural
prefixplural

Description

The prefix associated with the text field.

The prefix associated with the first field.

The prefix associated with the firstplural field.
The prefix associated with the plural field.

Table 4.4: Fields Provided by glossaries-accsupp

Don’t load glossaries—accsupp directly (with \usepackage) when using glossaries-extra. Load
using the accsupp package option instead.

Field
access

Description
The replacement text for the name field.

52

4.3 Fields

Fields Provided by glossaries—accsupp (Continued)

Field
descriptionaccess
descriptionpluralaccess
firstaccess
firstpluralaccess
longaccess
longpluralaccess
pluralaccess
shortaccess
shortpluralaccess
symbolaccess
symbolpluralaccess
textaccess

Description

The replacement text for the description field.
The replacement text for the descriptionplural field.
The replacement text for the first field.

The replacement text for the firstplural field.
The replacement text for the long field.

The replacement text for the longplural field.
The replacement text for the plural field.

The replacement text for the short field.

The replacement text for the shortplural field.
The replacement text for the symbol field.

The replacement text for the symbolplural field.
The replacement text for the text field.

Table 4.5: Fields Sometimes Set by bib2gls in the .glstex File

You may define and assign bibtextype as a key (although it’s more likely to be aliased).
Don’t define any of the others listed in this table, and don’t use any of them in the .bib file.
A possible exception is the type field, but it’s more flexible to set that through a resource
option. The explicit use of group within a .bib file can cause unpredictable results and is
best set through a resource option or by bib2gls. In general, you shouldn’t need to set the
sort field as appropriate fallbacks should produce useful sort values.

Field
bibtexcontributor

bibtexentry
bibtexentryQ(entry-type)
bibtextype

childcount
childlist
counter

definitionindex
dual

Description

An internal list field provided when a
@contributor entry is automatically created by
Obibtexentry.

An internal list field created by @bibtexentry.
An internal list field created by @bibtexentry.
Used by bib2gls as a substitution for BETEX's
type field when parsing @bibtexentry. Needs to
be defined or aliased to make it available in the
document.

Stores the number of children this entry has had
selected.

A list of labels (in etoolbox’s internal list format) of
the children this entry has had selected.

The default counter used for indexing (assigned by
the counter option).

Stores the definition index.

Created by dual-field if set with no value, this
field is used to store the dual label.

53

4.3 Fields

Fields Sometimes Set by bib2gls in the . glstex File (Continued)

Field
(field)endpunc

group
indexcounter
location
loclist

originalentrytype

originalid
primarylocations

progenitor
progeny
recordcount

recordcount . (counter)

recordcount . (counter) . (location)

rootancestor
secondarygroup

secondarysort
siblingcount
siblinglist

sort
type

useindex

Description

Used with the check-end-punctuation option.
The letter group determined by the comparator (or
assigned by the group option). See section 1.2.
Stores the location corresponding to the matching
wrglossary reference.

The typeset location list.

The internal list of locations.

The original entry type before any aliasing was
applied or the actual entry type if no aliasing.

The original label as given in the .bib file.

Stores the locations that use one of the designated
primary formats, if enabled.

The label identifying the @progenitor that
spawned this entry.

A comma-separated list of labels identifying the
entries spawned by @progenitor.

Used with record counting to store the total record
count.

Used with record counting to store the total
number of records for a given counter.

Used with record counting to store the total
number of records for a given location.

Stores the label of this entry’s root ancestor.

The letter group determined by the comparator
used with the secondary sort.

The sort value determined by the comparator used
with the secondary sort.

Stores the number of siblings this entry has had
selected.

A list of labels (in etoolbox’s internal list format) of
the siblings this entry has had selected.

The sort value obtained by the comparator.

The glossary this entry belongs to (assigned by the
type option). See section 1.2.

Stores the order of use index

54

4.3 Fields

Table 4.6: Internal Fields Set by glossaries or glossaries-extra or bib2gls

Don’t define any of these as keys and don’t use any of them in the .bib file.

Field
bib2gls@sort

bib2gls@sortfallback

currcount
currcount@(value)
desc
descplural
firstpl

flag

index

indexed

level

longpl
prenumberlist

prevcount

prevcount@({value)
prevunitmax
prevunittotal
shortpl
sortvalue

unitlist
useri
userii
useriii
useriv
userv
uservi

Description

Used by bib2gls to store the actual sort value.

Used by bib2gls to store the sort fallback value.

Used with entry counting to store the current total.

Used with unit entry counting (glossaries-extra).
Corresponds to description key.
Corresponds to descriptionplural key.
Corresponds to firstplural key.

Boolean that determines if an entry has been used.

The main part of the indexing code (makeindex or xindy).
The value is incremented everytime the entry is indexed.
Hierarchical level.

Corresponds to longplural key.

set by the nonumberlist entry key with
\makenoidxglossaries

Used with entry counting to store the total from the previous
run.

Used with unit entry counting (glossaries-extra).

Used with unit entry counting (glossaries-extra).

Used with unit entry counting (glossaries-extra).
Corresponds to shortplural key.

Original sort value (before sanitizing and escaping special
characters).

Used with unit entry counting (glossaries-extra).
Corresponds to user1 key.

Corresponds to user? key.

Corresponds to user3 key.

Corresponds to user4 key.

Corresponds to user5 key.

Corresponds to user6 key.

Table 4.7: Compound Set Fields

Only available for @compoundset. These correspond to the arguments of \multiglossary-

entry.

Field Description

elements Only available for @compoundset this required field should contain a
comma-separated list of labels.

55

4.3 Fields

Compound Set Fields (Continued)

Field Description

main Only available for @compoundset this optional field should contain the main
label. If omitted, the final element from the elements field is assumed.

option Only available for @compoundset this optional field should contain the
default options that govern the set (which override conflicting options set
with \multiglossaryentrysetup and can be overridden by options to
commands like \mgls).

56

4.4 Standard Entry Types

4.4 Standard Entry Types

@string

The standard @string is available and can be used to define variables that may be used in
field values. Don’t include braces or double-quote delimiters when referencing a variable.
You can use # to concatenate strings. For example:

Ostring{ssi={server-side includes}}
Ostring{html={hypertext markup language}}

O@abbreviation{shtml,
short="shtml",
long=ssi # " enabled " # html,
see={ssi,html}

}

@abbreviation{html,
short="html",
long=html

}

@abbreviation{ssi,
short="ssi",
long=ssi

}

Note the difference between ="ssi" (a field value delimited by double-quotes), the undelim-
ited =ssi (a reference to the variable), the grouped ={ssi,html} (a field value delimited by
braces) and ssi the entry label.

@preamble

The standard @preamble is available and can be used to provide command definitions used
within field values. For example:

O@preamble{"\providecommand{\mtx} [1]{\boldsymbol{#1}}"}

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values, denoted \mtx{M}}

}

Alternatively you can use \glsxtrprovidecommand which behaves the same as \provide-
command within the document but behaves like \renewcommand within bib2gls, which al-

57

4.4 Standard Entry Types

lows you to change bib2gls’s internal definition of a command without affecting the defi-
nition within the document (if it’s already been defined before the resource file is input). In
general, it’s best to just use \providecommand.

The TgX parser library used by bib2gls will parse the contents of @preamble before try-
ing to interpret the field value used as a fallback when sort is omitted (unless interpret
-preamble={false} is set in the resource options). For example:

Opreamble{"\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}[}"}

Qentry{S,
name={{}\set{S}},
text={\set{S}},
description={a set}
}
@entry{card,
name={{}\card{S}},
text={\card{S}},
description={the cardinality of \gls{S}}
}

Neither entry has the sort field, so bib2gls has to fall back on the name field and, since
this contains the special characters \ (backslash), $ (maths shift), { (begin group) and } (end
group), the TgX parser library is used to interpret it. The definitions provided by @preamble
allow bib2gls to deduce that the sort value of the S entry is just S and the sort value of
the card entry is |S| (see chapter 2).

What happens if you also need to use these commands in the document? The definitions
provided in @preamble won’t be available until the .glstex file has been created, which
means the commands won’t be defined on the first KIgX run.

There are several approaches:

1. Just define the commands in the document. This means the commands are available,
but bib2gls won’t be able to correctly interpret the name fields.

2. Define the commands in both the document and in @preamble. For example:

\newcommand{\set}[1]{\mathcal{#1}}
\newcommand{\card} [1]{|\set{#1}|}
\GlsXtrLoadResources[src={my-data}]

Alternatively:

\GlsXtrLoadResources[src={my-datal}]
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card} [1]{|\set{#1}|}

58

4.4 Standard Entry Types

If the provided definitions match those given in the .bib file, there’s no difference. If
they don’t match then in the first example the document definitions will take prece-
dence (but the interpreter will use the @preamble definitions) and in the second exam-
ple the @preamble definitions will take precedence. For example, the document may
define \card as:

\newcommand{\card} [1]{\vert\set{#1}\vert}

. Make use of \glsxtrfmt provided by glossaries-extra which allows you to store the
name of the formatting command in a field. The default is the user1 field, but this can
be changed to another field by redefining \GlsXtrFmtField.

The .bib file can now look like this:

O@preamble{"\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card} [1]{|\set{#1}|}"}

@symbol{S,
name={{}\set{S}},
text={\set{S}},
userl={set},
description={a set}

}

@symbol{cardS,
name={{}\card{S}},
text={\card{S}},
userl={card},
description={the cardinality of \gls{S}}

}

Within the document, you can format (text) using the formatting command provided
in the user1 field with:

\glsxtrfmt [(options)]{(label)}{(text)}

(which internally uses \glslink) or

\glsxtrentryfmt{(label)}{(text)}

which just applies the appropriate formatting command to (fext). Version 1.23+ of
glossaries-extra also provides a starred form of the linking command:

\glsxtrfmt* [(options)]{(label)}{(text)} [(insert)]

which inserts additional material inside the link text but outside the formatting com-
mand.

59

4.4 Standard Entry Types

If the entry given by (label) hasn’t been defined, then \glsxtrfmt just does (text)
(followed by (insert) for the starred version) and a warning is issued. (There’s no
warning if the entry is defined but the field hasn’t been set.) The (options) are as for
\glslink but \glslink will actually be using:

\glslink [{def-options), (options)]{(label)}{\(csname){(text)} (insert)}

where the default options (def-options) are given by \GlsXtrFmtDefaultOptions.
The default definition of this is just noindex which suppresses the automatic indexing
or recording action. (See the glossaries-extra manual [13] for further details.) The
(insert) part is omitted for the unstarred form.

This means that the document doesn’t need to actually provide \set or \card but can
instead use, for example,

\glsxtrfmt{S}{A}
\glsxtrentryfmt{cardS}{B}

instead of:

\set{A}
\card{B}

The first BIgX run will simply ignore the formatting and produce a warning,.

Since this is a bit cumbersome to write, you can provide shortcut commands. For
example:

\GlsXtrLoadResources[src={my-datal}]
\newcommand{\gset} [2] [1{\glsxtrfmt [#1]{SH{#2}}
\newcommand{\gcard} [2] [1{\glsxtrfmt [#1]{cardSH{#2}}

Whilst this doesn’t seem a great deal different from simply providing the definitions of
\set and \card in the document, this means you don’t have to worry about remem-
bering the names of the actual commands provided in the .bib file (just the entry
labels) and the use of \glsxtrfmt will automatically produce a hyperlink to the glos-
sary entry if the hyperref package has been loaded.

Here’s an alternative .bib that defines entries with a term, a description and a symbol:

Opreamble{"\providecommand{\setfmt}[1]{\mathcal{#1}}
\providecommand{\cardfmt} [1]{|\setfmt{#1}|}"}

Qentry{set,
name={set},
symbol={\setfmt{S}},
userl={setfmt},

60

4.4 Standard Entry Types

description={collection of values}
}
@entry{cardinality,
name={cardinality},
symbol={\cardfmt{S}},
userl={cardfmt},
description={the number of elements in the \gls{set} $\glssymbol
{set}$}
}

I've changed the entry labels and the names of the formatting commands. The definitions
in the document need to reflect the change in label but not the change in the formatting
commands:

\newcommand{\gset}[2] [I]{\glsxtrfmt [#1]{set}{#2}}
\newcommand{\gcard} [2] [J{\glsxtrfmt [#1]{cardinality}{#2}}

Here’s another approach that allows for a more complicated argument for the cardinality.
(For example, if the argument is an expression involving set unions or intersections.) The
.bib file is now:

Opreamble{"\providecommand{\setfmt} [1]{\mathcal{#1}}
\providecommand{\cardfmt} [1]{|#1|}"}

Qentry{set,
name={set},
symbol={\setfmt{S}},
useri={setfmt},
description={collection of values}

}

@entry{cardinality,
name={cardinality},
symbol={\cardfmt{\setfmt{S}}},
userl={cardfmt},
description={the number of elements in the \gls{set} $\glssymbol

{set}$}

}

This has removed the \setfmt command from the definition of \cardfmt. Now the defini-
tions in the document are:

\newcommand{\gset}[1]{\glsxtrentryfmt{set{#1}}
\newcommand{\gcard} [2] []{\glsxtrfmt [#1]{cardinality}{#2}}

This allows for code such as:

\[\gcard{\gset{A} \cap \gset{B}} \]

61

4.5 Single Entry Types

which will link back to the cardinality entry in the glossary and avoids any hyperlinking
with \gset. Alternatively to avoid links with \gcard as well:

\newcommand{\gset}[1]{\glsxtrentryfmt{set{#1}}
\newcommand{\gcard} [1]{\glsxtrentryfmt{cardinality}{#1}}

Now \gset and \gcard are simply formatting commands, but their actual definitions are
determined in the .bib file.

4.5 Single Entry Types

The entry types described in this section create a single glossary definition per entry (from
glossaries-extra’s point of view). For example:

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values}

}
is analogous to:

\newglossaryentry{matrix}’ label

{)% fields
name={matrix},
plural={matrices},
description={rectangular array of values}

}

The secondary option allows the creation of a fake glossary with the entry labels in its
internal list in a different order. This means that the same data can be displayed in two
separate lists without duplicating the resources required by each glossary entry.

Section 4.6 describes bib2gls entry types that create two separate (but related) glossaries-
extra definitions per .bib entry.

Q@entry

Regular terms are defined by the Gentry field. This requires the description field and
either name or parent. For example:

@preamble{"\providecommand{\mtx} [1]{\boldsymbol{#1}}"}

Q@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values, denoted \gls{M}},

62

4.5 Single Entry Types

seealso={vector}

3

Qentry{M,
name={\ensuremath{M}},
description={a \gls{matrix}}

}

@entry{vector,
name = "vector",
description = {column or row of values, denoted \gls{v}},
seealso={matrix}

by

Qentry{v,
name={\ensuremath{\vec{v}}},
description={a \gls{vector}}

}

If the sort field is missing the default is obtained from the name field (unless overridden
by options like entry-sort-fallback). For hierarchical entries, if the name field is omitted
it will be obtained from the parent’s name.

Terms defined using @entry will be written to the output (.glstex) file using the com-
mand \bibglsnewentry.

@symbol

The @symbol entry type is much like @entry, but it’s designed specifically for symbols, so
in the previous example, the M and v terms would be better defined using the @symbol entry
type instead. For example:

@symbol{M,
name={\ensuremath{M}},
description={a \gls{matrix}}

}

The required fields are name or parent. The description field is required if the name
field is missing. If the sort field is omitted, the default sort is given by the entry label
(unless overridden by options like symbol-sort-fallback). Note that this is different from
@entry where the sort defaults to name if omitted.

Terms that are defined using @symbol will be written to the output file using the command
\bibglsnewsymbol.

63

4.5 Single Entry Types

@number

The @number entry type is like @symbol, but it’s for numbers. The numbers don’t have to be
explicit digits and may have a symbolic representation. There’s no real difference between
the behaviour of @number and @symbol except that terms defined using @number will be
written to the output file using the command \bibglsnewnumber.

For example, the file constants.bib might define mathematical constants like this:

Onumber{pi,
name={\ensuremath{\pil}},
description={the ratio of the length of the circumference
of a circle to its diameter},
user1={3.14159}

@numberqe,
name={\ensuremath{e}},
description={base of natural logarithms},
user1={2.71828}

}

This stores the approximate value in the user1 field. This can be used to sort the entries in
numerical order according to the values rather than the symbols:

\GlsXtrLoadResources[
src={constants},’ constants.bib
category={number},’ set the category for all selected entries
sort={double},’ numerical double-precision sort
sort-field={user1}), sort according to 'userl' field

]

The category={number} option makes it easy to adjust the glossary format to include the
userl field:

\glsdefpostdesc{number}{’
\ifglshasfield{useri}{\glscurrententrylabel}
{ (approximate value: \glscurrentfieldvalue)}’
{37

}

Q@index

The @index entry type is designed for entries that don’t have a description. Only the label
is required. If name is omitted, it’s assumed to be the same as the label, even if parent is
present. (Note this is different to the fallback behaviour of @entry, which fetches the name
from the parent entry.) If the name contains any characters that can’t be used in the label,

64

4.5 Single Entry Types

you must use the name field. If the sort field is missing the default is obtained from the
name. Note that the @index entry type is not governed by entry-sort-fallback (but it is
governed by custom-sort-fallbacks). This allows @index and @entry to have different
fallbacks if the sort field is missing.

Example:

@index{duck}
@index{goose,plural={geesel}}
O@index{sealion,name={sea lion}}
O@index{facade,name={fa\c{c}ade}}

Terms that are defined using @index will be written to the output file using the command
\bibglsnewindex.

Q@indexplural

The @indexplural entry type is similar to the @index entry type except that the name field,
if missing, is obtained from the plural field. If the plural field is missing it’s obtained from
the text field with the plural suffix appended. If the text field is missing, it’s obtained from
the original entry label. If the sort field is missing the default is obtained from the name
field. (As with @index, @indexplural is not governed by entry-sort-fallback, but it is
governed by custom-sort-fallbacks.) All fields are optional. For example:

@indexplural{goose,
plural = {geese}
}

@indexplural{duck}

@indexplural{chateau,
text = {ch\ ateau},
plural = {ch\ ateaux}

}

This is equivalent to:

@indexplural{goose,
name = {geesel},
text = {goosel},
plural = {geese}

}

@indexplural{duck,
name = {ducks},
text = {duck},
plural = {ducks}

65

4.5 Single Entry Types

@indexplural{chateau,
name = {ch\ ateaux’},
text = ch\ ateau,
plural = ch\ ateaux

}

Terms that are defined using @indexplural will be written to the output file using the
command \bibglsnewindexplural.

@abbreviation

The Gabbreviation entry type is designed for abbreviations. The required fields are short
and long. If the sort key is missing, bib2gls will use the field given by abbreviation
-sort-fallback, which defaults to the short field. (If you want an equivalent of \new-
dualentry, use @dualabbreviationentry instead.)

If you use sort-field={name} (rather than the default sort-field={sort}), then the
fallback for the name field is always the short field, regardless of the abbreviation-sort
-fallback setting, unless you use abbreviation-name-fallback to change the fallback
for the name field.

Note that you must set the abbreviation style before loading the resource file to ensure
that the abbreviations are defined correctly, however bib2gls has no knowledge of the ab-
breviation style so it doesn’t know if the description field must be included or if the default
sort value isn’t simply the value of the short field.

You can instruct bib2gls to sort by the long field instead using abbreviation-sort
-fallback={long}. Youcanalso tell bib2gls to ignore certain fields using ignore-fields,
so you can include a description field in the .bib file if you sometimes need it, and then
instruct bib2gls to ignore it when you don’t want it.

For example:

@abbreviation{html,
short = {html},
long = {hypertext markup languagel,
description = {a markup language for creating web pages}

3

If you want the long-noshort-desc style, then you can put the following in your document
(where the .Dbib file is called entries-abbrv.bib):

\setabbreviationstyle{long-noshort-desc}
\GlsXtrLoadResources[src={entries-abbrv},
abbreviation-sort-fallback={long}]

Whereas, if you want the long-short-sc style, then you can instead do:

66

4.5 Single Entry Types

\setabbreviationstyle{long-short-sc}
\GlsXtrLoadResources[src={entries-abbrv},ignore-fields={description}]

or to convert the short value to upper case and use the long-short-sm style instead:

\setabbreviationstyle{long-short-sm}
\GlsXtrLoadResources[src={entries-abbrv},
short-case-change={uc},’ convert short value to upper case
ignore-fields={description}]

Case-changing can be applied with short-case-change to convert the case of the short
field, as illustrated above. If you use a style that obtains the description from the long
form, but you want to apply a case-change to the description field with description
-case-change, then you can copy the long field to the description with replicate
-fields={long=description}.

For example, if entries-abbrv.bib contains:

@abbreviation{html,
short = {html},
long = {hypertext markup language}

}
then the document may include:

\setabbreviationstyle{long-short-sc}

\GlsXtrLoadResources[src={entries-abbrv},
description-case-change={firstuc},
replicate-fields={long=description}]

Note that this can cause a problem for styles that set the description field to the long
form encapsulated by a style command (such as with the long-em-short-em style) as this
will override the style setting.

Similarly, if you want to change the case of the name field:

\setabbreviationstyle{long-short-sc}

\GlsXtrLoadResources [src={entries-abbrv},
description-case-change={firstuc},
name-case-change={uc},
replicate-fields={long=description,short=namel}]

Again, this will lose any custom formatting command that would usually be applied by the
abbreviation style to the name field (and description, if applicable).

Terms defined using @abbreviation will be written to the output file using the command
\bibglsnewabbreviation.

Qacronym

The @acronym entry type is like @abbreviation except that the term is written to the output
file using the command \bibglsnewacronym.

67

4.6 Dual Entry Types

Qcontributor

The Gcontributor entry type is primarily provided for use by the @bibtexentry type. You
may use it explicitly if you want, but you need to take care that it doesn’t clash with @bib-
texentry. It behaves much like @index except that the term is written to the .glstex
file using the command \bibglsnewcontributor. There are no required fields. As with
@index, if the name field is missing, the fallback value is the entry’s label. When this entry
type is automatically created by @bibtexentry, the name is set to

\bibglscontributor{(forenames)}{(von)}{(surname)}{(suffix)}

If you do explicitly use @contributor you need to make sure it’s defined before the first
instance of @bibtexentry that tries to access it, but within the same resource set. If you
ensure that the label of @contributor matches the contributor label generated by @bibtex-
entry then they can have their dependency lists updated, and the bibtexentry and bib-
texentry@(entry-type) internal fields can be set for the @contributor entry. For example:

Ocontributor{KnuthDonaldE,
name={\bibglscontributor{Donald E.}{}{Knuth}{}},
description={Famous mathematician and computer scientist who
created \TeX}

@book{texbook,
title = {The \TeX book},
author = {Donald E. Knuth},
publisher = {Addison-Wesley},
year = 1986

}

The resource options then need to include:

entry-type-aliases={\GlsXtrBibTeXEntryAliases},
labelify-replace={

{[\string\-\string\.]}{}

}

If the @contributor entry is deferred until after the corresponding @bibtexentry then
you will end up with a label clash.

4.6 Dual Entry Types

The entry types described in this section create two separate (but related) glossaries-extra
entry definitions per .bib entry. The first of these entries is considered the primary entry,
and the second is the dual entry. The naming scheme is @dual(entry-type) where both the
primary and dual are considered to have the same type of entry (such as @dualsymbol where

638

4.6 Dual Entry Types

both the primary and dual are functionally like @symbol) or @dual(primary){dual) where
the primary is functionally like @({primary) and the dual is functionally like @(dual).

If you need a field to store the dual description in (and you’re not simply swapping known
fields around), then you can use the special dualdescription field and add it to your map.

If the fields provided by the glossaries—prefix are defined, there will be additional map-
pings for the special internal fields dualprefix, dualprefixfirst, dualprefixplural,
and dualprefixfirstplural.

For example:

@dualabbreviationentry{svm,
short = {SVM},
long = {support vector machine},
description = {statistical pattern recognition technique}

}
is like:
@abbreviation{svm,
short = {SVM},
long = {support vector machine},
}
@entry{dual.svm,
text = {SVM},
name = {support vector machine},
description = {statistical pattern recognition technique}
}

and is analogous to:

\newabbreviation{svm}{SVM}{support vector machine}
\newglossaryentry{dual.svm}{name={support vector machine}, text={SVM},
description={statistical pattern recognition techniquel}}

but both entries are considered dependent on each other. This means that if you only ref-
erence the primary entry (using \gls etc) then the dual entry will still be selected if the
selection setting includes dependencies.

The creation of the dual entry involves mapping or copying fields from the primary entry.
Each dual entry type has a set of mappings. If a field in the set of mappings is missing, its
fallback value is used. Any fields that aren’t listed in the mappings are simply copied, except
for the alias field, which will never be copied to the dual entry, nor can it be mapped. The
alias will only apply to the primary entry. The dual entry is given the label (prefix) (id) where
(prefix) is set by the dual-prefix option and (id) is the label supplied in the .bib file.

If dual-sort={combine} then the dual entries will be sorted along with the primary
entries, otherwise the dual-sort indicates how to sort the dual entries and the dual entries
will be appended to the end of the .glstex file. The dual-sort-field determines what
field to use for the sort value if the dual entries should be sorted separately.

69

4.6 Dual Entry Types

Take care if you have a mixture of entry types (such as @dualindexentry, @dualindex-
symbol and @index) and you’re not using the default dual-sort={combine}. Remember
that the primary entries are all sorted together along with the single entries types described in
section 4.6 (but they may be assigned to different glossary types), and then the dual entries
are sorted together (but may be assigned to different glossary types). This may result in
an odd ordering if some of the primaries and some of the duals are assigned to the same
glossary. For example, don’t mix @dualindexabbreviation (duals are abbreviations) with
@dualabbreviationentry (primaries are abbreviations) when you aren’t using dual-sort
={combine} (unless you have two different glossaries for the primary vs dual abbreviations).

Remember that bib2gls is designed to take advantage of \printunsrtglossary, which
simply iterates over all defined entries in the order in which they were defined (or, more
precisely, the order of the internal list of entry labels associated with that glossary). The aim
of bib2gls is to write the entry definitions to the .glstex file so that the internal list of
labels is in the appropriate order.

For example, suppose the file entries.bib contains:

@index{aardvark}

@index{mouse}

@index{zebra}

O@dualindexabbreviation{xml,
short={XML},

long={extensible markup language}

}

@dualabbreviationentry{ssi,
short={SSI},
long={server-side includes},
description={directives placed in \gls{html} pages

evaluated by the server}

}

@dualindexabbreviation{html,
short={HTML},

long={hypertext markup language}

}

@dualabbreviationentry{css,
short={CSS},

long={cascading stylesheets},
description={a language that describes the style of an
\gls{html} document}

}

This contains a mixture of entry types, including @dualindexabbreviation (where the dual
is the abbreviation) and @dualabbreviationentry (where the primary is the abbreviation).
Now consider the following document:

\documentclass{article}

70

4.6 Dual Entry Types

\usepackage [record,abbreviations]{glossaries-extra}
\GlsXtrLoadResources[selection={all},src={entries}]

\begin{document}
\printunsrtglossaries
\end{document}

This uses the default sort={combine}, so all the entries are sorted together, resulting in the
order: aardvark, dual.css, css, html, dual.html, mouse, dual.ssi, ssi, xml, dual.xml,
zebra.

The BIEX code written to the . glstex file is essentially (but not exactly):

% from @index{aardvark}:
\newglossaryentry{aardvark}{name={aardvark},description={}}

% dual of @dualabbreviationentry{css,..}:

\newglossaryentry{dual.css}{name={cascading stylesheets},{text}={CSS},
description={a language that describes the style of an
\glextrshort{html} document}}

% primary of @dualabbreviationentry{css,..}:
\newabbreviation{css}{CSS}{cascading stylesheets}

% primary of @dualindexabbreviation{html,..}:
\newglossaryentry{html}{name={HTML},description={}}

% dual of @dualindexabbreviation{html,..}:
\newabbreviation{dual.html}{HTML}{hypertext markup language}

% from @index{mousel}:
\newglossaryentry{mouse}{name}={mouse},description={}

/o dual of @dualabbreviationentry{ssi,..}:
\newglossaryentry{dual.ssi}{name={server-side includes},text={SSI},
description={directives placed in \glsxtrshort{html} pages
evaluated by the server}}

J» primary of @dualabbreviationentry{ssi,..}:
\newabbreviation{ssi}{SSI}{server-side includes}

% primary of @dualindexabbreviation{xzml,..}:
\newglossaryentry{xml}{name={XML},description={}}

71

4.6 Dual Entry Types

% dual of @dualindexabbreviation{xml,..}:
\newabbreviation{dual.xml}{XML}{extensible markup language}

% from @index{zebral:
\newglossaryentry{zebra}{name={zebra},description={}}

Since the document uses the abbreviations package option, \newabbreviation automat-
ically assigns the abbreviation to the abbreviations glossary (created through that package
option). This means that the main (default) glossary contains the entries (in order):

« aardvark (name: aardvark),
 dual.css (name: cascading stylesheets),
« html (name: HTML),
« mouse (name: mouse),
. dual.ssi (name: server-side includes),
« xml (name: XML),
« zebra (name: zebra).
The abbreviations glossary contains:
« css (short: CSS),
e dual.html (short: HTML),
« ssi (short: SSI),

« dual.xml (short: XML).

Since all the entries were combined and sorted together, the resulting glossaries are both
ordered alphabetically (using short for the abbreviations and name for the rest), but note
that you need to take care when referencing the abbreviations if you want to make use of
the abbreviation style. You need \gls{css} and \gls{ssi} for the primary abbreviations
created with @dualabbreviationentry and \gls{dual.html} and \gls{dual.xml} for
the dual abbreviations created with @dualindexabbreviation. Also the name of the pri-
mary/dual alternative of the abbreviations is also inconsistent (short form for html and xml
and long form for dual.css and dual.ssi), as different field mappings are used.

If the document is changed so that the dual entries are now sorted and written after all the
primary entries have been dealt with:

\GlsXtrLoadResources[
src={entries},
dual-sort={letter-nocase},
selection={all}

]

72

4.6 Dual Entry Types

then bib2gls first orders the primaries:

aardvark (name: aardvark),
« css (short: CSS),
« html (name: HTML),
« mouse (name: mouse),
« ssi (short: SSI),
« xml (name: XML),
« zebra (name: zebra)
and writes them to the . glstex file (functionally like):

% from @index{aardvark}:
\newglossaryentry{aardvark}{name={aardvark},description={}}

% primary of @dualabbreviationentry{css,..}:
\newabbreviation{css}{CSS}{cascading stylesheets}

% primary of @dualindexabbreviation{html,..}:
\newglossaryentry{html}{name={HTML},description={}}

% from Q@index{mousel:
\newglossaryentry{mouse}{name={mouse},description={3}}

% primary of @dualabbreviationentry{ssi,..}:
\newabbreviation{ssi}{SSI}{server-side includes}

% primary of @dualindexabbreviation{xzml,..}:
\newglossaryentry{xml}{name={XML},description={}}

% from Q@index{zebral:
\newglossaryentry{zebrat{name={zebra},description={}}

Then bib2gls orders the duals:
 dual.css (name: cascading stylesheets),
e dual.html (short: HTML),
« dual.ssi (name: server-side includes),

« dual.xml (short: XML)

73

4.6 Dual Entry Types

and writes them to the .glstex file (functionally like):

% dual of @dualabbreviationentry{css,..}:

\newglossaryentry{dual.css}{name={cascading stylesheetsl},text={CSS},
description={a language that describes the style of an
\glsxtrshort{html} document}}

% dual of @dualindexabbreviation{html,..}:
\newabbreviation{dual.html}{HTML}{hypertext markup language}

% dual of @dualabbreviationentry{ssi,..}:
\newglossaryentry{dual.ssi}{name={server-side includes},text={SSI},
description={directives placed in \glsxtrshort{html} pages
evaluated by the server}}

% dual of @dualindexabbreviation{xml,..}:
\newabbreviation{dual.xml}{XML}{extensible markup language}

When the .glstex file is input (during the next EIgX run) the entries are defined in the
order:

1. aardvark (type: main),

2. css (type: abbreviations),

3. html (type: main),

4. mouse (type: main),

5. ssi (type: abbreviations),

6. xml (type: main),

7. zebra (type: main),

8. dual.css (type: main),

9. dual.html (type: abbreviations),
10. dual.ssi (type: main),
11. dual.xml (type: abbreviations).

This means that the main glossary’s internal list is in the order:
« aardvark (aardvark),
« html (HTML),

« mouse (mouse),

74

4.6 Dual Entry Types

xml (XML),

zebra (zebra),
« dual.css (cascading stylesheets),
 dual.ssi (server-side includes)
and the abbreviations glossary’s internal list is in the order:
« css (CSS),
« ssi (SSI),
« dual.html (HTML),
e dual.xml (XML).

The lists are no longer in alphabetical order as they have a mixture of primary and dual
entries that were separated before sorting.

The above is a fairly contrived example as it wouldn’t make sense in a real document to
have glossary terms (that include a description) mixed with index terms (that don’t include
a description). A better solution would be to use @tertiaryindexabbreviationentry in-
stead of @dualabbreviationentry.

@dualentry

The @dualentry entry type is similar to @entry but actually defines two entries. The dual
entry contains the same information as the primary entry but some of the fields are swapped
around. The default mappings are:

+ name — description
» plural — descriptionplural
+ description — name
» descriptionplural — plural
If the prefix fields are defined, then the default mappings additionally include:
» prefix — dualprefix
o prefixplural — dualprefixplural
o prefixfirst — dualprefixfirst
o prefixfirstplural — dualprefixfirstplural

» dualprefix — prefix

75

4.6 Dual Entry Types

e dualprefixplural — prefixplural
» dualprefixfirst — prefixfirst
o dualprefixfirstplural — prefixfirstplural

The required fields are as for @entry.
For example:

@dualentry{child,
name={child},
plural={children},
description={enfant}

}
is like:

@entry{child,
name={child},
plural={children},
description={enfant}
descriptionplural={enfants}

¥

@entry{dual.child,
description={child},
descriptionplural={children},
name={enfant}
plural={enfants}

}

where dual. is replaced by the value of the dual-prefix option. However, instead of defin-
ing the entries with \bibglsnewentry both the primary and dual entries are defined using
\bibglsnewdualentry. The category and type fields can be set for the dual entry using
the dual-category and dual-type options.

For example:

\newglossary*{english}{English}
\newglossary*{french}{French}

\GlsXtrLoadResources|[

src={entries-duall},% data in entries-dual.bib

type={english},’ put primary entries in glossary 'english'
dual-type={french},’ put dual entries in glossary 'french'
category={dictionary},’% set the primary category to 'dictionary'
dual-category={dictionary},’, set the dual category to 'dictionary'

76

4.6 Dual Entry Types

sort={en},’, sort primary entries according to language 'en'
dual-sort={fr}’% sort dual entries according to language 'fr'

]

If you need to keep the same name but have different descriptions then you can use dual-
description and set up a mapping to use it. For example:

@dualentry{sample,
name={sample},
description={primary sample description},
dualdescription={dual sample description}

}
The mapping can then be:
dual-entry-map={{description},

{dualdescription}}

@dualindexentry

There are no required fields. The primary entry behaves like @index and the dual entry
behaves like @entry. The default field mapping is:

+ name —> name
If the prefix fields are defined, then the default mappings additionally include:
» prefix — dualprefix
» prefixplural — dualprefixplural
o prefixfirst — dualprefixfirst
o prefixfirstplural — dualprefixfirstplural
e dualprefix — prefix
e dualprefixplural — prefixplural
o dualprefixfirst — prefixfirst
o dualprefixfirstplural — prefixfirstplural

This doesn’t actually perform any swapping of fields, but it provides the field used for back-
links (if dual-indexentry-backlink is set). The reason that the primary (rather than the
dual) is like @index is to allow the primaries to merge with any @index entries found in the
resource set, since glossary entries with descriptions are likely to be a subset of all indexed
entries.

If no name is given, the dual entry is assigned the (unprefixed) entry label. For example:

77

4.6 Dual Entry Types

@dualindexentry{array,
description={ordered list of values}

}
This is effectively like:

@index{array’}

@entry{dual.array,
name={array},
description={ordered list of values}

3

The primary entries are defined using \bibglsnewdualindexentry, which by default sets
the category to index (although this may be overridden, for example, by the category
option). The dual entries are defined with \bibglsnewdualindexentrysecondary.

This is the most convenient way of having an entry that’s also automatically indexed. For
example, suppose the file terms.bib contains:

O@index{duck}
Q@index{zebra}
O@index{aardvark}

and suppose the file entries.bib contains:

@dualindexentry{array,
description={ordered list of values}

}

@dualindexentry{vector,
name={vector},
description={column or row of values}

by

@dualindexentry{set,
description={collection of values}

by

@dualindexentry{matrix,
plural={matrices},
description={rectangular array of values}

}
These entries can be used in an example document that has an index and a glossary:

\documentclass{article}

78

4.6 Dual Entry Types

\usepackage [colorlinks]{hyperref}
\usepackage [record, index,stylemods={mcols}]{glossaries-extra}

\GlsXtrLoadResources[
src={terms,entries},
type={index},
label-prefix={idx.},
dual-prefix={gls.},
combine-dual-locations={primary},
dual-type={main}

\begin{document}
\gls{gls.array}, \gls{gls.vector}, \gls{gls.set}, \gls{gls.matrix}.

\gls{idx.duck}, \gls{idx.aardvark}, \gls{idx.zebra}.

\renewcommand{\glstreenamefmt} [1]{\textsc{#1}}
\printunsrtglossary[type={main}, style={index},nogroupskip]

\renewcommand{\glstreenamefmt} [1]{#1}
\renewcommand{\glstreegroupheaderfmt} [1]{\textbf{#1}}
\printunsrtglossary[type={index},style={mcolindexgroupl}]
\end{document}

This uses combine-dual-locations to combine the locations for the primary and dual en-
tries so that they only appear in the index.

To avoid the inconvenience of remembering which prefix to use, you can set up the prefixes
with \glsxtraddlabelprefix and reference entries with \dgls, \dG1ls etc instead of \gls,
\GL1s etc.

@dualindexabbreviation

The @dualindexabbreviation entry type is similar to @dualindexentry and again, by
default, the field mapping is:

e name —» name
If the prefix fields are defined, then the default mappings additionally include:

» prefix — dualprefix
» prefixplural — dualprefixplural
o prefixfirst — dualprefixfirst

o prefixfirstplural — dualprefixfirstplural

79

4.6 Dual Entry Types

dualprefix — prefix

» dualprefixplural — prefixplural

o dualprefixfirst — prefixfirst

e dualprefixfirstplural — prefixfirstplural

However in this case the required fields are short and long. The name for the primary entry
defaults to short if omitted. (This may be changed with the abbreviation-name-fallback
option.) The fallback for the sort field is given by abbreviation-sort-fallback, which
defaults to the short field.

For example:

O@dualindexabbreviation{html,
short = {HTML},
long = {hypertext markup language’}

}
is like:

Oindex{html,name={HTML}}

@abbreviation{dual.html,
short = {HTML},
long = {hypertext markup language}

3

The primary term is defined using \bibglsnewdualindexabbreviation, which encapsu-
lates the name to match the font used by the dual abbreviation. The encapsulation command
depends on the abbreviation-name-fallback value. If it’s the short field then \bibgls-
useabbrvfont is used, otherwise \bibglsuselongfont is used.

The primary definition also by default sets the category to index (although this again
may be overridden). The dual term is defined using \bibglsnewdualindexabbreviation-
secondary.

@dualindexsymbol

The @dualindexsymbol entry type is similar to @dualindexentry, but by default the field
mappings are:

« symbol — name
+ name — symbol
+ symbolplural — plural

+ plural — symbolplural

80

4.6 Dual Entry Types

If the prefix fields are defined, then the default mappings additionally include:

e prefix — dualprefix

« prefixplural — dualprefixplural

o prefixfirst — dualprefixfirst

o prefixfirstplural — dualprefixfirstplural
e dualprefix — prefix

e dualprefixplural — prefixplural

o dualprefixfirst — prefixfirst

» dualprefixfirstplural — prefixfirstplural

The required field is: symbol. If the name field is omitted, the dual entry is assigned a sym-
bol from the original (unprefixed) label. The primary entries are defined using \bibglsnew-
dualindexsymbol, which by default sets the category to index, and the dual entries are de-
fined using \bibglsnewdualindexsymbolsecondary, which by default sets the category
to symbol. For example:

@dualindexsymbol{pi,
symbol={\ensuremath{\pi}},
description={ratio of a circle's circumference to its diameter}

}
is like:

Q@index{pi,symbol={\ensuremath{\pi}}}

O@symbol{dual.pi,
name={\ensuremath{\pi}},
symbol={pi},
description={ratio of a circle's circumference to its diameter}

}
For example, suppose I have a file called symbols.bib that contains:

@dualindexsymbol{pi,
symbol={\ensuremath{\pi}},
description={ratio of a circle's circumference to its diameter}

}

@dualindexsymbol{e,
name={Euler's number},
symbol={\ensuremath{e}},
description={base of the natural logarithm}

}

81

4.6 Dual Entry Types

Then the previous example document can be modified to have an index, a glossary and a list
of symbols:

\documentclass{report}

\usepackage [colorlinks] {hyperref}
\usepackage [record, symbols, index,stylemods={mcols}]{glossaries-extra}

\newcommand{\bibglsnewdualindexsymbolsecondary} [5]{7%
\longnewglossaryentry*{#1}{name={#3}, category=symbol,
symbol={#4},#2,type={symbols}}{#5}’
}

\newcommand{\indexprimary}[1]{\glsadd[format={hyperbf}]{idx.#1}}

\glsdefpostdesc{symbol}{\indexprimary{\glscurrententrylabel}}
\glsdefpostdesc{general}{\indexprimary{\glscurrententrylabel}}

\GlsXtrLoadResources[
src={entries,terms,symbols},
type={index},
set-widest,
label-prefix={idx.},
dual-prefix={},
combine-dual-locations={primary},
dual-sort={letter-case},
dual-type={main}

]

\glsxtrnewglslike [hyper={false}]{idx.H{\idx}}H{\idxpl}{\Idx}{\Idxpl}
\begin{document}

\gls{array}, \gls{vector}, \gls{set}, \glspl{matrix}.

\idx{duck}, \idx{aardvark}, \idx{zebra}.

\gls{e} and \gls{pi}.

\newpage
\gls{array}, \idx{vector}, \idx{setl}, \gls{matrix}.

\newpage
\gls{array}, \gls{vector}, \gls{set}, \gls{matrix}.

\renewcommand{\glstreenamefmt}[1]{\textsc{#1}}
\printunsrtglossary[type={main},nogroupskip,style={alttree}]

82

4.6 Dual Entry Types

\renewcommand{\glstreenamefmt} [1]{#1}
\printunsrtglossary[type={symbols},nogroupskip,style={index}]

\renewcommand{\glstreenamefmt} [1]{#1}
\renewcommand{\glstreegroupheaderfmt} [1]{\textbf{#1}}
\printunsrtglossary[type={index}, style={mcolindexgroup}]

\end{document}

Here I’'ve provided some convenient commands for referencing the primary (index) terms
(\idx, \idxpl, \Idx and \Idxpl). This means I don’t need to worry about the label prefix
and it also switches off the hyperlinks (with hyper={false}). These custom commands are
defined using:

\glsxtrnewglslike [(options)]{(prefix)}{(gls-like cs)}{(glspl-like cs)}{(Gls-like
cs) H (Glspl-like cs)}

which, in this case, essentially does:

\newcommand{\idx}[2] [J{\gls [hyper={false},#1]{idx.#2}}
\newcommand{\Idx} [2] [1{\Gls [hyper={false},#1]{idx.#2}}
\newcommand{\idxpl}[2] [J{\glspl [hyper={false},#1]{idx.#2}}
\newcommand{\Idxpl}[2] [J{\Glspl [hyper={false},#1]{idx.#2}}

but the new commands will also recognise the \gls modifiers, so \idx+ will behave like
\gls+ which wouldn’t be possible if \idx was defined using \newcommand in the above
manner. There’s a similar command:

\glsxtrnewgls [(options)]{(prefix)}{{cs)}

if no case-changing versions are required.

I've also redefined \bibglsnewdualindexsymbolsecondary to put the dual entries cre-
ated with @dualindexsymbol into the symbols glossary (which is created with the symbols
package option), so it overrides the dual-type={main} setting.

This command also sets the category to symbol, so I can redefine the post-description
hook for symbols (\glsxtrpostdescsymbol) to automatically index the symbol definition.
Similarly for the general post-description hook \glsxtrpostdescgeneral.

Since the post-description hook isn’t done until the glossary has been created, this requires
a slightly longer build process. If the document file is called myDoc . tex, then the complete
document build is:

pdflatex myDoc
bib2gls —-g myDoc
pdflatex myDoc
bib2gls -g myDoc
pdflatex myDoc

83

4.6 Dual Entry Types

As from glossaries—extra-bib2gls version 1.37, an alternative method is to identify possi-
ble label prefixes with \glsxtraddlabelprefix or \glsxtrprependlabelprefix and use
\dgls, \dglspl, \dGls or \dGlspl. See the glossaries-extra user manual [13] for further
details.

@dualindexnumber

The @dualindexnumber entry type is almost identical to @dualindexsymbol, but the pri-
mary entries are defined using \bibglsnewdualindexnumber, which by default sets the
category to index, and the dual entries are defined using \bibglsnewdualindexnumber-
secondary, which by default sets the category to number.

Q@dualabbreviationentry

The @dualabbreviationentry entry type is similar to @dualentry, but by default the field
mappings are:

+ long +— name
+ longplural — plural
o short — text
If the prefix fields are defined, then the default mappings additionally include:
e prefix — dualprefix
o prefixplural — dualprefixplural
o prefixfirst — dualprefixfirst
o prefixfirstplural — dualprefixfirstplural
e dualprefix — prefix

» dualprefixplural — prefixplural

dualprefixfirst — prefixfirst
e dualprefixfirstplural — prefixfirstplural

You may need to add a mapping from shortplural to plural if the default is inappropriate.
(In bib2gls version 1.0 this entry type was originally called @dualentryabbreviation. In
version 1.1, it was renamed @dualabbreviationentry which makes for a more consistent
naming scheme @dual(primary)(dual).)

The required fields are: short, long and description. This entry type is designed to
emulate the example \newdualentry command given in the glossaries user manual [14].
The primary entry is an abbreviation with the given short and long fields (but not the

84

4.6 Dual Entry Types

description) and the secondary entry is a regular entry with the name copied from the
long field. The fallback for the sort is given by abbreviation-sort-fallback, which
defaults to the short field.

For example:

@dualabbreviationentry{svm,
long = {support vector machine},
short = {SVM},
description = {statistical pattern recognition technique}

+
is rather like doing:

O@abbreviation{svm,
long = {support vector machine},
short = {SVM}

@entry{dual.svm,
name = {support vector machine},
description = {statistical pattern recognition technique}

3

but dual . svm will automatically be selected if svm is indexed in the document. If dual. svm
isn’t explicitly indexed, it won’t have a location list.

Ifthe sort field is missing bib2g1ls by default falls back on the name field. If this is missing,
this sort value will fallback on the short field. This means that if name isn’t explicitly given
in @dualabbreviationentry, then the primary entry will be sorted according to short but
the dual will be sorted according its name (which has been copied from the primary long).

Entries provided using @dualabbreviationentry will be defined with:

\bibglsnewdualabbreviationentry
(which uses \newabbreviation) for the primary entries and with :
\bibglsnewdualabbreviationentrysecondary

(which uses \longnewglossaryentry) for the secondary entries. This means that if the
abbreviations package option is used, the primary entry will be put in the abbreviations
glossary and the secondary entry in the main glossaryUse the type and dual-type options
to override this.

@dualentryabbreviation

This entry type is deprecated as from bib2gls version 1.1. It’s functionally equivalent to
@dualabbreviationentry but its name doesn’t fit the general dual entry naming scheme.

85

4.6 Dual Entry Types

Q@dualsymbol

This is like @dualentry but the default mappings are:
+ name — symbol
+ plural — symbolplural
+ symbol — name
« symbolplural — plural
If the prefix fields are defined, then the default mappings additionally include:
e prefix — dualprefix

» prefixplural — dualprefixplural

prefixfirst — dualprefixfirst

prefixfirstplural — dualprefixfirstplural

e dualprefix — prefix

dualprefixplural — prefixplural

dualprefixfirst — prefixfirst
o dualprefixfirstplural — prefixfirstplural
The name and symbol fields are required. For example:

@dualsymbol{pi,
name={pi},
symbol={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter}

Entries are defined using \bibglsnewdualsymbol, which by default sets the category
to symbol.

@dualnumber

This is almost identical to @dualsymbol but entries are defined using \bibglsnewdual-
number, which by default sets the category to number.
The above example could be defined as a number since 7 is a constant:

86

4.6 Dual Entry Types

@dualnumber{pi,
name={pi},
symbol={\ensuremath{\pil}},
description={the ratio of the length of the circumference
of a circle to its diameter},
user1={3.14159}

This has stored the approximate value in the user1 field. The post-description hook could
then be adapted to show this.

\glsdefpostdesc{number}{’
\ifglshasfield{useri}{\glscurrententrylabel}
{ (approximate value: \glscurrentfieldvalue)}’
{3%

}

This use of the user1 field means that the dual entries could be sorted numerically accord-
ing to the approximate value:

\usepackage [record,postdot,numbers,style={index}]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},’ entries.bib
dual-type={numbers},
dual-sort={double},’ decimal sort
dual-sort-field={useril}

@dualabbreviation

The @dualabbreviation entry type is similar to @dualentry, but by default the field map-
pings are:

» short +— dualshort

« shortplural — dualshortplural
+ long +— duallong

+ longplural — duallongplural

» dualshort — short

+ dualshortplural — shortplural

e duallong — long

87

4.6 Dual Entry Types

e duallongplural — longplural
If the prefix fields are defined, then the default mappings additionally include:
e prefix — dualprefix
» prefixplural — dualprefixplural
o prefixfirst — dualprefixfirst
o prefixfirstplural — dualprefixfirstplural
e dualprefix — prefix
o dualprefixplural — prefixplural
e dualprefixfirst — prefixfirst
o dualprefixfirstplural + prefixfirstplural

The required fields are: short, long, dualshort and duallong. This includes some new
fields: dualshort, dualshortplural, duallong and duallongplural. If these aren’t al-
ready defined, they will be provided in the . glstex file with

\glsxtrprovidestoragekey{(key)H{}{}

Note that this use with an empty third argument prevents the creation of a field access com-
mand (analogous to \glsentrytext). The value can be accessed with \glsxtrusefield
instead. Remember that the field won’t be available until the . glstex file has been created.

Note that bib2gls doesn’t know what abbreviation styles are in used, so if the sort field
is missing it will fallback on the short field. If the abbreviations need to be sorted according
to the long field instead, use abbreviation-sort-fallback={long}.

Terms that are defined using @dualabbreviation will be written to the output file using
\bibglsnewdualabbreviation.

If the dual-abbrv-backlink option is on, the default field used for the backlinks is the
dualshort field, so you’ll need to make sure you adapt the glossary style to show that field.
The simplest way to do this is through the category post-description hook.

For example, if the entries all have the category set to abbreviation, then this requires
redefining \glsxtrpostdescabbreviation (either with \renewcommand or via \glsdef-
postdesc).

Here’s an example dual abbreviation for a document where English is the primary lan-
guage and German is the secondary language:

@dualabbreviation{rna,
short={RNA},
dualshort={RNS},
long={ribonucleic acid},
duallong={Ribonukleinsaure}

88

4.6 Dual Entry Types

If the abbreviation is in the file called entries-dual-abbrv.bib, then here’s an example
document:

\documentclass{article}

\usepackage [T1]{fontenc}
\usepackage [utf8]{inputenc}

\usepackage [ngerman,main=english]{babel}
\usepackage [colorlinks]{hyperref}
\usepackage [record,nomain] {glossaries-extra}

\newglossary*{english}{English}
\newglossary*{german}{German}

\setabbreviationstyle{long-short}

\glsdefpostdesc{abbreviation}{’
\ifglshasfield{dualshort}{\glscurrententrylabel}
{7

\space(\glscurrentfieldvalue)
Y
{3

\GlsXtrLoadResources|[
src={entries-dual-abbrv},% entries—dual-abbrv.bib
type={english},’% put primary entries in glossary 'english'
dual-type={german},’% put dual entries in glossary 'german'
label-prefix={en.},’% primary label prefix
dual-prefix={de.},% dual label prefix
sort={en},’, sort primary entries according to language 'en'
dual-sort={de-1996},% sort dual entries according to 'de-1996'

% (German new orthography)
dual-abbrv-backlinky add links in the glossary to the opposite entry

\begin{document}
English: \gls{en.rna}; \gls{en.rna}.
German: \gls{de.rna}; \gls{de.rna}.

\printunsrtglossaries

89

4.6 Dual Entry Types

\end{document}
If the 1abel-prefix is omitted, then only the dual entries will have a prefix:

English: \gls{rna}; \gls{rna}.

German: \gls{de.rnal}; \gls{de.rna}.

Another variation is to use the long-short-user abbreviation style and modify the associated
\glsxtruserfield so that the duallong field is selected for the parenthetical material:

\renewcommand*{\glsxtruserfield}{duallong}
This means that the first use of the primary entry is displayed as
ribonucleic acid (RNA, Ribonukleinsiure)
and the first use of the dual entry is displayed as:
Ribonukleinsaure (RNS, ribonucleic acid)
Here’s an example to be used with the long-short-desc style:

@dualabbreviation{rna,
short={RNA},
dualshort={RNS},
long={ribonucleic acid},
duallong={Ribonukleinsédure}
description={a polymeric molecule},
user1={Ein polymeres Molekiil}

}

This stores the dual description in the user1 field, so this needs a mapping. The new example
document is much the same as the previous one, except that the dual-abbrv-map option is
needed to include the mapping between the description and user1 fields:

\documentclass{article}

\usepackage [T1]{fontenc}
\usepackage [utf8]{inputenc}

\usepackage [ngerman,main=english]{babel}
\usepackage [colorlinks]{hyperref}

\usepackage [record,nomain] {glossaries-extra}

\newglossary*{english}{English}
\newglossary*{german}{German}

90

4.6 Dual Entry Types

\setabbreviationstyle{long-short-desc}

\glsdefpostdesc{abbreviation}{’
\ifglshasfield{dualshort}{\glscurrententrylabel}
{7

\space(\glscurrentfieldvalue)
Y
{3

\GlsXtrLoadResources[
src={entries-dual-abbrv-desc},% entries-dual-abbrv-desc.bib
type={english},’% put primary entries in glossary 'english'
dual-type={german},’% put dual entries in glossary 'german'
label-prefix={en.},% primary label prefix
dual-prefix={de.},’% dual label prefix
sort={en},’, sort primary entries according to language 'en
abbreviation-sort-fallback={long},’% fallback on 'long' field
dual-sort={de-1996},% sort dual entries according to 'de-1996'
% (German new orthography)
dual-abbrv-backlink, add links in the glossary to the opposite entry
% dual key mappings:
dual-abbrv-map={%
{short,shortplural,long,longplural,dualshort,dualshortplural,
duallong,duallongplural,description,userl},
{dualshort,dualshortplural,duallong,duallongplural,short,shortplural,
long,longplural,userl,description}

\begin{document}

English: \gls{en.rna}; \gls{en.rna}.
German: \gls{de.rna}; \gls{de.rna}.
\printunsrtglossaries

\end{document}

Note that since this document uses the long-short-desc abbreviation style, the abbreviation
-sort-fallback needs to be changed to long
If I change the order of the mapping to:

dual-abbrv-map={%
{long,longplural,short,shortplural,dualshort,dualshortplural,

91

4.7 Tertiary Entry Types

duallong,duallongplural,description,useril},
{duallong,duallongplural,dualshort,dualshortplural,short,shortplural,
long,longplural,userl,description}

by

Then the back-link field will switch to duallong. The post-description hook can be modified
to allow for this:

\glsdefpostdesc{abbreviation}{’
\ifglshasfield{duallong}{\glscurrententrylabel}
{7

\space(\glscurrentfieldvalue)?
}
{3%
}

An alternative is to use the long-short-user-desc style without the post-description hook:

\setabbreviationstyle{long-short-user-desc}
\renewcommand*{\glsxtruserfield}{duallong}

However be careful with this approach as it can cause nested hyperlinks. In this case it’s
better to use the long-postshort-user-desc style which defers the parenthetical material until
after the link-text:

\setabbreviationstyle{long-postshort-user-desc}
\renewcommand*{\glsxtruserfield}{duallong}

If the back-link field has been switched to duallong then the post-description hook is no
longer required.

@dualacronym

As @dualabbreviation but defines the entries with \bibglsnewdualacronym.

4.7 Tertiary Entry Types

A tertiary entry type is essentially a dual entry that creates three separate (but related)
glossaries-extra entry definitions per .bib entry. As with dual entries, the first of these is
the primary entry. The second and third are referred to as the secondary entry and tertiary
entry.

The tertiary entry is effectively an appendage of the secondary entrysecondary, and is de-
fined by the same associated \bibglsnew..secondary command that defines the secondary
entry. Therefore the secondary and tertiary are both considered the dual and are treated as
a single entry for the purposes of sorting and collating.

92

4.7 Tertiary Entry Types

The tertiary entry will never have any locations. Any records found will be assigned to
the secondary (and may then be moved to the primary with combine-dual-locations=
{primary}). The tertiary will always have the same order as the secondary and will have
the same group value. You can set the type for the tertiary with tertiary-type and the
category with tertiary-category. The label prefix defaults to tertiary. and can be
changed with tertiary-prefix.

Q@tertiaryindexabbreviationentry

This entry type is very similar to @dualindexabbreviation but creates a tertiary entry as
well. The required fields are: short and long (as for @dualindexabbreviation) and also
description. The mappings are shared by both entry types. For example:

@tertiaryindexabbreviationentry{html,
short = {HTML},
long = {hypertext markup language},
description = {a markup language for creating web pages}

}
is analogous to:

\newglossaryentry{html,name={HTML},description={3}}
\newabbreviation{dual.html}{HTML}{hypertext markup language}

\newglossaryentry{tertiary.html,
name={hypertext markup language},
description={a markup language for creating web pages}

}
The last two are actually defined using one command:

\bibglsnewtertiaryindexabbreviationentrysecondary
{dual.html}) secondary label
{tertiary.html}) tertiary label
{..}), secondary fields
{.}% tertiary fields
{HTML}/, primary name
{HTML}J, short
{hypertext markup languagel}’, long
{a markup language for creating web pagesl}) description

The \bibglsnewtertiaryindexabbreviationentrysecondary command is provided in
the .glstex file as:

93

4.8 Multi-Entry Types

\providecommand{\bibglsnewtertiaryindexabbreviationentrysecondaryl}[8]{%
\newabbreviation [#3]{#1}{#6}{#71}/
\longnewglossaryentry*{#2}/
{name={\protect\bibglsuselongfont{#7}{\glscategory{#1}}},#4})
{#83},

}

which defines the secondary as an abbreviation using \newabbreviation and the tertiary
as a regular entry using \longnewglossaryentry. This means that the tertiary entry is
always defined immediately after the corresponding secondary entry. The primary may be
defined earlier or later in the file depending on the way the entries are sorted and on the
dual-sort setting.

4.8 Multi-Entry Types

A multi-entry type is an entry that may spawn multiple primary entries. This means that
both the main entry and the spawned entries are sorted together along with all the other
primary entries. In the case of @spawndualindexentry, the main and spawned entries are
primary. The main entry’s dual is created as per @dualindexentry.

@bibtexentry

The @bibtexentry type will typically need to be aliased as it’s designed for converting BETEX
entries into bib2gls entries. For example, to make bib2gls treat @article and @book as
though they were both @bibtexentry:

entry-type-aliases={
article=bibtexentry,
book=bibtexentry

+

For convenience, glossaries—extra-bib2gls v1.29+ provides \GlsXtrBibTeXEntryAliases
which covers all the standard BBTEX entry types. Alternatively, you can use unknown-entry
—alias={bibtexentry} to alias all entries that aren’t recognised by bib2gls. If you use
category={same as original entry}, the category field will be set to the original en-
try type (for example, article or book). Similarly you can use type={same as original
entry} to set the type field (but remember that the glossary types will need to be defined
in the document).

There are no required fields. The fallback for the sort field is given by bibtexentry-sort
~-fallback. If you want to access any of the BEIEX fields, you will need to alias or define
them. For example:

field-aliases={
title=name

94

4.8 Multi-Entry Types

Since BBIEX's type field conflicts with bib2gls’s type field, when bib2gls parses @bib-
texentry if will convert type to bibtextype, so you must use bibtextype as the identifier
when aliasing.

Alternatively, you can use \GlsXtrProvideBibTeXFields which uses \glsaddstorage-
key to provide all the standard BiTEX fields. (Remember that new fields must be defined
before the first resource set.)

The @bibtexentry essentially creates an @index form of entry, but it additionally defines
a@Qcontributor entry for each listed author or editor and updates the dependency lists: each
Q@contributor is added to the main @bibtexentry’s list of dependencies (so if the @bib-
texentry has a record then all its satellite @contributors are selected with the default
selection={recorded and deps}), and each @contributor is treated as having a cross-
reference to the main @bibtexentry (so if a @contributor has a record then all the linked
@bibtexentry terms will be selected if selection={recorded and deps and see}). You
can instruct bib2gls to treat \citation as an ignored record using --cite-as-record.

Each contributor is effectively defined as:

@contributor{(label),
name={\bibglscontributor{(forenames)}{(von)}{(surname)}{(suffix)}}
}

The label is obtained by converting the name to a label, using the same function as labelify
(which means it’s governed by labelify-replace).

The author and editor fields are always checked, even if those fields aren’t recognised
by bib2gls, (which they aren’t by default). These checks are performed before field aliases
are applied. If neither field is present, no additional entries are spawned. If the dependent
@contributor entry has already been defined, it won’t be redefined, but will have the new
@bibtexentry added to its internal bibtexentry field.

The main @bibtexentry is defined using \bibglsnewbibtexentry and is followed by:

\glsxtrfieldlistadd{(id)}{bibtexcontributor}{(contributor-id)}

where (id) is the label identifying the main @bibtexentry and (contributor-id) is the label
identifying the contributor, for each contributor that has been selected.
Each contributor is defined using \bibglsnewcontributor. The definition is followed

by:

\glsxtrfieldlistadd{(contributor-id)}{bibtexentry}{(id)}
\glsxtrfieldlistadd{(contributor-id)}{bibtexentry@(entry-type)}{(id)}

for each selected @bibtexentry associated with that contributor. The second line provides
the internal list field bibtexentry@(entry-type), where (entry-type) is the original entry
type (before it was aliased to @bibtexentry and converted to lower case). For example
article or book.

You can iterate over these internal list fields using \glsxtrfielddolistloop or \gls-
xtrfieldforlistloop. For example:

95

4.8 Multi-Entry Types

\newcommand{\contributorhandler}[1]{\par\glsentryname{#1}}
\newcommand{\glsxtrpostdesccontributor}{’
\glsxtrifhasfield{bibtexentry}{\glscurrententrylabel},
{7
\glsxtrfieldforlistloop
{\glscurrententrylabel}{bibtexentry}/
{\contributorhandlerl}y,
Y
{\par No titles.})
}

(where the resource option field-aliases={title=name} has been used).
Here’s an example that uses the test xampl.bib file that’s provided with TgX distributions:

\documentclass{article}
\usepackage [record,nomain] {glossaries-extra}

\newglossary*{contributors}{Authors/Editors}
\newglossary*{titles}{Titles}

\newcommand{\bibglsnewbibtexentry}[4]{%
\longnewglossaryentry+*{#1{name=#3,#2,type={titles}}H{#4}/,
}

\GlsXtrLoadResources[
src={xampl},
write-preamble={false},
entry-type-aliases={

\GlsXtrBibTeXEntryAliases
1,
field-aliases={
title=name
1,
replicate-fields={
note=name
1},
labelify-replace={
{[\string\-\string\.]}{}
1,
type={contributors},
category={same as original entry},
sort-field={category},
sort-suffix={name}

96

4.8 Multi-Entry Types

\glsxtrsetgrouptitle{article}{Articles}
\glsxtrsetgrouptitle{booklet}{Booklets}
\glsxtrsetgrouptitle{book}{Books}
\glsxtrsetgrouptitle{inbook}{Book Chapters}
\glsxtrsetgrouptitle{misc}{Miscellaneous}

\newcommand{\contributorhandler}[1]{\par\glsentryname{#1} (#1)}

\newcommand{\glsxtrpostdesccontributorl}y
\glsxtrifhasfield{bibtexentry}{\glscurrententrylabell},
{
\glsxtrfieldforlistloop
{\glscurrententrylabel}{bibtexentryl/
{\contributorhandler},

Y

{\par No titles.})

\begin{document}
Sample~\cite{book-minimal,article-full,inbook-full,misc-minimal}.
Another sample~\cite{booklet-minimal,misc-full,article-minimal}.

\bibliographystyle{plain}
\bibliography{xampl}

\printunsrtglossary[type={contributors},style={altlist}]
\printunsrtglossary*[type={titles},style={indexgroup}]
{7

\renewcommand{\glsxtrgroupfield}{categoryl}/
\renewcommand{\glstreenamefmt} [1]{\emph{#1}}%
\renewcommand{\glstreegroupheaderfmt} [1]{\textbf{#1}})
}

\end{document}
If the file is called myDoc . tex then the document build is:

pdflatex myDoc

bib2gls --cite-as-record myDoc
bibtex myDoc

pdflatex myDoc

pdflatex myDoc

97

4.8 Multi-Entry Types

@progenitor

The @progenitor type of entries are the only place where the adoptparents field is per-
mitted. The value should be a comma-separated list of labels. The adoptparents field must
be set and must contain a least one label. If the value contains any of the characters \
(backslash), { (open brace) or } (close brace) then the field will be interpreted (if the default
--interpret settings is on).

Since entries are spawned before fields are processed, the adoptparents field is parsed
before any field aliases (field-aliases) or replication (replicate-fields) takes place.
However, if the adoptparents field isn’t found, bib2gls will check for a simple mapping
in both the field-aliases and replicate-fields settings.

This entry type creates a main progenitor term (with all the given fields except adopt-
parents) and n spawned progeny terms, where n is the number of elements in the adopt-
parents field, that are dependent on the main term.

Each of the spawned progeny entries have the field identified by adopted-parent-field
(parent by default) set to the corresponding element in the adoptparents field.

All fields from the original definition are copied except for the adoptparents, alias and
parent fields. The parent field is never copied, regardless of the value of adopted-parent
—-field. If the adopted parent field is changed to one that’s contained in the original entry,
it’s value will be from adoptparents not the value from the original entry.

The copied fields follow the same conditions as normal entries. (For example, unknown
fields are ignored, case-changes are applied, if appropriate, and the type field must refer-
ence a valid glossary, if set.) If progenitor-type is set, then this assignment is made after
the progeny are created and only applies to the main progenitor entry. The type for the
progeny can be set with progeny-type. For example, progeny-type={same as parent}
will ensure that the progeny are in the same glossary type as their parent entry.

For example, an entry defined as:

@progenitor{(id),
adoptparents = {(parent-1id),..,(parent-Nid)},
(field-name-1) = {(text)},

Zﬁeld—name—n) = {(text)}
}

is essentially like:

@index{(id),
progeny = {(parent-1id).(id),..,(parent-Nid) . (id)},
(field-name-1) = {(text)},

Zﬁeld-name-n) = {(text)}
}

@index{(parent-1id) . (id),

98

4.8 Multi-Entry Types

progenitor = {(id)},
parent = {(parent-1id)},
(field-name-1) = {(text)},

zﬁeld—name-n) = {(text)}

@index{(parent-N id) . (id),
progenitor = {(id)},
parent = {(parent-Nid)},
(field-name-1) = {(text)},

Zﬁeld-name-n) = {(text)}
}

This creates the main (progenitor) (id) entry, which contains all the fields (except for adopt-
parents) that were in the original @progenitor definition and has the new field progeny
set to the comma-separated list of spawned entry labels. The main entries are defined in the
.glstex file with \bibglsnewprogenitor.

In addition to the main (id) entry, the above also creates the spawned progeny entries
(parent-1id) . (id), ..., (parent-N id) . (id) that are dependent on the main (id) entry.

The spawned entries have the parent field set to the corresponding label obtained from
the adoptparents list. This parent entry must also be defined, as usual for the parent
field. (This restriction obviously doesn’t apply if adopted-parent-field is changed from
the default parent.) The spawned entries are defined in the . glstex file with \bibglsnew-
spawnedindex

If the main progenitor entry is referenced in the document then (assuming the default
selection criteria) the spawned entries will also be automatically selected. You can check for
the existence of the progenitor field using \glsxtrifhasfield and fetch the location
field from the main entry, if required.

Although the spawned entries are considered dependents of the main entry, the reverse
doesn’t apply. If a spawned entry is referenced in the document (with (parent-id) . (id)) then
the main entry and its other spawned entries aren’t automatically selected.

For example, suppose the file entries.bib contains:

@indexplural{stylesheet, text={stylesheet language}}
@index{webdesign, name={web design}}
@indexplural{markup, text={markup languagel}}

O@progenitor{xml,
name={XML},

99

4.8 Multi-Entry Types

adoptparents={markup}
+

@progenitor{css,
name={CSS},
adoptparents={stylesheet,webdesign}
}

O@progenitor{html,
name={HTML},
adoptparents={markup,webdesign}
}

@progenitor{xsl,
name={XSL},
adoptparents={stylesheet}

}

and if the document contains:

\documentclass{article}
\usepackage [record,stylemods={tree},style={index}]{glossaries-extra}
\GlsXtrLoadResources [src={entries},selection={alll}]

\newcommand*{\glstreenamefmt} [1]{#1}
\begin{document}
\printunsrtglossaries

\end{document}

Then the resulting list will be:

CSS
HTML
markup language
HTML
XML
stylesheet language
CSS
XSL
web design
CSS
HTML
XML
XSL

100

4.8 Multi-Entry Types

This allows the HTML and CSS entries to be listed under multiple parents.

The following @spawn(single-type) commands are all forms of @progenitor that create
the given O(single-type) of entry. The spawned entries are actually created with the private
entry type @spawned(type). In the case of @progenitor, the spawned entries are defined
as a @spawnedindex entry. These special @spawned(type) entry types aren’t intended for
use in the . bib file, but if you reference the entry type (for example, with category={same
as entry}) you will get @spawned(type) as the entry type. The original entry type for the
spawned entries is the same as the original entry for the main @progenitor entry.

There is currently only one form of dual @progenitor entry and that’s @spawndualindex-
entry. Only the main progenitor entry is a dual entry. The spawned progeny are all @index
primary entries.

@spawnindex

As Oprogenitor, but the main entries are defined in the .glstex file with \bibglsnew-
spawnindex and the spawned entries are defined with \bibglsnewspawnedindex.

@spawnindexplural

As @progenitor, except that it creates @indexplural terms instead of @index. As with
@indexplural, if the name field isn’t set, it’s assigned to the same value as the plural field
(or the fallback for the plural, if not defined).

The main entries are defined in the .glstex file with \bibglsnewspawnindexplural
and the spawned entries are defined with \bibglsnewspawnedindexplural.

@spawnentry

As @progenitor, except that it creates Gentry terms instead of @index. As with @entry,
the description field is required and either name or parent.

The main entries are defined in the .glstex file with \bibglsnewspawnentry and the
spawned entries are defined with \bibglsnewspawnedentry.

@spawnabbreviation

As @progenitor, except that it creates @abbreviation terms instead of @index. As with
@abbreviation, the short and long fields are required.

The main entries are defined in the .glstex file with \bibglsnewspawnabbreviation
and the spawned entries are defined with \bibglsnewspawnedabbreviation.

@spawnacronym

As @progenitor, except that it creates Gacronym terms instead of @index. As with @acronym,
the short and long fields are required.

101

4.9 Compound Entry Sets

The main entries are defined in the . glstex file with \bibglsnewspawnacronym and the
spawned entries are defined with \bibglsnewspawnedacronym.

@spawnsymbol

As @progenitor, except that it creates @symbol terms instead of @index. As with @symbol,
the required fields are name or parent, and the description field is required if the name
field is missing.

The main entries are defined in the .glstex file with \bibglsnewspawnsymbol and the
spawned entries are defined with \bibglsnewspawnedsymbol.

@spawnnumber

As Gprogenitor, except that it creates Onumber terms instead of @index. As with @number,
the required fields are name or parent, and the description field is required if the name
field is missing.

The main entries are defined in the .glstex file with \bibglsnewspawnnumber and the
spawned entries are defined with \bibglsnewspawnednumber.

@spawndualindexentry

As @progenitor, except that the main (progenitor) entry behaves like @dualindexentry.
The spawned progeny behave like @index are so are all considered primary entries. The
adoptparents field should therefore reference primary entries with the default adopted
-parent-field={parent}.

The main primary and secondary (dual) entries are defined in the . glstex file with \bib-
glsnewspawndualindexentry and \bibglsnewspawndualindexentrysecondary. The spawned
progeny are defined with \bibglsnewspawnedindex.

4.9 Compound Entry Sets

A compound entry isn’t an entry in the same sense as the above but corresponds to a multi-
entry (compound or combined) set provided by glossaries-extra v1.48+, which is defined by
the command \multiglossaryentry (or \providemultiglossaryentry). These are re-
ferred to as multi-entries in glossaries-extra but are referred to as compound entries here to
avoid confusion with the multi-entry types.

Essentially, a label is defined that refers to a set of labels corresponding to entries that have
already been defined. One element in the set is considered the main label. Entry labels may
appear in multiple sets.

A compound entry provides a convenient way to apply commands like \gls to multiple
entries in one command (such as \mgls). Compound entry labels may only be used in the
\mgls-like commands or in a cross-reference field.

For example, consider the following document:

102

4.9 Compound Entry Sets

\documentclass{article}

\usepackage{hyperref}

\usepackage [record,style={tree}]{glossaries-extra}

\setabbreviationstyle{long-only-short-only}

\renewcommand*{\glsxtronlyname}{J
\protect\glslongonlyfont{\the\glslongtokl}%

}

\newabbreviation{clostridium}{C.}{Clostridium}

\newglossaryentry{botulinum}{name=botulinum,
description={},parent=clostridium}

\newglossaryentry{perfringens}{name=perfringens,
description={},parent=clostridium}

\begin{document}

\gls{clostridum} \gls{botulinum},

\gls{clostridum} \gls{perfringens},

\gls{clostridum} \gls{botulinum}.

\printunsrtglossary

\end{document}

This produces:
Clostridium botulinum, C. perfringens, C. botulinum.

followed by the glossary. This is very cumbersome. Defining a compound entry label simply
provides a shortcut:

\multiglossaryentry{cbot}{clostridium,botulinum}
\multiglossaryentry{cperf}{clostridium,perfringens}

(This has to be done after the entries have been defined.) Now the entries can be more
compactly referenced:

\mgls{cbot},
\mgls{cperf},
\mgls{cbot}.

Each compound entry set must contain at least two elements. The main label is the label of
the element that is considered the main entry of the set. If the main label isn’t identified in
\multiglossaryentry then it’s assumed to be the last element in the set.

In the above example, botulinum is the main label of the cbot set, and perfringens is
the main label of the cperf set. In both sets, clostridium is the “other label”. If there are
more than two elements in the set then “others” refers to all the elements except for the main
label. An entry can be a main label of one set and an other label of another set.

The options, which can be applied to all sets with \multiglossaryentrysetup or to a
specific set using the first optional argument of \multiglossaryentry, determine if each
element of the list has a separate hyperlink to their own target, or if only the main element

103

4.9 Compound Entry Sets

should have a hyperlink, or if the entire content of \mgls should be a single hyperlink to the
main entry’s target.

With bib2gls, the entries that form the set should be in .bib files as usual. The com-
pound entry set may either be defined in the document . tex file using \multiglossary-
entry (or \providemultiglossaryentry) or they can be defined in the .bib file using
Ocompoundset. Remember that the set can only be defined after the entries that make
up the elements of the set have been defined. If any .bib files in a resource set contain
@compoundset, the definitions will be added at the end of the . glstex file (using \bibgls-
defcompoundset).

If you have multiple resource sets that reuse the same .bib file containing @compoundset
then either redefine \bibglsdefcompoundset to use \providemultiglossaryentry or
prevent duplicate definitions with compound-write-def={false}.

The elements of the set will still need to be indexed as usual to ensure that they have
records to enable selection.

The above example can be converted to bib2gls as follows (compound entries defined in
the document . tex file):

\documentclass{article}

\usepackage{hyperref}

\usepackage [record,style={tree}]{glossaries-extra}

\setabbreviationstyle{long-only-short-only}

\renewcommand*{\glsxtronlyname}{%
\protect\glslongonlyfont{\the\glslongtok}/

}

\GlsXtrLoadResources[src={bacterial]

\multiglossaryentry{cbot}{clostridium,botulinum}

\multiglossaryentry{cperf}{clostridium,perfringens}

\begin{document}

\mgls{cbot}, \mgls{cperf}, \mgls{cbot}.

\printunsrtglossary

\end{document?}

Note that \multiglossaryentry must come after \GlsXtrLoadResources.
The bacteria.bib contains the definitions in the usual way:

O@abbreviation{clostridium,
short={C.},
long={Clostridium}

}

@index{botulinum,
parent={clostridium}

}

@index{perfringens,
parent={clostridium}

}

104

4.9 Compound Entry Sets

Alternatively, the compound entries can be defined in the .bib file instead:

@compoundset{cbot,
elements={clostridium,botulinum}

}

Q@compoundset{cperf,
elements={clostridium,perfringens}

}

The \multiglossaryentry commands should now be removed from the .tex file.

There’s a difference between these two methods on the first EIgX build. In the first exam-
ple, cbot is known, so \mgls{cbot} can perform \gls{clostridum} \gls{botulinum}.
These commands aren’t yet defined so they are both replaced by “??” (resulting in “?? ??”).
As usual, the location list is unreliable until entries are defined and the unknown markers
“??” can be replaced with the correct content. If the document is in a file called myDoc . tex
then the document build:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

will have locations in the resulting PDF file, but they may be incorrect if the associated
temporary files were initially missing.

In the second example, cbot is unknown, so \mgls{cbot} is simply displayed as “??”. In
this case, the .aux file contains information that cbot has been referenced, but there are
no associated records. The entries that belong to the cbot set will be selected as they are
considered dependent on the compound entry. In this case, if you are starting from scratch
(no associated temporary files), you will need:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

At this point, the location lists will appear. After that, you can reduce the document build to:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

(Until you later add new entries.)
If you don’t want locations for the other elements then set the ENcAP to glsignore:

\multiglossaryentrysetup{encapothers=glsignore}

105

4.9 Compound Entry Sets

Q@compoundset

The following fields are available:

blements The comma-separated list of element labels. This corresponds
to the final argument of \multiglossaryentry. (Required.)

nain The main label. This field is optional. If omitted, the main label
is assumed to be the last element.

bption A comma-separated list of options. This corresponds to the first
optional argument of \multiglossaryentry. This field may be omitted.

These fields can only be used in this entry type.
Most resource options don’t apply to this entry type. Options specific to compound entries
are listed in section 5.13.

106

5 Resource File Options

Make sure that you use glossaries-extra with the record package option. This ensures that
bib2gls can pick up the required information from the .aux file, and both record={only}
and record={nameref} additionally load the supplementary glossaries—extra-bib2gls pack-
age. These two record option values also switch on the sort={none} package option (if
you have a new enough version of the base glossaries package), which means that there’s no
attempt to assign or process the sort key if it’s omitted from \newglossaryentry (or sim-
ilar commands). The sort key will be provided by bib2gls for informational purposes, but
there’s no need for KIgX to write it to any external files (unless you use record={hybrid},
in which case you need to prevent bib2gls from sorting using the sort={none} resource
option).
The .glstex resource files created by bib2gls are loaded in the document using

\glsxtrresourcefile [(options)]{(filename)}

where (filename) is the name of the resource file without the .glstex extension. You
can have multiple \glsxtrresourcefile commands within your document, but each (file-
name) must be unique, otherwise KX would attempt to input the same . glstex file multi-
ple times (bib2gls checks for non-unique file names). The associated data for each resource
file is called the resource set (see section 1.4).

There’s a shortcut command that uses \ jobname in the (filename):

\GlsXtrLoadResources [{options)]

The first instance of this command is equivalent to:
\glsxtrresourcefile [{options)]{\jobname}

Any additional use of \GlsXtrLoadResources is equivalent to:
\glsxtrresourcefile[(options)]{\jobname-(n)}

where (n) is number. For example:

\GlsXtrLoadResources [src={entries-en},sort={en}]
\GlsXtrLoadResources [src={entries-fr},sort={fr}]
\GlsXtrLoadResources|[src={entries-de},sort={de-1996}]

This is equivalent to:

\glsxtrresourcefile[src={entries-en},sort={en}]{\jobname}
\glsxtrresourcefile[src={entries-fr},sort={fr}]{\jobname-1}
\glsxtrresourcefile[src={entries-de},sort={de-1996}]1{\ jobname-2}

107

5 Resource File Options

In general, it’s simplest just to use \GlsXtrLoadResources.

The optional argument (options) is a comma-separated key=value list. Allowed options
are listed below. The option list applies only to that specific (filename) . glstex and are not
carried over to the next instance of \glsxtrresourcefile. Only the definitions provided
in Opreamble (if the interpreter is on and interpret-preamble={true}) are carried over
to the next resource set and, possibly, cross-resource references if permitted (see section 1.4).
The glossaries-extra package doesn’t parse the options, but just writes the information to the
.aux file. This means that any invalid options will be reported by bib2gls not by glossaries-
extra.

As from glossaries-extra v1.40 you can provide a default set of options by redefining:

\GlsXtrDefaultResourceOptions

This command will be inserted at the start of the options list for all resource commands (and
will expand as it’s written to the .aux file). For example:

\renewcommand{\GlsXtrDefaultResourceOptions}{%
selection={all},src={entries}}
\GlsXtrLoadResources|[
type={symbols},
match={entrytype=symbol}]
\GlsXtrLoadResources[
type={abbreviations},
match={entrytype=abbreviation}]

This acts like:

\GlsXtrLoadResources[
selection={all},src={entries},
type={symbols},
match={entrytype=symbol}]

\GlsXtrLoadResources[
selection={all},src={entries},
type={abbreviations},
match={entrytype=abbreviation}]

If you have multiple .bib files you can either select them all using src={(bib list)} in a
single \glsxtrresourcefile call, if they all require the same settings, or you can load them
separately with different settings applied.

For example, if the files entries-terms.bib and entries-symbols.bib have the same
settings:

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]
Alternatively, if they have different settings:

\GlsXtrLoadResources[src={entries-terms},type={main}]
\GlsXtrLoadResources[src={entries-symbols},sort={use}, type={symbols}]

108

5 Resource File Options

Note that the sorting is applied to each resource set independently of other resource sets.
This means that if you have multiple instances of \glsxtrresourcefile but only one glos-
sary type, the glossary will effectively contain blocks of sorted entries. For example, if
filel.bib contains:

@index{duck}
@index{zebra}
O@index{aardvark}

and file2.bib contains:

@index{caterpillar}
@index{bee}
O@index{wombat}

then
\GlsXtrLoadResources[src={filel,file2}]

will result in the list: aardvark, bee, caterpillar, duck, wombat, zebra. These six entries are
all defined when \ jobname . glstex is read. Whereas

\GlsXtrLoadResources[src={filel}]
\GlsXtrLoadResources[src={file2}]

will result in the list: aardvark, duck, zebra, bee, caterpillar, wombat. The first three (aard-
vark, duck, zebra) are defined when \ jobname . glstex is read. The second three (bee, cater-
pillar, wombat) are defined when \jobname-1.glstex is read. Since \printunsrtglos-
sary simply iterates over all defined entries, this is the ordering used.

Abbreviation styles must be set (using \setabbreviationstyle) before the resource
command that selects the abbreviations from the appropriate .bib file, since the entries are
defined (through \newabbreviation or \newacronym) when \glsxtrresourcefile in-
puts the . glstex file. (Similarly for any associated abbreviation style commands that mus