
Reference manual

The Island of TEX

Version 6.1.1

https://gitlab.com/islandoftex/arara

i

No birds were harmed in the making of this manual.

License

Anything that prevents you
from being friendly, a good
neighbour, is a terror tactic.

RICHARD STALLMAN

arara is licensed under the New BSD License. It is important to observe
that the New BSD License has been verified as a GPL-compatible free software
license by the Free Software Foundation, and has been vetted as an open
source license by the Open Source Initiative.

New BSD License

Copyright © 2012–2020, Island of TEX
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

This software is provided by the copyright holders and contributors “as is” and any
express or implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed. In no event shall
the copyright holder or contributors be liable for any direct, indirect, incidental, special,
exemplary, or consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of use, data, or profits; or business interruption)
however caused and on any theory of liability, whether in contract, strict liability, or
tort (including negligence or otherwise) arising in any way out of the use of this software,
even if advised of the possibility of such damage.

ii

http://www.opensource.org/licenses/bsd-license.php
http://www.fsf.org/
http://www.opensource.org/

Contents

1 Introduction 1
1.1 What is this tool? . 1
1.2 Core concepts . 3
1.3 Operating system remarks . 5
1.4 Support . 6

I — The application

2 Important concepts 8
2.1 Rules . 8
2.2 Directives . 18
2.3 Important changes in version 6 24

3 Command line 26
3.1 User interface design . 26
3.2 Options . 28
3.3 File name lookup . 37

4 Configuration file 40
4.1 File lookup . 40
4.2 Basic structure . 41

5 Logging 50
5.1 System information . 50
5.2 Directive extraction . 52
5.3 Directive normalization . 52
5.4 Rule interpretation . 53

6 Methods 56
6.1 Files . 56
6.2 Conditional flow . 67
6.3 Strings . 71
6.4 Operating systems . 73
6.5 Type checking . 76
6.6 Classes and objects . 78
6.7 Dialog boxes . 80
6.8 Commands . 87

iii

Contents iv

6.9 Others . 90

7 The official rule pack 96

II — Development and deployment

8 Building from source 161
8.1 Requirements . 161
8.2 Compiling the tool . 163

9 Deploying the tool 167
9.1 Directory structure . 167
9.2 Defining a location . 168
9.3 Tool wrapping . 169

III — A primer on formats and scripting

10 YAML 175
10.1 Collections . 175
10.2 Scalars . 177
10.3 Tags . 178
10.4 Further reading . 178

11 MVEL 179
11.1 Basic usage . 179
11.2 Inline lists, maps and arrays . 181
11.3 Property navigation . 182
11.4 Flow control . 183
11.5 Projections and folds . 185
11.6 Assignments . 185
11.7 Basic templating . 186
11.8 Further reading . 187

one

Introduction
Hello there, welcome to arara, the cool TEX automation tool! This chapter is
actually a quick introduction to what you can (and cannot) expect from arara.
For now, concepts will be informally presented and will be detailed later on, in
the next chapters.

1.1 What is this tool?

Good question! arara is a TEX automation tool based on rules and direc-
tives. It is, in some aspects, similar to other well-known tools like latexmk
and rubber . The key difference (and probably the selling point) might be the
fact that arara aims at explicit instructions in the source code (in the form
of comments) in order to determine what to do instead of relying on other re-
sources, such as log file analysis. It is a different approach for an automation
tool, and we have both advantages and disadvantages of such design. Let us
use the following file hello.tex as an example:

hello.tex

Source file

1 \documentclass{article}
2
3 \begin{document}
4 Hello world!
5 \end{document}

How would one successfully compile hello.tex with latexmk and rubber ,
for instance? It is quite straightforward: it is just a matter of providing the file
to the tool and letting it do the hard work:

Terminal

1 $ latexmk -pdf mydoc.tex
2 $ rubber --pdf mydoc.tex

The mentioned tools perform an analysis on the file and decide what has

1

Chapter 1. Introduction 2

to be done. However, if one tries to invoke arara on hello.tex , I am afraid
nothing will be generated; the truth is, arara does not know what to do with
your file, and the tool will even raise an error message complaining about this
issue:

Terminal

1 $ arara hello.tex
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Processing "hello.tex" (size: 70 B, last modified: 12/28/2020
8 07:03:16), please wait.
9

10 ERROR
11
12 It looks like no directives were found in the provided file. Make
13 sure to include at least one directive and try again.
14
15 Total: 0.04 seconds

Quite surprising. However, this behaviour is not wrong at all, it is com-
pletely by design: arara needs to know what you want. And for that purpose,
you need to tell the tool what to do.

A very important concept

That is the major difference of arara when compared to other tools: it is
not an automatic process and the tool does not employ any guesswork on
its own. You are in control of your documents; arara will not do anything
unless you teach it how to do a task and explicitly tell it to execute the task.

Now, how does one tell arara to do a task? That is actually the easy part,
provided that you have everything up and running. We accomplish the task
by adding a special comment line, hereafter known as directive, somewhere in
our hello.tex file (preferably in the first lines):

hello.tex

Source file

1 % arara: pdflatex
2 \documentclass{article}
3
4 \begin{document}
5 Hello world!
6 \end{document}

Chapter 1. Introduction 3

For now, do not worry too much about the terms, we will come back to
them later on, in Chapter 2, on page 8. It suffices to say that arara expects
you to provide a list of tasks, and this is done by inserting special comments
in the source file. Let us see how arara behaves with this updated code:

Terminal

1 $ arara hello.tex
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Processing "hello.tex" (size: 88 B, last modified: 12/28/2020
8 07:05:05), please wait.
9

10 (PDFLaTeX) PDFLaTeX engine SUCCESS
11
12 Total: 0.56 seconds

Hurrah, we finally got our document properly compiled with a TEX engine
by the inner workings of our beloved tool, resulting in an expected hello.pdf
file created using the very same system call that typical automation tools like
latexmk and rubber use. Observe that arara works practically on other side
of the spectrum: you need to tell it how and when to do a task.

1.2 Core concepts

When adding a directive in our source code, we are explicitly telling the tool
what we want it to do, but I am afraid that is not sufficient at all. So far, arara
knows what to do, but now it needs to know how the task should be done. If
we want arara to run pdflatex on hello.tex , we need to have instructions
telling our tool how to run that specific application. This particular sequence
of instructions is referred as a rule in our context.

Note on rules

Although the core team provides a lot of rules shipped with arara out of
the box, with the possibility of extending the set by adding more rules,
some users might find this decision rather annoying, since other tools
have most of their rules hard-coded, making the automation process
even more transparent. However, since arara does not rely on a specific
automation or compilation scheme, it becomes more extensible. The use
of directives in the source code make the automation steps more fluent,
which allows the specification of complex workflows much easier.

Despite the inherited verbosity of automation steps not being suitable for

Chapter 1. Introduction 4

small documents, arara really shines when you have a document which needs
full control of the automation process (for instance, a thesis or a manual).
Complex workflows are easily tackled by our tool.

Rules and directives are the core concepts of arara: the first dictates how
a task is done, and the latter is the proper instance of the associated rule on
the current document, i.e, when and where the commands must be executed.

The name

Do you like araras? We do, spe-
cially our tool which shares the
same name of this colorful bird.

The tool name was chosen as an
homage to a Brazilian bird of the
same name, which is a macaw.
The word arara comes from the Tu-
pian word a’rara, which means big
bird (much to my chagrin, Sesame
Street’s iconic character Big Bird is
not a macaw; according to some
sources, he claims to be a golden
condor). Araras are colorful, noisy,
naughty and very funny. Everybody
loves araras. The name seemed
catchy for a tool and, in the blink
of an eye, arara was quickly spread
to the whole TEX world.

Now that we informally introduced rules and directives, let us take a look
on how arara actually works given those two elements. The whole idea is
pretty straightforward, and I promise to revisit these concepts later on in this
manual for a comprehensive explanation (more precisely, in Chapter 2).

First and foremost, we need to add at least one instruction in the source
code to tell arara what to do. This instruction is named a directive and it will
be parsed during the preparation phase. Observe that arara will tell you if no
directive was found in a file, as seen in our first interaction with the tool.

An arara directive is usually defined in a line of its own, started with a
comment (denoted by a percent sign in TEX and friends), followed by the word
arara: and task name:

A typical directive

1 % arara: pdflatex
2 \documentclass{article}
3 ...

Our example has one directive, referencing pdflatex . It is important to
observe that the pdflatex identifier does not represent the command to be
executed, but the name of the rule associated with that directive.

Chapter 1. Introduction 5

Once arara finds a directive, it will look for the associated rule. In our
example, it will look for a rule named pdflatex which will evidently run the
pdflatex command line application. Rules are YAML files named according to
their identifiers followed by the yaml extension and follow a strict structure.
This concept is covered in Section 2.1, on page 8.

Now, we have a queue of pairs (directive, rule) to process. For each pair,
arara will map the directive to its corresponding rule, evaluate it and run the
proper command. The execution chain requires that command i was success-
fully executed to then proceed to command i + 1, and so forth. This is also
by design: arara will halt the execution if any of the commands in the queue
had raised an error. How does one know if a command was successfully exe-
cuted? arara checks the corresponding exit status available after a command
execution. In general, a successful execution yields 0 as its exit status.

In order to decide whether a command execution is successful, arara relies
on exit status checking. Typically, a command is successful if, and only if, its
resulting exit status is 0 and no other value. However, we can define any value,
or even forget about it and make it always return a valid status regardless of
execution (for instance, in a rule that always is successful – see, for instance,
the clean rule).

That is pretty much how arara works: directives in the source code are
mapped to rules. These pairs are added to a queue. The queue is then exe-
cuted and the status is reported. More details about the expansion process
are presented in Chapter 2, on page 8. In short, we teach arara to do a task
by providing a rule, and tell it to execute it through directives in the source
code.

1.3 Operating system remarks

The application is written using the Kotlin language, so arara runs on top of
a Java virtual machine, available on all the major operating systems – in some
cases, you might need to install the proper virtual machine. We tried very hard
to keep both code and libraries compatible with older virtual machines or from
other vendors. Currently, arara is known to run on Java 8 to 15, from any
vendor.

Outdated Java virtual machines

Dear reader, beware of outdated software, mainly Java virtual machines!
Although arara offers support for older virtual machines, try your best to
keep your software updated as frequently as possible. The legacy support
exists only for historical reasons, and also due to the sheer fact that we
know some people that still runs arara on very old hardware. If you are
not in this particular scenario, get the latest virtual machine.

In Chapter 8, on page 161, we provide instructions on how to build arara
from sources using Gradle. Even if you use multiple operating systems, arara
should behave the same, including the rules. There are helper functions avail-

Chapter 1. Introduction 6

able in order to provide support for system-specific rules based on the under-
lying operating system.

1.4 Support

If you run into any issue with arara, please let us know. We all have very
active profiles in the TEX community at StackExchange, so just use the arara
tag in your question and we will help you the best we can (also, take a look at
their starter guide). We also have a Gitter and Matrix chat rooms, in which we
occasionally hang out. Also, if you think the report is worthy of an issue, open
one in our GitLab repository.

We really hope you like our humble contribution to the TEX community. Let
arara enhance your TEX experience, it will help you when you will need it the
most. Enjoy the manual.

https://tex.stackexchange.com/
https://tex.meta.stackexchange.com/q/1436
https://gitter.im/Island-of-TeX/arara
https://matrix.to/#/!HfEWIEvFtDplCLSQvz:matrix.org?via=matrix.org
https://gitlab.com/islandoftex/arara/issues

part one

The application

7

two

Important concepts
Time for our first proper contact with arara! I must stress that is very impor-
tant to understand a few concepts in which arara relies before we proceed to
the usage itself. Do not worry, these concepts are easy to follow, yet they are
vital to the comprehension of the application and the logic behind it.

2.1 Rules

A rule is a formal description of how arara handles a certain task. For in-
stance, if we want to use pdflatex with our tool, we should have a rule for
that. Directives are mapped to rules, so a call to a non-existent rule foo , for
instance, will indeed raise an error:

Terminal

1 __ _ _ __ __ _ _ __ __ _
2 / _` | '__/ _` | '__/ _` |
3 | (_| | | | (_| | | | (_| |
4 __,_|_| __,_|_| __,_|
5
6 Processing "doc1.tex" (size: 31 B, last modified: 12/28/2020
7 07:37:37), please wait.
8
9 ERROR

10
11 I could not find a rule named "foo" in the provided rule paths.
12 Perhaps a misspelled word? I was looking for a file named
13 "foo.yaml" in the following paths in order of priority:
14 (/opt/paulo/arara/rules)
15
16 Total: 0.03 seconds

Once a rule is defined, arara automatically provides an access layer to that
rule through directives in the source code, a concept to be formally introduced
later on, in Section 2.2. Observe that a directive reflects a particular instance
of a rule of the same name (i.e, a foo directive in a certain source code is an
instance of the foo rule).

8

Chapter 2. Important concepts 9

A note about rules

From version 6.0 on, rules included in the core distribution have been
renamed to have a unique prefix in the texmf tree. File names should
not be relied upon.

In short, a rule is a plain text file written in the YAML format, described
in Chapter 10, on page 175. I opted for this format because back then it
was cleaner and more intuitive to use than other markup languages such as
XML, besides of course being a data serialization standard for programming
languages.

Animal jokes

As a bonus, the acronym YAML rhymes with the word camel, so arara
is heavily environmentally friendly. Speaking of camels, there is the pro-
gramming reference as well, since this amusing animal is usually asso-
ciated with Perl and friends.

The default rules, i.e, the rules shipped with arara, are placed inside a
special subdirectory named rules/ inside another special directory named
ARARA_HOME (the place where our tool is installed). We will learn later on, in
Section 4.2, on page 41, that we can add an arbitrary number of paths for
storing our own rules, in order of priority, so do not worry too much about
the location of the default rules, although it is important to understand and
acknowledge their existence. Observe, however, that rules in the core dis-
tribution have a different naming scheme than the ones located in the user
space.

The following list describes the basic structure of an arara rule by present-
ing the proper elements (or keys, if we consider the proper YAML nomencla-
ture). Observe that elements marked as M are mandatory (i.e, the rule has to
have them in order to work). Similarly, elements marked as O are optional,
so you can safely ignore them when writing a rule for our tool. A key preceded
by context→ indicates a context and should be properly defined inside it.

M !config
This keyword is mandatory and must be the first line of any arara rule. It
denotes the object mapping metadata to be internally used by the tool. The
tool requires it, so make sure to start all rules with a !config keyword.

M identifier
This key acts as a unique identifier for the rule (as expected). It is highly
recommended to use lowercase letters without spaces, accents or punc-
tuation symbols, as good practice (again). As a convention, if you have an
identifier named pdflatex , the rule filename must be pdflatex.yaml (like
our own instance). Please note that, although yml is known to be a valid
YAML extension as well, arara only considers files ending with the yaml
extension. This is a deliberate decision.

Chapter 2. Important concepts 10

Example

1 identifier: pdflatex

M name
This key holds the name of the task (a rule instantiated through a direc-
tive) as a plain string. When running arara, this value will be displayed
in the output enclosed in parentheses.

Example

1 name: PDFLaTeX

O authors
We do love blaming people, so arara features a special key to name the
rule authors (if any) so you can write stern electronic communications to
them! This key holds a list of strings. If the rule has just one author, add
it as the first (and only) element of the list.

Example

1 authors:
2 - Marco Daniel
3 - Paulo Cereda

M commands
This key denotes a potential list of commands. From the user perspec-
tive, each command is called a subtask within a task (rule and direc-
tive) context. A task may represent only a single command (a single sub-
task), as well as a sequence of commands (subtasks). For instance, the
frontespizio rule requires at least two commands. So, as a means of nor-
malizing the representation, a task composed of a single command (single
subtask) is defined as the only element of the list, as opposed to previous
versions of arara, which had a specific key to hold just one command.

In order to properly set a subtask, the keys used in this specification are
defined inside the commands→ context and presented as follows.

O commands→ name
This key holds the name of the subtask as a plain string. When run-
ning arara, this value will be displayed in the output. Subtask names
are displayed after the main task name. By the way, did you notice
that this key is entirely optional? That means that a subtask can
simply be unnamed, if you decide so. However, such practice is not

Chapter 2. Important concepts 11

recommended, as it’s always good to have a visual description of what
arara is running at the moment, so name your subtasks properly.

M commands→ command
This key holds the action to be performed, typically a system com-
mand. The tool offers two types of returned values:

– A Command object: arara features an approach for handling system
commands based on a high level structure with explicit argument
parsing named Command . In order to use this approach, we need
to rely on orb tags and use a helper method named ♢getCommand
to obtain the desired result. We will detail this method later on, in
Section 6.8, on page 87.

Example

1 command: "@{ return getCommand('ls') }"

– A boolean value: it is also possible to exploit the expressive power
of the underlying scripting language available in the rule context
(see Chapter 11, on page 179, for more details) for writing complex
code. In this particular case, since the computation is being done
by arara itself and not the underlying operating system, there will
not be a command to be executed, so simply return a boolean
value – either an explicit true or false value or a logical expres-
sion – to indicate whether the computation was successful.

Example

1 command: "@{ return 1 == 1 }"

It is also worth mentioning that arara also supports lists of com-
mands represented as Command objects, boolean values or a mix of
them. This is useful if your rule has to decide whether more actions
are required in order to accomplish a task. In this case, our tool will
take care of the list and execute each element in the specified order.

Example

1 command: "@{ return [getCommand('ls'), getCommand('ls')] }"

As an example, please refer to the official clean rule for a real scenario
where a list of commands is successfully employed: for each provided
extension, the rule creates a new cleaning command and adds it to a
list of removals to be processed later.

Chapter 2. Important concepts 12

There are at least one variable available in the command context and is
described as follows (note that MVEL variables and orb tags are dis-
cussed in Chapter 11). A variable will be denoted by ♢variable in this
list. For each rule argument (defined later on), there will be a corre-
sponding variable in the command context, directly accessed through
its unique identifier.

♢reference
This variable holds the canonical, absolute path representation of
the file name as a File object. This is useful if it’s necessary to
know the hierarchical structure of a project. Since the reference
is a Java object, we can use methods available in the File class.

Quote handling

The YAML format disallows key values starting with @ without
proper quoting. This is the reason we had to use double quotes
for the value and internally using single quotes for the command
string. Also, we could use the other way around, or even using
only one type and then escaping them when needed. This is
excessively verbose but needed due to the format requirement.

From version 6.0 on, the <arara> shorthand is not supported
anymore. We encourage the use of a YAML feature named folded
style when writing such values. The idea here is to use the scalar
content in folded style, as seen in Section 10.2, on page 177. The
new code will look like this:

Example

1 command: >
2 @{
3 return getCommand('ls')
4 }

Mind the indentation, as YAML requires it to properly identify
blocks. If your code still relies on the <arara> shorthand, please
update it accordingly to use YAML’s folded style instead.

O commands→ exit
This key holds a special purpose, as it represents a custom exit status
evaluation for the corresponding command. In general, a successful
execution has zero as an exit status, but sometimes we end up with
tools or situations where we need to override this check for whatever
reason. For this purpose, simply write a MVEL expression without orb
tags as plain string and use the special variable ♢value if you need
the actual exit status returned by the command, available at runtime.

Chapter 2. Important concepts 13

For example, if the command returns a non-zero value indicating a
successful execution, we can write this key as:

Example

1 exit: value > 0

If the execution should be marked as successful by arara regardless
of the actual exit status, you can simply write true as the key value
and this rule will never fail, for obvious reasons.

For instance, consider a full example of the commands key, defined with
only one command, presented as follows. The hyphen denotes a list el-
ement, so mind the indentation for correctly specifying the component
keys. Also, note that, in this case, the exit key was completely optional,
as it does the default checking, and it was included for didactic purposes.

Example

1 commands:
2 - name: The PDFLaTeX engine
3 command: >
4 @{
5 return getCommand('pdflatex', file)
6 }
7 exit: value == 0

M arguments
This key holds a list of arguments for the current rule, if any. The argu-
ments specified in this list will be available to the user later on for potential
completion through directives. Once instantiated, they will become proper
variables in the command contexts. This key is mandatory, so even if your
rule does not have arguments, you need to specify a list regardless. In
this case, use the empty list notation:

Example

1 arguments: []

In order to properly set an argument, the keys used in this specification
are defined inside the arguments→ context and presented as follows.

M arguments→ identifier
This key acts as a unique identifier for the argument. It is highly rec-
ommended to use lowercase letters without spaces, accents or punc-

Chapter 2. Important concepts 14

tuation symbols, as a good practice. This key will be used later on to
set the corresponding value in the directive context.

Example

1 identifier: shell

It is important to mention that not all names are valid as argument
identifiers. arara has restrictions on two names, described as follows,
which cannot be used.

Reserved names for rule arguments

Our tool has two names reserved for internal use: files , and
reference . Do not use them as argument identifiers!

O arguments→ flag
This key holds a plain string and is evaluated when the corresponding
argument is defined in the directive context. After being evaluated,
the result will be stored in a variable of the same name to be later
accessed in the command context. In the scenario where the argument
is not defined in the directive, the variable will hold an empty list.

Return type

From version 6.0 on, the return value for flag is now trans-
formed into a proper List<String> type instead of a plain,
generic Object reference, as seen in previous versions. The fol-
lowing rules apply:

– If a list is returned, it will be flattened and all values will be
turned into strings.
[’a’, 1, [2, ’b’]] =⇒ [’a’, ’1’, ’2’, ’b’]

– If a string is returned, a single list with only that string will
be returned.
’hello world’ =⇒ [’hello world’]

– If another type is returned, it will be turned into string.
3.1415 =⇒ [’3.1415’]

Other return types than string or lists are not encouraged. How-
ever, if such types are used, they will be transformed into a list of
strings, as previously seen. If you need interoperability of com-
plex command code with older versions, use the following trick to
get the value of previously non-list values:

Chapter 2. Important concepts 15

Return type (ctd.)

Example

1 isList(variable) ? variable[0] : variable

In this way, one can keep a compatibility layer for older versions.
However, it is highly recommended to use the latest version of
arara whenever possible.

Example

1 flag: >
2 @{
3 isTrue(parameters.shell, '--shell-escape',
4 '--no-shell-escape')
5 }

There are two variables available in the flag context, described as
follows. Note that are also several helper methods available in the
rule context (for instance, ♢isTrue presented in the previous example)
which provide interesting features for rule writing. They are detailed
later on, in Chapter 6, on page 56.

♢parameters
This variable holds a map of directive parameters available at run-
time. For each argument identifier listed in the arguments list in
the rule context, there will be an entry in this variable. This is
useful to get the actual values provided during execution and take
proper actions. If a parameter is not set in the directive context,
the reference will still exist in the map, but it will be mapped to
an empty string.

Example

1 check = parameters.contains("foo");

♢reference
This variable holds the canonical, absolute path representation of
the file name as a File object. This is useful if it is necessary to
know the hierarchical structure of a project. Since the reference
is a Java object, we can use methods available in the File class.

Chapter 2. Important concepts 16

Example

1 parent = reference.getParent();

In the previous example, observe that the MVEL expression defined
in the flag key checks if the user provided an affirmative value re-
garding shell escape, through comparing ♢parameters.shell with a
set of predefined affirmative values. In any case, the corresponding
command flag is defined as result of such evaluation.

O arguments→ default
As default behaviour, if a parameter is not set in the directive context,
the reference will be mapped to an empty string. This key exists for
the exact purpose of overriding such behaviour and always expects a
string value, as if it were provided by the user in the directive context.

No more evaluation and variables

In earlier versions, arara used to evaluate the default key and
return a plain, generic Object reference, which was then for-
warded directly to the corresponding command context. The work-
flow changed for version 6.0 on.

From now on, default always expects a string value, as if it
were provided by the user in the directive context. No variables
are available and no more evaluation is expected from this key.
Consider the following example:

Example

1 default: "@{ 1 == 1 }"

There is an orb tag expression in this string, which should re-
solve to true in previous versions of arara. However, from now
on, it will not be evaluated at all and the literal string will be
assigned to the default key.

The default key, whenever available and in the scenario in
which the user does not provide an explicit value for the cur-
rent argument in the directive context, is forwarded to the flag
context for proper evaluation. Then the workflow proceeds as
usual.

Chapter 2. Important concepts 17

Return type

The default key, whenever available, returns a string to be eval-
uated in the corresponding flag context. However, if the target
evaluation context does not exist (i.e, there is no corresponding
flag key), the value is transformed into a list of strings and then
forwarded directly to the command context. For instance:

Example

1 - identifier: foo
2 default: 'bar'

This scenario will directly forward [’bar’] (a list of strings
containing the specified value as single element) as the value for
the ♢foo variable in the corresponding command context.

Example

1 default: 'stable'

O arguments→ required
There might be certain scenarios in which a rule could make use of re-
quired arguments (for instance, a copy operation in which source and
target must be provided). The required key acts as a boolean switch
to indicate whether the corresponding argument should be manda-
tory. In this case, set the key value to true and the argument be-
comes required. Later on at runtime, arara will throw an error if a
required parameter is missing in the directive.

Example

1 required: false

Note that setting the required key value to false corresponds to
omitting the key completely in the rule context, which resorts to the
default behaviour (i.e, all arguments are optional).

Chapter 2. Important concepts 18

Note on argument keys

As seen previously, both flag and default are marked as optional,
but at least one of them must occur in the argument specification,
otherwise arara will throw an error, as it makes no sense to have no
argument handling at all. Please make sure to specify at least one of
them for a consistent behaviour!

For instance, consider a full example of the arguments key, defined with
only one argument, presented as follows. The hyphen denotes a list el-
ement, so mind the indentation for correctly specifying the component
keys. Also, note that, in this case, keys required and default were com-
pletely optional, and they were included for didactic purposes.

Example

1 arguments:
2 - identifier: shell
3 flag: >
4 @{
5 isTrue(parameters.shell,
6 '--shell-escape',
7 '--no-shell-escape')
8 }
9 required: false

10 default: 'false'

This is the rule structure in the YAML format used by arara. Keep in mind
that all subtasks in a rule are checked against their corresponding exit status.
If an abnormal execution is detected, the tool will instantly halt and the rule
will fail. Even arara itself will return an exit code different than zero when
this situation happens (detailed in Chapter 3, on page 26).

2.2 Directives

A directive is a special comment inserted in the source file in which you indi-
cate how arara should behave. You can insert as many directives as you want
and in any position of the file. The tool will read the whole file and extract the
directives.

There are two types of directives in arara which determine the way the
corresponding rules will be instantiated. They are listed as follows. Note that
directives are always preceded by the arara: pattern.

empty directive
This type of directive has already been mentioned in Chapter 1, on page 1,
it has only the rule name (which refers to the identifier key from the rule

Chapter 2. Important concepts 19

of the same name). All rule arguments are mapped to empty lists, except
the ones with default values, mapped to lists containing single elements.

Empty directive

1 % arara: pdflatex

parametrized directive
This type of directive also has the rule name (which refers to the identifier
key from the rule of the same name), and also contains a map of parame-
ters in order to provide additional information to the corresponding rule.
This map is defined in the YAML format, based on the inline style.

Parametrized directive

1 % arara: pdflatex: { shell: yes }

Observe that arara relies on named parameters, so they are mapped by
their corresponding argument identifiers and not by their positions. The
syntax for a parameter is described as follows. Please refer to the map
definition in Section 10.1, on page 175.

Parameter syntax

1 key : value

Note that virtually any type of data can be used as parameter value, so
lists, integers, booleans, sets and other maps are available as well. How-
ever, there must be the correct handling of such types in the rule context.

When handling parametrized directives, arara always checks if directive
parameters and rule arguments match. If we try to inject a non-existent pa-
rameter in a parametrized directive, the tool will raise an error about it:

Terminal

1 __ _ _ __ __ _ _ __ __ _
2 / _` | '__/ _` | '__/ _` |
3 | (_| | | | (_| | | | (_| |
4 __,_|_| __,_|_| __,_|
5
6 Processing "hello.tex" (size: 102 B, last modified: 12/28/2020
7 10:28:00), please wait.
8

Chapter 2. Important concepts 20

Terminal (ctd.)

9 ERROR
10
11 I found these unknown keys in the directive: (foo). This should
12 be an easy fix, just remove them from your map.
13
14 Total: 0.21 seconds

As the message suggests, we need to remove the unknown parameter key
from our directive or rewrite the rule in order to include it as an argument.
The first option is, of course, easier.

Sometimes, directives can span several columns of a line, particularly the
ones with several parameters. We can split a directive into multiple lines by
using the arara: --> mark (also known as arrow notation during develop-
ment) to each line which should compose the directive. We call it a multiline
directive. Let us see an example:

Multiline directive

1 % arara: pdflatex: {
2 % arara: --> shell: yes,
3 % arara: --> synctex: yes
4 % arara: --> }

It is important to observe that there is no need of them to be in contiguous
lines, i.e, provided that the syntax for parametrized directives hold for the line
composition, lines can be distributed all over the code. In fact, the log file
(when enabled) will contain a list of all line numbers that compose a directive.
This feature is discussed later on, in Section 5.2, on page 52.

Keep lines together

Although it is possible to spread lines of a multiline directive all over the
code, it is considered good practice to keep them together for easier read-
ing and editing. In any case, you can always see which lines compose a
directive by inspecting the log file.

arara provides logical expressions, written in the MVEL language, and spe-
cial operators processed at runtime in order to determine whether and how a
directive should be processed. This feature is named directive conditional, or
simply conditional as an abbreviation. The following list describes all condi-
tional operators available in the directive context.

a priori *if
The associated MVEL expression is evaluated beforehand, and the direc-

Chapter 2. Important concepts 21

tive is interpreted if, and only if, the result of such evaluation is true. This
directive, when the conditional holds true, is executed at most once.

Conditional

1 % arara: pdflatex if missing('pdf') || changed('tex')

a posteriori *until
The directive is interpreted the first time, then the associated MVEL ex-
pression evaluation is done. While the result holds false, the directive is
interpreted again and again. There are no guarantees of proper halting.

Conditional

1 % arara: pdflatex until !found('log', 'undefined references')

a priori *unless
Technically an inverted *if conditional, the associated MVEL expression
is evaluated beforehand, and the directive is interpreted if, and only if, the
result is false. This directive, when the conditional holds false, is executed
at most once.

Conditional

1 % arara: pdflatex unless unchanged('tex') && exists('pdf')

a priori *while
The associated MVEL expression is evaluated beforehand, the directive is
interpreted if, and only if, the result is true, and the process is repeated
while the result still holds true. There are no guarantees of proper halting.

Conditional

1 % arara: pdflatex while missing('pdf') ||
2 % arara: --> found('log', 'undefined references')

Several methods are available in the directive context in order to ease the
writing of conditionals, such as ♢missing , ♢changed , ♢found , ♢unchanged , and
♢exists featured in the previous examples. They will be properly detailed later
on, in Section 6.1, on page 56.

Chapter 2. Important concepts 22

No infinite loops

Although there are no conceptual guarantees for proper halting of un-
bounded loops, we have provided a technical solution for potentially infi-
nite iterations: arara has a predefined maximum number of loops. The
default value is set to 10, but it can be overridden either in the configu-
ration file or with a command line flag. We discuss this feature later on,
in Sections 3.2 and 4.2, on pages 28 and 41, respectively.

All directives, regardless of their type, are internally mapped alongside with
the reference parameter, discussed earlier on, in Section 1.2, on page 3, as a
special variable in the rule context. When inspecting the log file, you will find
all map keys and values for each extracted directive (actually, there is an entire
log section devoted to detailing directives found in the code). This feature is
covered in Section 5.3, on page 52. See, for instance, the report of the directive
extraction and normalization process performed by arara when inspecting
doc2.tex , available in the log file. Note that timestamps were deliberately
removed in order to declutter the output, and line breaks were included in
order to easily spot the log entries.

doc2.tex

Source file

1 % arara: pdflatex
2 % arara: pdflatex: { shell: yes }
3 \documentclass{article}
4
5 \begin{document}
6 Hello world.
7 \end{document}

An excerpt of the log file (directive section)

1 Directive: { identifier: pdflatex, parameters:
2 {reference=/home/paulo/doc2.tex},
3 conditional: { NONE }, lines: [1] }
4
5 Directive: { identifier: pdflatex, parameters:
6 {shell=yes, reference=/home/paulo/doc2.tex},
7 conditional: { NONE }, lines: [2] }

The directive context also features another special parameter named files
which expects a non-empty list of file names as plain string values. For each
element of this list, arara will replicate the current directive and point the ele-
ment being iterated as current reference value (resolved to a proper absolute,
canonical path of the file name). See, for instance, the report of the directive
extraction and normalization process performed by arara when inspecting

Chapter 2. Important concepts 23

doc3.tex , available in the log file.

doc3.tex

Source file

1 % arara: pdflatex: { files: [doc1.tex, doc2.tex] }
2 Hello world.
3 \bye

An excerpt of the log file (directive section)

1 Directive: { identifier: pdflatex, parameters:
2 {reference=/home/paulo/doc1.tex},
3 conditional: { NONE }, lines: [1] }
4
5 Directive: { identifier: pdflatex, parameters:
6 {reference=/home/paulo/doc2.tex},
7 conditional: { NONE }, lines: [1] }

It is important to observe that, in this case, doc3.tex is a plain TEX file, but
pdflatex is actually being called on two LATEX documents, first doc1.tex and
then, at last, doc2.tex .

Even when a directive is interpreted with a file other than the one being
processed by arara (through the magic of the files parameter), it is possible
to use helper methods in the rule context to get access to the original file and
reference. Such methods are detailed later on, in Section 6.1, on page 56.

Orb tag expansion in parameter values

From version 6.0 on, arara is able to expand orb tags within a special
options parameter in the directive context. For instance:

Example

1 % arara: lualatex: {
2 % arara: --> options: ['--output-directory=@{getSession().
3 % arara: --> get("arg:builddir")}'
4 % arara: -->]
5 % arara: --> }

This feature supports the following methods with their documented
meanings, as seen in Chapter 6, on page 56:

♢getBasename ♢getSession ♢getOriginalReference

Chapter 2. Important concepts 24

Orb tag expansion in parameter values (ctd.)

Keep in mind that this feature is disabled when arara is running in safe
mode, as seen in Chapter 3, on page 26.

2.3 Important changes in version 6

A note to users

If this is your first time using arara or you do not have custom rules in
the old format, you can safely ignore this section. All rules shipped with
our tool are already written in the new format.

API, CLI and library

From version 6.0 on, arara is now split into an API, a core implemen-
tation (library) and the implementation of the executable (command line
interface). Projects relying on code in the arara JAR distributions have
to be updated.

Localization updates

The localization framework was redesigned in version 6.0:

– Localization is now provided by classes as a library instead of prop-
erty files in the tool resources.

– From version 6.0 on, languages have to be passed as IETF BCP 47
codes. The old system has been removed. Hence, please use en-QN
instead of qn , and so forth.

– If you pass an invalid language code, arara will now run in English
and issue a log warning but not fail anymore. Failing due to the
wrong language in the output was considered inappropriate.

Method signature changes

The following method signatures have been altered:

é C R ♢loadObject(File file, String name) △Pair<Integer, Object>

Ë C R ♢
loadObject(File file,
String name) △

Pair<ClassLoading.
ClassLoadingStatus, Object>

Chapter 2. Important concepts 25

Method signature changes (ctd.)

é C R ♢loadObject(String ref, String n) △Pair<Integer, Object>

Ë C R ♢
loadObject(String ref,
String n) △

Pair<ClassLoading.
ClassLoadingStatus, Object>

é C R ♢loadClass(File file, String name) △Pair<Integer, Object>

Ë C R ♢
loadClass(File file,
String name) △

Pair<ClassLoading.
ClassLoadingStatus, Object>

é C R ♢loadClass(String ref, String n) △Pair<Integer, Object>

Ë C R ♢
loadClass(String ref,
String n) △

Pair<ClassLoading.
ClassLoadingStatus, Object>

You can now access the status values as enumeration.

Null handling

The implementation of methods available within rules has been moved
to Kotlin causing null values to be handled differently. Previously un-
defined behavior will now cause an error.

This section pretty much covered the basics of the changes to this version.
Of course, it is highly advisable to make use of the new features available in
arara 6.0 for achieving better results. If you need any help, please do not
hesitate to contact us. See Section 1.4, on page 6, for more details on how to
get help.

three

Command line
arara is a command line tool. It can be used in a plethora of command
interpreter implementations, from bash to a Windows prompt, provided that
the Java runtime environment is accessible within the current session. This
chapter covers the user interface design, as well as options (also known as
flags or switches) that modify the underlying application behaviour.

3.1 User interface design

The goal of a user interface design is to make the interaction as simple and
efficient as possible. Good user interface design facilitates finishing the task
at hand without drawing unnecessary attention to itself. We redesigned the
interface in order to look more pleasant to the eye, after all, we work with TEX
and friends:

Terminal

1 __ _ _ __ __ _ _ __ __ _
2 / _` | '__/ _` | '__/ _` |
3 | (_| | | | (_| | | | (_| |
4 __,_|_| __,_|_| __,_|
5
6 Processing 'doc5.tex' (size: 285 B, last modified: 03/01/2020
7 19:25:40), please wait.
8
9 (PDFLaTeX) PDFLaTeX engine SUCCESS

10 (BibTeX) The BibTeX reference management software SUCCESS
11 (PDFLaTeX) PDFLaTeX engine SUCCESS
12 (PDFLaTeX) PDFLaTeX engine SUCCESS
13
14 Total: 1.14 seconds

First of all, we have the nice application logo, displayed using ASCII art. The
entire layout is based on monospaced font spacing, usually used in terminal
prompts. Hopefully you follow the conventional use of a monospaced font in
your terminal, otherwise the visual effect will not be so pleasant. First and
foremost, arara displays details about the file being processed, including size
and modification status:

26

Chapter 3. Command line 27

Terminal

1 Processing 'doc5.tex' (size: 285 B, last modified: 03/01/2020
2 19:25:40), please wait.

The list of tasks was also redesigned to be fully justified, and each entry
displays both task and subtask names (the former being displayed enclosed
in parentheses), besides of course the usual execution result:

Terminal

1 (PDFLaTeX) PDFLaTeX engine SUCCESS
2 (BibTeX) The BibTeX reference management software SUCCESS
3 (PDFLaTeX) PDFLaTeX engine SUCCESS
4 (PDFLaTeX) PDFLaTeX engine SUCCESS

As previously mentioned in Section 2.1, on page 8, if a task fails, arara
will halt the entire execution at once and immediately report back to the user.
This is an example of how a failed task looks like:

Terminal

1 (PDFLaTeX) PDFLaTeX engine FAILURE

Also, observe that our tool displays the execution time before terminating,
in seconds. The execution time has a very simple precision, as it is meant to
be easily readable, and should not be considered for command profiling.

Terminal

1 Total: 1.14 seconds

The tool has two execution modes: silent, which is the default, and verbose,
which prints as much information about tasks as possible. When in silent
mode, arara will simply display the task and subtask names, as well as the
execution result. Nothing more is added to the output. For instance:

Terminal

1 (BibTeX) The BibTeX reference management software SUCCESS

Chapter 3. Command line 28

When executed in verbose mode, arara will display the underlying system
command output as well, when applied. In version 4.0 of our tool, this mode
was also entirely redesigned in order to avoid unnecessary clutter, so it would
be easier to spot each task. For instance:

Terminal

1 ---
2 (BibTeX) The BibTeX reference management software
3 ---
4 This is BibTeX, Version 0.99d (TeX Live 2020)
5 The top-level auxiliary file: doc5.aux
6 The style file: plain.bst
7 Database file #1: mybib.bib
8
9 --- SUCCESS

It is important to observe that, when in verbose mode, arara can offer
proper interaction if the system command requires user intervention. How-
ever, when in silent mode, the tool will simply discard this requirement and
the command will almost surely fail.

3.2 Options

In order to run arara on your TEX file, the simplest possible way is to pro-
vide the file name to the tool in your favourite command interpreter session,
provided that the file has at least one directive:

Terminal

1 $ arara doc6.tex

From version 5.0 on, arara may receive more than one file as parameter.
It will compile them sequentially (starting with the leftmost). The process fails
on the first failure of these executions. For the files to be flawlessly compiled
by TEX, they should be in the same working directory. If you process your files
with other tools, this requirement could be lifted.

Terminal

1 $ arara doc20.tex doc21.tex
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|

Chapter 3. Command line 29

Terminal (ctd.)

6
7 Processing 'doc20.tex' (size: 28 B, last modified: 02/28/2020
8 07:15:02), please wait.
9

10 (PDFTeX) PDFTeX engine SUCCESS
11
12 Processing 'doc21.tex' (size: 28 B, last modified: 02/28/2020
13 07:15:10), please wait.
14
15 (PDFTeX) PDFTeX engine SUCCESS
16
17 Total: 1.20 seconds

The tool has a set of command line options (also known as flags or switches)
that modify the underlying execution behaviour or enhance the execution
workflow. If you do not provide any parameters, arara will display the tool
usage and the available options:

Terminal

1 $ arara
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Usage: arara [OPTIONS] file...
8
9 Options:

10 -l, --log Generate a log output
11 -v, --verbose / -s, --silent Print the command output
12 -n, --dry-run Go through all the motions of running
13 a command, but with no actual calls
14 -s, --safe-run Run in safe mode and disable
15 potentially harmful features. Make
16 sure your projects uses only allowed
17 features.
18 -H, --header Extract directives only in the file
19 header
20 -p, --preamble TEXT Set the file preamble based on the
21 configuration file
22 -t, --timeout INT Set the execution timeout (in
23 milliseconds)
24 -L, --language TEXT Set the application language
25 -m, --max-loops INT Set the maximum number of loops (> 0)
26 -d, --working-directory PATH Set the working directory for all
27 tools
28 -P, --call-property VALUE Pass parameters to the application
29 to be used within the session.
30 -V, --version Show the version and exit
31 -h, --help Show this message and exit

Chapter 3. Command line 30

Terminal (ctd.)

32
33 Arguments:
34 file The file(s) to evaluate and process

The available options for our tool are detailed as follows. Each option con-
tains short and long variations, which are denoted by -o and --option in the
command line, respectively. Additionally, when a parameter is required by the
current option, it will be denoted by ▷parameter in the description.

-h --help
As the name indicates, this option prints the help message containing the
tool usage and the list of all available options. The tool exits afterwards.
When running arara without any options or a file to be processed, this is
the default behaviour. This option has the highest priority over the others.

-H --header
This option changes the mechanics of how arara extracts the directives
from the code. The tool always reads the entire file and extracts every
single directive found throughout the code. However, by activating this
switch, arara will extract all directives from the beginning of the file until
it reaches a line that is not empty and it is not a comment (hence the
option name). Consider the following example:

doc7.tex

Source file

1 % arara: pdftex
2 Hello world.
3 \bye
4
5 % arara: pdftex

When running arara without this option, two directives will be extracted
(the ones found in lines 1 and 5). However, if executed with --header , the
tool will only extract one directive (from line 1), as it will stop the extraction
process as soon as it reaches line 2. This option can also be activated by
default in the configuration file (see Section 4.2, on page 41).

-l --log
This option enables the logging feature of our tool. All streams from all
system commands will be logged and, at the end of the execution, a con-
solidated log file named arara.log will be generated. This option can
also be activated by default in the configuration file (see Section 4.2, on
page 41). Refer to Chapter 5, on page 50, for more details on the logging
feature.

Chapter 3. Command line 31

-L --language ▷code
This option sets the language of the current execution of arara accord-
ing to the language code identified by the ▷code value provided as the
parameter. The language code tries to follow the IETF BCP 47 norm, stan-
dardized nomenclature used to classify languages. For example, this is
our tool speaking Dutch:

Terminal

1 $ arara -L nl doc5.tex
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Verwerken van 'doc5.tex' (grootte: 285 B, laatst gewijzigd:
8 03/01/2020 19:25:40), een ogenblik geduld.
9

10 (PDFLaTeX) PDFLaTeX engine SUCCESVOL
11 (BibTeX) The BibTeX reference management software SUCCESVOL
12 (PDFLaTeX) PDFLaTeX engine SUCCESVOL
13 (PDFLaTeX) PDFLaTeX engine SUCCESVOL
14
15 Totaal: 1,07 seconden

Navis volitans mihi anguillis plena est

At time of writing, arara is able to speak English, German, Dutch,
Italian and Brazilian Portuguese out of the box. There is also a
special dialect named Broad Norfolk, spoken by those living in the
county of Norfolk in England.

en English de German en-QN Broad Norfolk

it Italian nl Dutch pt-BR Portuguese (BR)

Would you like to make arara speak your own language? Splendid!
We would love to have you in the team! Just send us an electronic
mail, join our dedicated chatroom or open an issue about it. The
localization process is quite straightforward, we can help you. Any
language is welcome!

This option can also be specified in the configuration file (see Section 4.2,
on page 41). However, one can always override this setting by running the
tool with an explicit -L option.

https://gitter.im/cereda/arara
https://gitlab.com/islandoftex/arara/issues

Chapter 3. Command line 32

Invalid language codes

From version 6.0 on, if you pass an invalid language code, arara will
now run in English and issue a log warning but not fail anymore.
Failing due to the wrong language in the output was considered in-
appropriate.

-m --max-loops ▷number
As a means to avoid infinite iterations, arara has a predefined maximum
number of loops, with the default set to 10, as a technical solution (seen
in Section 2.2, on page 18). For instance, consider the following directive:

A naughty directive

1 % arara: pdftex while true

The --max-loops option is used to redefine the maximum number of loops
our tool will allow for potentially infinite iterations. Any positive integer
can be used as the ▷number value for this option. An execution of the
previous directive with a lower maximum number of loops is shown as
follows:

Terminal

1 $ arara -m 2 doc8.tex
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Processing 'doc8.tex' (size: 45 B, last modified: 05/29/2018
8 12:32:14), please wait.
9

10 (PDFTeX) PDFTeX engine SUCCESS
11 (PDFTeX) PDFTeX engine SUCCESS
12
13 Total: 0.58 seconds

This option can also be specified in the configuration file (see Section 4.2,
on page 41). However, one can always override this setting by running the
tool with an explicit -m option.

-n --dry-run
This option makes arara go through all the motions of running tasks and
subtasks, but with no actual calls. It is a very useful feature for testing
the sequence of underlying system commands to be performed on a file.

Chapter 3. Command line 33

For instance, consider the following execution:

Terminal

1 $ arara -n doc5.tex
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Processing "doc5.tex" (size: 360 B, last modified: 12/28/2020
8 13:03:32), please wait.
9

10 [DR] (PDFLaTeX) PDFLaTeX engine
11 ---
12 Author: Island of TeX
13 About to run: [pdflatex, doc5.tex] @ /home/paulo/Downloads
14
15 [DR] (BibTeX) The BibTeX reference management software
16 ---
17 Author: Island of TeX
18 About to run: [bibtex, doc5] @ /home/paulo/Downloads
19
20 [DR] (PDFLaTeX) PDFLaTeX engine
21 ---
22 Author: Island of TeX
23 About to run: [pdflatex, doc5.tex] @ /home/paulo/Downloads
24
25 [DR] (PDFLaTeX) PDFLaTeX engine
26 ---
27 Author: Island of TeX
28 About to run: [pdflatex, doc5.tex] @ /home/paulo/Downloads
29
30 Total: 0.18 seconds

Note that the rule authors are displayed (so they can be blamed in case
anything goes wrong), as well as the system command to be executed.
It is an interesting approach to see everything that will happen to your
document and in which order.

Conditionals and boolean values

It is very important to observe that conditionals are not evaluated
when our tool is executed in the --dry-run mode, although they are
properly listed. Also, when a rule returns a boolean value, the code
is executed regardless of this mode.

-p --preamble ▷name
Some TEX documents require the same automation steps, e.g, a set of ar-
ticles. To this end, so as to avoid repeating the same preamble over and
over in this specific scenario, arara has the possibility of setting prede-

Chapter 3. Command line 34

fined preambles in a special section of the configuration file identified by
a unique key for later use. This command line option prepends the prede-
fined preamble referenced by the ▷name key to the current document and
then proceeds to extract directives, as usual. For instance:

Preamble

1 twopdftex: |
2 % arara: pdftex
3 % arara: pdftex

doc9.tex

Source file

1 Hello world.
2 \bye

In this example, we have a preamble named twopdftex and a TEX file
named doc9.tex with no directives. Of course, our tool will complain
about missing directives, unless we deliberately inject the two directives
from the predefined preamble into the current execution:

Terminal

1 $ arara -p twopdftex doc9.tex
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Processing 'doc9.tex' (size: 18 B, last modified: 05/29/2018
8 14:39:21), please wait.
9

10 (PDFTeX) PDFTeX engine SUCCESS
11 (PDFTeX) PDFTeX engine SUCCESS
12
13 Total: 0.96 seconds

It is important to note that this is just a directive-based preamble and
nothing else, so a line other than a directive is discarded. Line breaks
and conditionals are supported. Trying to exploit this area for other pur-
poses will not work. The preamble specification in the configuration file is
detailed in Section 4.2, on page 41.

-t --timeout ▷number
This option sets an execution timeout for every task, in milliseconds. If
the timeout is reached before the task ends, arara will kill it and halt the

Chapter 3. Command line 35

execution. Any positive integer can be used as the ▷number value for this
option. Of course, use a sensible value to allow proper time for a task to
be executed. For instance, consider the following recursive call:

doc10.tex

Source file

1 % arara: pdftex
2 \def\foo{\foo}
3 This will go \foo forever.
4 \bye

Terminal

1 $ arara --timeout 3000 doc9.tex
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Processing 'doc10.tex' (size: 63 B, last modified: 05/29/2018
8 15:24:06), please wait.
9

10 (PDFTeX) PDFTeX engine ERROR
11
12 The system command execution reached the provided timeout value
13 and was aborted. If the time was way too short, make sure to
14 provide a longer value. There are more details available on this
15 exception:
16
17 DETAILS ---
18 Timed out waiting for java.lang.UNIXProcess@6b53e23f to finish,
19 timeout: 3000 milliseconds, executed command [pdftex, doc10.tex]
20
21 Total: 3.37 seconds

If left unattended, this particular execution would never finish (and prob-
ably crash the engine at a certain point), as expected by the recursive calls
without a proper fixed point. The --timeout option was set at 3000 mil-
liseconds and the task was aborted when the time limit was reached. Note
that the tool raised an error about it.

-d --working-directory
This option allows you to change the working directory. That is, the com-
mands will run from a different directory than the directory you launched
arara in. This is especially useful when calling a TEX engine as they
resolve files against the working direcotry. For that reason, arara will
also resolve each file you pass to it that has no absolute path against the
working directory. The working directory is fixed for the whole call; pass-
ing multiple files to arara will resolve all of them against and execute all

Chapter 3. Command line 36

actions within that one working directory.

-V --version
This option, as the name indicates, prints the current version. It also
prints the current revision and a list of libraries with their corresponding
licenses. Finally, it simply exits the application. Note that this option has
the second highest priority over the others.

-v --verbose
This option enables the verbose mode of arara, as seen in Section 3.1, on
page 26. It also enables all streams to be flushed directly to the terminal,
including potential user input interactions (the exact opposite of silent
mode). This option can also be activated by default in the configuration
file (see Section 4.2, on page 41).

-s --silent
This option disables the verbose mode of arara (thus activating the de-
fault silent mode), if previously enabled by a proper configuration file (see
Chapter 4, on page 40). It is important to note that this command line
option has higher priority over the --verbose counterpart.

-S --safe-run
This option enables the safe mode of arara, protecting the system by dis-
allowing certain user actions. Currently, the following features are re-
stricted:

– File lookup will only perform explicit file resolution. Wildcard filters
are disabled.

– ♢unsafelyExecuteSystemCommand will raise an exception and abort the
run. Keep in mind that rules are still allowed to construct arbitrary
commands using Command objects, so this restriction only disallows
arbitrary system commands that would not get logged and are thus
invisible to the user.

– The options parameter does not expand orb tags in any directive.

-P --call-property ▷entry
This option forwards the provided ▷entry , in the key=value format, to the
session map. For instance, consider the following call:

Example

1 $ arara -P foo=bar hello.tex

In a rule, you may now retrieve the value associated to the foo key, which
is bar , set at runtime, by calling the following method in your code:

Chapter 3. Command line 37

Example

1 getSession().get('arg:foo')

This option may be called multiple times, as a means to provide as many
data pairs as needed. Please refer to ♢getSession in Chapter 6, on page 56,
for more details.

You can combine options, use long or short variations interchangeably and
write them in any order, provided that a file name is given at some point in the
command line, otherwise the usage will be printed. Use the provided features
in order to enhance and optimize your automation workflow.

3.3 File name lookup

arara, as a command line application, provides support for a restricted range
of file types. In particular, the tool recognizes five file types based on their
extensions. These types are presented as follows, as well as the lookup order.

attempt 1 attempt 2 attempt 3 attempt 4 attempt 5
tex dtx ltx drv ins

Note that other extensions can be added through a proper mapping in the
configuration file, as well as modifying the lookup order. This feature is de-
tailed later on, in Section 4.2, on page 41. arara employs the following scheme
for file name lookup:

– First and foremost, if the provided file name already contains a valid
extension, the tool attempts an exact match. If the file exists, it will be
selected. This is the best approach if your working directory contains
other files sharing the same base name.

Terminal

1 $ arara doc11.tex
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Processing 'doc11.tex' (size: 34 B, last modified: 05/29/2018
8 19:40:35), please wait.
9

10 (PDFTeX) PDFTeX engine SUCCESS
11
12 Total: 0.69 seconds

Chapter 3. Command line 38

– If the provided file name has an unsupported extension or no extension
at all, the tool iterates through the list of default extensions, appending
the current element to the file name and attempting an exact match. If
the file exists, it will be selected.

Terminal

1 $ arara doc11
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Processing 'doc11.tex' (size: 34 B, last modified: 05/29/2018
8 19:40:35), please wait.
9

10 (PDFTeX) PDFTeX engine SUCCESS
11
12 Total: 0.69 seconds

– Many shells complete file names that have multiple extensions in the
same directory, so that they end with a period. We try to resolve against
them as well!

Terminal

1 $ arara doc11.
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Processing 'doc11.tex' (size: 34 B, last modified: 05/29/2018
8 19:40:35), please wait.
9

10 (PDFTeX) PDFTeX engine SUCCESS
11
12 Total: 0.69 seconds

It is highly recommended to use complete file names with our tool, in order
to ensure the correct file is being processed. If your command line interpreter
features tab completion, you can use it to automatically fill partially typed file
names from your working directory.

Exit status support

arara follows the good practices of software development and provides
three values for exit status, so our tool can be programmatically used in

Chapter 3. Command line 39

Exit status support (ctd.)

scripts and other complex workflows.

0 Successful execution

1 One of the rules failed

2 An exception was raised

Please refer to the documentation of your favourite command line inter-
preter to learn more about exit status captures. Programming languages
also offer methods for retrieving such information.

four

Configuration file
arara provides a persistent model of modifying the underlying execution be-
haviour or enhancing the execution workflow through the concept of a config-
uration file. This chapter provides the basic structure of that file, as well as
details on the file lookup in the operating system.

4.1 File lookup

Our tool looks for the presence of at least one of four very specific files before
execution. These files are presented as follows. Observe that the directories
must have the correct permissions for proper lookup and access. The lookup
order is also presented.

attempt 1 attempt 2 attempt 3 attempt 4
.araraconfig.yaml araraconfig.yaml .arararc.yaml arararc.yaml

arara provides two approaches regarding the location of a configuration
file. They dictate how the execution should behave and happen from a user
perspective, and are described as follows.

global configuration file
For this approach, the configuration file should be located at USER_HOME
which is the home directory of the current user. All subsequent executions
of arara will read this configuration file and apply the specified settings
accordingly. However, it is important to note that this approach has the
lowest lookup priority, which means that a local configuration, presented
as follows, will always supersede a global counterpart.

local configuration file
For this approach, the configuration file should be located at USER_DIR
which is the working directory associated with the current execution. This
directory can also be interpreted as the one relative to the processed file.
This approach offers a project-based solution for complex workflows, e.g,
a thesis or a book. However, arara must be executed within the working
directory, or the local configuration file lookup will fail. Observe that this
approach has the highest lookup priority, which means that it will always
supersede a global configuration.

40

Chapter 4. Configuration file 41

Beware of empty configuration files

A configuration file should never be empty, otherwise arara will complain
about it. Make sure to populate it with at least one key, or do not write a
configuration file at all. The available keys are described in Section 4.2,
on page 41.

If the logging feature is properly enabled, arara will indicate in the cor-
responding arara.log file whether a configuration file was used during the
execution and, if so, the corresponding canonical, absolute path. Logging is
detailed later on, in Chapter 5, on page 50.

4.2 Basic structure

The following list describes the basic structure of an arara configuration file
by presenting the proper elements (or keys, if we consider the proper YAML
nomenclature). Observe that elements marked as M are mandatory (i.e, the
configuration file has to have them in order to work). Similarly, elements
marked as O are optional, so you can safely ignore them when writing a con-
figuration file for our tool.

M !config
This keyword is mandatory and must be the first line of a configuration
file. It denotes the object mapping metadata to be internally used by the
tool. Actually, the tool is not too demanding on using it (in fact, you could
suppress it entirely and arara will not complain), but it is considered good
practice to start a configuration file with a !config keyword regardless.

O string list paths
When looking for rules, arara always searches the default rule path,
which consists of a special subdirectory named rules/ inside another
special directory named ARARA_HOME (the place where our tool is installed).
If no rule is found, the execution halts with an error. The paths key spec-
ifies a list of directories, represented as plain strings, in which our tool
should search for rules. The default path is appended to the list. Then the
search happens from the first to the last element, in order.

Example

1 paths:
2 - '/home/paulo/rules'
3 - '/opt/paulo/rules'

There are three variables available in the paths context and are described
as follows (note that MVEL variables and orb tags are discussed in Chap-
ter 11.1). A variable will be denoted by ♢variable in this list.

Chapter 4. Configuration file 42

♢user.home
This variable, as the name implies, holds the value of the absolute,
canonical path of USER_HOME which is the home directory of the cur-
rent user, as plain string. Note that the specifics of the home directory
(such as name and location) are defined by the operating system in-
volved.

Example

1 paths:
2 - '@{user.home}/rules'

♢user.name
This variable, as the name implies, holds the value of the current user
account name, as plain string. On certain operating systems, this
value is used to build the home directory structure.

Example

1 paths:
2 - '/home/@{user.name}/rules'

♢application.workingDirectory
This variable, as the name implies, holds the value of the absolute,
canonical path of the working directory associated with the current
execution, as plain string.

Example

1 paths:
2 - '@{application.workingDirectory}/rules'

Observe that the ♢user and ♢application variables actually holds maps.
However, for didactic purposes, it is easier to use the property navigation
feature of MVEL, detailed in Section 11.3, on page 182, and consider the
map references as three independent variables. You can use property
navigation styles interchangeably.

Avoid folded and literal styles for scalars in a path

Do not use folded or literal styles for scalars in a path! The orb
tag resolution for a path in plain string should be kept as simple as
possible, so always use the inline style.

Chapter 4. Configuration file 43

O string language default: en
This key sets the language of all subsequent executions of arara according
to the provided language code value, as plain string. The default language
is set to English. Also, it is very important to observe that the --language
command line option can override this setting.

Example

1 language: nl

O integer loops default: 10
This key redefines the maximum number of loops arara will allow for
potentially infinite iterations. Any positive integer can be used as the value
for this variable. Also, it is very important to observe that the --max-loops
command line option can override this setting.

Example

1 loops: 30

O boolean verbose default: false
This key activates or deactivates the verbose mode of arara as default
mode, according to the associated boolean value. Also, it is very impor-
tant to observe that the --verbose command line option can override this
setting if, and only if, this variable holds false as the value. Similarly,
the --silent command line option can override this setting if, and only if,
this variable holds true as the value.

Example

1 verbose: true

O boolean logging default: false
This key activates or deactivates the logging feature of arara as the de-
fault behaviour, according to the associated boolean value. Also, it is very
important to observe that the --log command line option can override
this setting if, and only if, this variable holds false as the value.

Example

1 logging: true

Chapter 4. Configuration file 44

O boolean header default: false
This key modifies the directive extraction, according to the associated
boolean value. If enabled, arara will extract all directives from the be-
ginning of the file until it reaches a line that is not empty and it is not
a comment. Otherwise, the tool will resort to the default behaviour and
extract all directives from the entire file. It is very important to observe
that the --header command line option can override this setting if, and
only if, this variable holds false as the value.

Example

1 header: false

O string logname default: arara
This key modifies the default log file name, according to the associated
plain string value, plus the log extension. The value cannot be empty or
contain invalid characters. There is no orb tag evaluation in this specific
context, only a plain string value. The log file will be written by our tool if,
and only if, the --log command line option is used.

Log paths

From version 6.0 on, the log file may now be specified as path any-
where on the file system. However, keep in mind that this behavior
may be altered for future updates in safe mode.

Example

1 logname: mylog

O string dbname default: arara
This key modifies the default YAML database file name, according to the
associated plain string value, plus the yaml extension. The value cannot
be empty or contain invalid characters. There is no orb tag evaluation in
this specific context, only a plain string value. This database is used by
file hashing operations, detailed in Section 6.1, on page 56.

Example

1 dbname: mydb

Chapter 4. Configuration file 45

O string laf default: none
This key modifies the default look and feel class reference, i.e, the ap-
pearance of GUI widgets provided by our tool, according to the associated
plain string value. The value cannot be empty or contain invalid charac-
ters. There is no orb tag evaluation in this specific context, only a plain
string value. This look and feel setting is used by UI methods, detailed in
Section 6.7, on page 80. Note that this value is used by the underlying
Java runtime environment, so a full qualified class name is expected.

Example

1 laf: 'javax.swing.plaf.nimbus.NimbusLookAndFeel'

Special keywords for the look and feel setting

Look and feel values other than the default provided by Java offer
a more pleasant visual experience to the user, so if your rules or
directives employ UI methods (detailed in Section 6.7, on page 80), it
might be interesting to provide a value to the laf key. At the time of
writing, arara provides two special keywords that are translated to
the corresponding fully qualified Java class names:

none Default look and feel

system System look and feel

The system look and feel, of course, offers the best option of all since
it mimics the native appearance of graphical applications in the un-
derlying system. However, some systems might encounter slow ren-
dering times when this option is used, so your mileage might vary.

O string map preambles
This key holds a string map containing predefined preambles for later use
with the --preamble option (see Section 3.2, on page 28). Note that each
map key must be unique. Additionally, it it is highly recommended to use
lowercase letters without spaces, accents or punctuation symbols, as key
values. Only directives, line breaks and conditionals are recognized.

Example

1 preambles:
2 twopdftex: |
3 % arara: pdftex
4 % arara: pdftex

Chapter 4. Configuration file 46

Literal style when defining a preamble

When defining preambles in the configuration file, always use the
literal style for scalar blocks. The reason for this requirement is the
proper retention of line breaks, which are significant when parsing
the strings into proper directive lines. Using the folded style in this
particular scenario will almost surely be problematic.

O string defaultPreamble
This key allows to specify a preamble for arara to use even if there are
no directives in the file nor preambles specified on the command-line.
Preambles are resolved at execution time, which means that preambles
from local configurations will take precedence over global preambles.

Example

1 defaultPreamble: twopdftex

O boolean prependPreambleIfDirectivesGiven
This key allows you to specify a boolean value indicating whether pream-
bles should be applied to all files or only those without directives. It de-
faults to true to avoid breaking existing workflows.

Example

1 prependPreambleIfDirectivesGiven: false

O file type list filetypes
This key holds a list of file types supported by arara when searching for
a file name, as well as their corresponding directive lookup patterns. In
order to properly set a file type, the keys used in this specification are
defined inside the filetypes→ context and presented as follows.

M filetypes→ extension
This key, as the name implies, holds the file extension, represented
as a plain string and without the leading dot (unless it is part of the
extension). An extension is an identifier specified as a suffix to the file
name and indicates a characteristic of the corresponding content or
intended use. Observe that this key is mandatory when specifying a
file type, as our tool does not support files without a proper extension.

Chapter 4. Configuration file 47

Example

1 extension: c

M O filetypes→ pattern
This key holds the directive lookup pattern as a regular expression
(which is, of course, represented as a plain string). When introducing
a new file type, arara must know how to interpret each line and how
to properly find and extract directives, hence this key. Observe that
this key is marked as optional and mandatory. The reason for such
an unusual indication highly depends on the current scenario and is
illustrated as follows.

– The pattern key is entirely optional for known file types (pre-
sented in Section 3.3, on page 37, and henceforth named default
file types), in case you just want to modify the file name lookup
order. It is important to observe that default file types already
have their directive lookup patterns set, which incidentally are
the same, presented as follows.

Default regular expression pattern for known file types

1 ^\s*%\s+

– The pattern key is mandatory for new file types and for overriding
existing patterns for default file types. Make sure to provide a valid
regular expression as key value. It is very important to note that,
regardless of the underlying pattern (default or provided through
this key), the special arara: keyword is immutable and thus in-
cluded by our tool in every directive lookup pattern.

Example

1 pattern: ^\s*//\s*

For instance, let us reverse the default file name lookup order presented
in Section 3.3, on page 37. Since the default lookup patterns will be
preserved, the corresponding pattern keys can be safely omitted. Now it
is just a matter of rearranging the entries in the desired order, presented
as follows.

Chapter 4. Configuration file 48

Example

1 filetypes:
2 - extension: ins
3 - extension: drv
4 - extension: ltx
5 - extension: dtx
6 - extension: tex

If a default file type is included in the filetypes list but others from the
same tier are left out, these file types not on the list will implicitly have the
lowest priority over the explicit list element during the file name lookup,
although still respecting their original lookup order modulo the specified
file type. For instance, consider the following list:

Example

1 filetypes:
2 - extension: ins
3 - extension: drv

According to the previous example, three out of five default file types were
deliberately left out of the filetypes list. As expected, the two default
file types provided to this list will have the highest priority during the
file name lookup. It is important to note that arara will always honour
the original lookup order for omitted default file types, yet favouring the
explicit elements. The following list is semantically equivalent to the pre-
vious example.

Example

1 filetypes:
2 - extension: ins
3 - extension: drv
4 - extension: tex
5 - extension: dtx
6 - extension: ltx

The following example introduces the definition of a new file type to sup-
port c files. Observe that, for this specific scenario, the pattern key is
mandatory, as previously discussed. The resulting list is presented as
follows, including the corresponding regular expression pattern.

Chapter 4. Configuration file 49

Example

1 filetypes:
2 - extension: c
3 pattern: ^\s*//\s*

It is important to note that, if no default file type is explicitly specified,
as seen in previous example, the original list of default file types will have
the highest priority over the filetypes values during the file name lookup.
The following list is semantically equivalent to the previous example.

Example

1 filetypes:
2 - extension: tex
3 - extension: dtx
4 - extension: ltx
5 - extension: drv
6 - extension: ins
7 - extension: c
8 pattern: ^\s*//\s*

Do not escape backslashes

When writing a file type pattern, there is no need for escaping back-
slashes as one does for strings in a typical programming language
(including MVEL expressions). In this specific scenario, key values
are represented as plain, literal strings.

However, please note that character escaping might be required by
the underlying regular expression in some scenarios (i.e, a literal dot
in the pattern). It is highly recommended to consult a proper regular
expression documentation for a comprehensive overview.

Since arara allows four different names for configuration files, as well as
global and local approaches, it is highly advisable to run our tool with the
--log command line option enabled, in order to easily identify which file was
considered for that specific execution. The logging feature is discussed later
on, in Chapter 5, on page 50.

five

Logging
The logging feature of arara, as discussed earlier on, is activated through
either the --log command line option (Section 3.2, on page 28) or the equiva-
lent key in the configuration file (Section 4.2, on page 41). This chapter covers
the basic structure of a typical log file provided by our tool, including the im-
portant blocks that can be used to identify potential issues. The following
example is used to illustrate this feature:

doc12.tex

Source file

1 % arara: pdftex
2 % arara: clean: { extensions: [log] }
3 Hello world.
4 \bye

When running our tool on the previous example with the --log command
line option (otherwise, the logging framework will not provide a file at all),
we will obtain the expected arara.log log file containing the most significant
events that happened during this particular execution, as well as details re-
garding the underlying operating system. The contents of this file are dis-
cussed below. Note that timestamps were deliberated removed from the log
entries in order to declutter the output, and line breaks were included in or-
der to easily spot each entry.

5.1 System information

The very first entry to appear in the log file is the current version of arara.

Log file

1 Welcome to arara 6.0.0!

The following entries in the log file are the absolute path of the current
deployment of arara (line 1), details about the current Java virtual machine
(namely, vendor and absolute path, in lines 2 and 3, respectively), the under-

50

Chapter 5. Logging 51

lying operating system information (namely, system name, architecture and
eventually the kernel version, in line 4), home and working directories (lines 5
and 6, respectively), and the absolute path of the applied configuration file, if
any (line 7). This block is very important to help with tracking possible issues
related to the underlying operating system and the tool configuration itself.

Log file

1 ::: arara @ /opt/paulo/arara
2 ::: Java 1.8.0_171, Oracle Corporation
3 ::: /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.171-4.b10.fc28.x86_64/jre
4 ::: Linux, amd64, 4.16.12-300.fc28.x86_64
5 ::: user.home @ /home/paulo
6 ::: CF @ [none]

A privacy note

We understand that the previous entries containing information about
the underlying operating system might pose as a privacy threat to some
users. However, it is worth noting that arara does not share any sensi-
tive information about your system, as entries are listed in the log file for
debugging purposes only, locally in your computer.

From experience, these entries greatly help our users to track down er-
rors in the execution, as well as learning more about the underlying
operating system. However, be mindful of sharing your log file! Since
the log file contains structured blocks, it is highly advisable to selectively
choose the ones relevant to the current discussion.

It is important to observe that localized messages are also applied to the log
file. If a language other than English is selected, either through the --language
command line option or the equivalent key in the configuration file, the logging
framework will honour the current setting and entries will be available in the
specified language. Having a log file in your own language might mitigate the
traumatic experience of error tracking for TEX newbies. From version 6.0 on, if
you pass an invalid language code (for instance, -L foo in the command line),
arara will default to English and issue a log warning:

Log file

1 Language foo not available; defaulting to English.

Chapter 5. Logging 52

5.2 Directive extraction

The following block in the log file refers to file information and directive ex-
traction. First, as with the terminal output counterpart, the tool will display
details about the file being processed, including size and modification status:

Log file

1 Processing 'doc12.tex' (size: 74 B, last modified:
2 06/02/2018 05:36:40), please wait.

The next entries refer to finding potential directive patterns in the code,
including multiline support. All matching patterns contain the corresponding
line numbers. Note that these numbers might refer to incorrect lines in the
code if the --preamble command line option is used.

Log file

1 I found a potential pattern in line 1: pdftex
2 I found a potential pattern in line 2: clean: { extensions: [log] }

When all matching patterns are collected from the code in the previous
phase, arara composes the directives accordingly, including potential param-
eters and conditionals. Observe that all directives have an associated list of
line numbers from which they were originally composed. This phase is known
as directive extraction.

Log file

1 I found a potential directive: Directive: { identifier: pdftex,
2 parameters: {}, conditional: { NONE }, lines: [1] }
3 I found a potential directive: Directive: { identifier: clean,
4 parameters: {extensions=[log]}, conditional: { NONE }, lines: [2] }

In this phase, directives are correctly extracted and composed, but are yet
to be validated regarding invalid or reserved parameter keys. The tool then
proceeds to validate parameters and normalize such directives.

5.3 Directive normalization

Once all directives are properly composed, the tool checks for potential in-
consistencies, such as invalid or reserved parameter keys. Then all directives
are validated and internally mapped with special parameters, as previously
described in Section 5.3, on page 52.

Chapter 5. Logging 53

Log file

1 All directives were validated. We are good to go.

After validation, all directives are listed in a special block in the log file,
including potential parameters and conditionals. This phase is known as di-
rective normalization. Note that the special parameters are already included,
regardless of the directive type. This particular block can be used specially for
debugging purposes, since it contains all details regarding directives.

Log file

1 -------------------------- DIRECTIVES ---------------------------
2 Directive: { identifier: pdftex, parameters:
3 {reference=/home/paulo/Documents/doc12.tex},
4 conditional: { NONE }, lines: [1] }
5 Directive: { identifier: clean, parameters: {extensions=[log],
6 reference=/home/paulo/Documents/doc12.tex},
7 conditional: { NONE }, lines: [2] }
8 ---

Note, however, that potential errors in directive conditionals, as well as sim-
ilar inconsistencies in the corresponding rules, can only be caught at runtime.
The next phase covers proper interpretation based on the provided directives.

5.4 Rule interpretation

Once all directives are normalized, arara proceeds to interpret the potential
conditionals, if any, and the corresponding rules. Note that, when available,
the conditional type dictates whether the rule should be interpreted first or
not. For each rule, the tool informs the identifier and the absolute path of
the corresponding YAML file. In this specific scenario, the rule is part of the
default rule pack released with our tool:

Log file

1 I am ready to interpret rule 'pdftex'.
2 Rule location: '/opt/paulo/arara/rules'

For each task (or subtask, as it is part of a rule task) defined in the rule con-
text, arara will interpret it and return the corresponding system command.
The return types can be found in Section 2.1, on page 8. In this specific sce-
nario, there is just one task associated with the pdftex rule. Both task name
and system command are shown:

Chapter 5. Logging 54

Log file

1 I am ready to interpret task 'PDFTeX engine' from rule 'PDFTeX'.
2 System command: [pdftex, doc12.tex]

After proper task interpretation, the underlying execution library of arara
executes the provided system command and includes the output from both
output and error streams in an output buffer block inside the log file.

Log file

1 ---------------------- BEGIN OUTPUT BUFFER ----------------------
2 This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018)
3 (preloaded format=pdftex)
4 restricted \write18 enabled.
5 entering extended mode
6 (./doc12.tex [1{/usr/local/texlive/2018/texmf-var/fonts/map/
7 pdftex/updmap/pdfte
8 x.map}])</usr/local/texlive/2018/texmf-dist/fonts/type1/
9 public/amsfonts/cm/cmr

10 10.pfb>
11 Output written on doc12.pdf (1 page, 11849 bytes).
12 Transcript written on doc12.log.
13 ----------------------- END OUTPUT BUFFER -----------------------

Observe that the above output buffer block contains the relevant informa-
tion about the pdftex execution on the provided file. It is possible to write
a shell script to extract these blocks from the log file, as a means to provide
individual information on each execution. Finally, the task result is shown:

Log file

1 Task result: SUCCESS

The execution proceeds to the next directive in the list and then interprets
the clean rule. The same steps previously described are applied in this sce-
nario. Also note that the output buffer block is deliberately empty due to the
nature of the underlying system command, as removal commands such as rm
do not provide output at all when successful.

Log file

1 I am ready to interpret rule 'clean'.
2 Rule location: '/opt/paulo/arara/rules'

Chapter 5. Logging 55

Log file (ctd.)

3 I am ready to interpret task 'Cleaning feature' from rule 'Clean'.
4 System command: [rm, -f, doc12.log]
5 ---------------------- BEGIN OUTPUT BUFFER ----------------------
6
7 ----------------------- END OUTPUT BUFFER -----------------------
8 Task result: SUCCESS

Empty output buffer

If the system command is simply a boolean value, the corresponding
block will remain empty. Also note that not all commands from the un-
derlying operating system path provide proper stream output, so the out-
put buffer block might be empty in certain corner scenarios. This is the
case, for example, of the provided clean rule.

Finally, as the last entry in the log file, the tool shows the execution time,
in seconds. As previously mentioned, the execution time has a very simple
precision and should not be considered for command profiling.

Log file

1 Total: 0.33 seconds

The logging feature provides a consistent framework for event recording.
It is highly recommended to include at least the --log command line option
(or enable it in the configuration file) in your typical automation workflow, as
relevant information is gathered into a single consolidated report.

Log paths

From version 6.0 on, the log file may now be specified as path anywhere
on the file system. However, keep in mind that this behavior may be
altered for future updates in safe mode. Please refer to Chapter 4, on
page 40, for more details.

six

Methods
arara features several helper methods available in directive conditional and
rule contexts which provide interesting features for enhancing the user expe-
rience, as well as improving the automation itself. This chapter provides a
list of such methods. It is important to observe that virtually all classes from
the Java runtime environment can be used within MVEL expressions, so your
mileage might vary.

A note on writing code

As seen in Chapter 11, on page 179, Java and MVEL code be used in-
terchangeably within expressions and orb tags, including instantiation
of classes into objects and invocation of methods. However, be mind-
ful of explicitly importing Java packages and classes through the classic
import statement, as MVEL does not automatically handle imports, or
an exception will surely be raised. Alternatively, you can provide the full
qualified name to classes as well.

Methods are listed with their complete signatures, including potential pa-
rameters and corresponding types. Also, the return type of a method is de-
noted by △type and refers to a typical Java data type (either class or prim-
itive). Do not worry too much, as there are illustrative examples. A method
available in the directive conditional context will be marked by C next to the
corresponding signature. Similarly, an entry marked by R denotes that the
corresponding method is available in the rule context. At last, an entry marked
by E denotes that the corresponding method is available in the orb tag expan-
sion within a special options parameter in the directive context.

6.1 Files

This section introduces methods related to file handling, searching and hash-
ing. It is important to observe that no exception is thrown in case of an anoma-
lous method call. In this particular scenario, the methods return empty refer-
ences, when applied.

R ♢getOriginalFile() △String
This method returns the original file name, as plain string, regardless of

56

Chapter 6. Methods 57

a potential override through the special files parameter in the directive
mapping, as seen in Section 2.2, on page 18.

Example

1 if (file == getOriginalFile()) {
2 System.out.println("The 'file' variable
3 was not overridden.");
4 }

C E R ♢getOriginalReference() △File
This method returns the original file reference, as a File object, regard-
less of a potential reference override indirectly through the special files
parameter in the directive mapping, as seen in Section 2.2, on page 18.

Example

1 if (reference.equals(getOriginalFile())) {
2 System.out.println("The 'reference' variable
3 was not overridden.");
4 }

C R ♢currentFile() △File
This method returns the file reference, as a File object, for the current
directive. It is important to observe that arara replicates the directive
when the special files parameter is detected amongst the parameters,
so each instance will have a different reference.

Example

1 % arara: pdflatex if currentFile().getName() == 'thesis.tex'

C R ♢toFile(String reference) △File
This method returns a file (or directory) reference, as a File object, based
on the provided string. Note that the string can refer to either a relative
entry or a complete, absolute path. It is worth mentioning that, in Java,
despite the curious name, a File object can be assigned to either a file or
a directory.

Example

1 f = toFile('thesis.tex');

Chapter 6. Methods 58

C E R ♢getBasename(File file) △String
This method returns the base name (i.e, the name without the associated
extension) of the provided File reference, as a string. Observe that this
method ignores a potential path reference when extracting the base name.
Also, this method will throw an exception if the provided reference is not
a proper file.

Example

1 basename = getBasename(toFile('thesis.tex'));

R ♢getBasename(String reference) △String
This method returns the base name (i.e, the name without the associated
extension) of the provided String reference, as a string. Observe that this
method ignores a potential path reference when extracting the base name.

Example

1 basename = getBasename('thesis.tex');

R ♢getFiletype(File file) △String
This method returns the file type (i.e, the associated extension specified
as a suffix to the name, typically delimited with a full stop) of the provided
File reference, as a string. This method will throw an exception if the
provided reference is not a proper file. An empty string is returned if, and
only if, the provided file name has no associated extension.

Example

1 extension = getFiletype(toFile('thesis.pdf'));

R ♢getFiletype(String reference) △String
This method returns the file type (i.e, the associated extension specified
as a suffix to the name, typically delimited with a full stop) of the provided
String reference, as a string. An empty string is returned if, and only if,
the provided file name has no associated extension.

Example

1 extension = getFiletype('thesis.pdf');

Chapter 6. Methods 59

C R ♢exists(File file) △boolean
This method, as the name implies, returns a boolean value according to
whether the provided File reference exists. Observe that the provided
reference can be either a file or a directory.

Example

1 % arara: bibtex if exists(toFile('references.bib'))

C R ♢exists(String extension) △boolean
This method returns a boolean value according to whether the base name
of the ♢currentFile reference (i.e, the name without the associated exten-
sion) as a string concatenated with the provided String extension exists.
This method eases the checking of files which share the current file name
modulo extension (e.g, log and auxiliary files). Note that the provided
string refers to the extension, not the file name.

Example

1 % arara: pdftex if exists('tex')

C R ♢missing(File file) △boolean
This method, as the name implies, returns a boolean value according to
whether the provided File reference does not exist. It is important to
observe that the provided reference can be either a file or a directory.

Example

1 % arara: pdftex if missing(toFile('thesis.pdf'))

C R ♢missing(String extension) △boolean
This method returns a boolean value according to whether the base name
of the ♢currentFile reference (i.e, the name without the associated exten-
sion) as a string concatenated with the provided String extension does
not exist. This method eases the checking of files which share the cur-
rent file name modulo extension (e.g, log and auxiliary files). Note that the
provided string refers to the extension, not the file name.

Example

1 % arara: pdftex if missing('pdf')

Chapter 6. Methods 60

C R ♢changed(File file) △boolean
This method returns a boolean value according to whether the provided
File reference has changed since last verification, based on a traditional
cyclic redundancy check. The file reference, as well as the associated
hash, is stored in a YAML database file named arara.yaml located in the
same directory as the current file (the database name can be overridden
in the configuration file, as discussed in Section 4.2, on page 41). The
method semantics (including the return values) is presented as follows.

file exists? entry exists? has changed? DB action result

update
—

— insert
— —
— remove

It is important to observe that this method always performs a database
operation, either an insertion, removal or update on the corresponding
entry. When using ♢changed within a logical expression, make sure the
evaluation order is correct, specially regarding the use of short-circuiting
operations. In some scenarios, order does matter.

Example

1 % arara: pdflatex if changed(toFile('thesis.tex'))

Short-circuit evaluation

According to the Wikipedia entry, a short-circuit evaluation is the se-
mantics of some boolean operators in some programming languages
in which the second argument is executed or evaluated only if the
first argument does not suffice to determine the value of the expres-
sion. In Java (and consequently MVEL), both short-circuit and stan-
dard boolean operators are available.

CRC as a hashing algorithm

arara internally relies on a CRC32 implementation for file hashing.
This particular choice, although not designed for hashing, offers an
interesting trade-off between speed and quality. Besides, since it is
not computationally expensive as strong algorithms such as MD5
and SHA1, CRC32 can be used for hashing typical TEX documents
and plain text files with little to no collisions.

https://en.wikipedia.org/wiki/Short-circuit_evaluation

Chapter 6. Methods 61

C R ♢changed(String extension) △boolean
This method returns a boolean value according to whether the base name
of the ♢currentFile reference (i.e, the name without the associated ex-
tension) as a string concatenated with the provided String extension has
changed since last verification, based on a traditional cyclic redundancy
check. The file reference, as well as the associated hash, is stored in a
YAML database file named arara.yaml located in the same directory as
the current file (the database name can be overridden in the configura-
tion file, as discussed in Section 4.2, on page 41). The method semantics
(including the return values) is presented as follows.

file exists? entry exists? has changed? DB action result

update
—

— insert
— —
— remove

It is important to observe that this method always performs a database
operation, either an insertion, removal or update on the corresponding
entry. When using ♢changed within a logical expression, make sure the
evaluation order is correct, specially regarding the use of short-circuiting
operations. In some scenarios, order does matter.

Example

1 % arara: pdflatex if changed('tex')

C R ♢unchanged(File file) △boolean
This method returns a boolean value according to whether the provided
File reference has not changed since last verification, based on a tradi-
tional cyclic redundancy check. The file reference, as well as the associ-
ated hash, is stored in a YAML database file named arara.yaml located in
the same directory as the current file (the database name can be overrid-
den in the configuration file, as discussed in Section 4.2, on page 41). The
method semantics (including the return values) is presented as follows.

file exists? entry exists? has changed? DB action result

update
—

— insert
— —
— remove

Chapter 6. Methods 62

It is important to observe that this method always performs a database
operation, either an insertion, removal or update on the corresponding
entry. When using ♢unchanged within a logical expression, make sure the
evaluation order is correct, specially regarding the use of short-circuiting
operations. In some scenarios, order does matter.

Example

1 % arara: pdflatex if !unchanged(toFile('thesis.tex'))

C R ♢unchanged(String extension) △boolean
This method returns a boolean value according to whether the base name
of the ♢currentFile reference (i.e, the name without the associated exten-
sion) as a string concatenated with the provided String extension has not
changed since last verification, based on a traditional cyclic redundancy
check. The file reference, as well as the associated hash, is stored in a
YAML database file named arara.yaml located in the same directory as
the current file (the database name can be overridden in the configura-
tion file, as discussed in Section 4.2, on page 41). The method semantics
(including the return values) is presented as follows.

file exists? entry exists? has changed? DB action result

update
—

— insert
— —
— remove

It is important to observe that this method always performs a database
operation, either an insertion, removal or update on the corresponding
entry. When using ♢unchanged within a logical expression, make sure the
evaluation order is correct, specially regarding the use of short-circuiting
operations. In some scenarios, order does matter.

Example

1 % arara: pdflatex if !unchanged('tex')

R ♢writeToFile(File file, String text, boolean append) △boolean
This method performs a write operation based on the provided parame-
ters. In this case, the method writes the String text to the File reference
and returns a boolean value according to whether the operation was suc-
cessful. The third parameter holds a boolean value and acts as a switch
indicating whether the text should be appended to the existing content of

Chapter 6. Methods 63

the provided file. Keep in mind that the existing content of a file is always
overwritten if this switch is disabled. Also, note that the switch has no
effect if the file is being created at that moment. It is important to observe
that this method does not raise any exception.

Example

1 result = writeToFile(toFile('foo.txt'), 'hello world', false);

Read and write operations in Unicode

arara always uses Unicode as the encoding format for read and
write operations. This decision is deliberate as a means to offer a
consistent representation and handling of text. Unicode can be im-
plemented by different character encodings. In our case, the tool
relies on UTF-8, which uses one byte for the first 128 code points,
and up to 4 bytes for other characters. The first 128 Unicode code
points are the ASCII characters, which means that any ASCII text is
also UTF-8 text.

File system permissions

Most file systems have methods to assign permissions or access
rights to specific users and groups of users. These permissions con-
trol the ability of the users to view, change, navigate, and execute
the contents of the file system. Keep in mind that read and write
operations depend on such permissions.

R ♢writeToFile(String reference, String text, boolean append) △boolean
This method performs a write operation based on the provided parame-
ters. In this case, the method writes the String text to the String ref-
erence and returns a boolean value according to whether the operation
was successful. The third parameter holds a boolean value and acts as
a switch indicating whether the text should be appended to the existing
content of the provided file. Keep in mind that the existing content of a file
is always overwritten if this switch is disabled. Also, note that the switch
has no effect if the file is being created at that moment. It is important to
observe that this method does not raise any exception.

Example

1 result = writeToFile('foo.txt', 'hello world', false);

Chapter 6. Methods 64

R ♢writeToFile(File file, List<String> lines, boolean append) △boolean
This method performs a write operation based on the provided parame-
ters. In this case, the method writes the List<String> lines to the File
reference and returns a boolean value according to whether the operation
was successful. The third parameter holds a boolean value and acts as
a switch indicating whether the text should be appended to the existing
content of the provided file. Keep in mind that the existing content of a file
is always overwritten if this switch is disabled. Also, note that the switch
has no effect if the file is being created at that moment. It is important to
observe that this method does not raise any exception.

Example

1 result = writeToFile(toFile('foo.txt'),
2 ['hello world', 'how are you?'], false);

R ♢
writeToFile(String reference,

List<String> lines, boolean append) △boolean
This method performs a write operation based on the provided parame-
ters. In this case, the method writes the List<String> lines to the String
reference and returns a boolean value according to whether the operation
was successful. The third parameter holds a boolean value and acts as
a switch indicating whether the text should be appended to the existing
content of the provided file. Keep in mind that the existing content of a file
is always overwritten if this switch is disabled. Also, note that the switch
has no effect if the file is being created at that moment. It is important to
observe that this method does not raise any exception.

Example

1 result = writeToFile('foo.txt', ['hello world',
2 'how are you?'], false);

R ♢readFromFile(File file) △List<String>
This method performs a read operation based on the provided parameter.
In this case, the method reads the content from the File reference and
returns a List<String> object representing the lines as a list of strings. If
the reference does not exist or an exception is raised due to access permis-
sion constraints, the ♢readFromFile method returns an empty list. Keep
in mind that, as a design decision, UTF-8 is always used as character
encoding for read operations.

Chapter 6. Methods 65

Example

1 lines = readFromFile(toFile('foo.txt'));

R ♢readFromFile(String reference) △List<String>
This method performs a read operation based on the provided parameter.
In this case, the method reads the content from the String reference and
returns a List<String> object representing the lines as a list of strings. If
the reference does not exist or an exception is raised due to access permis-
sion constraints, the ♢readFromFile method returns an empty list. Keep
in mind that, as a design decision, UTF-8 is always used as character
encoding for read operations.

Example

1 lines = readFromFile('foo.txt');

R ♢
listFilesByExtensions(File file,

List<String> extensions, boolean recursive) △List<File>
This method performs a file search operation based on the provided pa-
rameters. In this case, the method list all files from the provided File
reference according to the List<String> extensions as a list of strings,
and returns a List<File> object representing all matching files. The lead-
ing full stop in each extension must be omitted, unless it is part of the
search pattern. The third parameter holds a boolean value and acts as a
switch indicating whether the search must be recursive, i.e, whether all
subdirectories must be searched as well. If the reference is not a proper
directory or an exception is raised due to access permission constraints,
the ♢listFilesByExtensions method returns an empty list.

Example

1 files = listFilesByExtensions(toFile('/home/paulo/Documents'),
2 ['aux', 'log'], false);

R ♢
listFilesByExtensions(String reference,

List<String> extensions, boolean recursive) △List<File>
This method performs a file search operation based on the provided pa-
rameters. In this case, the method list all files from the provided String
reference according to the List<String> extensions as a list of strings,
and returns a List<File> object representing all matching files. The lead-
ing full stop in each extension must be omitted, unless it is part of the
search pattern. The third parameter holds a boolean value and acts as a

Chapter 6. Methods 66

switch indicating whether the search must be recursive, i.e, whether all
subdirectories must be searched as well. If the reference is not a proper
directory or an exception is raised due to access permission constraints,
the ♢listFilesByExtensions method returns an empty list.

Example

1 files = listFilesByExtensions('/home/paulo/Documents',
2 ['aux', 'log'], false);

R ♢
listFilesByPatterns(File file,

List<String> patterns, boolean recursive) △List<File>
This method performs a file search operation based on the provided pa-
rameters. In this case, the method lists all files from the provided File
reference according to the List<String> patterns as a list of strings, and
returns a List<File> object representing all matching files. The pattern
specification is described below. The third parameter holds a boolean
value and acts as a switch indicating whether the search must be recur-
sive, i.e, whether all subdirectories must be searched as well. If the refer-
ence is not a proper directory or an exception is raised due to access per-
mission constraints, the ♢listFilesByPatterns method returns an empty
list. It is very important to observe that this file search operation might be
slow depending on the provided directory. It is highly advisable to not rely
on recursive searches whenever possible.

Patterns for file search operations

arara employs wildcard filters as patterns for file search operations.
Testing is case sensitive by default. The wildcard matcher uses the
characters ? and * to represent a single or multiple wildcard char-
acters. This is the same as often found on typical terminals.

Example

1 files = listFilesByPatterns(toFile('/home/paulo/Documents'),
2 ['*.tex', 'foo?.txt'], false);

R ♢
listFilesByPatterns(String reference,

List<String> patterns, boolean recursive) △List<File>
This method performs a file search operation based on the provided pa-
rameters. In this case, the method lists all files from the provided String
reference according to the List<String> patterns as a list of strings, and
returns a List<File> object representing all matching files. The pattern
specification follows a wildcard filter. The third parameter holds a boolean

Chapter 6. Methods 67

value and acts as a switch indicating whether the search must be recur-
sive, i.e, whether all subdirectories must be searched as well. If the refer-
ence is not a proper directory or an exception is raised due to access per-
mission constraints, the ♢listFilesByPatterns method returns an empty
list. It is very important to observe that this file search operation might be
slow depending on the provided directory. It is highly advisable to not rely
on recursive searches whenever possible.

Example

1 files = listFilesByPatterns('/home/paulo/Documents',
2 ['*.tex', 'foo?.txt'], false);

As the methods presented in this section have transparent error handling,
the writing of rules and conditionals becomes more fluent and not too complex
for the typical user.

6.2 Conditional flow

This section introduces methods related to conditional flow based on natu-
ral boolean values, i.e, words that semantically represent truth and falsehood
signs. Such concept provides a friendly representation of boolean values and
eases the use of switches in directive parameters. The tool relies on the fol-
lowing set of natural boolean values:

yes true 1 on no false 0 off

All elements from the provided set of natural boolean values can be used
interchangeably in directive parameters. It is important to observe that arara
throws an exception if a value absent from the set is provided to the methods
described in this section.

R ♢isTrue(String string) △boolean
This method returns a boolean value according to whether the provided
String value is contained in the sub-set of natural true boolean values.
It is worth mentioning that the verification is case insensitive, i.e, upper
case and lower case symbols are treated as equivalent. If the provided
value is an empty string, the method returns false.

Example

1 result = isTrue('yes');

R ♢isFalse(String string) △boolean
This method returns a boolean value according to whether the provided

Chapter 6. Methods 68

String value is contained in the sub-set of natural false boolean values.
It is worth mentioning that the verification is case insensitive, i.e, upper
case and lower case symbols are treated as equivalent. If the provided
value is an empty string, the method returns false.

Example

1 result = isFalse('off');

R ♢isTrue(String string, Object yes) △Object
This method checks if the first parameter is contained in the sub-set of
natural true boolean values. If the result holds true, the second param-
eter is returned. Otherwise, an empty string is returned. It is worth
mentioning that the verification is case insensitive, i.e, upper case and
lower case symbols are treated as equivalent. If the first parameter is an
empty string, the method returns an empty string.

Example

1 result = isTrue('on', ['ls', '-la']);

R ♢isFalse(String string, Object yes) △Object
This method checks if the first parameter is contained in the sub-set of
natural false boolean values. If the result holds true, the second param-
eter is returned. Otherwise, an empty string is returned. It is worth
mentioning that the verification is case insensitive, i.e, upper case and
lower case symbols are treated as equivalent. If the first parameter is an
empty string, the method returns an empty string.

Example

1 result = isFalse('0', 'pwd');

R ♢isTrue(String string, Object yes, Object no) △Object
This method checks if the first parameter is contained in the sub-set of
natural true boolean values. If the result holds true, the second param-
eter is returned. Otherwise, the third parameter is returned. It is worth
mentioning that the verification is case insensitive, i.e, upper case and
lower case symbols are treated as equivalent. If the first parameter is an
empty string, the method returns the third parameter.

Chapter 6. Methods 69

Example

1 result = isTrue('on', ['ls', '-la'], 'pwd');

R ♢isFalse(String string, Object yes, Object no) △Object
This method checks if the first parameter is contained in the sub-set of
natural false boolean values. If the result holds true, the second param-
eter is returned. Otherwise, the third parameter is returned. It is worth
mentioning that the verification is case insensitive, i.e, upper case and
lower case symbols are treated as equivalent. If the first parameter is an
empty string, the method returns the third parameter.

Example

1 result = isFalse('0', 'pwd', 'ps');

R ♢
isTrue(String string, Object yes,

Object no, Object fallback) △Object
This method checks if the first parameter is contained in the sub-set of
natural true boolean values. If the result holds true, the second param-
eter is returned. Otherwise, the third parameter is returned. It is worth
mentioning that the verification is case insensitive, i.e, upper case and
lower case symbols are treated as equivalent. If the first parameter is an
empty string, the method returns the fourth parameter as default value.

Example

1 result = isTrue('on', 'ls', 'pwd', 'who');

R ♢
isFalse(String string, Object yes,

Object no, Object fallback) △Object
This method checks if the first parameter is contained in the sub-set of
natural false boolean values. If the result holds true, the second param-
eter is returned. Otherwise, the third parameter is returned. It is worth
mentioning that the verification is case insensitive, i.e, upper case and
lower case symbols are treated as equivalent. If the first parameter is an
empty string, the method returns the fourth parameter as default value.

Example

1 result = isFalse('0', 'pwd', 'ps', 'ls');

Chapter 6. Methods 70

R ♢isTrue(boolean value, Object yes) △Object
This method evaluates the first parameter as a boolean expression. If the
result holds true, the second parameter is returned. Otherwise, an empty
string is returned.

Example

1 result = isTrue(1 == 1, 'yes');

R ♢isFalse(boolean value, Object yes) △Object
This method evaluates the first parameter as a boolean expression. If the
result holds false, the second parameter is returned. Otherwise, an empty
string is returned.

Example

1 result = isFalse(1 != 1, 'yes');

R ♢isTrue(boolean value, Object yes, Object no) △Object
This method evaluates the first parameter as a boolean expression. If the
result holds true, the second parameter is returned. Otherwise, the third
parameter is returned.

Example

1 result = isTrue(1 == 1, 'yes', 'no');

R ♢isFalse(boolean value, Object yes, Object no) △Object
This method evaluates the first parameter as a boolean expression. If the
result holds false, the second parameter is returned. Otherwise, the third
parameter is returned.

Example

1 result = isFalse(1 != 1, 'yes', 'no');

Supported by the concept of natural boolean values, the methods presented
in this section ease the use of switches in directive parameters and can be
adopted as valid alternatives for traditional conditional flows, when applied.

Chapter 6. Methods 71

6.3 Strings

String manipulation constitutes one of the foundations of rule interpretation
in our tool. This section introduces methods for handling such types, as a
means to offer high level constructs for users.

R ♢isEmpty(String string) △boolean
This method returns a boolean value according to whether the provided
String value is empty, i.e, the string length is equal to zero.

Example

1 result = isEmpty('not empty');

R ♢isNotEmpty(String string) △boolean
This method returns a boolean value according to whether the provided
String value is not empty, i.e, the string length is greater than zero.

Example

1 result = isNotEmpty('not empty');

R ♢isEmpty(String string, Object yes) △boolean
This method checks if the first parameter is empty, i.e, if the string length
is equal to zero. If the result holds true, the second parameter is returned.
Otherwise, an empty string is returned.

Example

1 result = isEmpty('not empty', 'ps');

R ♢isNotEmpty(String string, Object yes) △boolean
This method checks if the first parameter is not empty, i.e, if the string
length is greater than zero. If the result holds true, the second parameter
is returned. Otherwise, an empty string is returned.

Example

1 result = isNotEmpty('not empty', 'ls');

R ♢isEmpty(String string, Object yes, Object no) △boolean
This method checks if the first parameter is empty, i.e, if the string length

Chapter 6. Methods 72

is equal to zero. If the result holds true, the second parameter is returned.
Otherwise, the third parameter is returned.

Example

1 result = isEmpty('not empty', 'ps', 'ls');

R ♢isNotEmpty(String string, Object yes, Object no) △boolean
This method checks if the first parameter is not empty, i.e, if the string
length is greater than zero. If the result holds true, the second parameter
is returned. Otherwise, the third parameter is returned.

Example

1 result = isNotEmpty('not empty', 'ls', 'ps');

R ♢buildString(Object... objects) △String
This method returns a string based on the provided array of objects, sep-
arating each element by one blank space. It is important to observe that
empty values are not considered. Also, note that the object array is de-
noted by a comma-separated sequence of elements in the actual method
call, resulting in a variable number of parameters.

Example

1 result = buildString('a', 'b', 'c', 'd');

R ♢trimSpaces(String string) △String
This method trims spaces from the provided parameter, i.e, leading and
trailing spaces in the String reference are removed, and returns the re-
sulting string. It is important to observe that non-boundary spaces inside
the string are not removed at all.

Example

1 result = trimSpaces(' hello world ');

R ♢replicatePattern(String pattern, List<Object> values) △List<Object>
This method replicates the provided pattern to each element of the second
parameter and returns the resulting list. The pattern must contain exactly
one placeholder. For instance, %s denotes a string representation of the

Chapter 6. Methods 73

provided argument. Please refer to the Formatter class reference in the
Java documentation for more information on placeholders. This method
raises an exception if an invalid pattern is applied.

Example

1 names = replicatePattern('My name is %s', ['Brent', 'Nicola']);

C R ♢found(File file, String regex) △boolean
This method returns a boolean value according to whether the content of
the provided File reference contains at least one match of the provided
String regular expression. It is important to observe that this method
raises an exception if an invalid regular expression is provided as the
parameter or if the provided file reference does not exist.

Example

1 % arara: pdflatex while found(toFile('article.log'),
2 % arara: --> 'undefined references')

C R ♢found(String extension, String regex) △boolean
This method returns a boolean value according to whether the content of
the base name of the ♢currentFile reference (i.e, the name without the
associated extension) as a string concatenated with the provided String
extension contains at least one match of the provided String regular ex-
pression. It is important to observe that this method raises an exception
if an invalid regular expression is provided as the parameter or if the pro-
vided file reference does not exist.

Example

1 % arara: pdflatex while found('log', 'undefined references')

The string manipulation methods presented in this section constitute an in-
teresting and straightforward approach to handling directive parameters with-
out the usual verbosity in writing typical Java constructs.

6.4 Operating systems

This section introduces methods related to the underlying operating system
detection, as a means of providing a straightforward approach to writing cross-
platform rules.

https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html

Chapter 6. Methods 74

R ♢isWindows() △boolean
This method returns a boolean value according to whether the underlying
operating system vendor is Microsoft Windows.

Example

1 if (isWindows()) { System.out.println('Running Windows.'); }

R ♢isLinux() △boolean
This method returns a boolean value according to whether the underlying
operating system vendor is a Linux instance.

Example

1 if (isLinux()) { System.out.println('Running Linux.'); }

R ♢isMac() △boolean
This method returns a boolean value according to whether the underlying
operating system vendor is Apple Mac OS.

Example

1 if (isMac()) { System.out.println('Running Mac OS.'); }

R ♢isUnix() △boolean
This method returns a boolean value according to whether the underlying
operating system vendor is any Unix variation.

Example

1 if (isUnix()) { System.out.println('Running Unix.'); }

R ♢isCygwin() △boolean
This method returns a boolean value according to whether the under-
lying operating system vendor is Microsoft Windows and arara is being
executed inside a Cygwin environment.

Chapter 6. Methods 75

Example

1 if (isCygwin()) { System.out.println('Running Cygwin.'); }

Cygwin paths

It is worth mentioning that Cygwin has its own path handling which
is not reliable when (JVM) applications need to invoke system com-
mands. For instance, the following invocation does not work:

Example

1 % arara: pdflatex

Since pdflatex is a symbolic link to pdftex with the proper format,
we encourage Cygwin users to rely on the following trick:

Example

1 % arara: pdftex: { options: ['--fmt=pdflatex'] }

The same trick can be employed by other TEX engines with appro-
priate –fmt flags as well. We are still investigating this issue and
looking for potential alternatives.

R ♢isWindows(Object yes, Object no) △Object
This method checks if the underlying operating system vendor is Microsoft
Windows. If the result holds true, the first parameter is returned. Other-
wise, the second parameter is returned.

Example

1 command = isWindows('del', 'rm');

R ♢isLinux(Object yes, Object no) △Object
This method checks if the underlying operating system vendor is a Linux
instance. If the result holds true, the first parameter is returned. Other-
wise, the second parameter is returned.

Chapter 6. Methods 76

Example

1 command = isLinux('rm', 'del');

R ♢isMac(Object yes, Object no) △Object
This method checks if the underlying operating system vendor is Apple
Mac OS. If the result holds true, the first parameter is returned. Other-
wise, the second parameter is returned.

Example

1 command = isMac('ls', 'dir');

R ♢isUnix(Object yes, Object no) △Object
This method checks if the underlying operating system vendor is any Unix
variation. If the result holds true, the first parameter is returned. Other-
wise, the second parameter is returned.

Example

1 command = isUnix('tree', 'dir');

R ♢isCygwin(Object yes, Object no) △Object
This method checks if the underlying operating system vendor is Microsoft
Windows and if arara is being executed inside a Cygwin environment.
If the result holds true, the first parameter is returned. Otherwise, the
second parameter is returned.

Example

1 command = isCygwin('ls', 'dir');

The methods presented in the section provide useful information to help
users write cross-platform rules and thus enhance the automation experience
based on specific features of the underlying operating system.

6.5 Type checking

In certain scenarios, a plain string representation of directive parameters
might be inadequate or insufficient given the rule requirements. To this end,
this section introduces methods related to type checking as a means to provide

Chapter 6. Methods 77

support and verification for common data types.

R ♢isString(Object object) △boolean
This method returns a boolean value according to whether the provided
Object object is a string or any extended type.

Example

1 result = isString('foo');

R ♢isList(Object object) △boolean
This method returns a boolean value according to whether the provided
Object object is a list or any extended type.

Example

1 result = isList([1, 2, 3]);

R ♢isMap(Object object) △boolean
This method returns a boolean value according to whether the provided
Object object is a map or any extended type.

Example

1 result = isMap(['Paulo' : 'Palmeiras', 'Carla' : 'Inter']);

R ♢isBoolean(Object object) △boolean
This method returns a boolean value according to whether the provided
Object object is a boolean or any extended type.

Example

1 result = isBoolean(false);

R ♢checkClass(Class clazz, Object object) △boolean
This method returns a boolean value according to whether the provided
Object object is an instance or a subtype of the provided Class class. It
is interesting to note that all methods presented in this section internally
rely on ♢checkClass for type checking.

Chapter 6. Methods 78

Example

1 result = checkClass(List.class, ['a', 'b']);

The methods presented in this section cover the most common types used
in directive parameters and should suffice for expressing the rule require-
ments. If a general approach is needed, please refer to the ♢checkClass
method for checking virtually any type available in the Java environment.

6.6 Classes and objects

arara can be extended at runtime with code from JVM languages, such as
Groovy, Scala, Clojure and Kotlin. The tool can load classes from class and
jar files and even instantiate them. This section introduces methods related
to class loading and object instantiation.

Ordered pairs

According to the Wikipedia entry, in mathematics, an ordered pair (a, b)
is a pair of objects. The order in which the objects appear in the pair is
significant: the ordered pair (a, b) is different from the ordered pair (b, a)
unless a = b. In the ordered pair (a, b), the object a is called the first
entry, and the object b the second entry of the pair. arara relies on this
concept with the helper Pair<A, B> class, in which A and B denote the
component classes, i.e, the types associated to the pair elements. In or-
der to access the pair entries, the class provides two property accessors:

♢first △A
This property accessor, as the name implies, returns the first entry
of the ordered pair, as an A object.

♢second △B
This property accessor, as the name implies, returns the second en-
try of the ordered pair, as a B object.

Keep in mind that the entries in the Pair class, once defined, cannot be
modified to other values. The initial values are set during instantiation
and, therefore, only entry getters are available to the user during the
object life cycle.

Status for class loading and instantiation

The class loading and instantiation methods provided by arara typically
return a pair composed of an integer value and a class or object refer-

https://en.wikipedia.org/wiki/Ordered_pair

Chapter 6. Methods 79

Status for class loading and instantiation (ctd.)

ence. This integer value acts as a status of the underlying operation itself
and might indicate potential issues. The possible values are:

0 Successful execution 3 Class was not found

1 File does not exist 4 Access policy violation

2 File URL is incorrect 5 Instantiation exception

Please make sure to always check the returned integer status when us-
ing class loading and instantiation methods in directive and rule con-
texts. This feature is quite powerful yet tricky and subtle!

C R ♢
loadClass(File file,
String name) △

Pair<ClassLoading.
ClassLoadingStatus, Object>

This method loads a class based on the canonical name from the provided
File reference and returns an ordered pair containing the status and
the class reference itself. The file must contain the Java bytecode, either
directly accessible from a class file or packaged inside a jar file. If an
exception is raised, this method returns the Object class reference as
second entry of the pair.

Example

1 result = loadClass(toFile('mymath.jar'),
2 'com.github.cereda.mymath.Arithmetic');

C R ♢
loadClass(String ref,
String name) △

Pair<ClassLoading.
ClassLoadingStatus, Object>

This method loads a class based on the canonical name from the provided
String reference and returns an ordered pair containing the status and
the class reference itself. The file must contain the Java bytecode, either
directly accessible from a class file or packaged inside a jar file. If an
exception is raised, this method returns the Object class reference as
second entry of the pair.

Example

1 result = loadClass('mymath.jar',
2 'com.github.cereda.mymath.Arithmetic');

Chapter 6. Methods 80

C R ♢
loadObject(File file,
String name) △

Pair<ClassLoading.
ClassLoadingStatus, Object>

This method loads a class based on the canonical name from the provided
File reference and returns an ordered pair containing the status and a
proper corresponding object instantiation. The file must contain the Java
bytecode, either directly accessible from a class file or packaged inside a
jar file. If an exception is raised, this method returns an Object object
as second entry of the pair.

Example

1 result = loadObject(toFile('mymath.jar'),
2 'com.github.cereda.mymath.Trigonometric');

C R ♢
loadObject(String ref,
String name) △

Pair<ClassLoading.
ClassLoadingStatus, Object>

This method loads a class based on the canonical name from the provided
String reference and returns an ordered pair containing the status and a
proper corresponding object instantiation. The file must contain the Java
bytecode, either directly accessible from a class file or packaged inside a
jar file. If an exception is raised, this method returns an Object object
as second entry of the pair.

Example

1 result = loadObject('mymath.jar',
2 'com.github.cereda.mymath.Trigonometric');

This section presented class loading and instantiation methods which may
significantly enhance the expressiveness of rules and directives. However,
make sure to use such feature with great care and attention.

6.7 Dialog boxes

A dialog box is a graphical control element, typically a small window, that
communicates information to the user and prompts them for a response. This
section introduces UI methods related to such interactions.

UI elements

The graphical elements are provided by the Swing toolkit from the Java
runtime environment. Note that the default look and feel class refer-
ence can be modified through a key in the configuration file, as seen in
Section 4.2, on page 41. It is important to observe that the methods

Chapter 6. Methods 81

UI elements (ctd.)

presented in this section require a graphical interface. If arara is being
executed in a headless environment (i.e, an environment with no graph-
ical display available), an exception will be thrown when trying to use
such UI methods in either directive or rule contexts.

Each dialog box provided by the UI methods of arara requires the specifi-
cation of an associated icon. An icon is a pictogram displayed on a computer
screen in order to help the user quickly identify the message by conveying its
meaning through a visual resemblance to a physical object. Our tool features
five icons, illustrated below, to be used with dialog boxes. Observe that each
icon is associated with a unique integer value which is provided later on to the
actual method call. Also, it is worth mentioning that the visual appearance of
such icons is based on the underlying Java virtual machine and the current
look and feel, so your mileage might vary.

error information attention question plain
1 2 3 4 5

As good practice, make sure to provide descriptive messages to be placed
in dialog boxes in order to ease and enhance the user experience. It is also
highly advisable to always provide an associated icon, so avoid the plain option
whenever possible.

Message text width

arara sets the default message text width to 250 pixels. Feel free to over-
ride this value according to your needs. Please refer to the appropriate
method signatures for specifying a new width.

The UI method signatures are followed by a visual representation of the
provided dialog box. For the sake of simplicity, each parameter index refers to
the associated number in the figure.

R ♢showMessage(int width, int icon, String title, String text) △void

Chapter 6. Methods 82

Message title

The quick brown fox jumps over the lazy dog.

OK

2

3

4

1

This method shows a message box according to the provided parameters.
The dialog box is disposed when the user either presses the confirmation
button or closes the window. It is important to observe that arara tem-
porarily interrupts the execution and waits for the dialog box disposal.
Also note that the total time includes the idle period as well.

Example

1 showMessage(250, 2, 'My title', 'My message');

R ♢showMessage(int icon, String title, String text) △void

Message title

The quick brown fox jumps over the lazy dog.

OK

1

2

3

This method shows a message box according to the provided parameters.
The dialog box is disposed when the user either presses the confirmation
button or closes the window. It is important to observe that arara tem-
porarily interrupts the execution and waits for the dialog box disposal.
Also note that the total time includes the idle period as well.

Example

1 showMessage(2, 'My title', 'My message');

C R ♢
showOptions(int width, int icon, String title,

String text, Object... options) △int

Chapter 6. Methods 83

Message title

The quick brown fox jumps over the lazy dog.

Button n

2

3

4

Button 1 Button n...
5

1

This method shows a message box according to the provided parameters,
including options represented as an array of Object objects. This array is
portrayed in the dialog box as a list of buttons. The dialog box is disposed
when the user either presses one of the buttons or closes the window. The
method returns the natural index of the selected button, starting from 1 .
If no button is pressed (e.g, the window is closed), 0 is returned. Note that
the object array is denoted by a comma-separated sequence of elements in
the actual method call, resulting in a variable number of parameters. It is
important to observe that arara temporarily interrupts the execution and
waits for the dialog box disposal. Also note that the total time includes the
idle period as well.

Example

1 % arara: pdflatex if showOptions(250, 4, 'Important!',
2 % arara: --> 'Do you like ice cream?', 'Yes!', 'No!') == 1

Button orientation

Keep in mind that your window manager might render the button ori-
entation differently than the original arrangement specified in your
array of objects. For instance, I had a window manager that ren-
dered the buttons in the reverse order. However, note that the visual
appearance should not interfere with the programming logic! The in-
dices shall remain the same, pristine as ever, regardless of the actual
rendering. Trust your code, not your eyes.

C R ♢
showOptions(int icon, String title,

String text, Object... options) △int

Chapter 6. Methods 84

Message title

The quick brown fox jumps over the lazy dog.

Button n

1

2

3

Button 1 Button n...
4

This method shows a message box according to the provided parameters,
including options represented as an array of Object objects. This array is
portrayed in the dialog box as a list of buttons. The dialog box is disposed
when the user either presses one of the buttons or closes the window. The
method returns the natural index of the selected button, starting from 1 .
If no button is pressed (e.g, the window is closed), 0 is returned. Note that
the object array is denoted by a comma-separated sequence of elements in
the actual method call, resulting in a variable number of parameters. It is
important to observe that arara temporarily interrupts the execution and
waits for the dialog box disposal. Also note that the total time includes the
idle period as well.

Example

1 % arara: pdflatex if showOptions(4, 'Important!',
2 % arara: --> 'Do you like ice cream?', 'Yes!', 'No!') == 1

C R ♢
showDropdown(int width, int icon, String title,

String text, Object... options) △int

Message title

The quick brown fox jumps over the lazy dog.

OK

2

3

4

1

Cancel

Item 1

5

This method shows a dialog box according to the provided parameters,
including options represented as an array of Object objects. This array
is portrayed in the dialog box as a dropdown list. The first element from
the array is automatically selected. The dialog box is disposed when the

Chapter 6. Methods 85

user either presses one of the buttons or closes the window. The method
returns the natural index of the selected item, starting from 1 . If the
user cancels the dialog or closes the window, 0 is returned. Note that the
object array is denoted by a comma-separated sequence of elements in
the actual method call, resulting in a variable number of parameters. It is
important to observe that arara temporarily interrupts the execution and
waits for the dialog box disposal. Also note that the total time includes the
idle period as well.

Example

1 % arara: pdflatex if showDropdown(250, 4, 'Important!',
2 % arara: --> 'Who deserves the tick?', 'David Carlisle',
3 % arara: --> 'Enrico Gregorio', 'Joseph Wright',
4 % arara: --> 'Heiko Oberdiek') == 2

Combo boxes and dropdown lists

According to the Wikipedia entry, a combo box is a combination of a
dropdown list or list box and a single line editable textbox, allowing
the user to either type a value directly or select a value from the list.
The term is sometimes used to mean a dropdown list, but in Java,
the term is definitely not a synonym! A dropdown list is sometimes
clarified with terms such as non-editable combo box to distinguish
it from the original definition of a combo box.

C R ♢
showDropdown(int icon, String title,

String text, Object... options) △int

Message title

The quick brown fox jumps over the lazy dog.

OK

1

2

3

Cancel

Item 1

4

This method shows a dialog box according to the provided parameters,
including options represented as an array of Object objects. This array
is portrayed in the dialog box as a dropdown list. The first element from
the array is automatically selected. The dialog box is disposed when the
user either presses one of the buttons or closes the window. The method

https://en.wikipedia.org/wiki/Combo_box

Chapter 6. Methods 86

returns the natural index of the selected item, starting from 1 . If the
user cancels the dialog or closes the window, 0 is returned. Note that the
object array is denoted by a comma-separated sequence of elements in
the actual method call, resulting in a variable number of parameters. It is
important to observe that arara temporarily interrupts the execution and
waits for the dialog box disposal. Also note that the total time includes the
idle period as well.

Example

1 % arara: pdflatex if showDropdown(4, 'Important!',
2 % arara: --> 'Who deserves the tick?', 'David Carlisle',
3 % arara: --> 'Enrico Gregorio', 'Joseph Wright',
4 % arara: --> 'Heiko Oberdiek') == 2

Swing toolkit

According to the Wikipedia entry, the Swing toolkit was developed to
provide a more sophisticated set of GUI components than the earlier
AWT widget system. Swing provides a look and feel that emulates
the look and feel of several platforms, and also supports a pluggable
look and feel that allows applications to have a look and feel unre-
lated to the underlying platform. It has more powerful and flexible
components than AWT. In addition to familiar components such as
buttons, check boxes and labels, Swing provides several advanced
components, such as scroll panes, trees, tables, and lists.

C R ♢showInput(int width, int icon, String title, String text) △String

Message title

The quick brown fox jumps over the lazy dog.

OK

2

3

4

1

Input

Cancel

This method shows an input dialog box according to the provided param-
eters. The dialog box is disposed when the user either presses one of the
buttons or closes the window. The method returns the content of the in-
put text field, as a trimmed String object. If the user cancels the dialog or
closes the window, an empty string is returned. It is important to observe

https://en.wikipedia.org/wiki/Swing_(Java)

Chapter 6. Methods 87

that arara temporarily interrupts the execution and waits for the dialog
box disposal. Also note that the total time includes the idle period as well.

Example

1 % arara: pdflatex if showInput(250, 4, 'Important!',
2 % arara: --> 'Who wrote arara?') == 'Paulo'

C R ♢showInput(int icon, String title, String text) △String

Message title

The quick brown fox jumps over the lazy dog.

OK

1

2

3

Input

Cancel

This method shows an input dialog box according to the provided param-
eters. The dialog box is disposed when the user either presses one of the
buttons or closes the window. The method returns the content of the in-
put text field, as a trimmed String object. If the user cancels the dialog or
closes the window, an empty string is returned. It is important to observe
that arara temporarily interrupts the execution and waits for the dialog
box disposal. Also note that the total time includes the idle period as well.

Example

1 % arara: pdflatex if showInput(4, 'Important!',
2 % arara: --> 'Who wrote arara?') == 'Paulo'

The UI methods presented in this section can be used for writing TEX tuto-
rials and assisted compilation workflows based on user interactions, including
visual input and feedback through dialog boxes.

6.8 Commands

arara features the Command object, a new approach for handling system com-
mands based on a high level structure with explicit argument parsing.

Chapter 6. Methods 88

The anatomy of a command

From the user perspective, a Command object is simply a good old list of
Object objects, in which the list head (i.e, the first element) is the un-
derlying system command, and the list tail (i.e, the remaining elements),
if any, contains the associated command line arguments. For instance:

head tail (associated command line arguments)
pdflatex --shell-escape --synctex=1 thesis.tex

From the previous example, it is important to observe that a potential
file name quoting is not necessary. The underlying system command
execution library handles the provided arguments accordingly.

Behind the scenes, however, arara employs a different workflow when
constructing a Command object. The tool sets the working directory path
for the current command to USER_DIR which is based on the current exe-
cution. The working directory path can be explicitly set through specific
method calls, described later on in this section.

The list of objects is then completely flattened and all elements are
mapped to their string representations through corresponding ♢toString
calls. Finally, the proper Command object is constructed. Keep in mind
that, although a command takes a list (or even an array) of objects, which
can be of any type, the internal representation is always a list of strings.

A list of objects might contain nested lists, i.e, a list within another list.
As previously mentioned, arara employs list flattening when handling a list
of objects during a Command object instantiation. As a means to illustrate this
handy feature, consider the following list of integers:

A list with nested lists

1 [1, 2, [3, 4], 5, [[6, 7], 8], 9, [[10]]

Note that the above list of integers contains nested lists. When applying list
flattening, arara recursively adds the elements of nested lists to the original
list and then removes the nested occurrences. Please refer to the source code
for implementation details. The new flattened list is presented as follows.

A flattened list

1 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Chapter 6. Methods 89

List flattening and string mapping confer expressiveness and flexibility to
the Command object construction, as users can virtually use any data type to
describe the underlying rule logic and yet obtain a consistent representation.

R ♢getCommand(List<String> elements) △Command
This method, as the name implies, returns a Command object according
to the provided list of String elements. If the list is empty, the tool will
ignore the execution.

Example

1 return getCommand(['ls', '-l']);

R ♢getCommand(Object... elements) △Command
This method, as the name implies, returns a Command object according to
the provided array of Object elements. If the array is empty, the tool will
ignore the execution. Note that the object array is denoted by a comma-
separated sequence of elements in the actual method call, resulting in a
variable number of parameters.

Example

1 return getCommand('pdflatex', '--shell-escape', 'thesis.tex');

R ♢
getCommandWithWorkingDirectory(File directory,

List<String> elements) △Command
This method, as the name implies, sets the working directory based on the
provided File reference and returns a proper Command object according to
the provided list of String elements. If the list is empty, the tool will
ignore the execution.

Example

1 return getCommandWithWorkingDirectory(toFile('/home/paulo'),
2 ['ls', '-l']);

R ♢
getCommandWithWorkingDirectory(String path,

List<String> elements) △Command
This method, as the name implies, sets the working directory based on the
provided String reference and returns a proper Command object according
to the provided list of String elements. If the list is empty, the tool will
ignore the execution.

Chapter 6. Methods 90

Example

1 return getCommandWithWorkingDirectory('/home/paulo',
2 ['ls', '-l']);

R ♢
getCommandWithWorkingDirectory(File directory,

Object... elements) △Command
This method, as the name implies, sets the working directory based on the
provided File reference and returns a proper Command object according to
the provided array of Object elements. If the array is empty, the tool will
ignore the execution. Note that the object array is denoted by a comma-
separated sequence of elements in the actual method call, resulting in a
variable number of parameters.

Example

1 return getCommandWithWorkingDirectory(toFile('/home/paulo'),
2 'pdflatex', '--shell-escape', 'thesis.tex');

R ♢
getCommandWithWorkingDirectory(String path,

Object... elements) △Command
This method, as the name implies, sets the working directory based on the
provided String reference and returns a proper Command object according
to the provided array of Object elements. If the array is empty, the tool will
ignore the execution. Note that the object array is denoted by a comma-
separated sequence of elements in the actual method call, resulting in a
variable number of parameters.

Example

1 return getCommandWithWorkingDirectory('/home/paulo',
2 'pdflatex', '--shell-escape', 'thesis.tex');

The methods presented in this section constitute the foundations of under-
lying system command execution. In particular, whenever possible, it is highly
advisable to use Command objects through proper ♢getCommand method calls, as
the plain string approach used in previous versions of our tool is marked as
deprecated and will be removed in future versions.

6.9 Others

This section introduces assorted methods provided by arara as a means to
improve the automation itself with expressive rules and enhance the user ex-

Chapter 6. Methods 91

perience. Such methods are properly described as follows.

Session

Rules are designed under the encapsulation notion, such that the direct
access to internal workings of such structures is restricted. However, as
a means to support framework awareness, arara provides a mechanism
for data sharing across rule contexts, implemented as a Session object.
In practical terms, this particular object is a global, persistent map com-
posed of String keys and Object values available throughout the entire
execution. The public methods of a session are described as follows:

♢put(String key, Object value) △void
This method, as the name implies, inserts an object into the session,
indexed by the provided key. Observe that, if the session previously
contained a mapping for the provided key, the old value is replaced
by the specified value.

♢remove(String key) △void
This method, as the name implies, removes the mapping for the pro-
vided key from the session. Be mindful that an attempt to remove a
mapping for a nonexistent key will raise an exception.

♢contains(String key) △boolean
This method, as the name implies, returns a boolean value according
to whether the session contains a mapping for the provided key. It
is highly advisable to use this method before attempting to remove a
mapping from the session.

♢get(String key) △Object
This method, as the name implies, returns the object value to which
the specified key is mapped. Be mindful that an attempt to return a
value for a nonexistent key will raise an exception.

♢forget() △void
This method, as the name implies, removes all of the existing map-
pings from the session. The session object will be effectively empty
after this call returns.

It is important to observe that the Session object provided by our tool
follows the singleton pattern, i.e, a software design pattern that restricts
the instantiation of a class to one object. Therefore, the same session is
consistently shared across rule contexts.

C E R ♢getSession() △Session
This method, as the name implies, returns the Session object for data
sharing across rule contexts. Keep in mind that a session cannot contain
duplicate keys. Each key can map to at most one value.

Chapter 6. Methods 92

Example

1 name = getSession().get('name');

R ♢throwError(String message) △void
This method deliberately throws an error to be intercepted later on during
execution. Consider using such method for an explicit notification about
unexpected or unsought scenarios, e.g, wrong parameter types or values.
The raised error has an associated message which is displayed in the
terminal and added to the log file.

Example

1 options = 'not a list';
2 if (!isList(options)) {
3 throwError('I was expecting a list.');
4 }

R ♢isVerboseMode() △boolean
This method, as the name implies, returns a boolean value according to
whether arara is being executed in verbose mode, enabled through either
the --verbose command line option or the corresponding key in the con-
figuration file (detailed in Sections 3.2 and 4.2, respectively). Note that
the logical negation of such method indicates whether the tool is being
executed in silent mode.

Example

1 verbose = isVerboseMode();

R ♢isOnPath(String name) △boolean
This method, as the name implies, returns a boolean value according to
whether the provided String reference representing a command name is
reachable from the system path. For portability reasons, there is no need
to provide extensions to Microsoft Windows command names, as arara
will look for common patterns. This behaviour is expected and by design.
However, be mindful that the search is case sensitive.

Example

1 result = isOnPath('pdftex');

Chapter 6. Methods 93

Path inspection

According to the Wikipedia entry, PATH is an environment variable
on Unix-like operating systems and Microsoft Windows, specifying
a set of directories where executable programs are located. arara
performs a file search operation based on all directories specified in
the system path, filtering files by name (and extensions, when in
Microsoft Windows). When an exact match is found, the search is
concluded. Notwithstanding the great effort, it is very important to
note that there is no guarantee that our tool will be able to correctly
reach the command in all scenarios.

R ♢unsafelyExecuteSystemCommand(Command command) △Pair<Integer, String>
This method, which has a very spooky name, unsafely executes the pro-
vided Command reference and returns an ordered pair containing the exit
status and the command output. Note that, if an exception is raised dur-
ing the command execution, -99 is assigned as exit status and an empty
string is defined as command output. Please make sure to always check
the returned integer status when using this method.

Example

1 result = unsafelyExecuteSystemCommand(getCommand('ls'));

Hic sunt leones

Please do not abuse this method! Keep in mind that this particular
feature is included for very specific scenarios in which the command
streams are needed ahead of time for proper decision making.

R ♢isSubdirectory(File directory) △boolean
This method checks whether the provided File reference is a valid subdi-
rectory under the project hierarchy, return a corresponding boolean value.
This is a check to impose a possible restriction in the rule scope, so that
users can change down to subdirectories in their projects but not up, out-
side of the root directory.

Example

1 valid = isSubdirectory(toFile('chapters/'));

R ♢getOrNull(List<String> list, int index) △String
This method attempts to retrieve a list element based on an integer index.

https://en.wikipedia.org/wiki/PATH_(variable)

Chapter 6. Methods 94

If the index is out of bounds, a null value is returned instead.

Example

1 list = ['a', 'b', 'c'];
2 third = getOrNull(list, 2);

R ♢getOrNull(List<String> list) △String
This method attempts to retrieve the first element of the provided list. If
the list is empty, a null value is returned instead.

Example

1 list = ['a', 'b', 'c'];
2 first = getOrNull(list);

Flags and reserved storage in a session

From version 6.0 on, there are three reserved namespaces within a ses-
sion. They are described as follows:

environment
This namespace is quite intuitive: arara will store the current state
of the systems environment variables in its session. You may alter
these values in the session storage but they will not be written back
to the system configuration. To access an environment variable, you
can use its usual name prefixed by environment: :

Example

1 path = getSession().get('environment:PATH');

arara
This namespace provides flags that control the underlying behaviour
of arara. Flags are used in rules and may be manipulated by the
user. Be aware that every change in this namespace will result in
the tool acting like you know what you did. Use this power with
care. Currently, there is only one relevant flag: arara:FILENAME:halt .
This will stop the currently run command execution on the file with
the specified file name. The value of this map entry is the exit status
you want arara to have.

Chapter 6. Methods 95

Flags and reserved storage in a session (ctd.)

Example

1 getSession().put('arara:myfile.tex:halt', 42);

arg
This namespace acts as a bridge between contexts and the command
line by providing access to key/value pairs defined at runtime by
--call-property command line flags.

Example

1 key = getSession().get('arg:key');

Please refer to Chapter 3, on page 26 for more details on the
--call-property command line flag.

The methods presented in this section provide interesting features for per-
sistent data sharing, error handling, early command execution, and templat-
ing. It is important to note that more classes, objects and methods can be
incorporated into arara through class loading and object instantiation, ex-
tending the features and enhancing the overall user experience.

seven

The official rule pack
arara ships with a pack of default rules, placed inside a special subdirectory
named rules/ inside another special directory named ARARA_HOME (the place
where our tool is installed). This chapter introduces the official rules, includ-
ing proper listings and descriptions of associated parameters whenever ap-
plied. Note that such rules work off the shelf, without any special installation,
configuration or modification. An option marked by S after the corresponding
identifier indicates a natural boolean switch. Similarly, the occurrence of an
R mark indicates that the corresponding option is required.

Can my rule be distributed within the official pack?

As seen in Section 4.2, on page 41, the default rule path can be extended
to include a list of directories in which our tool should search for rules.
However, if you believe your rule is comprehensive enough and deserves
to be in the official pack, please contact us! We will be more than happy
to discuss the inclusion of your rule in forthcoming updates.

animate
This rule creates an animated gif file from the corresponding base name
of the ♢currentFile reference (i.e, the name without the associated ex-
tension) as a string concatenated with the pdf suffix, using the convert
command line utility from the ImageMagick suite.

delay default: 10
This option regulates the number of ticks before the display of the
next image sequence, acting as a pause between still frames.

loop default: 0
This option regulates the number of repetitions for the animation.
When set to zero, the animation repeats itself an infinite number of
times.

density default: 300
This option specifies the horizontal and vertical canvas resolution
while rendering vector formats into a proper raster image.

program default: convert
This option specifies the command utility path as a means to avoid
potential clashes with underlying operating system commands.

96

Chapter 7. The official rule pack 97

Microsoft Windows woes

According to the ImageMagick website, the Windows installation
routine adds the program directory to the system path, such
that one can call command line tools directly from the command
prompt, without providing a path name. However, convert is
also the name of Windows system tool, located in the system di-
rectory, which converts file systems from one format to another.

The best solution to avoid possible future name conflicts, ac-
cording to the ImageMagick team, is to call such command line
tools by their full path in any script. Therefore, the convert rule
provides the program option for this specific scenario.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: animate: { delay: 15, density: 150 }

asymptote
This rule executes the asy command line program, referring to Asymptote,
a powerful descriptive vector graphics language for technical drawings,
inspired by Metapost but with an improved syntax. Please note that you
will have to make the .asy extension known to arara in order to compile
Asymptote files. Furthermore, it is advised to use this in your regular
TEX document specifying the files parameter to include all graphics you
want to compile for inclusion in your document.

color
This option, as the name suggests, provides the underlying color model
to be used in the current execution. Possible values are:

bw
This option value, as the name suggests, converts all colors to a
black and white model.

cmyk
This option value converts the RGB (red, green an blue) color
model to the CMYK (cyan, magenta, yellow and black) counter-
part.

rgb
This option value converts the CMYK (cyan, magenta, yellow and
black) color model to the RGB (red, green an blue) counterpart.

http://www.imagemagick.org/Usage/windows/

Chapter 7. The official rule pack 98

gray
This option value, as the name suggests, converts all colors to a
grayscale model.

engine default: latex
This option, as the name indicates, sets the underlying TEX engine to
be used for the current compilation. Make sure to take a look at the
Asymptote manual for further details on this option. Possible values
are:

latex
This value, as the name suggests, sets the underlying TEX engine
to latex for the current compilation. Note that the engine might
play a major role in the generated code.

pdflatex
This value, as the name indicates, sets the underlying TEX engine
to pdflatex for the current compilation. Note that the engine
might play a major role in the generated code.

xelatex
This value, as the name suggests, sets the underlying TEX engine
to xelatex for the current compilation. Note that the engine might
play a major role in the generated code.

lualatex
This value, as the name indicates, sets the underlying TEX engine
to lualatex for the current compilation. Note that the engine
might play a major role in the generated code.

tex
This value, as the name suggests, sets the underlying TEX engine
to tex for the current compilation. Note that the engine might
play a major role in the generated code.

pdftex
This value, as the name indicates, sets the underlying TEX engine
to pdftex for the current compilation. Note that the engine might
play a major role in the generated code.

luatex
This value, as the name suggests, sets the underlying TEX engine
to luatex for the current compilation. Note that the engine might
play a major role in the generated code.

context
This value, as the name indicates, sets the underlying TEX engine
to context for the current compilation. Note that the engine might
play a major role in the generated code.

none
This value, as the name suggests, sets the underlying TEX engine
to none for the current compilation. In this case, there will be no
associated engine.

format
This option, as the name suggests, converts each output file to a spec-

Chapter 7. The official rule pack 99

ified format. Make sure to take a look at the Asymptote manual for
further details.

output
This option, as the name suggests, sets an alternative output directory
or file name. Make sure to take a look at the Asymptote manual for
further details.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: asymptote: { files: [mydrawing.asy] }

authorindex
This rule calls the authorindex wrapper, a Perl script that processes aux-
iliary files generated by the package of the same name, producing author
index files, with the ain extension.

draft S
This option sets whether the script should write additional informa-
tion to the produced file. For each author, the labels of all references
and the page numbers where they are cited are included as comments.
This detail may help if you manually edit the generated author index.

index S
This option sets whether the script should create a file suitable for
further processing with makeindex or the like. For example, you could
use that to make a common author and subject index. Note the ex-
tension of the generated file still will be the default one.

keep S
This option sets whether the script should retain the temporarily gen-
erated bst file after the run finishes. This information will give you a
good starting point for advanced customization of the author index.

print S
This option, as the name indicates, sets whether the script should
print the result to standard output instead of writing it to the output
file.

recurse S
This option sets whether the script should automatically process aux-
iliary files produced by included files. This behaviour is enabled by
default.

options
This option, as the name indicates, takes a list of raw command line

Chapter 7. The official rule pack 100

options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: authorindex: { draft: yes }

bib2gls
This rule executes the bib2gls command line application which extracts
glossary information stored in a bib file and converts it into glossary
entry definitions in resource files. This rule passes the base name of the
♢currentFile reference (i.e, the name without the associated extension)
as the mandatory argument.

dir
This option sets the directory used for writing auxiliary files. Note that
this option does not change the current working directory.

trans
This option sets the extension of the transcript file created by bib2gls .
The value should be just the file extension without the leading dot.
The default is glg .

locale
This option specifies the preferred language resource file. Please keep
in mind that the provided value must be a valid IETF language tag. If
omitted, the default is obtained by bib2gls from the JVM.

group S
This option sets whether bib2gls will try to determine the letter group
for each entry and add it to a new field called group when sorting. Be
mindful that some sort options ignore this setting. The default value
is off.

interpret S
This option sets whether the interpreter mode of bib2gls is enabled. If
the interpreter is on, bib2gls will attempt to convert any LATEX markup
in the sort value to the closest matching Unicode characters. If the in-
terpreter is off, the log file will not be parsed for recognised packages.
The default value is on.

breakspace S
This option sets whether the interpreter will treat a tilde character as
a non-breaking space (as with TEX) or a normal space. The default
behaviour treats it as non-breakable.

trimfields S
This option sets whether bib2gls will trim leading and trailing spaces
from field values. The default behaviour does not trim spaces.

recordcount S
This option sets whether the record counting will be enabled. If ac-

Chapter 7. The official rule pack 101

tivated, bib2gls will add record count fields to entries. The default
behaviour is off.

recordcountunit S
This option sets whether bib2gls will add unit record count fields to
entries. These fields can then be used with special commands. The
default behaviour is off.

cite S
This option sets whether bib2gls will treat citation instances found in
the aux file as though it was actually an ignored record. The default
behaviour is off.

verbose S
This option sets whether bib2gls will be executed in verbose mode.
When enabled, the application will write extra information to the ter-
minal and transcript file. This option is unrelated to arara’s verbose
mode. The default behaviour is off.

merge S
This option sets whether the program will merge wrglossary counter
records. If disabled, one may end up with duplicate page numbers in
the list of entry locations, but linking to different parts of the page.
The default is on.

uniscript S
This option sets whether text superscript and subscript will use the
corresponding Unicode characters if available. The default is on.

packages
This option instructs the interpreter to assume the packages from the
provided list have been used by the document.

ignore
This option instructs bib2gls to skip the check for any package from
the provided list when parsing the corresponding log file.

custom
This option instructs the interpreter to parse the package files from
the provided list. The package files need to be quite simple.

mapformats
This option takes a list and sets up the rule of precedence for par-
tial location matches. Each element from the provided list must be
another list of exactly two entries representing a conflict resolution.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: bib2gls: { group: true }
2 % arara: --> if found('aux', 'glsxtr@resource')

Chapter 7. The official rule pack 102

biber
This rule runs biber , the backend bibliography processor for biblatex ,
on the corresponding base name of the ♢currentFile reference (i.e, the
name without the associated extension) as a string.

tool S
This option sets whether the bibliography processor should be exe-
cuted in tool mode, intended for transformations and modifications of
datasources. Since this mode is oriented towards a datasource rather
than a document, make sure to use it alongside the options option.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: biber: { options: ['--wraplines'] }

bibtex
This rule runs the bibtex program, a reference management software, on
the corresponding base name of the ♢currentFile reference (i.e, the name
without the associated extension) as a string.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: bibtex: { options: ['-terse'] }
2 % arara: --> if exists(toFile('references.bib'))

bibtex8
This rule runs bibtex8 , an enhanced, portable C version of bibtex , on
the corresponding base name of the ♢currentFile reference (i.e, the name
without the associated extension) as a string. It is important to note that
this tool can read a character set file containing encoding details.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Chapter 7. The official rule pack 103

Example

1 % arara: bibtex8: { options: ['--trace', '--huge'] }

bibtexu
This rule runs the bibtexu program, an enhanced version of bibtex with
Unicode support and language features, on the corresponding base name
of the ♢currentFile reference (i.e, the name without the associated exten-
sion) as a string.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: bibtexu: { options: ['--language', 'fr'] }

clean
This rule removes the provided file reference through the underlying sys-
tem command, which can be rm in a Unix environment or del in Mi-
crosoft Windows. As a security lock, this rule will always throw an error
if ♢currentFile is equal to ♢getOriginalFile , so the main file reference
cannot be removed. It is highly recommended to use the special files
parameter to indicate removal candidates. Alternatively, a list of file ex-
tensions can be provided as well. Be mindful that the security lock also
applies to file removals based on extensions.

extensions
This option, as the name indicates, takes a list of extensions and con-
structs a new list of removals commands according to the base name
of the ♢currentFile reference (i.e, the name without the associated
extension) as a string concatenated with each extension from the orig-
inal list as suffixes. Keep in mind that, if the special files parameter
is used with this option, the resulting list will contain the cartesian
product of file base names and extensions. An error is thrown if any
data structure other than a proper list is provided as the value.

Better safe than sorry!

When in doubt, always remember that the --dry-run command
line option is your friend! As seen in Section 3.2, on page 28,
this option makes arara go through all the motions of running

Chapter 7. The official rule pack 104

Better safe than sorry! (ctd.)

tasks and subtasks, but with no actual calls. It is a very useful
feature for testing the sequence of removal commands without
actually losing your files! Also, as good practice, always write
plain, simple, understandable clean directives and use as many
as needed in your TEX documents.

Example

1 % arara: clean: { extensions: [aux, log] }

context
This rule runs the context TEX engine on the provided ♢currentFile ref-
erence, generating a corresponding file in the Portable Document Format.
Please refer to the user manual for further details.

make S
This option, as the name indicates, sets whether the engine should
create context formats. Please refer to the user manual for further
details on this option.

ctx
This option, as the name indicates, sets the ctx file for process man-
agement specification. Please refer to the user manual for further
details on this option.

interface
This option, as the name indicates, sets the specified user interface.
Please refer to the user manual for further details on this option.

autopdf S
This option, as the name indicates, closes the corresponding pdf file
in viewer and then reopens it afterwards.

purge
This option, as the name indicates, purges files according to the pro-
vided rule. Possible values are:

partial
This value, as the name suggests, purges files either or not after
a proper run, defined through a pattern. Please refer to the user
manual for further details.

all
This value, as the name suggests, purges all files either or not
after a proper run, defined through a pattern. Please refer to the
user manual for further details.

Chapter 7. The official rule pack 105

result
This value, as the name suggests, purges the resulting file before
the actual run. Please refer to the user manual for further details.

modules
This option, as the name indicates, sets a list of modules and styles
to be loaded, normally part of the distribution.

environments
This option, as the name indicates, sets a list of environment files
(document styles) to load first.

mode
This option, as the name indicates, enables modes according to the
provided list (conditional processing in styles).

path
This option, as the name indicates, consults the given paths in the
provided list during a file lookup.

arguments
This option, as the name indicates, sets variables that can be con-
sulted during a run. Such variables are defined as key/value pairs.

trackers
This option, as the name indicates, sets the list of tracker variables.
Please refer to the user manual for further details.

directives
This option, as the name indicates, sets the list of directive variables.
Please refer to the user manual for further details.

silent
This option, as the name indicates, disables the log categories based
on the provided list. Please refer to the user manual for further details.

errors
This option, as the name indicates, shows errors at the end of a run
and quits when it the provided list. Please refer to the user manual
for further details.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, the engine will prompt the user for interaction in the event of
an error. Possible values are, in order of increasing user interaction
(courtesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

Chapter 7. The official rule pack 106

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: context

convert
This rule runs the convert program, a member of the ImageMagick suite
of tools. This program is used to convert between image formats as well as
resize an image, blur, crop, despeckle, dither, draw on, flip, join, resample,
and more.

program default: convert
This option specifies the command utility path as a means to avoid
potential clashes with underlying operating system commands.

options R
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual script call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: convert: { options: ['photo1.jpg', '--resize',
2 % arara: --> '50%', 'photo2.jpg'] }

copy
This rule copies the File reference to the provided target using the under-
lying operating system copy operation. The target is always overwritten.
However, be mindful that an error will be thrown if you try to overwrite
the file referenced in ♢getOriginalReference .

target R
This option, as the name implies, specifies the target for the copy
operation. Keep in mind that this option is required.

Chapter 7. The official rule pack 107

Example

1 % arara: copy: { target: 'backup/thesis.tex' }

csplain
This rule runs the csplain TEX engine, a conservative extension of Knuth’s
plain TEX with direct processing characters and hyphenation patterns for
Czech and Slovak, on the provided ♢currentFile reference.

interaction
This option alters the underlying engine behaviour. When such option
is omitted, TEX will prompt the user for interaction in the event of
an error. Possible values are, in order of increasing user interaction
(courtesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

draft S
This option sets whether the draft mode, i.e, a mode that produces no
output, so the engine can check the syntax, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Chapter 7. The official rule pack 108

Example

1 % arara: csplain: { interaction: batchmode, shell: yes }

datatooltk
This rule runs datatooltk , an application that creates datatool databases
in raw format from several structured data formats, in batch mode. This
rule requires output and one of the import options.

output R
This option provides the database name to be saved as output. To
guard against accidentally overwriting a document file, datatooltk
now forbids the tex extension for output files. This option is required.

csv
This option, as the name indicates, imports data from the csv file
reference provided as a plain string value.

sep
This option specifies the character used to separate values in the csv
file. Defaults to a comma.

delim
This option specifies the character used to delimit values in the csv
file. Defaults to a double quote.

name
This option, as the name indicates, sets the label reference of the
newly created database according to the provided value.

sql
This option imports data from an SQL database where the provided
value refers to a proper select SQL statement.

sqldb
This option, as the name indicates, sets the name of the SQL database
according to the provided value.

sqluser
This option, as the name indicates, sets the name of the SQL user
according to the provided value.

noconsole default: gui
This action dictates the password request action if such information
was not provided earlier. If there is no console available, the action is
determined by the following values:

error
As the name indicates, this action issues an error when no pass-
word was previously provided through the proper option.

stdin
This action requests the password via the standard input stream,
which is less secure than using a console.

Chapter 7. The official rule pack 109

gui
This action displays a dialog box in which the user can enter the
password for the SQL database.

probsoln
This option, as the name indicates, imports data in the probsoln for-
mat from the file name provided as the value.

input
This option, as the name indicates, imports data in the datatool for-
mat from the file name provided as the value.

sort
This option, as the name indicates, sorts the database according to
the column whose label is provided as the value. The value may be
preceded by + or - to indicate ascending or descending order, re-
spectively. If the sign is omitted, ascending is assumed.

sortlocale
This option, as the name indicates, sorts the database according to
alphabetical order rules of the locale provided as the value. If the
value is set to none strings are sorted according to non-locale letter
order.

sortcase S
This option sets whether strings will be sorted using case-sensitive
comparison for non-locale letter ordering. The default behaviour is
case-insensitive.

seed
This option, as the name indicates, sets the random generator seed to
the provided value. The seed is cleared if an empty value is provided.

shuffle S
This option sets whether the database will be properly shuffled. Shuf-
fle is always performed after sort, regardless of the option order.

csvheader S
This option sets whether the csv file has a header row. The spread-
sheet import functions also use this setting.

debug S
This option, as the name indicates, sets whether the debug mode of
datatooltk is activated. The debug mode is disabled by default.

owneronly S
This option sets whether read and write permissions when saving
dbtex files should be defined for the owner only. This option has
no effect on some operating systems.

maptex S
This option sets whether TEX special characters will be properly mapped
when importing data from csv files or SQL databases.

xls
This option, as the name indicates, imports data from a Microsoft
Excel xls file reference provided as a plain string value.

Chapter 7. The official rule pack 110

ods
This option, as the name indicates, imports data from an Open Docu-
ment Spreadsheet ods file reference provided as a plain string value.

sheet
This option specifies the sheet to select from the Excel workbook or
Open Document Spreadsheet. This may either be an index or the
name of the sheet.

filterop
This option specifies the logical operator to be associated with a given
filter. Filtering is always performed after sorting and shuffling. Possi-
ble values are:
or

This value, as the name indicates, uses the logical or operator
when filtering. This is the default behaviour. Note that this value
has no effect if only one filter is supplied.

and
This value, as the name indicates, uses the logical and operator
when filtering. Note that this value has no effect if only one filter
is supplied.

filters
This option takes a list and sets up a sequence of filters. Each element
from the provided list must be another list of exactly three entries
representing a key, an operator and a value, respectively.

truncate
This option truncates the database to the number of rows provided as
the value. Truncation is always performed after any sorting, shuffling
and filtering, but before column removal.

Example

1 % arara: datatooltk: {
2 % arara: --> output: books.dbtex,
3 % arara: --> csv: booklist.csv }

detex
This rule runs detex , a command line application that, as the name indi-
cates, reads the provided ♢currentFile reference, removes all comments
and TEX control sequences and writes the remainder to the standard out-
put or file.

references S
This option defines whether the tool should echo values from page
counters, references and citations.

follow S
This option defines whether the tool should follow files referenced
through typical input mechanisms.

Chapter 7. The official rule pack 111

math S
This option defines whether the tool should replace math with nouns
and verbs in order to preserve grammar.

spaces S
This option, as the name indicates, define whether the tool should
replace control sequences with spaces.

words S
This option, as the name indicates, define whether the tool should
output only a list of words.

environments
This option takes a list of environments to be ignored by the tool dur-
ing the text transformation.

mode
This option, as the name indicates, defines the operation mode for the
tool. Possible values are:

latex
This value, as the name suggests, enables and forces the LATEX
mode for the tool.

tex
This value, as the name suggests, enables and forces the plain
TEX mode for the tool.

output
This value, as the name indicates, sets the output file in which the
contents will be redirected.

Example

1 % arara: detex: { output: thesis.txt }

dvipdfm
This rule runs dvipdfm , a command line utility for file format translation,
on the corresponding base name of the ♢currentFile reference (i.e, the
name without the associated extension) as a string concatenated with the
dvi suffix, generating a Portable Document Format pdf file.

output
This option, as the name indicates, sets the output name for the gen-
erated pdf file. There is no need to provide an extension, as the value
is always normalized with ♢getBasename such that only the name with-
out the associated extension is used. The base name of the current
file reference is used as the default value.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Chapter 7. The official rule pack 112

Example

1 % arara: dvipdfm: { output: thesis }

dvipdfmx
This rule runs dvipdfmx , an extended version of dvipdfm created to sup-
port multibyte character encodings and large character sets for East Asian
languages, on the corresponding base name of the ♢currentFile reference
(i.e, the name without the associated extension) as a string concatenated
with the dvi suffix, generating a Portable Document Format pdf file.

output
This option, as the name indicates, sets the output name for the gen-
erated pdf file. There is no need to provide an extension, as the value
is always normalized with ♢getBasename such that only the name with-
out the associated extension is used. The base name of the current
file reference is used as the default value.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: dvipdfmx: { options: ['-K', '40'] }

dvips
This rule runs dvips on the corresponding base name of the ♢currentFile
reference (i.e, the name without the associated extension) as a string con-
catenated with the dvi suffix, generating a PostScript ps file.

output
This option, as the name indicates, sets the output name for the gen-
erated ps file. There is no need to provide an extension, as the value is
always normalized with ♢getBasename such that only the name with-
out the associated extension is used. The base name of the current
file reference is used as the default value.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Chapter 7. The official rule pack 113

Example

1 % arara: dvips: { output: thesis }

dvipspdf
This rule runs dvips in order to obtain a corresponding ps file from the
initial dvi reference, and then runs ps2pdf on the previously generated
ps file in order to obtain a pdf file. Note that all base names are acquired
from the ♢currentFile reference (i.e, the name without the associated
extension) and used to construct the resulting files.

output
This option, as the name indicates, sets the output name for the gen-
erated pdf file. There is no need to provide an extension, as the value
is always normalized with ♢getBasename such that only the name with-
out the associated extension is used. The base name of the current
file reference is used as the default value.

options1
This option, as the name indicates, takes a list of raw command line
options and appends it to the dvips program call. An error is thrown
if any data structure other than a proper list is provided as the value.

options2
This option, as the name indicates, takes a list of raw command line
options and appends it to the ps2pdf program call. An error is thrown
if any data structure other than a proper list is provided as the value.

Example

1 % arara: dvipspdf: { output: article }

dvisvgm
This rule runs dvisvgm in order to obtain a corresponding svg file, a
vector graphics format based on XML, from the initial reference. It is im-
portant to observe that the base name is acquired from the ♢currentFile
reference (i.e, the name without the associated extension) and used to
construct the resulting file.

entry
This option sets the extension to be used for the initial reference (i.e,
the current file name) as input to the command line tool. The following
values are available for this option:
dvi

This value sets the extension to be used for the initial reference
as a device independent format. This is the default value when no
value is provided.

Chapter 7. The official rule pack 114

xdv
This value sets the extension to be used for the initial reference
as an extended device independent format.

eps
This value sets the extension to be used for the initial reference
as an encapsulated PostScript graphics format.

pdf
This value sets the extension to be used for the initial reference
as a Portable Document Format.

pages
This value, as the name implies, takes a list of integers indicating the
pages to be processed by the command line tool.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: dvisvgm

etex
This rule runs the etex extended (plain) TEX engine on the provided
♢currentFile reference, generating a corresponding file in a device in-
dependent format.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

Chapter 7. The official rule pack 115

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: etex: {
2 % arara: --> shell: yes,
3 % arara: --> interaction: batchmode
4 % arara: --> }

fig2dev
This rule runs fig2dev , a command line application that translates fig
code in the corresponding base name of the ♢currentFile reference (i.e,
the name without the associated extension) as a string concatenated with
the fig suffix into the specified graphics language and puts them in the
specified output file.

language R
This option, as the name indicates, sets the output graphics language
for proper transformation. Possible values are listed in the following
table (you can infer their types as well, based on the values):

box cgm epic eepic eepicemu emf

eps gif ibmgl jpeg latex map

mf mp mmp pcx pdf pdftex

pdftex_t pic pictex png ppm ps

pstex pstex_t ptk shape sld svg

textyl tiff tk tpic xbm xpm

output R
This option, as the name indicates, sets the output file which will
contain the translated code based on the provided file and language.

magnification
This option, as the name suggests, sets the magnification level at
which the figure is rendered.

Chapter 7. The official rule pack 116

font
This option sets the default font used for text objects to the provided
value. Keep in mind that the format of this option depends on the
graphics language in use.

size
This option, as the name suggests, set the default font size (in points)
for text objects to the provided value.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: fig2dev: { language: mp, output: drawing.mp }

frontespizio
This rule automates the steps required by the frontespizio package in
order to help Italian users generate the frontispiece to their thesis. First
and foremost, the frontispiece is generated. If latex is used as the un-
derlying engine, there is an additional intermediate conversion step to a
proper eps file. Finally, the final document is compiled.

engine default: pdflatex
This option, as the name indicates, sets the underlying TEX engine
to be used for both compilations (the frontispiece and the document
itself). Possible values are:

latex
This value, as the name indicates, sets the underlying TEX engine
to latex for both compilations (frontispiece and document).

pdflatex
This value, as the name indicates, sets the underlying TEX engine
to pdflatex for both compilations (frontispiece and document).

xelatex
This value, as the name indicates, sets the underlying TEX engine
to xelatex for both compilations (frontispiece and document).

lualatex
This value, as the name indicates, sets the underlying TEX engine
to lualatex for both compilations (frontispiece and document).

shell S
This option sets whether the possibility of running underlying system
commands from within the selected TEX engine is activated.

interaction
This option alters the underlying engine behaviour. If this option is

Chapter 7. The official rule pack 117

omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual TEX engine call. An error is
thrown if any data structure other than a proper list is provided as
the value.

Example

1 % arara: frontespizio: { engine: xelatex,
2 % arara: --> shell: yes, interaction: nonstopmode }

ghostscript
This rule runs ghostscript , an interpreter for PostScript and Portable
Document Format files, according to the provided parameters.

program default: gs
This option specifies the command utility path as a means to avoid
potential clashes with underlying operating system commands or spe-
cific Windows naming schemes.

options R
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual ghostscript call. An error is
thrown if any data structure other than a proper list is provided as
the value. This option is required.

device
This option specifies which output device the tool should use. If this

Chapter 7. The official rule pack 118

option is not given, the default device (usually a display device) is
used.

output
This option, as the name indicates, specifies a file in which the tool
should send the output. Please refer to the documentation for more
details.

Example

1 % arara: ghostscript: { options: ['-dCompatibilityLevel=1.4',
2 % arara: --> '-dPDFSETTINGS=/printer', '-dNOPAUSE', '-dQUIET',
3 % arara: --> '-dBATCH', 'input.pdf'],
4 % arara: --> output: output.pdf,
5 % arara: --> device: pdfwrite }

gnuplot
This rule runs gnuplot , a command-driven plotting program that can
generate plots of functions, data and data fits. The program also pro-
vides scripting capabilities, looping, functions, text processing, variables,
macros, arbitrary pre-processing of input data (usually across columns),
as well as the ability to perform non-linear multi-dimensional multi-set
weighted data fitting.

persist S
This option, as the name implies, sets whether the program should let
plot windows survive after the main execution exits.

default S
this option, as the name suggests, sets whether the program should
read the default settings from either gnuplotrc or /.gnuplot on en-
try.

commands
This option, as the name implies, executes the requested commands
before loading the next input file. Please refer to the user manual for
further details.

input R
This required option, as the name indicates, sets the list of input file
names to be processed by the program. An error is thrown if any data
structure other than a proper list is provided as the value.

Example

1 % arara: gnuplot: { input: [myplot.gnuplot], default: yes }

halt
This rule, as the name suggests, sets a halt flag, which stops the cur-
rent interpretation workflow, such that subsequent directives are ignored.

Chapter 7. The official rule pack 119

This rule contains no associated options. Please refer to Section 6.9, on
page 90, for more information on flags.

Example

1 % arara: halt

indent
This rule runs latexindent , a Perl script that indents TEX files according
to an indentation scheme, on the provided ♢currentFile reference. En-
vironments, including those with alignment delimiters, and commands,
including those that can split braces and brackets across lines, are usu-
ally handled correctly by the script.

silent S
This option, as the name indicates, sets whether the script will operate
in silent mode, in which no output is given to the terminal.

overwrite S
This option, as the name indicates, sets whether the ♢currentFile
reference will be overwritten. If activated, a copy will be made before
the actual indentation process.

trace
This option, as the name indicates, enables the script tracing mode,
such that a verbose output will be given to the indent.log log file.
Possible values are:

default
This value, as the name indicates, refers to the default tracing
level. Note that, especially for large files, this value does affect
performance of the script.

complete
This value, as the name indicates, refers to the detailed, complete
tracing level. Note that, especially for large files, performance of
the script will be significantly affected when this value is used.

screenlog S
This option, as the name indicates, sets whether latexindent will out-
put the log file to the screen, as well as to the specified log file.

modifylinebreaks S
This option, as the name indicates, sets whether the script will modify
line breaks, according to specifications written in a configuration file.

cruft
This option sets the provided value as a cruft location in which the
script will write backup and log files. The default behaviour sets the
working directory as cruft location.

Chapter 7. The official rule pack 120

logfile
This option, as the name indicates, sets the name of the log file gen-
erated by latexindent according to the provided value.

output
This option, as the name indicates, sets the name of the output file.
Please note that this option has higher priority over some switches, so
options like overwrite will be ignored by the underlying script.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual script call. An error is thrown if
any data structure other than a proper list is provided as the value.

settings
This option, as the name indicates, dictates the indentation settings
to be applied in the current script execution. Two possible values are
available:

local
This value, as the name implies, acts a switch to indicate a local
configuration. In this scenario, the script will look for a proper
settings file in the same directory as the ♢currentFile reference
and add the corresponding content to the indentation scheme.
Optionally, a file location can be specified as well. Please refer to
the where option for more details on such feature.

onlydefault
This value, as the name indicates, ignores any local configuration,
so the script will resort to the default indentation behaviour.

where
This option, as the name indicates, sets the file location containing the
indentation settings according to the provided value. This option can
only be used if, and only if, local is set as the value for the settings
option, otherwise the rule will throw an error.

replacement
This option, as the name indicates, implements the replacement mode
switches. Three possible values are available:

full
This value, as the name indicates, performs indentation and re-
placements, not respecting verbatim code blocks.

noverb
This value, as the name indicates, performs indentation and re-
placements, and will respect verbatim code blocks.

noindent
This value, as the name implies, will not perform indentation, and
will perform replacements not respecting verbatim code blocks.

Chapter 7. The official rule pack 121

Example

1 % arara: indent: { overwrite: yes }

knitr
This rule calls the knitr package, a transparent engine for dynamic report
generation with R. It takes an .Rnw file as input, extracts the R code in it
according to a list of patterns, evaluates the code and writes the output in
another file. It can also tangle R source code from the input document.

output default: NULL
This option sets the output file. when absent, knitr will try to guess
a default, which will be under the current working directory.

tangle S
This option sets whether to tangle the R code from the input file. Note
that, when used, this option requires output to be specified as well,
otherwise an error is thrown.

quiet S
This option, as the name indicates, sets whether the tool should sup-
press both progress bar and messages.

envir default: parent.frame()
This option sets the environment in which code chunks are to be eval-
uated. Please refer to the documentation for further details.

encoding default: getOption("encoding")
This option, as the name indicates, sets the encoding of the input file.
Please refer to the documentation for further details.

Example

1 % arara: knitr: { quiet: yes }

latex
This rule runs the latex TEX engine on the provided ♢currentFile refer-
ence, generating a corresponding file in a device independent format.

branch default: stable
This option allows branching formats for the current engine, mainly
focused on package development. Users of current TEX distributions
might benefit from format branching in order to easily test documents
and code against the upcoming releases. Possible values are:

stable
This value, as the name implies, enables the stable engine format
branch. Note that this is the default format.

Chapter 7. The official rule pack 122

developer
For experienced users, this value enables the experimental, devel-
oper engine format branch.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

draft S
This option sets whether the draft mode, i.e, a mode that produces no
output, so the engine can check the syntax, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: latex: { interaction: scrollmode, draft: yes }

Chapter 7. The official rule pack 123

latexmk
This rule runs latexmk , a fantastic command line tool for fully automated
TEX document generation, on the provided ♢currentFile reference.

clean
This option, as the name indicates, removes all temporary files gener-
ated after a sequence of intermediate calls for document generation.
Two possible values are available:

all
This value, as the name indicates, removes all temporary, inter-
mediate files, as well as resulting, final formats such as PostScript
and Portable Document Format. Only relevant source files are
kept.

partial
This value, as the name indicates, removes all temporary, in-
termediate files and keeps the resulting, final formats such as
PostScript and Portable Document Format.

engine
This option, as the name indicates, sets the underlying TEX engine of
latexmk to be used for the compilation sequence. Possible values are:

latex
This value, as the name indicates, sets the underlying TEX engine
of the script to latex for the compilation sequence.

latex-dev
This value, as the name indicates, sets the underlying TEX en-
gine of the script to latex-dev (the development branch) for the
compilation sequence.

pdflatex
This value, as the name indicates, sets the underlying TEX engine
of the script to pdflatex for the compilation sequence.

pdflatex-dev
This value, as the name indicates, sets the underlying TEX engine
of the script to pdflatex-dev (the development branch) for the
compilation sequence.

xelatex
This value, as the name indicates, sets the underlying TEX engine
of the script to xelatex for the compilation sequence.

xelatex-dev
This value, as the name indicates, sets the underlying TEX en-
gine of the script to xelatex-dev (the development branch) for the
compilation sequence.

lualatex
This value, as the name indicates, sets the underlying TEX engine
of the script to lualatex for the compilation sequence.

lualatex-dev
This value, as the name indicates, sets the underlying TEX engine

Chapter 7. The official rule pack 124

of the script to lualatex-dev (the development branch) for the
compilation sequence.

program
This option, as the name suggests, sets the TEX engine according to
the provided value. It is important to note that this option has higher
priority over engine values, so the latter will be discarded.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual script call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: latexmk: { engine: pdflatex }

llmk
This rule runs llmk , a command line tool specific for building LATEX docu-
ments. The tool’s aim is to provide a simple way to specify a workflow of
processing documents and encourage people to always explicitly show the
right workflow for each document.

clean
This option, as the name indicates, removes all temporary files gener-
ated after a sequence of intermediate calls for document generation.
Two possible values are available:

all
This value, as the name indicates, removes all temporary, inter-
mediate files, as well as resulting, final formats such as PostScript
and Portable Document Format. Only relevant source files are
kept.

partial
This value, as the name indicates, removes all temporary, in-
termediate files and keeps the resulting, final formats such as
PostScript and Portable Document Format.

debug
This option activates the specified debug category, so debugging mes-
sages related to the activated category will be shown. Please refer to
the documentation for more details.

dry S
This option sets whether the tool should display a list of commands
to be executed without actually invoking them.

mode
This option sets the verbosity level of messages to be displayed during
a run. Three possible values are available:

Chapter 7. The official rule pack 125

quiet
This value, as the name indicates, suppresses most of the mes-
sages from the program during execution.

silent
This value, as the name indicates, silences messages from invoked
programs by redirecting both standard output and standard error
streams to the null device.

verbose
This value, as the name indicates, displays additional information
such as invoked commands with options and arguments by the
program.

Example

1 % arara: llmk: { mode: verbose }

ltx2any
This rule runs ltx2any , a command line tool written in Ruby that acts as
a LATEX build wrapper, on the provided ♢currentFile reference.

clean S
This option, as the name indicates, sets whether all intermediate re-
sults generated during the compilation to be deleted.

engine
This option, as the name indicates, sets the engine to be using during
the current execution.

parameters
This option, as the name indicates, takes a list of parameters to be
passed to the engine. An error is thrown if any data structure other
than a proper list is provided as the value.

tikzimages
This option takes a list of externalised TikZ images to rebuild. An error
is thrown if any data structure other than a proper list is provided as
the value.

jobname
This option, as the name indicates, sets the job name to be used in
the resulting file.

logname
This option, as the name indicates, sets the log file name to be used
during the current execution.

logformat
This option, as the name indicates, sets the log format to be used
during the current execution. Three possible values are available:

Chapter 7. The official rule pack 126

raw
This value, as the name indicates, sets the log format to be raw,
i.e, as generated by the underlying engines.

markdown
This value, as the name indicates, sets the log format to be dis-
played in Markdown.

pdf
This value, as the name indicates, sets the log format to be dis-
played in the Portable Document Format.

loglevel
This option, as the name indicates, sets the log level to be used during
the current execution. Three possible values are available:
error

This value, as the name indicates, sets the base log level to report
errors only. No other information is appended.

warning
This value, as the name indicates, sets the base log level to report
warnings and errors. No other information is appended.

info
This value, as the name indicates, set the base log level to report
all information available, regardless of message categories.

frequency
This option, as the name indicates, sets how often the engine runs.
Values smaller than one will cause it to run until the resulting file no
longer changes.

directory
This option, as the name indicates, sets the directory to hold interme-
diate files during the compilation.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: ltx2any: { synctex: yes }

luahbtex
This rule runs the luahbtex TEX engine on the provided ♢currentFile ref-
erence, generating a corresponding file in the Portable Document Format,
as expected.

Chapter 7. The official rule pack 127

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

draft S
This option sets whether the draft mode, i.e, a mode that produces no
output, so the engine can check the syntax, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: luahbtex: { interaction: batchmode,
2 % arara: --> shell: yes, draft: yes }

lualatex
This rule runs the new lualatex TEX engine on the provided ♢currentFile
reference, generating a corresponding file in the Portable Document For-
mat, as expected.

Chapter 7. The official rule pack 128

branch default: stable
This option allows branching formats for the current engine, mainly
focused on package development. Users of current TEX distributions
might benefit from format branching in order to easily test documents
and code against the upcoming releases. Possible values are:

stable
This value, as the name implies, enables the stable engine format
branch. Note that this is the default format.

developer
For experienced users, this value enables the experimental, devel-
oper engine format branch.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

draft S
This option sets whether the draft mode, i.e, a mode that produces no
output, so the engine can check the syntax, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Chapter 7. The official rule pack 129

Example

1 % arara: lualatex: { interaction: errorstopmode,
2 % arara: --> synctex: yes }

luatex
This rule runs the luatex TEX engine on the provided ♢currentFile ref-
erence, generating a corresponding file in the Portable Document Format,
as expected.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

draft S
This option sets whether the draft mode, i.e, a mode that produces no
output, so the engine can check the syntax, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Chapter 7. The official rule pack 130

Example

1 % arara: luatex: { interaction: batchmode,
2 % arara: --> shell: yes, draft: yes }

make
This rule runs make , a build automation tool that automatically builds
executable programs and libraries from source code, according to a special
file which specifies how to derive the target program.

targets
This option takes a list of targets. Note that make updates a target if
it depends on files that have been modified since the target was last
modified, or if the target does not exist.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: make: { targets: [compile, package] }

makeglossaries
This rule runs makeglossaries , an efficient Perl script designed for use
with TEX documents that work with the glossaries package. All the infor-
mation required to be passed to the relevant indexing application should
also be contained in the auxiliary file. The script takes the correspond-
ing base name of the ♢currentFile reference (i.e, the name without the
associated extension) as the mandatory argument.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual script call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: makeglossaries if found('aux', '@istfilename')

makeglossarieslite
This rule runs makeglossaries-lite , a lightweight Lua script designed for
use with TEX documents that work with the glossaries package. All the

Chapter 7. The official rule pack 131

information required to be passed to the relevant indexing application
should also be contained in the auxiliary file. The script takes the corre-
sponding base name of the ♢currentFile reference (i.e, the name without
the associated extension) as the mandatory argument.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual script call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: makeglossarieslite if found('aux', '@istfilename')

makeindex
This rule runs makeindex , a general purpose hierarchical index generator,
on the corresponding base name of the ♢currentFile reference (i.e, the
name without the associated extension) as a string concatenated with the
idx suffix, generating an index as a special ind file.

style
This option, as the name indicates, sets the underlying index style
file. Make sure to provide a valid ist file when using this option.

german S
This option, as the name indicates, sets whether German word order-
ing should be used when generating the index, according to the rules
set forth in DIN 5007.

order
This option, as the name indicates, sets the default ordering scheme
for the makeindex program. Two possible values are available:

letter
This value, as the name indicates, activates the letter ordering
scheme. In such scheme, a blank space does not precede any
letter in the alphabet.

word
This value, as the name indicates, activates the word ordering
scheme. In such scheme, a blank space precedes any letter in the
alphabet.

input default: idx
This option, as the name indicates, sets the default extension for the
input file, according to the provided value. Later, this value will be
concatenated as a suffix for the base name of the ♢currentFile refer-
ence (i.e, the name without the associated extension).

output default: ind
This option, as the name indicates, sets the default extension for the

Chapter 7. The official rule pack 132

output file, according to the provided value. Later, this value will
be concatenated as a suffix for the base name of the ♢currentFile
reference (i.e, the name without the associated extension).

log default: ilg
This option, as the name indicates, sets the default extension for the
log file, according to the provided value. Later, this value will be con-
catenated as a suffix for the base name of the ♢currentFile reference
(i.e, the name without the associated extension).

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: makeindex: { style: book.ist }

metapost
This rule runs metapost , a tool to compile the Metapost graphics program-
ming language. Please note that you will have to make the .mp extension
known to arara in order to compile Metapost files. Furthermore, it is
advised to use this in your regular TEX document specifying the files pa-
rameter to include all graphics you want to compile for inclusion in your
document.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

Chapter 7. The official rule pack 133

numbersystem
This option sets the number system Metapost will use for calculations.

scaled
In this mode, 32-bit fixed-point arithmetics is used.

double
In this mode, IEEE floating-point arithmetics with 64 bits is used.

binary
This mode is similary to double but without a fixed-length man-
tissa.

decimal
In this mode, arbitrary precision arithmetics is used and numbers
are internally represented in base 10.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: metapost: { files: [graphics.mp] }

move
This rule moves the File reference to the provided target using the under-
lying operating system move operation. The target is always overwritten.
However, be mindful that an error will be thrown if you try to move or
overwrite the file referenced in ♢getOriginalReference .

target R
This option, as the name implies, specifies the target for the move
operation. Keep in mind that this option is required.

Example

1 % arara: move: { files: ['thesis.pdf'],
2 % arara: --> target: 'backup/thesis.pdf' }

nomencl
This rule runs makeindex in order to automatically generate a nomencla-
ture list from TEX documents that work with the nomencl package. The
program itself is a general purpose hierarchical index generator and takes
the corresponding base name of the ♢currentFile reference (i.e, the name
without the associated extension) as a string concatenated with the nlo
suffix and a special style file in order to generate the nomenclature list as
a special nls file.

Chapter 7. The official rule pack 134

style default: nomencl.ist
This option, as the name indicates, sets the underlying index style
file. The default value is set to the one automatically provided by the
nomencl package, so it is highly recommended to not override it.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: nomencl

pbibtex
This rule runs the pbibtex program, a reference management software,
on the corresponding base name of the ♢currentFile reference (i.e, the
name without the associated extension) as a string.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: pbibtex
2 % arara: --> if exists(toFile('references.bib'))

pdfcrop
This rule runs pdfcrop , a command line utility to calculate and remove
empty margins, on corresponding base name of the ♢currentFile refer-
ence (i.e, the name without the associated extension) as a string concate-
nated with the pdf suffix.

output
This option, as the name indicates, sets the output file. When omitted,
the tool uses the input base name with the -crop.pdf suffix.

verbose S
This option, as the name indicates, sets whether the command line
tool will be executed in verbose mode.

debug S
This option, as the name indicates, sets whether the command line
tool will be executed in debug mode.

Chapter 7. The official rule pack 135

engine
This option, as the name indicates, sets the underlying TEX engine to
be used during the run. Three possible values are available:

pdftex
This value, as the name indicates, sets pdftex as the underlying
TEX engine to be used during the run.

xetex
This value, as the name indicates, sets xetex as the underlying
TEX engine to be used during the run.

luatex
This value, as the name indicates, sets luatex as the underlying
TEX engine to be used during the run.

margins
This option, as the name indicates, takes a list of four elements de-
noting left, top, right and bottom margins, respectivelly. An error will
be thrown if no list is provided or if the list does not contain exactly
four elements.

clip S
This option, as the name indicates, sets whether the command line
tool should include clipping support, if margins are set.

hires S
This option, as the name indicates, sets whether the command line
tool should use a high resolution bounding box feature.

ini S
This option, as the name indicates, sets whether the initex variant
of the underlying TEX engine is used.

restricted S
This option, as the name indicates, sets whether the command line
tool should run on restricted mode.

papersize
This option, as the name indicates, sets the paper size. According to
the documentation, this option should only be used with older ver-
sions of ghostscript .

resolution
This option, as the name indicates, sets the resolution by forwarding
the value to the underlying ghostscript call.

bbox
This option, as the name indicates, takes a list of four elements de-
noting left, bottom, right and top margins, respectivelly, to override
bounding box values found by ghostscript . An error will be thrown if
no list is provided or if the list does not contain exactly four elements.

uncompress S
This option, as the name indicates, sets whether the tool should gen-
erate an uncompressed Portable Document Format file, useful for de-
bugging.

Chapter 7. The official rule pack 136

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: pdfcrop

pdfcsplain
This rule runs the pdfcsplain TEX engine, a conservative extension of
Knuth’s plain TEX with direct processing characters and hyphenation pat-
terns for Czech and Slovak, on the provided ♢currentFile reference.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

draft S
This option sets whether the draft mode, i.e, a mode that produces no
output, so the engine can check the syntax, is activated.

Chapter 7. The official rule pack 137

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: pdfcsplain: { shell: yes, synctex: yes }

pdflatex
This rule runs the pdflatex TEX engine on the provided ♢currentFile ref-
erence, generating a corresponding file in the Portable Document Format,
as expected.

branch default: stable
This option allows branching formats for the current engine, mainly
focused on package development. Users of current TEX distributions
might benefit from format branching in order to easily test documents
and code against the upcoming releases. Possible values are:
stable

This value, as the name implies, enables the stable engine format
branch. Note that this is the default format.

developer
For experienced users, this value enables the experimental, devel-
oper engine format branch.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):
batchmode

In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

Chapter 7. The official rule pack 138

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

draft S
This option sets whether the draft mode, i.e, a mode that produces no
output, so the engine can check the syntax, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: pdflatex: { interaction: batchmode }
2 % arara: --> if missing('pdf') || changed('tex')

pdftex
This rule runs the pdftex TEX engine on the provided ♢currentFile ref-
erence, generating a corresponding file in the Portable Document Format,
as expected.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):
batchmode

In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

Chapter 7. The official rule pack 139

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

draft S
This option sets whether the draft mode, i.e, a mode that produces no
output, so the engine can check the syntax, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: pdftex: { draft: yes }

pdftk
This rule runs pdftk , a command line tool for manipulating Portable
Document Format documents, on the corresponding base name of the
♢currentFile reference (i.e, the name without the associated extension)
as a string concatenated with the pdf suffix.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: pdftk: { options: [burst] }

perltex
This rule runs perltex , a wrapper that enables a symbiosis between Perl,
a popular general purpose programming language, and a TEX engine, on
the provided ♢currentFile reference.

engine default: latex
This option, as the name indicates, sets the underlying TEX engine to
be used for the current compilation. Make sure to take a look at the
manual for further details on this option. Possible values are:

Chapter 7. The official rule pack 140

latex
This value, as the name suggests, sets the underlying TEX engine
to latex for the current compilation. Note that the engine might
play a major role in the generated code.

pdflatex
This value, as the name indicates, sets the underlying TEX engine
to pdflatex for the current compilation. Note that the engine
might play a major role in the generated code.

xelatex
This value, as the name suggests, sets the underlying TEX engine
to xelatex for the current compilation. Note that the engine might
play a major role in the generated code.

lualatex
This value, as the name indicates, sets the underlying TEX engine
to lualatex for the current compilation. Note that the engine
might play a major role in the generated code.

tex
This value, as the name suggests, sets the underlying TEX engine
to tex for the current compilation. Note that the engine might
play a major role in the generated code.

pdftex
This value, as the name indicates, sets the underlying TEX engine
to pdftex for the current compilation. Note that the engine might
play a major role in the generated code.

luatex
This value, as the name suggests, sets the underlying TEX engine
to luatex for the current compilation. Note that the engine might
play a major role in the generated code.

context
This value, as the name indicates, sets the underlying TEX engine
to context for the current compilation. Note that the engine might
play a major role in the generated code.

safe S
This option sets whether the wrapper should enable sandboxing. When
explicitly disabled, the wrapper might execute any arbitrary Perl code,
including that which can harm files.

permit
This option takes a list of values in which indicate particular Perl
operations to be performed, enabling finer-grained control over the
wrapper sandbox.

standalone S
This option generates a specific style file to make the document suit-
able for distribution to users who do not have the wrapper installed.
Please refer to the manual for further details on this option.

interaction
This option alters the underlying engine behaviour. If this option is

Chapter 7. The official rule pack 141

omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: perltex: { safe: no, standalone: yes }

platex
This rule runs the platex TEX engine on the provided ♢currentFile refer-
ence, generating a corresponding file in a device independent format.

branch default: stable
This option allows branching formats for the current engine, mainly
focused on package development. Users of current TEX distributions
might benefit from format branching in order to easily test documents
and code against the upcoming releases. Possible values are:

Chapter 7. The official rule pack 142

stable
This value, as the name implies, enables the stable engine format
branch. Note that this is the default format.

developer
For experienced users, this value enables the experimental, devel-
oper engine format branch.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: platex: { interaction: scrollmode, shell: yes }

ps2pdf
This rule runs ps2pdf , a tool that converts PostScript to Portable Docu-

Chapter 7. The official rule pack 143

ment Format, on the corresponding base name of the ♢currentFile refer-
ence (i.e, the name without the associated extension) as a string concate-
nated with the ps suffix.

output
This option, as the name indicates, sets the output name for the gen-
erated pdf file. There is no need to provide an extension, as the value
is always normalized with ♢getBasename such that only the name with-
out the associated extension is used. The base name of the current
file reference is used as the default value.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: ps2pdf: { output: article }

pythontex
This rule runs pythontex , a wrapper that provides access to Python from
within typical TEX documents, on the provided ♢currentFile reference.
Make sure to take a look at the documentation for further details.

encoding
This option sets the encoding of the underlying TEX document and all
related files. If an encoding is not specified, Unicode is assumed.

errorcode S
This option determines whether an exit code of 1 is returned if there
were errors. On by default, but can be turned off since it is undesir-
able when working with some editors.

runall S
This option sets whether all code to be executed, regardless of modi-
fication. It is useful when code has not been modified, but a depen-
dency such as a library or external data has changed.

rerun
This option, as the name indicates, sets the underlying threshold for
reexecuting code. By default, the wrapper will rerun code that has
been modified or that produced errors on the last run. Possible values
are:

never
When this value is used, the wrapper never executes code. In this
scenario, a warning is issued if there is modified code. Please refer
to the documentation for further details.

Chapter 7. The official rule pack 144

modified
When this value is used, as the name indicates, the wrapper only
executes code that has been modified or that has modified depen-
dencies.

errors
When this value is used, as the name indicates, the wrapper exe-
cutes code that has been modified as well as code that produced
errors on the last run.

warnings
When this value is used, as the name indicates, the wrapper exe-
cutes code that has been modified as well as code that produced
errors or warnings on the last run.

always
When this value is used, as the name indicates, the wrapper exe-
cutes all code, regardless of modification or errors and warnings.
It is useful when code has not been modified, but a dependency
such as a library or external data has changed.

hashdependencies S
This option, as the name suggests, determines whether dependencies
are checked for changes via their hashes or modification times.

jobs
This option, as the name suggests, takes an integer value denoting the
maximum number of concurrent processes. By default, the wrapper
relies on the number of CPUs in the system.

verbose S
This option sets whether the wrapper should be executed in verbose
mode, providing more output information, including a list of all pro-
cesses that are launched.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: pythontex: { jobs: 2, verbose: yes }

qpdf
This rule runs qpdf , a command line application that does structural,
content-preserving transformations of Portable Document Format files, as
well as providing capabilities to developers.

options R
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual script call. An error is thrown if
any data structure other than a proper list is provided as the value.

Chapter 7. The official rule pack 145

Example

1 % arara: qpdf: { options: ['--linearize', 'input.pdf',
2 % arara: --> 'output.pdf'] }

sage
This rule runs sage , a free open source mathematics software system, on
the corresponding base name of the ♢currentFile reference (i.e, the name
without the associated extension) as a string concatenated with the sage
extension (which can be overriden).

program default: sage
This option, as the name indicates, sets the program name. If the tool
is not directly available in your system path, make sure to use the full
path to the installed sage binary.

extension default: sage
This option, as the name indicates, sets the default extension to the
input file to be processed by sage . Three possible values are available:

sage
This value, as the name indicates, sets the extension to refer to
the Sage format, the default one used by the software system.

py This value, as the name indicates, sets the extension to refer to a
typical Python source code.

spyx
This value, as the name indicates, sets the extension to refer to
the SPYX format, a specific Sage compiled source code.

command
This option, as the name indicates, forwards the provided value to the
command line utility to be evaluated as a Sage code.

dotsage S
This option, as the name indicates, sets whether the tool should con-
sider using the .sage directory in the user home directory or a tem-
porary one.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: sage

Chapter 7. The official rule pack 146

sketch
This rule runs sketch , a system for producing line drawings of solid ob-
jects and scenes, on the corresponding base name of the ♢currentFile
reference (i.e, the name without the associated extension) as a string con-
catenated with the sk suffix. Note that one needs to add support for this
particular file type, as seen in Section 4.2, on page 41.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: sketch

songidx
This rule runs songidx , a song index generation script for the songs pack-
age, on the file reference provided as parameter, generating a proper index
as a special sbx file. It is very important to observe that, at the time of
writing, this script is not available off the shelf in TEX Live or MiKTEX dis-
tributions, so a manual deployment is required. The script execution is
performed by the underlying texlua interpreter.

input R
This required option, as the name indicates, sets the input name for
the song index file specified within the TEX document. There is no
need to provide an extension, as the value is always normalized with
♢getBasename such that only the name without the associated exten-
sion is used.

script default: songidx.lua
This option, as the name indicates, sets the script path. The default
value is set to the script name, so either make sure songidx.lua is
located in the same directory of your TEX document or provide the
correct location (preferably a full path).

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual script call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: songidx: { input: songs }

Chapter 7. The official rule pack 147

spix
This rule runs spix , an interesting command line TEX automation tool
written in Python, on the provided ♢currentFile reference.

dry
This option sets whether the tool should display a list of commands
to be executed without actually invoking them.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual script call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: spix

tex
This rule runs the tex TEX engine on the provided ♢currentFile reference,
generating a corresponding file in a device independent format.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

Chapter 7. The official rule pack 148

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: tex: { shell: yes }

texcount
This rule runs texcount , a Perl script designed to count words in TEX and
LATEX files, ignoring macros, tables, formulae and more on the provided
♢currentFile reference. The script is highly configurable, so make sure
to check the manual for further information.

rules
This option, as the name suggests, sets the rules which dictate how
the script should work regarding word counting and option handling.
Possible values are:

relaxed
This value, as the name indicates, sets a relaxed set of rules,
allowing more general cases to be counted as either words and
macros.

restricted
This value, as the name indicates, sets a more restricted set of
rules for word counting and option handling.

verbosity
This option, as the name suggests, sets the verbosity level of the script
according to the provided integer value. Possible values are:

0
This value sets the lowest verbosity level of all, such that the script
does not present parsing details.

1
This value raises the details a bit and sets the verbosity level to
include parsed words and marked formulae.

2
This value adds more details from the previous verbosity level by
including ignored text as well.

3
This value adds more details from the previous verbosity level by
including comments and options.

4
This value sets the highest verbosity level of all, such that the
script includes parsed worded, marked formulae, ignored text,
comments, options and internal states.

Chapter 7. The official rule pack 149

strict S
This option sets whether the tool should enable strict mode, so certain
groups for which rules are not defined raise warnings.

html S
This option, as the name suggests, defines whether the tool should
output the report in the HTML format.

total S
This option, as the name suggests, defines whether the tool should
provide a total sum instead of partial sums (per file).

unicode S
This option, as the name indicates, defines whether the tool should
select Unicode as encoding for both input and output.

output
This option, as the name suggests, sets the output file name in which
the report will be written.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: texcount: { output: report.txt }

texindy
This rule runs texindy , a variant of the xindy indexing system focused
on LATEX documents, on the corresponding base name of the ♢currentFile
reference (i.e, the name without the associated extension) as a string con-
catenated with the idx suffix, generating an index as a special ind file.

quiet S
This option, as the name indicates, sets whether the tool will output
progress messages. It is important to observe that texindy always
outputs error messages, regardless of this option.

codepage
This option, as the name indicates, specifies the encoding to be used
for letter group headings. Additionally, it specifies the encoding used
internally for sorting, but that does not matter for the final result.

language
This option, as the name indicates, specifies the language that dic-
tates the rules for index sorting. These rules are encoded in a module.

markup
This option, as the name indicates, specifies the input markup for the
raw index. The following values are available:

Chapter 7. The official rule pack 150

latex
This value, as the name implies, is emitted by default from the
LATEX kernel, and the raw input is encoded in the LATEX Internal
Character Representation format.

xelatex
This value, as the name implies, acts like the previous latex
markup option, but without inputenc usage. Raw input is en-
coded in the UTF-8 format.

omega
This value, as the name implies, acts like the previous latex
markup option, but with Omega’s special notation as encoding
for characters not in the ASCII set.

modules
This option, as the name indicates, takes a list of module names. Mod-
ules are searched in the usual application path. An error is thrown if
any data structure other than a proper list is provided as the value.

input default: idx
This option, as the name indicates, sets the default extension for the
input file, according to the provided value. Later, this value will be
concatenated as a suffix for the base name of the ♢currentFile refer-
ence (i.e, the name without the associated extension).

output default: ind
This option, as the name indicates, sets the default extension for the
output file, according to the provided value. Later, this value will
be concatenated as a suffix for the base name of the ♢currentFile
reference (i.e, the name without the associated extension).

log default: ilg
This option, as the name indicates, sets the default extension for the
log file, according to the provided value. Later, this value will be con-
catenated as a suffix for the base name of the ♢currentFile reference
(i.e, the name without the associated extension).

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: texindy: { markup: latex }

tikzmake
This rule runs make on a very specific build file generated by the tikzmake
package, as a means to simplify the externalization of TikZ pictures. This
build file corresponds to the base name of the ♢currentFile reference (i.e,

Chapter 7. The official rule pack 151

the name without the associated extension) as a string concatenated with
the makefile suffix.

force S
This option, as the name indicates, sets whether all targets specified
in the corresponding build file should be unconditionally made.

jobs
This option, as the name indicates, specifies the number of jobs (com-
mands) to run simultaneously. Note that the provided value must be
a positive integer. The default number of job slots is one, which means
serial execution.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: tikzmake: { force: yes, jobs: 2 }

upbibtex
This rule runs the upbibtex program, a reference management software,
on the corresponding base name of the ♢currentFile reference (i.e, the
name without the associated extension) as a string.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: pbibtex
2 % arara: --> if exists(toFile('references.bib'))

uplatex
This rule runs the uplatex TEX engine on the provided ♢currentFile ref-
erence, generating a corresponding file in a device independent format.

branch default: stable
This option allows branching formats for the current engine, mainly
focused on package development. Users of current TEX distributions
might benefit from format branching in order to easily test documents
and code against the upcoming releases. Possible values are:

Chapter 7. The official rule pack 152

stable
This value, as the name implies, enables the stable engine format
branch. Note that this is the default format.

developer
For experienced users, this value enables the experimental, devel-
oper engine format branch.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: uplatex: { interaction: scrollmode, shell: yes }

Chapter 7. The official rule pack 153

uptex
This rule runs the uptex TEX engine on the provided ♢currentFile refer-
ence, generating a corresponding file in a device independent format.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: uptex

xdvipdfmx
This rule runs xdvipdfmx , the back end for the xetex TEX engine (and
not intended to be invoked directly), on the corresponding base name of

Chapter 7. The official rule pack 154

the ♢currentFile reference (i.e, the name without the associated exten-
sion) as a string concatenated with a certain suffix, generating a Portable
Document Format pdf file.

entry
This option sets the extension to be used for the initial reference (i.e, the
current file name) as input to the command line tool. The following values
are available for this option:

dvi
This value sets the extension to be used for the initial reference as a
device independent format. This is the default value when no value is
provided.

xdv
This value sets the extension to be used for the initial reference as an
extended device independent format.

output
This option, as the name indicates, sets the output name for the gen-
erated pdf file. There is no need to provide an extension, as the value
is always normalized with ♢getBasename such that only the name with-
out the associated extension is used. The base name of the current
file reference is used as the default value.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: xdvipdfmx: { output: thesis }

xelatex
This rule runs the new xelatex TEX engine on the provided ♢currentFile
reference, generating a corresponding file in the Portable Document For-
mat, as expected.

branch default: stable
This option allows branching formats for the current engine, mainly
focused on package development. Users of current TEX distributions
might benefit from format branching in order to easily test documents
and code against the upcoming releases. Possible values are:

stable
This value, as the name implies, enables the stable engine format
branch. Note that this is the default format.

Chapter 7. The official rule pack 155

developer
For experienced users, this value enables the experimental, devel-
oper engine format branch.

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: xelatex: { shell: yes, synctex: yes }

xetex
This rule runs the xetex TEX engine on the provided ♢currentFile refer-
ence, generating a corresponding file in the Portable Document Format,
as expected.

Chapter 7. The official rule pack 156

interaction
This option alters the underlying engine behaviour. If this option is
omitted, TEX will prompt the user for interaction in the event of an er-
ror. Possible values are, in order of increasing user interaction (cour-
tesy of our master Enrico Gregorio):

batchmode
In this mode, nothing is printed on the terminal, and errors are
scrolled as if the return key is hit at every error. Missing files that
TEX tries to input or request from keyboard input cause the job to
abort.

nonstopmode
In this mode, the diagnostic message will appear on the terminal,
but there is no possibility of user interaction just like in batch
mode, previously described.

scrollmode
In this mode, as the name indicates, TEX will stop only for missing
files to input or if proper keyboard input is necessary. TEX fixes
errors itself.

errorstopmode
In this mode, TEX will stop at each error, asking for proper user
intervention. This is the most user interactive mode available.

shell S
This option sets whether the possibility of running underlying system
commands from within TEX is activated.

synctex S
This option sets whether synctex , an input and output synchroniza-
tion feature that allows navigation from source to typeset material and
vice versa, available in most TEX engines, is activated.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: xetex: { interaction: scrollmode, synctex: yes }

xindex
This rule runs xindex , a flexible and powerful indexing system, on a pro-
vided idx input. This tool is completely with the makeindex program.

input R
This option, as the name indicates, corresponds to the idx reference
to be processed by the indexing system. Note that this option is re-
quired.

Chapter 7. The official rule pack 157

config default: cfg
This option specifies a configuration extension. Make sure to take a
look at the documentation for further details.

language default: en
This option, as the name suggests, specifies the language. Make sure
to take a look at the documentation for further details.

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: xindex: { input: mydoc.idx }

xindy
This rule runs xindy , a flexible and powerful indexing system, on the
corresponding base name of the ♢currentFile reference (i.e, the name
without the associated extension) as a string concatenated with the idx
suffix, generating an index as a special ind file.

quiet S
This option, as the name indicates, sets whether the tool will out-
put progress messages. It is important to observe that xindy always
outputs error messages, regardless of this option.

codepage
This option, as the name indicates, specifies the encoding to be used
for letter group headings. Additionally, it specifies the encoding used
internally for sorting, but that does not matter for the final result.

language
This option, as the name indicates, specifies the language that dic-
tates the rules for index sorting. These rules are encoded in a module.

markup
This option, as the name indicates, specifies the input markup for the
raw index. The following values are available:

latex
This value, as the name implies, is emitted by default from the
LATEX kernel, and the raw input is encoded in the LATEX Internal
Character Representation format.

xelatex
This value, as the name implies, acts like the previous latex
markup option, but without inputenc usage. Raw input is en-
coded in the UTF-8 format.

omega
This value, as the name implies, acts like the previous latex

Chapter 7. The official rule pack 158

markup option, but with Omega’s special notation as encoding
for characters not in the ASCII set.

xindy
This value, as the name implies, uses the xindy input markup as
specified in the xindy manual.

modules
This option, as the name indicates, takes a list of module names. Mod-
ules are searched in the usual application path. An error is thrown if
any data structure other than a proper list is provided as the value.

input default: idx
This option, as the name indicates, sets the default extension for the
input file, according to the provided value. Later, this value will be
concatenated as a suffix for the base name of the ♢currentFile refer-
ence (i.e, the name without the associated extension).

output default: ind
This option, as the name indicates, sets the default extension for the
output file, according to the provided value. Later, this value will
be concatenated as a suffix for the base name of the ♢currentFile
reference (i.e, the name without the associated extension).

log default: ilg
This option, as the name indicates, sets the default extension for the
log file, according to the provided value. Later, this value will be con-
catenated as a suffix for the base name of the ♢currentFile reference
(i.e, the name without the associated extension).

options
This option, as the name indicates, takes a list of raw command line
options and appends it to the actual system call. An error is thrown if
any data structure other than a proper list is provided as the value.

Example

1 % arara: xindy: { markup: xelatex }

It is highly advisable to browse the relevant documentation about packages
and tools described in this chapter as a means to learn more about features
and corresponding advanced usage. For TEX Live users, we recommend the
use of texdoc , a command line program to find and view documentation. For
example, this manual can be viewed through the following command:

Terminal

1 $ texdoc arara

Chapter 7. The official rule pack 159

The primary function of the handy texdoc tool is to locate relevant docu-
mentation for a given keyword (typically, a package name) on your disk, and
open it in an appropriate viewer. For MiKTEX users, the distribution provides
a similar tool named mthelp to find and view documentation. Make sure to
use these tools whenever needed!

part two

Development and deployment

160

eight

Building from source
arara is a Kotlin application licensed under the New BSD License, a verified
GPL-compatible free software license, and the source code is available in the
project repository at GitLab. This chapter provides detailed instructions on
how to build our tool from source.

8.1 Requirements

In order to build our tool from source, we need to ensure that our development
environment has the minimum requirements for a proper compilation. Make
sure the following items are available:

On account of our project being hosted at GitLab, an online source code
repository, we highly recommend the installation of git , a version con-
trol system for tracking changes in computer files and coordinating work
on those files among multiple people. Alternatively, you can directly ob-
tain the source code by requesting a source code download in the repos-
itory. In order to check if git is available in your operating system, run
the following command in the terminal (version numbers might vary):

Terminal

1 $ git --version
2 git version 2.29.2

Please refer to the git project website in order to obtain specific installa-
tion instructions for your operating system. In general, most recent Unix
systems have git installed out of the shelf.

Our tool is written in the Kotlin programming language, so we need a
proper Java Development Kit, a collection of programming tools for the
Java platform. Our source code is known to be compliant with several
vendors, including Oracle, OpenJDK, and Azul Systems. In order to
check if your operating system has the proper tools, run the following
command in the terminal (version numbers might vary):

161

http://www.opensource.org/licenses/bsd-license.php
https://gitlab.com/islandoftex/arara
https://gitlab.com/
https://gitlab.com/islandoftex/arara/-/archive/master/arara-master.zip
https://git-scm.com/

Chapter 8. Building from source 162

Terminal

1 $ javac -version
2 javac 1.8.0_171

The previous command, as the name suggests, refers to the javac tool,
which is the Java compiler itself. The most common Java Development
Kit out there is from Oracle. However, several Linux distributions (as well
as some developers, yours truly included) favour the OpenJDK vendor, so
your mileage may vary. Please refer to the corresponding website of the
vendor of your choice in order to obtain specific installation instructions
for your operating system.

As a means to provide a straightforward and simplified compilation work-
flow, arara relies on Gradle, a software project management and com-
prehension tool. Gradle is a build tool just like ours with a much more
comprehensive build framework to provide support for the JVM ecosys-
tem. In order to check if gradle , the Gradle binary, is available in your
operating system, run the following command in the terminal (version
numbers might vary):

Terminal

1 $ gradle --version
2 --
3 Gradle 6.0.1
4 --
5
6 Build time: 2019-11-21 11:47:01 UTC
7 Revision: <unknown>
8
9 Kotlin: 1.3.50

10 Groovy: 2.5.8
11 Ant: Apache Ant(TM) version 1.10.7 compiled
12 on September 1 2019
13 JVM: 1.8.0_232 (Oracle Corporation 25.232-b09)
14 OS: Linux 5.5.0-1-MANJARO amd64

Please refer to the Gradle project website in order to obtain specific in-
stallation instructions for your operating system. In general, most recent
Linux distributions have the Gradle binary, as well the proper associated
dependencies, available in their corresponding repositories.

For a proper repository cloning, as well as the first Gradle build, an active
Internet connection is required. In particular, Gradle dynamically down-
loads Java libraries and plug-ins from one or more online repositories
and stores them in a local cache. Be mindful that subsequent builds can
occur offline, provided that the local Gradle cache exists.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://gradle.org

Chapter 8. Building from source 163

arara can be easily built from source, provided that the aforementioned
requirements are available. The next section presents the compilation details,
from repository cloning to a proper Java archive generation.

One tool to rule them all

For the brave, there is the Software Development Kit Manager, an inter-
esting tool for managing parallel versions of multiple software develop-
ment kits on most Unix based systems. In particular, this tool provides
off the shelf support for several Java Development Kit vendors and ver-
sions, as well as most recent versions of Gradle.

Personally, I prefer the packaged versions provided by my favourite Linux
distribution (Fedora), but this tool is a very interesting alternative to set
up a development environment with little to no effort.

8.2 Compiling the tool

First and foremost, we need to clone the project repository into our develop-
ment environment, so we can build our tool from source. The cloning will
create a directory named arara/ within the current working directory, so re-
member to first ensure that you are in the appropriate directory. For example:

Terminal

1 $ mkdir git-projects
2 $ cd git-projects

Run the following command in the terminal to clone the arara project:

Terminal

1 $ git clone https://gitlab.com/islandoftex/arara.git

Wait a couple of seconds (or minutes, depending on your Internet con-
nection) while the previous command clones the project repository hosted at
GitLab. Be mindful that this operation pulls down every version of every file
for the history of the project. Fortunately, the version control system has the
notion of a shallow clone, which is a more succinctly meaningful way of de-
scribing a local repository with history truncated to a particular depth during
the clone operation. If you want to get only the latest revision of everything in
our repository, run the following command in the terminal:

https://sdkman.io/

Chapter 8. Building from source 164

Terminal

1 $ git clone https://gitlab.com/islandoftex/arara.git --depth 1

This operation is way faster than the previous one, for obvious reasons.
Unix terminals typically start at USER_HOME as working directory, so, if you
did not cd to another directory (as in the earlier example), the newly cloned
arara/ directory is almost certain to be accessible from that level. Now, we
need to navigate to the directory named arara/ . Run the following command
in the terminal:

Terminal

1 $ cd arara

The previous command should take us inside the arara/ directory of our
project, where the source code and the corresponding build file are located. Let
us make sure we are in the correct location by running the following command
in the terminal:

Terminal

1 $ ls build.gradle.kts
2 build.gradle.kts

Great, we are in the correct location! From the previous output, let us
inspect the directory contents. The application/ directory, as the name sug-
gests, contains the source code of the main application organized in an es-
tablished package structure, whereas build.gradle.kts is the corresponding
Gradle build file written to efficiently compile the project. In order to build our
tool, run the following command in the terminal:

Terminal

1 $ gradle build

Gradle is based around the central concept of a build life cycle. The compile
phase, as the name suggests, compiles the source code of the project using
the underlying Java compiler. After compiling, the code can be packaged,
tested and run. The build target actually compiles, tests and packages our
tool. Afterwards, you will have a cli/build/libs/ directory with multiple JAR
files, one containing with-deps . That file is ready to run as it bundles all de-

Chapter 8. Building from source 165

pendencies. Subsequent builds will be significantly faster than the first build
because they do not fetch dependencies and rely on a build cache. Finally,
after some time, Gradle will output the following message as result (please
note that the entire compilation and packaging only took 4 seconds on my
development machine due to an existing local cache):

Terminal

1 BUILD SUCCESSFUL in 4s
2 15 actionable tasks: 15 up-to-date

Now, let us move the resulting Java archive file from that particular di-
rectory to our current directory. Run the following command in the terminal
(please note that the Java archive file was also renamed during the move op-
eration):

Terminal

1 $ mv cli/build/libs/arara-cli-with-deps-*.jar arara.jar

Now, our current directory contains the final arara.jar Java archive file
properly built from source. This file can be safely distributed and deployed, as
seen later on, in Chapter 9, on page 167. You can also test the resulting file
by running the following command in the terminal:

Terminal

1 $ java -jar arara.jar
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Usage: arara [OPTIONS] file...
8
9 Options:

10 -l, --log Generate a log output
11 -v, --verbose / -s, --silent Print the command output
12 -n, --dry-run Go through all the motions of running
13 a command, but with no actual calls
14 -s, --safe-run Run in safe mode and disable
15 potentially harmful features. Make
16 sure your projects uses only allowed
17 features.
18 -H, --header Extract directives only in the file
19 header
20 -p, --preamble TEXT Set the file preamble based on the

Chapter 8. Building from source 166

Terminal (ctd.)

21 configuration file
22 -t, --timeout INT Set the execution timeout (in
23 milliseconds)
24 -L, --language TEXT Set the application language
25 -m, --max-loops INT Set the maximum number of loops (> 0)
26 -d, --working-directory PATH Set the working directory for all
27 tools
28 -P, --call-property VALUE Pass parameters to the application
29 to be used within the session.
30 -V, --version Show the version and exit
31 -h, --help Show this message and exit
32
33 Arguments:
34 file The file(s) to evaluate and process

The following optional Gradle phase is used to handle the project cleaning,
including the complete removal of the build/ directory. As a result, the project
is then restored to the initial state without any generated Java bytecode. Run
the following command in the terminal:

Terminal

1 $ gradle clean

This section covered the compilation details for building arara from source.
The aforementioned steps are straightforward and can be automated in order
to generate snapshots and daily builds. If you run into any issue, please let
us know. Happy compilation!

nine

Deploying the tool
As previously mentioned, arara runs on top of a Java virtual machine, avail-
able on all major operating systems – in some cases, you might need to in-
stall the proper virtual machine. This chapter provides detailed instructions
on how to properly deploy the tool in your computer from either the official
package available in our project repository or a personal build generated from
source (as seen in Section 8.2, on page 163).

9.1 Directory structure

From the early development stages, our tool employs a very straightforward
directory structure. In short, we provide the ARARA_HOME alias to the directory
path in which the arara.jar Java archive file is located. This particular file is
the heart and soul of our tool and dictates the default rule search path, which
is a special directory named rules/ available from the same level. This direc-
tory contains all rules specified in the YAML format, as seen in Section 2.1, on
page 8. The structure overview is presented as follows.

ARARA_HOME

arara.jar

rules/

arara-rule-animate.yaml

arara-rule-bib2gls.yaml
. . .

arara-rule-xetex.yaml

arara-rule-xindy.yaml

Provided that this specific directory structure is honoured, the tool is ready
for use off the shelf. In fact, the official arara CTAN package is available in
the artifacts section of our project repository. Once the package is properly
downloaded, we simply need to extract it into a proper ARARA_HOME location.

167

https://gitlab.com/islandoftex/arara/-/jobs/artifacts/master/download?job=publish:tdszip

Chapter 9. Deploying the tool 168

9.2 Defining a location

First and foremost, we need to obtain master-ctan.zip from our project repos-
itory at GitLab, which is our CTAN package artifact. As the name indicates,
this is a compressed file format, so we need to extract it into a proper location.
Run the following commands in the terminal:

Terminal

1 $ unzip master-ctan.zip
2 $ unzip arara.tds.zip
3 $ mv scripts/arara .

As a result of the previous commands, we obtained a directory named
arara with the exact structure presented in Section 9.1 in our working di-
rectory (amongst other files and directories that can be safely discarded). Now
we need to decide where arara should reside in our system. For example,
I usually deploy my tools inside the /opt/paulo path, so I need to run the
following command in the terminal (please note that my personal directory
already has the proper permissions, so I do not need superuser privileges):

Terminal

1 $ mv arara /opt/paulo/

The tool has found a comfortable home inside my system! Observe that the
full path of the ARARA_HOME reference points out to /opt/paulo/arara since this
is my deployment location of choice. The resulting structure overview, from
the root directory, is presented as follows:

/

bin/

boot/
. . .

opt/
paulo/ arara/

arara.jar

rules/

arara-rule-animate.yaml

arara-rule-bib2gls.yaml
. . .

arara-rule-xetex.yaml

arara-rule-xindy.yaml

. . .

texbin/. . .

usr/

var/

If the tool was built from source (as indicated in Section 8.2, on page 163),
make sure to construct the provided directory structure previously presented.
We can test the deployment by running the following command in the terminal
(please note the full path):

Chapter 9. Deploying the tool 169

Terminal

1 $ java -jar /opt/paulo/arara/arara.jar
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Usage: arara [OPTIONS] file...
8
9 Options:

10 -l, --log Generate a log output
11 -v, --verbose / -s, --silent Print the command output
12 -n, --dry-run Go through all the motions of running
13 a command, but with no actual calls
14 -s, --safe-run Run in safe mode and disable
15 potentially harmful features. Make
16 sure your projects uses only allowed
17 features.
18 -H, --header Extract directives only in the file
19 header
20 -p, --preamble TEXT Set the file preamble based on the
21 configuration file
22 -t, --timeout INT Set the execution timeout (in
23 milliseconds)
24 -L, --language TEXT Set the application language
25 -m, --max-loops INT Set the maximum number of loops (> 0)
26 -d, --working-directory PATH Set the working directory for all
27 tools
28 -P, --call-property VALUE Pass parameters to the application
29 to be used within the session.
30 -V, --version Show the version and exit
31 -h, --help Show this message and exit
32
33 Arguments:
34 file The file(s) to evaluate and process

Please observe that, provided that the underlying operating system has an
appropriate Java virtual machine installed, arara can be used as a portable,
standalone application. Portable applications can be stored on any data stor-
age device, including external devices such as USB drives and floppy disks.

9.3 Tool wrapping

arara is now properly deployed in our system, but we still need to provide
the full path of arara.jar to the Java virtual machine in order to make our
tool work. This section provides three approaches regarding the creation of
a wrapper, a shell feature that embeds a system command or utility, that
accepts and passes a set of parameters to that command.

shell alias
An alias is a command available in various shells which enables a re-

Chapter 9. Deploying the tool 170

placement of a word by another string. It is mainly used for abbreviating
a system command, or for adding default arguments to a regularly used
command. In order to create a shell alias for our tool, open .bashrc (a
script that is executed whenever a new terminal session starts in interac-
tive mode) in your favourite editor and add the following line, preferably
at the end:

Source code

1 alias arara='java -jar /opt/paulo/arara/arara.jar'

Save the file and restart your terminal. It is important to observe that the
given full path must be properly quoted if it contains spaces. There is no
need to provide explicit parameters, as an alias simply acts as an inline
string replacement.

shell function
A shell function is, as the name suggests, a subroutine, a code block that
implements a set of operations as a means to performs a specified task.
In order to create a shell function for our tool, open .bashrc (a script that
is executed whenever a new terminal session starts in interactive mode)
in your favourite editor and add the following line, preferably at the end:

Source code

1 arara() {
2 java -jar /opt/paulo/arara/arara.jar "$@"
3 }

Save the file and restart your terminal. It is important to observe that the
given full path must be properly quoted if it contains spaces. Note that the
$@ symbol used in the function body represents a special shell variable
that stores all the actual parameters in a list of strings.

Alias or function?

In general, an alias should effectively not do more than change the
default options of a command, as it constitutes a mere string replace-
ment. A function should be used when you need to do something
more complex than an alias. In our particular case, as the underly-
ing logic is pretty straightforward, both approaches are valid.

script file
A script is a computer program designed to be run by an interpreter. In
our context, the script merely sets up the environment and runs a system

Chapter 9. Deploying the tool 171

command. In order to provide a script for our tool, open your favourite
editor and create the following file called arara (no extension):

arara

Source file

1 #!/bin/bash
2 jarpath=/opt/paulo/arara/arara.jar
3 java -jar "$jarpath" "$@"

It is important to observe that the given full path must be properly quoted
if it contains spaces. Note that the $@ symbol used in the script body
represents a special shell variable that stores all the actual parameters
in a list of strings. This script file will act as the entry point for our tool.
Now, we need to make it executable (i.e, set the corresponding execute
permission) by running the following command in the terminal:

Source code

1 $ chmod +x arara

Now we need to move this newly executable script file to one of the di-
rectories set forth in the PATH environment variable, where executable
commands are located. For illustrative purposes only, let us move the
script file to the /usr/local/bin/ directory, a location originally designed
for programs that a normal user may run. Run the following command in
the terminal (note the need for superuser privileges):

Source code

1 $ sudo mv arara /usr/local/bin/

Alternatively, the script can be placed inside a special directory named
bin/ from the home directory of the current user, which is usually added
by default to the system path. Observe that, in this particular case, su-
peruser privileges are not required, as the operation is kept at the current
user level. Run the following command in the terminal instead (please
note that the ~ symbol is a shell feature called tilde expansion and refers
to the home directory of the current user):

Source code

1 $ mv arara ~/bin/

http://www.gnu.org/software/bash/manual/html_node/Tilde-Expansion.html

Chapter 9. Deploying the tool 172

There is no need to restart your terminal, as the reference becomes avail-
able as soon as it is moved to the new location. Note that a shell script
can provide a convenient variation of a system command where special
environment settings, command options, or post-processing apply auto-
matically, but in a way that allows the new script to still act as a fully
normal Unix command.

Regardless of the adopted approach, there should be an arara wrapper
available as an actual Unix command in your shell session. In order to test
the wrapper, run the following command in the terminal:

Terminal

1 $ arara
2 __ _ _ __ __ _ _ __ __ _
3 / _` | '__/ _` | '__/ _` |
4 | (_| | | | (_| | | | (_| |
5 __,_|_| __,_|_| __,_|
6
7 Usage: arara [OPTIONS] file...
8
9 Options:

10 -l, --log Generate a log output
11 -v, --verbose / -s, --silent Print the command output
12 -n, --dry-run Go through all the motions of running
13 a command, but with no actual calls
14 -s, --safe-run Run in safe mode and disable
15 potentially harmful features. Make
16 sure your projects uses only allowed
17 features.
18 -H, --header Extract directives only in the file
19 header
20 -p, --preamble TEXT Set the file preamble based on the
21 configuration file
22 -t, --timeout INT Set the execution timeout (in
23 milliseconds)
24 -L, --language TEXT Set the application language
25 -m, --max-loops INT Set the maximum number of loops (> 0)
26 -d, --working-directory PATH Set the working directory for all
27 tools
28 -P, --call-property VALUE Pass parameters to the application
29 to be used within the session.
30 -V, --version Show the version and exit
31 -h, --help Show this message and exit
32
33 Arguments:
34 file The file(s) to evaluate and process

It is important to observe that the wrapper initiative presented in this sec-
tion might cause a potential name clash with existing TEX Live or MiKTEX
binaries and symbolic links. In this particular scenario, make sure to inspect
the command location as a means to ensure a correct execution. To this end,
run the following command in the terminal:

Chapter 9. Deploying the tool 173

Terminal

1 $ which arara
2 /usr/local/bin/arara

The which command shows the full path of the executable name provided
as parameter. This particular utility does this by searching for an executable
or script in the directories listed in the PATH environment variable. Be mindful
that aliases and shell functions are listed as well.

part three

A primer on formats and scripting

174

ten

YAML
According to the specification, YAML (a recursive acronym for YAML Ain’t
Markup Language) is a human-friendly, cross language, Unicode-based data
serialization language designed around the common native data type of pro-
gramming languages. arara uses this format in three circumstances:

1. Parametrized directives, as the set of attribute/value pairs (namely, argu-
ment name and corresponding value) is represented by a map. This par-
ticular type of directive is formally introduced in Section 2.2, on page 18.

2. Rules, as their entire structure is represented by a set of specific keys and
their corresponding values (a proper YAML document). A rule follows a
very strict model, detailed in Section 2.1, on page 8.

3. Configuration files, as the general settings are represented by a set of
specific keys and their corresponding values (a proper YAML document).
Configuration files are covered in Chapter 4, on page 40.

This chapter only covers the relevant parts of the YAML format for a consis-
tent use with arara. For advanced topics, I highly recommend the complete
format specification, available online.

10.1 Collections

According to the specification, YAML’s block collections use indentation for
scope and begin each entry on its own line. Block sequences indicate each
entry with a dash and space. Mappings use a colon and space to mark each
key: value pair. Comments begin with an octothorpe # . arara relies solely
on mappings and a few scalars to sequences at some point. Let us see an
example of a sequence:

A sequence of scalars in YAML

1 team:
2 - Paulo Cereda
3 - Marco Daniel
4 - Brent Longborough
5 - Nicola Talbot
6 - Ben Frank

175

http://yaml.org/spec/1.2/spec.html

Chapter 10. YAML 176

It is quite straightforward: team holds a sequence of four scalars. YAML
also has flow styles, using explicit indicators rather than indentation to denote
scope. The flow sequence is written as a comma-separated list within square
brackets:

A sequence of scalars in YAML

1 primes: [2, 3, 5, 7, 11]

Attribute maps are easily represented by nesting entries, respecting inden-
tation. For instance, consider a map developer containing two keys, name
and country . The YAML representation is presented as follows:

An attribute map in YAML

1 developer:
2 name: Paulo
3 country: Brazil

Similarly, the flow mapping uses curly braces. Observe that this is the form
adopted by a parametrized directive (see syntax in Section 2.2, on page 18):

An attribute map in YAML (flow mapping)

1 developer: { name: Paulo, country: Brazil }

An attribute map can contain sequences as well. Consider the following
code where developers holds a list of two developers containing their names
and countries:

An attribute map with sequences in YAML

1 developers:
2 - name: Paulo
3 country: Brazil
4 - name: Marco
5 country: Germany

The previous code can be easily represented in flow style by using square
and curly brackets to represent sequences and attribute maps.

Chapter 10. YAML 177

10.2 Scalars

Scalar content can be written in block notation, using a literal style, indicated
by a vertical bar, where all line breaks are significant. Alternatively, they can
be written with the folded style, denoted by a greater-than sign, where each
line break is folded to a space unless it ends an empty or a more-indented
line. It is mportant to note that arara intensively uses both styles (as seen in
Section 2.1, on page 8). Let us see an example:

Scalar content in literal and folded styles

1 logo: |
2 This is the arara logo
3 in its ASCII glory!
4 __ _ _ __ __ _ _ __ __ _
5 / _` | '__/ _` | '__/ _` |
6 | (_| | | | (_| | | | (_| |
7 __,_|_| __,_|_| __,_|
8 slogan: >
9 The cool TeX

10 automation tool

As seen in the previous code, logo holds the ASCII logo of our tool, respect-
ing line breaks. Similarly, observe that the slogan key holds the text with line
breaks replaced by spaces (in the same fashion TEX does with consecutive,
non-empty lines).

Block indentation indicator

According to the YAML specification, the indentation level of a block
scalar is typically detected from its first non-empty line. It is an error
for any of the leading empty lines to contain more spaces than the first
non-empty line, hence the ASCII logo could not be represented, as it
starts with a space.

When detection would fail, YAML requires that the indentation level for
the content be given using an explicit indentation indicator. This level
is specified as the integer number of the additional indentation spaces
used for the content, relative to its parent node. It would be the case if
we want to represent our logo without the preceding text.

YAML’s flow scalars include the plain style and two quoted styles. The
double-quoted style provides escape sequences. The single-quoted style is
useful when escaping is not needed. All flow scalars can span multiple lines.
Note that line breaks are always folded. Since arara uses MVEL as its under-
lying scripting language (Chapter 11, on page 179), it might be advisable to
quote scalars when starting with forbidden symbols in YAML.

Chapter 10. YAML 178

10.3 Tags

According to the specification, in YAML, untagged nodes are given a type de-
pending on the application. The examples covered in this primer use the seq ,
map and str types from the fail safe schema. Explicit typing is denoted with
a tag using the exclamation point symbol. Global tags are usually uniform
resource identifiers and may be specified in a tag shorthand notation using a
handle. Application-specific local tags may also be used. For arara, there is a
special schema used for both rules and configuration files, so in those cases,
make sure to add !config as global tag:

Global tag for rules and configuration files

1 !config

In particular, rules and configuration files of arara are properly covered
in Section 2.1 and Chapter 4, on pages 8 and 40, respectively. For now, it
suffices to say that the !config global tag is necessary to provide the correct
mapping of values inside our tool.

10.4 Further reading

This chapter does not cover all features of the YAML format, so further reading
is advisable. I highly recommend the official YAML specification, currently
covering the third version of the format.

http://yaml.org/spec/1.2/spec.html

eleven

MVEL
According to the Wikipedia entry, the MVFLEX Expression Language (here-
after referred as MVEL) is a hybrid, dynamic, statically typed, embeddable
expression language and runtime for the Java platform. Originally started
as a utility language for an application framework, the project is now devel-
oped completely independently. arara relies on this scripting language in two
circumstances:

1. Rules, as nominal attributes gathered from directives are used to build
complex command invocations and additional computations. A rule fol-
lows a very strict model, detailed in Section 2.1, on page 8.

2. Conditionals, as logical expressions must be evaluated in order to decide
whether and how a directive should be interpreted. Conditionals are
detailed in Section 2.2, on page 18.

This chapter only covers the relevant parts of the MVEL language for a con-
sistent use with arara. For advanced topics, I highly recommend the official
language guide for MVEL 2.0, available online.

11.1 Basic usage

The following primer is provided by the official language guide, almost ver-
batim, with a few modifications to make it more adherent to our needs with
arara. Consider the following expression:

Simple property expression

1 user.name

In this expression, we have a single identifier user.name , which by itself is
a property expression, in that the only purpose of such an expression is to
extract a property out of a variable or context object, namely user . Property
expressions are widely used by arara, as directive parameters are converted to
a map inside the corresponding rule scope. For instance, a parameter foo in a
directive will be mapped as parameters.foo inside a rule during interpretation.

179

https://en.wikipedia.org/wiki/MVEL
https://mvel.documentnode.com/

Chapter 11. MVEL 180

This topic is detailed in Section 2.2, on page 18. The scripting language can
also be used for evaluating a boolean expression:

Boolean expression evaluation

1 user.name == 'John Doe'

This expression yields a boolean result, either true or false based on a
comparison operation. Like a typical programming language, MVEL supports
the full gamut of operator precedence rules, including the ability to use brack-
eting to control execution order:

Execution order control through bracketing

1 (user.name == 'John Doe') && ((x * 2) - 1) > 20

You may write scripts with an arbitrary number of statements using a semi-
colon to denote the termination of a statement. This is required in all cases
except in cases where there is only one statement, or for the last statement in
a script:

Multiple statements

1 statement1; statement2; statement3

It is important to observe that MVEL expressions use a last value out prin-
ciple. This means, that although MVEL supports the return keyword, it can
be safely omitted. For example:

Automatic return

1 foo = 10;
2 bar = (foo = foo * 2) + 10;
3 foo;

In this particular example, the expression automatically returns the value
of foo as it is the last value of the expression. It is functionally identical to:

Chapter 11. MVEL 181

Explicit return

1 foo = 10;
2 bar = (foo = foo * 2) + 10;
3 return foo;

Personally, I like to explicitly add a return statement, as it provides a
visual indication of the expression exit point. All rules released with arara
favour this writing style. However, feel free to choose any writing style you
want, as long as the resulting code is consistent.

The type coercion system of MVEL is applied in cases where two incompa-
rable types are presented by attempting to coerce the right value to that of the
type of the left value, and then vice-versa. For example:

Type coercion

1 "123" == 123;

Surprisingly, the evaluation of such expression holds true in MVEL be-
cause the underlying type coercion system will coerce the untyped number
123 to a string 123 in order to perform the comparison.

11.2 Inline lists, maps and arrays

According to the documentation, MVEL allows you to express lists, maps and
arrays using simple elegant syntax. Lists are expressed in the following for-
mat:

Creating a list

1 ["Jim", "Bob", "Smith"]

Note that lists are denoted by comma-separated values delimited by square
brackets. Similarly, maps (sets of key/value attributes) are expressed in the
following format:

Creating a map

1 ["Foo" : "Bar", "Bar" : "Foo"]

Note that attributes are composed by a key, a colon and the corresponding

Chapter 11. MVEL 182

value. A map is denoted by comma-separated attributes delimited by square
brackets. Finally, arrays are expressed in the following format:

Creating an array

1 { "Jim", "Bob", "Smith" }

One important aspect about inline arrays is their special ability to be co-
erced to other array types. When you declare an inline array, it is untyped at
first and later coerced to the type needed in context. For instance, consider
the following code, in which sum takes an array of integers:

Array coercion

1 math.sum({ 1, 2, 3, 4 });

In this case, the scripting language will see that the target method accepts
an integer array and automatically type the provided untyped array as such.
This is an important feature exploited by arara when calling methods within
the rule or conditional scope.

11.3 Property navigation

MVEL provides a single, unified syntax for accessing properties, static fields,
maps and other structures. Lists are accessed the same as arrays. For exam-
ple, these two constructs are equivalent (MVEL and Java access styles for lists
and arrays, respectively):

MVEL access style for lists and arrays

1 user[5]

Java access style for lists and arrays

1 user.get(5)

Observe that MVEL accepts plain Java methods as well. Maps are ac-
cessed in the same way as arrays except any object can be passed as the
index value. For example, these two constructs are equivalent (MVEL and
Java access styles for maps, respectively):

Chapter 11. MVEL 183

MVEL access style for maps

1 user["foobar"]
2 user.foobar

Java access style for maps

1 user.get("foobar")

It is advisable to favour such access styles over their Java counterparts
when writing rules and conditionals for arara. The clean syntax helps to
ensure more readable code.

11.4 Flow control

The expression language goes beyond simple evaluations. In fact, MVEL sup-
ports an assortment of control flow operators (namely, conditionals and repe-
titions) which allows advanced scripting operations. Consider this conditional
statement:

Conditional statement

1 if (var > 0) {
2 r = "greater than zero";
3 }
4 else if (var == 0) {
5 r = "exactly zero";
6 }
7 else {
8 r = "less than zero";
9 }

As seen in the previous code, the syntax is very similar to the ones found in
typical programming languages. MVEL also provides a shorter version, known
as a ternary statement:

Ternary statement

1 answer == true ? "yes" : "no";

The foreach statement accepts two parameters separated by a colon, the
first being the local variable holding the current element, and the second the

Chapter 11. MVEL 184

collection or array to be iterated over. For example:

Iteration statement

1 foreach (name : people) {
2 System.out.println(name);
3 }

As expected, MVEL also implements the standard C for loop. Observe
that newer versions of MVEL allow an abbreviation of foreach to the usual
for statement, as syntactic sugar. In order to explicitly indicate a collection
iteration, we usually use foreach in the default rules for arara, but both
statements behave exactly the same from a semantic point of view.

Iteration statement

1 for (int i = 0; i < 100; i++) {
2 System.out.println(i);
3 }

The scripting language also provides two versions of the do statement:
one with while and one with until (the latter being the exact inverse of the
former):

Iteration statement

1 do {
2 x = something();
3 } while (x != null);

Iteration statement

1 do {
2 x = something();
3 } until (x == null);

Finally, MVEL also implements the standard while , with the significant
addition of an until counterpart (for inverted logic):

Chapter 11. MVEL 185

Iteration statement

1 while (isTrue()) {
2 doSomething();
3 }

Iteration statement

1 until (isFalse()) {
2 doSomething();
3 }

Since while and until are unbounded (i.e, the number of iterations re-
quired to solve a problem may be unpredictable), we usually tend to avoid
using such statements when writing rules for arara.

11.5 Projections and folds

Projections are a way of representing collections. According to the official
documentation, using a very simple syntax, one can inspect very complex
object models inside collections in MVEL using the in operator. For example:

Projection and fold

1 names = (user.name in users);

As seen in the above code, names holds all values from the name property
of each element, represented locally by a placeholder user , from the collection
users being inspected. This feature can even perform nested operations.

11.6 Assignments

According to the official documentation, the scripting language allows variable
assignment in expressions, either for extraction from the runtime, or for use
inside the expression. As MVEL is a dynamically typed language, there is no
need to specify a type in order to declare a new variable. However, feel free to
explicitly declare the type when desired.

Chapter 11. MVEL 186

Assignment

1 str = "My string";
2 String str = "My string";

Unlike Java, however, the scripting language provides automatic type con-
version (when possible) when assigning a value to a typed variable. In the
following example, an integer value is assigned to a string:

Assignment

1 String num = 1;

For dynamically typed variables, in order to perform a type conversion, it is
just a matter of explicitly casting the value to the desired type. In the following
example, an explicit string cast is assigned to the num variable:

Assignment

1 num = (String) 1;

When writing rules for arara, is advisable to keep variables to a minimum
in order to avoid unnecessary assignments and a potential performance drop.
However, make sure to favour readability over unmaintained code.

11.7 Basic templating

MVEL templates are comprised of orb tags inside a plain text document. Orb
tags denote dynamic elements of the template which the engine will evaluate
at runtime. arara heavily relies on this concept for runtime evaluation of con-
ditionals and rules. For rules, we use orb tags to return either a string from
a textual template or a proper command object. The former constituted the
basis of command generation in previous versions of our tool; we highly rec-
ommend the latter, detailed in Section 2.1, on page 2.1. Conditionals are in
fact orb tags in disguise, such that the expression (or a sequence of expres-
sions) is properly evaluated at runtime. Consider the following example:

Template

1 My favourite team is @{ person.name == 'Enrico'
2 ? 'Juventus' : 'Palmeiras' }!

Chapter 11. MVEL 187

The above code features a basic form of orb tag named expression orb. It
contains an expression (or a sequence of expressions) which will be evaluated
to a certain value, as seen earlier on, when discussing the last value out prin-
ciple. In the example, the value to be returned will be a string containing a
football team name (the result is of course based on the comparison outcome).

11.8 Further reading

This chapter does not cover all features of the MVEL expression language, so
further reading is advisable. I highly recommend the MVEL language guide
currently covering version 2.0 of the language.

http://mvel.documentnode.com/

	Introduction
	What is this tool?
	Core concepts
	Operating system remarks
	Support

	The application
	Important concepts
	Rules
	Directives
	Important changes in version 6

	Command line
	User interface design
	Options
	File name lookup

	Configuration file
	File lookup
	Basic structure

	Logging
	System information
	Directive extraction
	Directive normalization
	Rule interpretation

	Methods
	Files
	Conditional flow
	Strings
	Operating systems
	Type checking
	Classes and objects
	Dialog boxes
	Commands
	Others

	The official rule pack

	Development and deployment
	Building from source
	Requirements
	Compiling the tool

	Deploying the tool
	Directory structure
	Defining a location
	Tool wrapping

	A primer on formats and scripting
	YAML
	Collections
	Scalars
	Tags
	Further reading

	MVEL
	Basic usage
	Inline lists, maps and arrays
	Property navigation
	Flow control
	Projections and folds
	Assignments
	Basic templating
	Further reading

