
PDF extra – extra PDF features for OpTEX
Version 0.1

Michal Vlasák, 2021

PDFextra is a third party package for OpTEX. It aims to provide access to more advanced PDF features,
which are currently not supported in OpTEX – especially interactive and multimedia features. The
development is hosted at https://github.com/vlasakm/pdfextra.

In the spirit of OpTEX you may use these macros in any form you want. Either by installing this
package and doing \load[pdfextra] in OpTEX, or just by copying some useful parts of this package into
your documents / packages. OpTEX namespacing is used, but it can be easily stripped, if you wish to
incorporate these macros into other macro packages. The code currently depends on LuaTEX, but mostly
uses only pdfTEX primitives and a few simple macros from OpTEX.

User documentation (pdfextra-doc.tex) and technical documentation interleaved with source code
(pdfextra.opm) are all typeset in this PDF file. Some examples of usage are in the user documentation,
but file pdfextra-example.tex contains more examples.

Contents
1 User documentation 2

1.1 Defining files . 2
1.2 Multimedia . 2
1.3 Actions . 6

1.3.1 External references . 7
1.3.2 Named actions . 7
1.3.3 Transition actions . 7
1.3.4 JavaScript actions . 7
1.3.5 3D JavaScript actions . 8
1.3.6 GoTo3Dview actions . 8
1.3.7 Rendition actions . 8

1.4 Transitions and other page attributes . 9
1.5 Attachments . 10
1.6 Document view . 10

2 Technical documentation 11
2.1 Package initialization . 11
2.2 Helper macros . 11
2.3 Handling of files . 13
2.4 PDF actions . 14

2.4.1 Additional actions . 15
2.4.2 Link annotations . 15
2.4.3 Open action . 16
2.4.4 Jump actions . 16
2.4.5 Named actions . 17
2.4.6 JavaScript actions . 17

2.5 Page attributes . 17
2.5.1 Transitions, page durations . 19

2.6 Attachments and document level JavaScript . 19
2.7 Viewer preferences . 20
2.8 Multimedia . 20

2.8.1 Renditions (audio/video) . 22
2.8.2 Rich Media (3D/audio/video) . 24
2.8.3 3D views . 26

2.9 MIME type database . 31

1

https://github.com/vlasakm/pdfextra

Chapter 1
User documentation
1.1 Defining files
Many commands provided by this package require you to supply a file ⟨name⟩. This is because many
commands either work directly (like inserting attachments or multimedia) or can optionally use files (like
inserting JavaScript). The “right” way to use ⟨name⟩ is to first define the ⟨name⟩ with:

\filedef/⟨type⟩[⟨name⟩]{⟨path or URL⟩}.
Where ⟨name⟩ is the name you will use to refer to this file. It is currently limited to ASCII only

(as all “⟨name⟩s” required by this package). Interpretation of ⟨path or URL⟩ depends on the type, which
may be:

• e, “embedded file”. The file with path ⟨path⟩ will be embedded to the PDF file. A file that is
embedded this once, can later be used many times in different contexts, e.g. you may use it to
attach a video as an attachment but also have it play on page 1 and even other pages. This is the
best way, because the resulting PDF file is self contained.

• x, “external file”. ⟨path⟩ can only be a path to the current directory. To refer to the file only ⟨path⟩
is used, sort of like a reference. This way the file you want to refer to has to be present in the same
directory as the PDF file when it is viewed!

• u, “URL file”. ⟨URL⟩ is the URL of the file you want to refer to.

All these create the same type of object, which ideally could be used interchangibly everywhere a
file specification is required in PDF. This is sadly not always true. The limitations to only certain types
of \filedef’s will be mentioned in due sections. But as a rule of thumb, most of the time you want to
embed the files into PDF. The external/URL references are good for refering to external files, although
other methods are also possible there.

Because most of the times you want ⟨name⟩ to be embedded file, you may omit the prior definition
and instead use the ⟨path⟩ itself. The file will be autoembedded.

Examples:

\filedef/u[doc-internet]{http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf}
\filedef/x[doc-local]{optex-doc.pdf}
\filedef/e[doc-embedded]{optex-doc.pdf}

1.2 Multimedia
It is possible to insert video, audio and 3D files for playback/display inside a PDF file (on a page). There
are several different PDF mechanisms for inserting multimedia. For audio/video this package uses the so
called “Renditions”, which currently have the best support in PDF viewers (fully works in Acrobat and
Foxit, partly in Evince and Okular). Rich Media annotations are used for 3D art (works only in Acrobat
Reader), although it is possible to also insert audio/video using this mechanism it is very restricting and
Renditions are recommended.

Use command \render[⟨name⟩][⟨optional key-value parameters⟩]{⟨appearance⟩} for inserting au-
dio/video with Renditions or \RM[⟨name⟩][⟨optional key-value parameters⟩]{⟨appearance⟩} for inserting
audio/video/3D as Rich Media annnotation. The result of this command is similiar to what \inspic
produces1. Both commands expect ⟨name⟩ to be \filedef’d name of the file to play/display. As usual,
fallback for interpreting ⟨name⟩ as path (and embedding it) is in place. It is recommended to only use
embedded files with both mechanisms (Rich Media requires it, Renditions with other than embedded files
do not work in Acrobat). Optional key-value parameters may be used to customize default values. They
may be left out enitrely (including brackets). Last parameter, ⟨appearance⟩, defines so called “normal
apperance”, which is shown before the annotation is activated (audio/video starts playing or 3D scene
is displayed). The dimensions of resulting multimedia annotation will be taken from ⟨appearance⟩. Most
likely you want to use a “poster” picture (inserted with \inspic) as appearance – the dimensions will be
taken from it and e.g. aspect ratio will be nicely preserved.

1 But because annotations are involved, transformations using PDF literals will not work as expected.

2

Customization of Renditions is possible using key-value parameters, but beware that it mostly doesn’t
work in Evince and Okular (Acrobat and Foxit are fine in this regard). The available parameters are
in Table 1.2.1. Most customizations of Rich Media concern 3D art. Available parameters are listed in
Table 1.2.2.

Table 1.2.1 Key value parameters available for Renditions (\render)

Key Possible values Default Description

controls true or false false Whether to display audio/video player con-
trols.

volume decimal betwen 0 and 100 100 Audio volume.
repeat integer ≥ 0 1 Number of repetitions (0 means loop forever).
background OpTEX color \White Color used for part of the annotation not cov-

ered by video player (for wrong aspect ratios).
opacity decimal between 0 and 1 1 Opacity of background.
aactions \renditionautoplay (none) Can be used for autoplay on page open.
name ascii string ⟨name⟩ Name for use with actions and scripts.

Table 1.2.2 Key value parameters available for Rich Media (\RM)

Key Possible values Default Description

activation explicit or auto explicit Whether to automatically activate the annota-
tion on page open or display normal apperance
until user clicks.

deactivation explicit or auto explicit Whether to automatically deactivate the anno-
tation on page close or require explicit deactiva-
tion by user (from right click menu).

toolbar true or false true Whether to show 3D toolbar (with view and
other options).

views comma separated
list of view ⟨name⟩s

⟨name⟩ List of names of 3D views to be used. The de-
fault is to try a view of same ⟨name⟩. Beware
that unknown views are silently ignored.

scripts comma sepa-
rated list of script
⟨name⟩s

(none) List of names of JavaScript script file ⟨name⟩s
to be used.

name ascii string ⟨name⟩ Name for use with actions and scripts.

The weird name key is only required if one media file is used more than once and control using actions
or JavaScript scripts is needed.

Examples of video insertion:

% embed file under name "video"
\filedef/e[video]{example-movie.mp4}
% insert video into page using Renditions mechanism with controls and autoplay
\render[video][

name=bigvideo,
controls=true,
aactions=\renditionautoplay,

]{\picwidth=\hsize \inspic{example-image.pdf}}

% render the same file again, but with different dimensions, no controls
% and explicit activation
\render[video]{\inspic{example-image.pdf}}

3

When displaying 3D there are more things involved. First, only U3D and PRC can be included in
PDF files. The simplest way to show the 3D scene on page is without any optional parameters:

\RM[part.prc]{\picwidth=\hsize \inspic{part.png}}

The resulting view will be what is defined in the 3D file. But it is possible to customize it, by creating
custom view. Or even more of them – they will be available in the user interface for easy switching, first
one is considered default. Parameters not defined in a custom view often take what is in the 3D file as
default value. \DDDview[⟨view name⟩][⟨key-value parameters⟩] is the command for defining 3D views.
The brackets surrounding key-value parameters have to be included even if no key-value parameters are
used. The available parameters are explained in Table 1.2.3.

Table 1.2.3 Key value parameters available for 3D views (\DDDview)

Key Possible values Default Description

projection perspective or ortho perspective Projection type to use (perspective
distorts the view, e.g. parallel lines
are not shown as such, but is more
natural to human eye, orthogonal
projection is what is generally used
with technical parts).

scale decimal number 1 Scaling to use when orthogonal
projection is used.

FOV number between 0 and
180

30 Field of view for use with perspec-
tive projection.

background OpTEX color \White Color used as background in the
3D scene.

rendermode Solid,
SolidWireframe,
Transparent,
TransparentWireframe,
BoundingBox,
TransparentBoundingBox,
Wireframe,
ShadedWireframe,
Vertices,
ShadedVertices,
Illustration,
SolidOutline,
ShadedIllustration

(taken from 3D file) Used rendering mode. See PDF
standardi for more details.

lighting White, Day, Night,
Hard, Primary,
Blue, Red, Cube,
CAD, Headlamp

(taken from 3D file) Used lighting scheme. See PDF
standardii for more details.

method media9, manual, u3d media9 Method used for defining 3D cam-
era position and orientation.

ihttps://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#G12.2358303
iihttps://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#G12.2358356

The value of method key influences what other key-value parameters are available. For details about
the manual method see the technical documentation (2.8.3). The u3d method works only with U3D files
(not with PRC files) and requires you to know the internal “path” of the view contained in the file and
is hence not always useful (especially when the paths are weirdly constructed by exporting applications).
But if you know the path you can use “method=u3d, u3dpath=⟨path⟩”. All Unicode characters are allowed
in ⟨path⟩.

4

https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#G12.2358303
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#G12.2358356

Table 1.2.4 Key value parameters available for media9 method of 3D views (\DDDview)

Key Possible values Default Description

coo three space separated
(decimal) numbers

0 0 0 “Center of orbit”. Coordinates
of the point camera is supposed
to look at.

roo (decimal) number 0 Distance of camera from coo.
c2c three space separated

(decimal) numbers
0 -1 0 “Center of orbit to camera” vec-

tor. A directional vector (i.e.
length doesn’t matter). The di-
rection the camera will be look-
ing at is opposite of this vector.
Default is view towards positive
𝑦.

The most useful method of specifying the camera position/orientation is method=media9. The same
method is also used in a number of other packages (movie15, rmannot, ConTEXt). Its input are key-value
parameters, listed in Table 1.2.4. For illustration of the parameters check the documentation2 of media9.

You can construct simple views only by using these few parameters. When talking about mean-
ings/names of different views it is needed to know the real placement of the 3D object in the 3D world.
But for a reasonably orientated object in the center (coo=0 0 0) constructing simple views is very easy
(keep in mind method=media9 is default):

\DDDview[front][
projection=ortho,
roo=400,

]
\DDDview[left][

projection=ortho,
roo=400,
c2c=-1 0 0,

]
\DDDview[top][

projection=ortho,
roo=400,
c2c=0 0 1,

]
\DDDview[isometric][

projection=ortho,
roo=500,
c2c=-1 -1 1,

]

We can then perhaps use these views in \RM:

% Auto activated 3D Rich Media annotation. White background just ensures
% the right dimensions. Comma in `views` is escaped using "{}".
\RM[part.prc][

activation=auto,
views={front, left},

]{{\White\vrule width\hsize height\vsize}}

\RM[part.prc][% the same 3D file, now with different views
name=part2,
activation=auto,
views={top, isometric},

]{{\White\vrule width\hsize height\vsize}}

2 https://mirrors.ctan.org/macros/latex/contrib/media9/doc/media9.pdf#figure.8

5

https://mirrors.ctan.org/macros/latex/contrib/media9/doc/media9.pdf#figure.8

If you want to deduce the view parameters automatically it is possible. You can just not specify any
view, but include the 3Dmenu.js script from media9 package. It enables you to right click the annotation
and select “Get Current View” (or even “Generate Default View” which finds the view all by itself). A
window with generated parameters will show up. You can then copy the ones this package understands
(c2c, coo, roo) and use them. You don’t have to be excessive with precision, because after calculation
everything gets rounded to 6 decimal places anyways.

% using 3Dmenu.js to generate 3D view parameters automatically
\RM[part.prc][

name=part3,
activation=auto,
scripts=3Dmenu.js,

]{{\White\vrule width\hsize height\vsize}}

The use of scripts isn’t limited to this though, there are many other possibilities. First, you
can use as many scripts as you want (scripts={script1.js, script2.js, ...}), but be careful that
3D JavaScript is kind of special, and has to come from embedded files (here we were using the auto-
embedding, but we could have used e.g. \filedef/e[3dmenu]{3Dmenu.js} and then “3dmenu” instead).
For creating your own scripts check out the Acrobat 3D JavaScript API3. It is possible to do different
transformations and achieve animations using “time events”. The implicit “context” of 3D scripts can
be accessed from normal JavaScript actions (see 1.3.5). Vice versa 3D scripts may access the global
JavaScript environment using host object.

More examples of 3D Rich Media, including usage of 3D JavaScript, are available in the example file
pdfextra-example.tex. They show how it is possible to port the examples used by media9.

1.3 Actions
Actions are very important aspect of interactivity in the context of PDF. There are a few very useful
types of actions, like “goto” actions which jump to other part of document. There are also a few ways
how to execute actions. The most usual is a clickable area on page, but clickable bookmarks (“document
outline”) also execute actions behind the scenes. OpTEX supports only basic “goto” and “URI” actions
using \ilink (used for \ref, \cite, etc.) and \ulink (used for \url).

This package offers generalization of this mechanism. The core of it is a way of specifying an action.
This syntax is called ⟨action spec⟩ and is used for example by \hlink command, which can replace both
\ilink and \ulink. ⟨action spec⟩ is a comma separated list of ⟨type⟩:⟨arguments⟩. where ⟨type⟩ refers to
the action type and the syntax of arguments is dependant on ⟨type⟩. Leading spaces are ignored, trailing
aren’t. You probably won’t often use the possiblity of specifying multiple actions, but it is for chaining
execution of several actions.

\pdfaction[⟨action spec⟩] is available for lower level creation of different actions, but for clickable
areas on page you will use \hlink[⟨action spec⟩]{⟨text⟩} with a very similiar syntax. Although note,
that \hlink’s interface is also not really high level and wrapping it inside macros like \ref or \url might
be beneficial. ⟨text⟩ will be typeset directly and the area it occupies will be clickable. Clicking it executes
action defined by ⟨action spec⟩. Line breaks inside ⟨text⟩ will be possible, in that case several clickable
rectangles will be created, one for each line. Normally in text you want the ares to be of the same height
and depth (calculated from \baselineskip), to achieve sort of a lining, uniform effect. If you want to
define big clickable buttons, you may need to turn off the lining effect using \nolininglinks. It respects
groups, but a counterpart (\lininglinks) is also available.

There are a few predefined action types (⟨type⟩): url, extref, extpgref, named, transition, js,
goto3dview and rendition. They will be explained in a moment. Any unrecognized ⟨type⟩ is understood
as an “internal link”, where ⟨type⟩:⟨link⟩ is the destination of the link. Hence it is possible to use \hlink
as \ilink for example with OpTEX’s normal types of internal links. For example:

See section~\hlink[ref:section]{2.2.13} or page~\hlink[pg:5]{5}.

\ulink may be replaced like this:

Visit CTAN's \hlink[url:https://www.ctan.org/]{website}.

Before we really get into different types of actions, there is a nicer command for setting the initial
(“open”) action of PDF document, which is executed when the document is opened. It defaults to

3 https://wwwimages.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/AcrobatDC_js_3d_api_reference.pdf

6

https://wwwimages.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/AcrobatDC_js_3d_api_reference.pdf

opening the page with the zoom level according to viewing user’s preferences. But you can change this
using \openaction[⟨action spec⟩]:

\openaction[pg:2]

1.3.1 External references
There are two actions analogous to internal links that can be used to link to external documents.
[extref:⟨name⟩:⟨named destination⟩] can be used to refer to named locations in a PDF document
prepared by \filedef with ⟨name⟩. [extpgref:⟨name⟩:⟨page number⟩] is similiar but refers to a page
number. Although it would be nice, these actions aren’t well supported by all viewers.

Example:

\hlink[extref:doc-internet:ref:langphrases]{OpTeX documentation,
section \"Multilingual phrases and quotation marks".}

\hlink[extpgref:doc-internet:12]{OpTeX documentation, page 12.}

(Note that “:” in “ref:langphrase” is not part of the syntactic rule, it is just the value of
⟨named destination⟩ in this case.)

A little bit of customization is possible, see 2.4.4.
Because of the poor support you may find luck with the less universal url action with #fragment:

\hlink[url:http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#ref:langphrases]
{OpTeX documentation, section \"Multilingual phrases and quotation marks".}

1.3.2 Named actions
There are four defined in PDF standard, but viewers may support more. All in examples:

\hlink[named:NextPage]{Go to next page,}
\hlink[named:PrevPage]{go to previous page,}
\hlink[named:FirstPage]{go to first page,}
\hlink[named:LastPage]{go to last page.}

1.3.3 Transition actions
Transition actions generally make sense only when chained after jump actions. The specified transi-
tion/animation will occur, before destination is opened, but it will not override a transition defined for
the particular page. The syntax is [transition:⟨transition spec⟩]. See 1.4 for more information about
⟨transition spec⟩.

Example:

\hlink[ref:yellow-slide, transition:Box:3:/M /O]
{Go to yellow slide with long outward Box transition}

1.3.4 JavaScript actions
They allow executing pieces of JavaScript code using syntax: [js:⟨name or script⟩]. If ⟨name or script⟩
is a validly \filedef’d the script from file ⟨name⟩ will be executed (only embedded files are valid).
Otherwise ⟨script⟩ will be used directly. Apart from reuse in different documents, scripts loaded from
files may be encoded in UTF-16BE and hence support Unicode, inline ⟨script⟩s current don’t.

Examples:

\openaction[js:{%
app.alert("Javascript alert, open action");
console.println("printing to console from openaction");

}]

\filedef/e[jstest]{test.js}
\hlink[js:jstest]{JavaScript action from file}

(Note how braces were used to guard the comma in JavaScript code from being interpreted as a
action separator.)

In these actions you may want to use your own functions which should be defined before user
has a chance of activating any other JavaScript actions. This is the purpose of “document level”

7

JavaScript actions. They function exactly the same way as normal JavaScript actions, but have
names (although meaningless, they must be unique) and are executed in order of definition. Use
\dljavascript[⟨name⟩]{⟨name or script⟩} for defining these actions:

\filedef/e[preamble]{preamble.js}
\djavascript[preamble]{preamble}

\dljavascript[initialization]{%
var data = 42;
function getRandomNumber() {

return 4; // chosen by fair dice roll, https://xkcd.com/221/
}
console.println("initialized with seed " + getRandomNumber());

}

The JavaScript API available is not the same as the one in the web browsers. It is instead specified by
Adobe: https://wwwimages.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/js_api_ref-
erence.pdf.

1.3.5 3D JavaScript actions
There are no “special” JavaScript actions for dealing with 3D. Normal JavaScript actions are used. You
just have to access the 3D context of the annotation you want to control. For annotation with ⟨name⟩
the context is made available in \DDDcontext{⟨name⟩}. Under this context object you find all global
definitions from the respective 3D scripts. For example if a “turn” function is defined, it is possible to
call it like this:

\hlink[js:\DDDcontext{part3}.turn();]{Turn by 90 degrees along x axis.}

1.3.6 GoTo3Dview actions
GoTo3Dview actions allow changing the view of the 3D scene to one of the predefined views (those listed
by views comma separated list of \RM). The syntax is [goto3dview:⟨name⟩:⟨view⟩]. ⟨name⟩ is name
of the annotation whose view we want to change and ⟨view⟩ is the intended view. You can refer to last
inserted Rich Media annotation using empty name. For ⟨view⟩ you can either use “(⟨view name⟩)” (e.g.
“(part)”), index of the view in the view list (zero based, e.g. “0” for the first view) or one of the special
values: “/N” (next), “/P” (previous), “/F” (first) “/L” (“last”).

% let's define an annotation with a few views
\RM[part.prc][

activation=auto,
views={front, left, top, isometric},

]{{\White\vrule width\hsize height\vsize}}

% try the different methods of reffering to views
\hlink[goto3dview::/N]{Next view},
\hlink[goto3dview::(left)]{left view} and
\hlink[goto3dview:part.prc:3]{third view}.

1.3.7 Rendition actions
Rendition actions can be used to control playback of “Rendition annotations”. They use the syntax
[rendition:⟨name⟩:⟨operation⟩], where ⟨name⟩ refers to the name of the rendition to control and
⟨operation⟩ is one of play, stop, pause or resume. As a convenience, you can refer to last inserted
rendition using empty name. If a file has been \rendered more than once with the same name, the
action will influence the first instance.

Beware that currently these actions do not work in Evince and Okular (but do in Acrobat and Foxit).
Examples:

% rendition with name=video, that we want to control
\render[video]{\inspic{example-image.pdf}}

% we want the rendition action to have yellow border and red content

8

https://xkcd.com/221/
https://wwwimages.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/js_api_reference.pdf
https://wwwimages.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/js_api_reference.pdf

\let_renditionborder\Yellow
\let_renditionlinkcolor\Red

To start playing the video, click \hlink[rendition::play]{\"Play"}.
After that you can \hlink[rendition:video]{pause}.

1.4 Transitions and other page attributes
In PDF there are a few settings that can be set as page attributes. This means that they apply only to
said page. For setting these page attributes, there are two options:

• value for “current page” (or rather the page where the command appears),
• default value used if “current page” value is not set.

While this package contains mechanism to handle all page attributes, not that many are useful for
end user. The interesting ones remaining are:

• Transitions and page durations. When page has the transition attribute any jump to this page will
display the requested animation (customized by the corresponding parameters). Page duration is the
time before PDF viewer will auto advance to the next page. \transition[⟨transition spec⟩] sets
transition for the “current page”, \transitions sets the default. ⟨transition spec⟩ has three parts:

⟨animation type⟩:⟨duration⟩:⟨raw PDF attributes⟩
⟨animation type⟩ is one of Split, Blinds, Box, Wipe, Dissolve, Glitter, Fly, Push, Cover, Uncover
and Fade, or the special value R which essentially means no animation and instantaneous transition
(regardless of the set duration of transition). ⟨duration⟩ is the duration of transition in seconds
(integer or decimal number). ⟨raw PDF attributes⟩ may be used to customize the animations (for
example /M can set the direction of motion of Split, Box and Fly, e.g. /M /I for inward mo-
tion). For the raw PDF attributes refer to the standard itself4. :⟨raw PDF attributes⟩ or even
:⟨duration⟩:⟨raw PDF attributes⟩ may be omitted. Default values specified by PDF standard will
be used in that case (1 second duration and default values for all attributes). Page durations can be
set either using \defaultpageduration[⟨duration⟩] or \pageduration[⟨duration⟩], where duration
is in seconds (default is no auto advancement, i.e. ∞). Examples:

% unless stated otherwise all pages will have Wipe animation
% with 1 second duration
\transitions[Wipe:1]

% but this page has a 1 second Fade animation
\transition[Fade]

\pg+ % (if using \slides)

% and this page has 3 second Split animation
% with vertical direction and inward motion
\transition[Split:3:/Dm /V /M /I]

Note that transitions are only displayed when in full-screen mode. You can use \fullscreen to
have the document automatically open in full-screen mode.

• Additional actions. It is possible to define actions which will respond to page events: page open
(/O) and page close (/C). They can be set using \defaultpageactions[⟨additional actions spec⟩]
(the default for all pages) and \pageactions[⟨additional actions spec⟩] (current page override).
⟨additional actions spec⟩ consists of braced pairs of “event” (O or C in this case) and ⟨action spec⟩.
Example:

\pageactions[
{O} {js:{app.alert("Page open, random = " + getRandomNumber());}}
{C} {js:{app.alert("Page close!");}}

]

4 https://wwwimages2.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#G11.2295795

9

https://wwwimages2.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#G11.2295795

1.5 Attachments
Every file embedded into a PDF file may optionally be presented in the user interface as an embedded
file. This allows readers of the document to save or open the file.

PDF allows two ways of presenting attachments – using annotations (the attachments is represented
by a rectangular icon on a page) or global array of attachments (attachments are visible in PDF viewers
toolbar). The first method is intended more for document reviewers than for primary insertion. Hence
this package supports only the second type.

You may add an embedded file to the global attachments array using \attach[⟨name⟩]. As usual,
name is either a ⟨name⟩ defined with \filedef or alternatively a path to file which will be embedded
(and \filedefd) automatically. It is not possible to \attach files referenced by path or URL.

If you want to automatically display toolbar with embedded files, consider using \showattached
(see section 1.6).

1.6 Document view
You can choose what is shown when document is opened with commands:

• \fullscreen (the document is opened in full-screen mode),
• \showoutlines (show bookmarks/outlines toolbar)
• \showattached (show attachments in toolbar)

The commands are mutually exclusive and only the first appearing one will be respected.
You can set request two page view (odd pages on the right) using \duplexdisplay. It is useful for

more natural display of double sided documents. Because it may not be desirable to automatically apply
this, it is independent of \margins.

10

Chapter 2
Technical documentation
This is the technical documentation. It is intended for those who want to know how this package works
internally. Casual users shouldn’t need to read this. But if you would like to customize anything or
perhaps just use some part of this package, feel free to copy paste and use anything you want in OpTEX’s
spirit.

This documentation is interleaved within the source itself, both are contained in a single file,
pdfextra.opm (according to OpTEX conventions). The user documentation is instead contained in
pdfextra-doc.tex, which itself \input’s the documented source file pdfextra.opm so that the user
and technical documentation is available in a single PDF file, pdfextra-doc.pdf.

pdfextra.opm
3 _codedecl \RM {Extra PDF features (v_pdfextra_version)}

2.1 Package initialization
We are in the OpTEX package namespace. A couple of shortcuts are defined here: \.isdefined, \.trycs,
\.cs \.slet, \.slet, \.sdef and \.xdef. They all hard code the package name, because we already
have too many levels of indirection.

pdfextra.opm
13 _namespace{pdfextra}
14

15 _def\.isdefined#1{_isdefined{_pdfextra_#1}}
16 _def\.trycs#1{_trycs{_pdfextra_#1}}
17 _def\.cs#1{_cs{_pdfextra_#1}}
18 _def\.slet#1#2{_slet{_pdfextra_#1}{_pdfextra_#2}}
19 _def\.sdef#1{_sdef{_pdfextra_#1}}
20 _def\.sxdef#1{_sxdef{_pdfextra_#1}}

2.2 Helper macros
The macros here are just helpers for the macros to follow. They are not useful generally, but proved
useful in the expandable context of writing to PDF files.

Already the first one limits the use to LuaTEX (but who needs other engines anyways :).
\.emptyor⟨possibly empty text⟩⟨text to use when first argument is nonempty⟩ checks whether the first
argument is empty, if not it expands the second argument which can use the text from the first argument
with \.nonempty. \.attrorempty⟨attribute name⟩⟨value⟩ builds upon the first one and is really useful
for PDF dictionaries, when we don’t want to write an attribute without a value (a default specified by
standard will be used instead).

pdfextra.opm
37 _def\.emptyor#1#2{%
38 _immediateassignment_edef\.nonempty{#1}%
39 _ifx\.nonempty_empty_else #2_fi
40 }
41 _def\.attrorempty#1#2{\.emptyor{#2}{/#1 \.nonempty}}

There is a dillema for handling colors. While typesetting it is possible to use greyscale, CMYK or RGB
colors. But there are contexts where it is possible to only use RGB colors. We want to provide the user
with two possibilities of specifying colors:

• RGB color using PDF triplet (e.g. 1 0 0),
• OpTEX color using control sequence (e.g. \Blue)

11

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_codedecl
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_namespace
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:isdefined
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:trycs
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:cs
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:slet
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:empty

Both are handled by \.colortorgbdef⟨cs⟩⟨color specification⟩, which defines ⟨cs⟩ to the correspond-
ing PDF RGB triplet. The indirection with defining a macro is because we want to use the processed
color within expansion only contexts where grouping is not possible.

pdfextra.opm
60 _def\.colortorgbdef#1#2{_bgroup
61 _def_setrgbcolor##1{##1}%
62 _def_setcmykcolor##1{_cmyktorgb ##1 ;}%
63 _def_setgreycolor##1{##1 ##1 ##1}%
64 _xdef#1{#2}%
65 _egroup
66 }

\.xaddto\macro⟨text⟩ is a natural extension of OpTEX’s \addto that expands ⟨text⟩ and is global.
pdfextra.opm

73 _def\.xaddto#1#2{_edef\.tmp{#2}%
74 _global_ea_addto_ea#1_ea{\.tmp}%
75 }

This package defines a few commands in the form \macro[⟨name⟩][⟨optional arguments⟩]{⟨text⟩}. To
make it possible to omit the [⟨optional arguments⟩] \.secondoptdef is defined.

\.secondoptdef\⟨macro⟩⟨parameters⟩{⟨body⟩} defines \macro with first mandatory argument in
brackets (saved to \.name). Second optional argument in brackets is scanned using helper macro defined
with \optdef and is saved to _opt token list). Additional ⟨parameters⟩ can be specified as with \optdef
(numbered from #1).

pdfextra.opm
89 _def\.secondoptdef#1{%
90 _def#1[##1]{_def\.name{##1}\.cs{sopt:_string#1}}%
91 _ea_optdef_csname _pdfextra_sopt:_string#1_endcsname[]%
92 }

When processing comma separated lists sometimes it is needed to ignore the remaining text. For this
we use \.untilend macro which ignores everything up to dummy \.end. This is analogous to OpTEX’s
_finbody used for the same purpose. Sometimes \.end is used as sentinel and compared in \ifx tests,
hence we define it to a unique value.

pdfextra.opm
102 _def\.untilend#1\.end{}
103 _def\.end{_pdfextra_end}

For various uses it is necessary to know the number of page where something happens. This has to be
handled asynchronously with \write. Here we use OpTEX specific .ref file and associated macros, but
this could be replaced as long as the same interface is exposed.

\.setpageof⟨name⟩ writes \.Xpageof⟨name⟩ to the .ref file. In the next TEX run \.Xpageof finds
out the page number (\gpageno) from OpTEX’s _currpage and saves it so that \.pageof⟨name⟩ can
retrieve it. In the first run we can’t be sure of the page where the content will end up. As a rough
estimate we take the current page – this actually works well for slides where page breaks are manual.

\.pageof is expandable, but we want to let the user know, that the document needs to be pro-
cessed twice. Therefore we use LuaTEX’s \immediateassignment to increment the counter of unresolved
references.

When .ref file is read along with the defintion of \.Xpageof this package has not been loaded yet.
Hence we can’t use namespaced variants of \.isdefined, etc.

pdfextra.opm
127 _refdecl{%
128 _def\.Xpageof#1{_isdefined{_pdfextra_pageof:#1}_iffalse
129 _sxdef{_pdfextra_pageof:#1}{_ea_ignoresecond_currpage}_fi
130 }%
131 }
132

133 _def\.setpageof#1{_openref _ewref\.Xpageof{{#1}}}
134

135 _def\.pageof#1{%
136 \.trycs{pageof:#1}{%
137 _immediateassignment_incr_unresolvedrefs
138 _the_numexpr_gpageno+1_relax % best effort = current page num
139 }%
140 }

12

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:bgroup
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:setrgbcolor
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:setcmykcolor
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_cmyktorgb
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:setgreycolor
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:egroup
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:addto
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:optdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:refdecl
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:isdefined
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:ignoresecond
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_currpage
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:openref
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ewref
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:incr
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_unresolvedrefs
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:gpageno

2.3 Handling of files
Handling of files is a big topic of this package. Files are everywhere – files containing multimedia,
JavaScript script files, attachments, externally referred files. . . Therefore a more sophisticated mechanism
for handling files is needed. The mechanism introduced in this section handles all three cases of a file
specification:

• files embedded in the PDF (“e”, embedded file),
• files determined by path (“x”, external file),
• files determined by URL (“u”, url file).

Although ideally all three would be interchangible this is not always the case, because e.g. some
media files must be embedded and linking to external resources does not work with embedded files.

In most cases there are two many names and other associated values involved:

• Some kind of a “friendly” name. This one is sometimes shown by PDF viewers.
• The real name of the file. Also shown but in different contexts.
• The path or URL used to determine the file.
• MIME type of the file.

For example when talking about OpTEX’s documentation we might have a friendly name of “opdoc”,
file name of “optex-doc.pdf”, URL of “http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf”
and MIME type of “application/pdf”. Different subset of them is required in different contexts, but the
user should only have to specify the friendly name (by which they will refer to the file) and the path/URL
of the file. The rest will be deduced. The friendly name is used as a handle and is usable in all places
where file specification is required (although it may not produce conforming output, see above).

In this two step process – definition and (re)use – we introduce a command for defining files:
\filedef/⟨type⟩ [⟨friendly name⟩]{⟨path or URL⟩}. The macro itself does general definitions and dis-
patches the type dependant work to other macros in the form _filedef:⟨type⟩.

pdfextra.opm
186 _def\.filedef/#1#2[#3]#4{%
187 \.sxdef{filename:#3}{(\.filename{#4})}%
188 _edef\.tmp{\.exttomime{\.fileext{#4}}}%
189 _ifx\.tmp_empty
190 _opwarning{MIME type of '#4' unknown, using '\.defaultmimetype'}%
191 _edef\.tmp{\.defaultmimetype}%
192 _fi
193 \.sxdef{filemime:#3}{\.tmp}%
194 \.cs{filedef:#1}{#3}{#4}%
195 }
196 _nspublic \filedef ;

Types “e”, “x”, “u” are predefined, anything else would essentialy be a variant of these.
External file (“x”) is determined only by path.

pdfextra.opm
205 \.sdef{filedef:x}#1#2{%
206 \.slet{filespec:#1}{filename:#1}%
207 }

URL file (“u”) is determined by URL. Using all sorts of characters is allowed by using _detokenize.
This time it is necessary to create full file specification – a dictionary, where the “file system” is URL.

pdfextra.opm
215 \.sdef{filedef:u}#1#2{%
216 \.sdef{filespec:#1}{<</FS /URL /F (_detokenize{#2})>>}%
217 }

Embedded files (“e”) are the most interesting ones. For further use (e.g. for displaying the embedded
files as attachments) MIME type is required. It is saved in the stream as a \Subtype, encoded as a PDF
name (e.g. /video#2Fmp4). The embedded file stream must be wrapped in a full file specification, which
has the /EF (“embedded file”) entry. Also the friendly name is used for some purpose by PDF viewers,
so it set in /Desc (description).

pdfextra.opm
229 \.sdef{filedef:e}#1#2{%
230 _edef\.tmp{\.cs{filemime:#1}}%
231 _isfile{#2}_iffalse
232 _opwarning{file '#2' not found}%

13

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:empty
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:opwarning
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:isfile
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:opwarning

233 _fi
234 _pdfobj stream
235 attr{/Type /EmbeddedFile /Subtype _ea\.mimetoname_ea[\.tmp]}
236 file {#2}%
237 _pdfrefobj_pdflastobj
238 \.sxdef{filestream:#1}{_the_pdflastobj_space 0 R}%
239 _pdfobj {<</Type /Filespec
240 /F \.cs{filename:#1}
241 /Desc (#1)
242 /EF << /F _the_pdflastobj _space 0 R >>%
243 >>}%
244 _pdfrefobj_pdflastobj
245 \.sxdef{filespec:#1}{_the_pdflastobj_space 0 R}%
246 }

Now the less interesting part – determining the file names from paths and determining MIME types. The
file name is the part after the last “/” (if any). The file extension is the part after last “.” (if any).

pdfextra.opm
254 _def\.filename#1{_ea\.filenameA#1/\.end}
255 _def\.filenameA#1/#2{_ifx\.end#2#1_else_afterfi{\.filenameA#2}_fi}
256

257 _def\.fileext#1{_ea\.fileextA#1.\.end}
258 _def\.fileextA#1.#2{_ifx\.end#2#1_else_afterfi{\.fileextA#2}_fi}

MIME type is determined from file extension (e.g. mp4 is “video/mp4”). For mapping of file extensions
to MIME types we abuse TEX’s hash table which gets populated with “known MIME types”. This
necessarily means that the database is incomplete. Users can define their own additional mappings, or
they can contribute generally useful ones to this package.

The default MIME type (used for unknown file extensions) is “application/octet-stream” – binary
data.

The uninteresting MIME type database itself is at the very end (2.9).
pdfextra.opm

273 _def\.mimetoname[#1/#2]{/#1_csstring\#2F#2}
274

275 _def\.defaultmimetype{application/octet-stream}
276 _def\.exttomime#1{\.trycs{mimetype:#1}{}}

Here we define an OpTEX style “is-macro” that checks whether the file has already been defined –
\.isfiledefined{⟨name⟩}\iftrue (or \iffalse). The case where the file has not been defined using
\filedef can be handled in a lot of ways. As a default we interpret ⟨name⟩ as path and try to embed it.
Because the path from ⟨name⟩ is used as the “friendly name” the file will be embedded only once even
when requested more times.

pdfextra.opm
288 _def\.isfiledefined#1#2{\.isdefined{filespec:#1}_iftrue_else
289 _afterfi{\.fileundefined{#1}}_fi#2%
290 }
291

292 _def\.fileundefined#1{_isfile{#1}_iftrue\.filedef/e[#1]{#1}_else
293 _opwarning{file '#1' not found, ignored}_ea_unless_fi
294 }
295

296 % strict requirement of preceeding `\filedef` can be set like this:
297 %_def\.fileundefined#1{_opwarning{file '#1' is not defined, ignored}_unless}

2.4 PDF actions
The core of interactivity in PDF are actions. They are all initialy handled by \pdfaction[⟨action spec⟩].
⟨action spec⟩ is a comma separated list of ⟨type⟩:⟨arguments⟩. Leading spaces in the elements of the list
are ignored using undelimited-delimited argument pair trick.

An invocation could look like this:

\pdfaction[
js:{app.alert("Yay JavaScript, going to page 5");},
ilink:pg:5,
transition:Wipe,

]

14

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:afterfi
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:afterfi
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:afterfi
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:isfile
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:opwarning
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:opwarning

This is why we have to be very careful when loading the contents between [] to arguments. In
particular, we can’t split immediatly using [#1:#2], because this would discard the braces guarding the
comma in the JavaScript code. However we also need to find out the type of action which is taken as
a type of the first action (js in this case). \.pdfactiontype[⟨action spec⟩] does this – we don’t mind
that there the braces are lost.

\pdfaction processes the list, to create a chain of actions using /Next field. The handling of each
action type is up to macro _pdfextra_⟨type⟩action, which receives [⟨type⟩:⟨arguments⟩]. Because of
this a single type handler can handle multiple different actions, as is the case with \.ilinkaction which
is the fallback for unknown action types.

pdfextra.opm
333 _def\.pdfaction[#1#2]{\.pdfactionA#1#2,\.stop\.end}
334 _def\.pdfactionA#1,#2#3\.end{%
335 <<%
336 \.pdfactionB[#1]%
337 % next action
338 _ifx\.stop#3_else_space
339 /Next _afterfi{\.pdfactionA#2#3\.end} % intentional space
340 _fi
341 >>
342 }
343 _def\.pdfactionB[#1:#2]{\.trycs{#1action}{_ea\.ilinkaction}[#1:#2]}
344 _nspublic \pdfaction ;
345

346 _def\.pdfactiontype[#1:#2]{#1}

2.4.1 Additional actions
Some PDF objects, like pages and some annotations, can also have “additional actions”. These are actions
which will be executed when an event happens – like page getting opened for /O action in page’s additonal
actions or /PO in annotation’s additional actions. For constructing these additional actions we define a
helper macro \.pdfaactions. The use is as something follows:

/AA << \.pdfaactions{ {O} {⟨action spec 1⟩} {C} {⟨action spec 2⟩} } >>

To produce something this:

/AA << /O <<⟨action 1⟩>> /C <<⟨action 2⟩>> >>

pdfextra.opm
365 _def\.pdfaactions#1{<<\.pdfaactionsA #1\.end\.end>>}
366 _def\.pdfaactionsA#1#2{_ifx\.end#1_else /#1 _ea\.pdfaction_ea[#2]_ea\.pdfaactionsA_fi}

2.4.2 Link annotations
The main use of actions – annotations of /Subtype /Link. Annotation of this type creates an ac-
tive rectangular area on the page that executes a PDF action (or chain of them in the general case).
\hlinkactive[⟨action spec⟩]⟨text⟩ is a natural extension of OpTEX’s \linkactive, that supports the
classic “jump” actions of types ref, bib, etc. But also other types of actions. No distinction between
“internal” (\ilink) and external (\ulink) links is made. The mechanism is completely generic.

The \pdfstartlink/\pdfendlink primitives are used to denote the part of the page where ⟨text⟩
appears as active. LuaTEX will then handle even the situations where ⟨text⟩ gets broken across multiple
lines (by creating multiple rectangular annotations to cover all \hboxes).

pdfextra.opm
386 _def\.hlinkactive[#1]#2{_bgroup_def\#{_csstring\#}%
387 _edef\.type{\.pdfactiontype[#1]}%
388 _quitvmode_pdfstartlink \.linkdimens
389 attr{_pdfborder{\.type}}%
390 user{/Subtype /Link /A \.pdfaction[#1]}_relax
391 _localcolor\.linkcolor{\.type}#2_pdfendlink_egroup
392 }

\hlinkactive itself is dormant before \hyperlinks occurs. Until then, a dummy \hlink is used.
OpTEX’s \hyperlinks is extended to hook \hlink activation. The colors of internal/external links
are remembered for compatibility with OpTEX.

15

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:afterfi
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:bgroup
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_pdfborder
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:localcolor
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:egroup

pdfextra.opm
401 _def\.hlink[#1]#2{_quitvmode{#2}}
402 _nspublic \hlink ;
403

404 _let\.oldhyperlinks_hyperlinks
405 _def_hyperlinks#1#2{%
406 \.oldhyperlinks#1#2
407 _let\.ilinkcolor=#1%
408 _let\.elinkcolor=#2%
409 _let\.hlink=\.hlinkactive
410 _let\hlink=\.hlink
411 }
412 _public \hyperlinks ;

Two customizations of \hlinks are possible:

• Dimensions of rectangular areas created by \pdfstartlink/\pdfendlink. This is done using
\.linkdimens (analogous to OpTEX’s \linkdimens). Dimensions that are unset are taken from the
respective \hboxes. \lininglinks sets the dimensions for running text – it covers all space of a
line using \baselineskip. \nolininglinks sets no dimensions, this is useful for buttons, that may
have larger height/depth than a line.

• The color is determined from the type of link (that is the first action in ⟨action spec⟩) by check-
ing _⟨type⟩linkcolor (compatible with OpTEX) or _pdfextra_⟨type⟩linkcolor. As a fallback
\.ilinkcolor is used (set by \hyperlinks).

pdfextra.opm
431 _def\.lininglinks{%
432 _def\.linkdimens{height.75_baselineskip depth.25_baselineskip}%
433 }
434 _def\.nolininglinks{_def\.linkdimens{}}
435 \.lininglinks
436

437 _nspublic \lininglinks \nolininglinks ;
438

439 _def\.linkcolor#1{_trycs{_#1linkcolor}{\.trycs{#1linkcolor}{\.ilinkcolor}}}
440 _def\.ilinkcolor{}

2.4.3 Open action
The document itself has one action defined in the document catalog. It is called /OpenAction. We allow
the user to set it using the familiar ⟨action spec⟩ syntax with the command \openaction[⟨action spec⟩].

Internally we could directly set it by appending to the catalog using the primitive \pdfcatalog, but
LuaTEX (pdfTEX really) allows setting the action with special syntax. This has the benefit that it is not
allowed to set the action more than once.

pdfextra.opm
454 _def\.openaction[#1]{_pdfcatalog{} openaction user{\.pdfaction[#1]}_relax}
455 _nspublic \openaction ;

2.4.4 Jump actions
These are the most typical actions. Even LuaTEX itself handles them, although we don’t use the possibility
for maintaining generality. There are a few types of jump actions:

• /GoTo actions are the classic internal links to named destinations in the PDF file (created by \pdfdest
primitive or OpTEX’s \dest). The destination names include also the type of internal link (e.g.
ref:section1). They are handled by \.ilinkaction[⟨type⟩:⟨name⟩].

• /URI actions which are in most cases used as “goto URL” actions. These are not that useful directly,
because special characters should be handled before this actions is used (like with \url). The low
level use is \.urlaction[url:⟨url⟩].

• “Goto remote” actions, which can jump to a destination in another PDF file – either determined
by name, or by page number. The external files are expected to be defined by \filedef (but not
the embedded variant). The use is either \.extrefaction[extref:⟨name⟩:⟨named destination⟩]
for links to named destination or \.extpgrefaction[extpgref:⟨name⟩:⟨page number⟩] for page
destinations. Customization is possible with \.extrefextra, by default opening in a new windows
is requested.

16

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:hyperlinks
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:hyperlinks
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:public
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:hyperlinks
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:trycs
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic

pdfextra.opm
483 _def\.ilinkaction[#1:#2]{/S /GoTo /D (#1:#2)}
484

485 _def\.urlaction[#1:#2]{/S /URI /URI (#2)}
486

487 _def\.extrefaction[#1:#2:#3]{/S /GoToR
488 /F \.cs{filespec:#2}
489 /D (#3)
490 \.extrefextra
491 }
492 _def\.extpgrefaction[#1:#2:#3]{/S /GoToR
493 /F \.cs{filespec:#2}
494 /D [_the_numexpr#3-1_relax_space /Fit]
495 \.extrefextra
496 }
497

498 _def\.extrefextra{/NewWindow true}

Transition action is not really a jump action in of itself, but is only useful when chained after jump actions,
so we define it here. Transitions (as page attributes) are handled more thoroughly in section 2.5.1.

The use would look something like:
\.transitionaction[transition:⟨animation type⟩:⟨duration⟩:⟨raw PDF attributes⟩], where all fields
omitted from right take the default values.

pdfextra.opm
512 _def\.transitionaction[#1:#2]{/S /Trans \.attrorempty{Trans}{\.maketrans[#2]}}

2.4.5 Named actions
User can request arbitrary “named” action with \.namedaction[named:⟨name⟩]. See user documenta-
tion for details.

pdfextra.opm
521 _def\.namedaction[#1:#2]{/S /Named /N /#2}

2.4.6 JavaScript actions
JavaScript actions have two forms, either \.jsaction[js:⟨name⟩] or \.jsaction[js:⟨script⟩]. The
first variant uses contents of \filedef’d ⟨name⟩, the second one uses ⟨script⟩ directly. There is no
special catcode handling.

pdfextra.opm
533 _def\.jsaction[#1:#2]{/S /JavaScript
534 /JS _ifcsname _pdfextra_filestream:#2_endcsname _lastnamedcs _else
535 (#2)
536 _fi
537 }

2.5 Page attributes
PDF represents pages as dictionaries. The dictionaries get generated by LuaTEX, which fills in some
attributes attributes (like /Content with contents of the page and /Annots with array of annotations).
We can add more using \pdfpageattr primitive token list register. While not that many are generally
useful, there are a few interesting ones. For example transitions can be set using page attributes, or we
might want to set additional actions (/AA) to listen for page events.

While the so called “page objects” are in a tree structure (for fast lookup), only the leaves are real
“pages”. PDF allows some attributes to be inherited from parent page objects, but not all of them and
certainly not those we are interested in.

The mechanism introduced in this section is optional, because it takes complete control over
\pdfpageattr. It gets activated when \initpageattributes is first used (which happens automatically
for some functionality exposed by this package), but may be activated by the user for any other purpose.
Only attributes listed in \pageattributes are processed.

We set the attributes anew for each page, by hooking into OpTEX’s _begoutput. Because
\pdfpageattr token list doesn’t get expanded before written out to PDF, we expand it using the
assignment in \edef trick. The token list gets expanded, but the assignment is not made until it reaches
main processor when the temporary control sequence gets expanded.

17

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space

pdfextra.opm
569 % pdfpagattr managament (default for all pages vs current page override)
570 _def\.pageattributes{{Trans}{Dur}{Rotate}{AA}}
571 _def\.initpageattributes{%
572 % add hook for setting primitive \pdfpageattr
573 _addto_begoutput{_edef\.tmp{_pdfpageattr={\.pdfpageattributes}}\.tmp}%
574 % no need to do this twice
575 _let\.initpageattributes=_relax
576 }
577 _nspublic \pageattributes \initpageattributes ;

The user interface we want to expose has two parts:

• setting the page attribute for just this one page (\.pdfcurrentpageattr),
• setting the default attribute (used when current page value is not set) (\.pdfdefaultpageattr).

The first one of course brings in the typical TEX problem of knowing the page where something
occurs. As always, the page number contained in \gpageno during processing of said content may of
course not actually be the number of the page where the content ends up! Hence, we need to note the
page number with a delayed write, using \.setpageof and later \.pageof. The different settings of page
attributes should have distinct names, we use the \.pageattrcount counter for this.

pdfextra.opm
596 _newcount\.pageattrcount
597 _def\.pdfcurrentpageattr#1#2{\.initpageattributes
598 _incr\.pageattrcount
599 \.setpageof{pageattr:_the\.pageattrcount}%
600 \.sxdef{pdfpgattr:\.pageof{pageattr:_the\.pageattrcount}:#1}{#2}%
601 }
602 _def\.pdfdefaultpageattr#1#2{\.initpageattributes
603 \.sxdef{pdfpgattr:#1}{#2}%
604 }

Finally, the macro \pdfpageattributes takes care of setting generating the contents of \pdfpageattr.
For each attribute in \pageattributes it first checks its current page value, only then the default value.
If neither is set, nothing is added.

pdfextra.opm
613 _def\.pdfpageattributes{_ea\.pdfpageattributesA\.pageattributes\.end}
614 _def\.pdfpageattributesA#1{_ifx\.end#1_else
615 % use current page override or "default"
616 % don't emit anything if the value is empty
617 \.attrorempty{#1}{%
618 \.trycs{pdfpgattr:_the_gpageno:#1}{\.trycs{pdfpgattr:#1}{}}%
619 }%
620 _ea\.pdfpageattributesA_fi
621 }

Each attributes then has two switches for the respective default and current values. For defining a few
of them a helper is introduced:

\.pdfpageattributesetters ⟨attribute⟩ \⟨default setter⟩ \⟨current setter⟩ {⟨value⟩},
where ⟨attribute⟩ is name of the attribute without the slash (e.g. MediaBox), the two control se-
quences name the future user setters, which will take single argument in brackets (e.g. \mediabox
and \thismediabox) and the ⟨value⟩ can use the argument.

pdfextra.opm
635 _def\.pdfpageattributesetters#1 #2#3#4{%
636 \.sdef{_csstring#2}[##1]{\.pdfdefaultpageattr{#1}{#4}}%
637 \.sdef{_csstring#3}[##1]{\.pdfcurrentpageattr{#1}{#4}}%
638 _nspublic #2 #3 ;
639 }

Some of the useful attributes are /Rotate, which rotates the pages visually (can be set with
\defaultpagerotate and \pagerotate), and the additional actions (/AA, see section 2.4.1, set us-
ing \defaultpageactions \pageactions).

pdfextra.opm
648 \.pdfpageattributesetters Rotate \defaultpagerotate \pagerotate {#1}
649

650 \.pdfpageattributesetters AA \defaultpageactions \pageactions {\.pdfaactions{#1}}

18

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:addto
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_begoutput
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:newcount
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:incr
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:gpageno
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic

2.5.1 Transitions, page durations
There are predefined types of transitions, like /Wipe, /Box, /Split, etc. Most have other customizible
attributes – usually directions set in different ways depending on the animation type at hand, but the
most important attribute is the duration of the animation. Parsing friendly user notation in the form
of [⟨animation type⟩:⟨duration⟩:⟨other raw attributes⟩], where fields from the right may be omitted to
produce the default value, is handled by \.maketrans. This macro is also used by transition actions
(see 2.4.4). The defaults are simply those defined by PDF standard (no transition, 1 second duration
and the respective default directions).

pdfextra.opm
669 _def\.maketrans[#1]{\.maketransA#1:::\.end}
670 _def\.maketransA#1:#2:#3:#4\.end{%
671 \.emptyor{#1}{<</S /\.nonempty \.attrorempty{D}{#2} #3>>}
672 }

The attribute setters for transitions (\transitions, \transition) are a simple wrappers. Similiar is
the setting of page duration in seconds after which PDF viewer automatically advances to the next page
(\defaultpageduration, \pageduration).

pdfextra.opm
681 \.pdfpageattributesetters Trans \transitions \transition {\.maketrans[#1]}
682

683 \.pdfpageattributesetters Dur \defaultpageduration \pageduration {#1}

2.6 Attachments and document level JavaScript
These don’t have any last place to be in, so they are documented separately, here. Attaching files using
/FileAttachment annotations:

1. is intended more towards viewers of the document for extra additions and
2. doesn’t work in the viewers as well as one would like.

That is why instead embed files using normal \filedef and then allow them to be added to the
document level /EmbeddedFiles entry, which means they will be shown in the user interface by PDF
viewers. /EmbeddedFiles is a document level name tree (contained inside /Names entry of /Catalog)
that maps names of files to their objects. Although we simplify matters by constructing more of an array.

What works very similiarly is document level JavaScript. It is a name tree within /JavaScript
field. It maps names of JavaScript actions to their object numbers. The names aren’t very useful, but
the actions have their purpose. They are executed in turn after the document is opened. Hence they can
be used to predefine JavaScript functions in the global context, to be used later within actions explicitly
activated by the user.

The user level commands are \attach[⟨name⟩] (to attach a previously \filedef’d name with
fallback to embedding now if it is a valid path) and \dljavascript[⟨name⟩]{⟨script⟩} (adds action that
executes ⟨script⟩ after document is opened, ⟨name⟩ is more or less meaningless).

Internally both commands construct lists of what ends up in the resulting name array, i.e. pairs
(⟨name⟩)␣⟨object␣number⟩␣0␣R␣. Intermediate macros \.embeddedfiles and \.dljavascripts are
used for this.

In the case of file attachments, nothing happens if file is defined and not found by the fallback.
pdfextra.opm

723 % file attachment
724 _def\.embeddedfiles{}
725 _def\.attach[#1]{\.isfiledefined{\.name}_iftrue
726 \.xaddto\.embeddedfiles{(#1) \.cs{filespec:#1} }_fi
727 }
728 _nspublic \attach ;
729

730 _def\.dljavascripts{}
731 _def\.dljavascript[#1]#2{%
732 _immediate_pdfobj{<< \.jsaction[js:{#2}] >>}%
733 \.xaddto\.dljavascripts{(#1) _the_pdflastobj _space 0 R }%
734 }
735 _nspublic \dljavascript ;

Object creation, which is common to both, is handled by
\.makenamearray⟨name tree name⟩⟨name tree content⟩.

It doesn’t do anything for empty lists, to not bloat PDF files when this mechanism isn’t used.

19

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic

pdfextra.opm
744 _def\.makenamearray#1#2{_ifx#2_empty_else
745 _immediate_pdfobj {<< /Names [#2] >>}%
746 _pdfnames{/#1 _the_pdflastobj _space 0 R }_fi
747 }

The lists themselves can only be written out to the PDF file at the very end of the run. We use OpTEX’s
_byehook, which is run in _bye. But \bye itself may be predefined by the user, for example when
using some of the OpTEX tricks. We just hope that user keeps _byehook.

pdfextra.opm
756 _addto_byehook{%
757 \.makenamearray{EmbeddedFiles}\.embeddedfiles
758 \.makenamearray{JavaScript}\.dljavascripts
759 }

2.7 Viewer preferences
There are a few customizations of display (and other preferences of PDF viewers) possible in the docu-
ment catalog or its subdictionary /ViewerPreferences. Most are not that useful. The interesting ones
are implemented by \fullscreen, \showoutlines, \showattached. They all set the page mode using
\.setpagemode. We don’t handle respecting the last setting (using _byehook). To prevent invalid PDF
files, we set \.setpagemode to _relax after use.

pdfextra.opm
773 _def\.setpagemode#1{_pdfcatalog{/PageMode /#1}_glet\.setpagemode=_relax}
774

775 _def\.fullscreen{\.setpagemode{FullScreen}}
776 _def\.showoutlines{\.setpagemode{UseOutlines}}
777 _def\.showattached{\.setpagemode{UseAttachments}}
778

779 _nspublic \fullscreen \showoutlines \showattached ;

Only the setting of duplex / double sided printing and display is in the nested dictionary. It is handled
by \duplexdisplay. The simplistic version does not handle more attributes in /ViewerPreferences.
We also set the meaning to _relax to prevent more (erroneous) uses.

pdfextra.opm
788 _def\.duplexdisplay{_pdfcatalog{%
789 /PageLayout /TwoPageRight
790 /ViewerPreferences <<
791 /Duplex /DuplexFlipLongEdge
792 >>}%
793 _glet\.duplexdisplay=_relax
794 }
795

796 _def\duplexdisplay{\.duplexdisplay}

2.8 Multimedia
PDF essentially allows insertion of different types of multimedia:

• images,
• audio/video,
• 3D art.

The first is pretty standard and handled normally by the engine (LuaTEX). Others are possible, but
have to be done manually according to one of the mechanisms specified by PDF standard:

• Sounds (audio only),
• Movies (video and/or audio),
• Renditions (video and/or audio),
• 3D annotations (3D art),
• Rich Media (video and/or audio, 3D art)

20

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:empty
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:addto
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_byehook
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic

Sadly all these mechanisms are badly flawed, each in different ways. At least we try to use the one
that works in the viewers.

For audio/video “Movies” are the simplest mechanism, but they have been deprecated in PDF 2.0
and no longer work in Acrobat/Foxit (same for “Sounds”).

“Renditions” are complicated, partly dependant on JavaScript, but at least supported by Acrobat,
Foxit, Evince and Okular.

“Rich media” annotations were designed for Flash. This use case is no longer possible today, but the
obscurities remain. They are unnecessiraly complicated, but can be used without Flash too. Although
the result is very plain for audio/video – no controls can be displayed and there are no associated actions.

“3D annotations” are reasonably simple, but also flawed. They cannot reuse embedded file as a
source for 3D data. Hence it is better and more consistent to use Rich Media for 3D annotations. It even
has additional benefits, like the possibility of using multiple initialization scripts.

In the end, this package exposes two user commands corresponding to two mechanisms – first are
Renditions (\render) for audio/video that works in most browsers and Rich Media (\RM) mainly for 3D
art, but also for audio/video with limited possibilities.

Both mechanisms have an annotation at their core. Annotations is essentially a rectangular area on
page. The area corresponds to where the multimedium will show up. After activating the area somehow
(by user click, or action) the multimedium will start playing. Before annotations the rectangular area
will show something that is called “normal appearance”. This appearance is of type form XObject. Those
are really similiar to pages – they have dimensions, contents made up of PDF graphics operators, . . . ,
but they are reusable. Not that useful for annotations where we will need the form only once, but nice
anyways. pdfTEX has primitives for creating them – \pdfxform and friends. They essentially do the
same code like \shipout does, but instead of page, they make this reusable object. One can then either
use this reusable object in another page/form, but we will indirectly refer to it for the appearance.

Important aspect of annotations is that they are really only rectangular areas on the page, but they
are not really part of the page. They sort of sit on another level and are not influenced by PDF graphic
operators which make the page. In pdfTEX annotations are handled by whatsit nodes. While most nodes
map to known primitive TEX concepts (like typeset characters, boxes, rules, etc.) Whatsits are essentially
commands for TEX that are delayed until page is being shipped out (written to PDF file). \write,
\special, and most pdfTEX commands create whatsits. For annotationos this is important, because this
means that the engine only stores the information about annotation that we specify, but creates it at due
time, when it should be written to PDF.

Because whatsits are essentially dimensionless and we want it to be a part of normal TEX typesetting
material we create the annotation (whatsit) in \hbox. This box will be otherwise empty, because the
apperance of the rectangular area is determined by the normal appearance field (/N in /AP). We set the
dimensions of the box to the dimensions of normal appearance. Everything will line up nicely, because
when processed, the annotation will take dimensions from the box.

All of these concepts are implemented in:
\.boxedannot[⟨type⟩:⟨name⟩]{⟨appearance⟩}{⟨special text⟩}{⟨annotation attributes⟩}

⟨type⟩ is used to determine the annotation border (same principle as with Link annotations, section 2.4.2),
⟨name⟩ will be used as the annotation name (/NM), ⟨special text⟩ is used for influencing the \pdfannot
primitive, and ⟨annotation attributes⟩ will become the body of the annotation.

pdfextra.opm
889 _def\.boxedannot[#1:#2]#3#4#5{%
890 _setbox0=_hbox{#3}_setbox2=_null
891 _ht2=_ht0 _wd2=_wd0 _dp2=_dp0
892 _immediate_pdfxform0
893 % box with annotation both stretching to dimensions of appearance
894 _hbox{\.setpageof{#1:#2}%
895 _pdfannot #4 {#5
896 /AP <</N _the_pdflastxform _space 0 R>>
897 _pdfborder{#1}
898 /NM (#2)
899 /Contents (#1 '#2')
900 }%
901 _copy2
902 }%
903 }

There is another weird thing common to both multimedia mechanisms – the redefinition of \.name. It
is initially set by \.secondoptdef to ⟨name⟩, but may be redefined by user supplied name key-value

21

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:null
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_pdfborder

parameter. This should be used when there are multiple uses of the same content. Otherwise samely
named annotations would be indistinguishable both for PDF viewer and our handling of actions (which
would all refer only to the first instance).

To somewhat overcome this, trying to use the same ⟨name⟩ (within the same type of annotaiton)
will use dummy name from \.unnamedannotcount (for uniqueness). This means that ⟨name⟩ will always
refer to the first instance. \.redefinename handles this.

pdfextra.opm
920 _newcount\.unnamedannotcount
921 _def\.redefinename#1{%
922 \.isdefined{#1:\.name}_iftrue
923 _incr\.unnamedannotcount
924 _edef\.name{_the\.unnamedannotcount}%
925 _else
926 _edef\.name{_kv{name}}%
927 _fi
928 }

2.8.1 Renditions (audio/video)
There are three main types of PDF objects involved in the Renditions (“Multimedia”) mechanism:

• Screen annotations define the area for playing multimedia.
• Rendition objects define the multimedia to play.
• Rendition actions associate Rendition objects with Screen annotations.

You can theoretically arbitrarily mix and match rendition objects and screen annotations by invoking
different actions. In practice Evince and Okular do really simplistic parsing and don’t fully support the
actions fully. But by keeping it simple it is possible to make it work almost the same in all viewers that
support renditions.

Different sources of audio/video should be possible. In fact all three file specifications (embedded
files, files specified by URL/path) could work. Again in practice embedded file is the safest bet, that
works in all viewers that support renditions.

The user facing command is:
\render[⟨name⟩][⟨optional key-value paramers⟩]{⟨horizontal material⟩}

⟨name⟩ is the friendly name set using \filedef or file path if ⟨name⟩ isn’t \filedefd and is to be
embedded. The key-value parameters in brackets can be entirely omitted. They can influence the playback
(except for controls most are not well supported). Default values are taken from \.renderdefaults.

\render doesn’t do anything (except print warning) if file ⟨name⟩ isn’t defined and ⟨name⟩ isn’t a
path to file that can be embedded.

The first PDF object it defines is Rendition, which specifies information about the multimedium
(name, file specification, MIME type and options from key-value parameters). Some of the fields are in
/BE (“best effort”) dictionaries. This is due to the very general design of Renditions, which theoretically
allows the PDF viewer to choose from multiple Renditions if they know they can’t support some of the
requested features. But that is not much useful in practice, so we just don’t complicate it.

Next defined object is Screen annotation, which complicates thing by requiring (/P) reference to
the page where the annotation is (handled by \setpageof and \pageof pair). Important field is /A
which specifies actions that shall be executed when the screen area is clicked. We let the user change the
action, but the sensible default of starting to play the multimedium is used (and this is the only thing
that works in some viewers anyways). Additional actions /AA may be used to react to events like mouse
over or page open/close – the most probable use case is autoplay on page open, for which shortcut of
\renditionautoplay is defined.

The code is slightly complicated by the fact, that actions need to reference the Rendition and
Screen objects. In the case of the action contained in Screen annotation this essentialy involves a self
reference. Hence it is needed to first reserve an object number and later use it for the annotation.
Because the object numbers may also be needed by actions defined later, we need to save them to
_pdfextra_rendition:⟨name⟩ and _pdfextra_screen:⟨name⟩ respectively, but also define aliases
with empty names, so users can easily reference the latest rendition.

pdfextra.opm
994 \.secondoptdef\.render#1{\.isfiledefined{\.name}_iftrue_bgroup
995 _ea_readkv_ea{_ea\.renderdefaults_ea,_the_opt}%
996 \.colortorgbdef\.bgcolor{_kv{background}}%
997 % rendition object ("media specifaction")

22

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:newcount
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:incr
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:bgroup
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:readkv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:opt
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv

998 _pdfobj {<</Type /Rendition
999 /S /MR

1000 /N \.cs{filename:\.name}
1001 /C <<%/Type /MediaClip
1002 /S /MCD % subtype MediaClipData
1003 /D \.cs{filespec:\.name}
1004 /CT (\.cs{filemime:\.name})
1005 /P << /TF (TEMPALWAYS) >> % allow creating temporary files
1006 >>
1007 /P <<%/Type /MediaPlayParams
1008 /BE << /C _kv{controls} /V _kv{volume} /RC _kv{repeat} >>
1009 >>
1010 /SP <<%/Type /MediaScreenParams
1011 /BE << /O _kv{opacity} /B [\.bgcolor] >>
1012 >>
1013 >>}_pdfrefobj_pdflastobj
1014 \.redefinename{rendition}%
1015 \.sxdef{rendition:\.name}{_the_pdflastobj}%
1016 % screen annotation ("screen space allocation")
1017 _pdfannot reserveobjnum% "self" reference will be needed inside screen annot.
1018 \.sxdef{screen:\.name}{_the_pdflastannot}%
1019 % aliases to latest rendition/screen with empty name
1020 _global\.slet{rendition:}{rendition:\.name}%
1021 _global\.slet{screen:}{screen:\.name}%
1022 _edef\.action{_kv{action}}_edef\.aactions{_kv{aactions}}%
1023 \.boxedannot[rendition:\.name]{#1}{useobjnum_the_pdflastannot}{%
1024 /Subtype /Screen
1025 % reference to page of the rendition (\setpageof done by \.boxedannot)
1026 % the spaces are weird, but \pdfpageref eats them
1027 /P _pdfpageref\.pageof{rendition:\.name} _space 0 R
1028 /A _ea\.pdfaction_ea[\.action]
1029 /AA _ea\.pdfaactions_ea{\.aactions}
1030 }%
1031 _egroup_fi
1032 }
1033 _nspublic \render ;

Here are the defaults used for \render – \.renderdefaults. Users can redefine them all together
or override as needed with key-value parameters. The defaults correspond to values specified by PDF
standard. Other values may not be respected by all viewers.

pdfextra.opm
1042 _def\.renderdefaults{%
1043 name=\.name,
1044 controls=false,
1045 volume=100,
1046 repeat=1,
1047 opacity=1.0,
1048 background=1 1 1,
1049 action=rendition::play,
1050 aactions={},
1051 }

Most probable use of additional actions is to start auto-start playing of the multimedium. For this
purpose \renditionautoplay is defined as a shorthand for action to play the lastly defined rendition on
page visible event.

pdfextra.opm
1059 _def\.renditionautoplay{{PV}{rendition::play}}
1060 _nspublic \renditionautoplay ;

Rendition actions
Rendition actions unfortunately use cryptic symbolic numbers (0, 1, 2 and 3) for actions that could be
called play, stop, pause and resume respectively. Except for these predefined actions (that use /OP)
running of JavaScript is possible using /JS (⟨script⟩) with potential fallback to /OP. This is dangerous
teritory, because support of the right API in the viewer is very low. Although it is possible to define such
action type by:

\.sdef{renditionaction:myaction}{/JS (app.alert("something useful");) /OP 0}

23

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:egroup
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic

The use of rendition action is: \.renditionaction[rendition:⟨name⟩:⟨action type⟩]. Empty
name refers to last rendition, so e.g.\.renditionaction[rendition::pause] is possible.

pdfextra.opm
1082 \.sdef{renditionaction:play}{/OP 0}
1083 \.sdef{renditionaction:stop}{/OP 1}
1084 \.sdef{renditionaction:pause}{/OP 2}
1085 \.sdef{renditionaction:resume}{/OP 3}
1086 _def\.renditionaction[#1:#2:#3]{/S /Rendition
1087 \.cs{renditionaction:#3}
1088 /R \.cs{rendition:#2} 0 R
1089 /AN \.cs{screen:#2} 0 R%
1090 }

2.8.2 Rich Media (3D/audio/video)
Some principles seen with Renditions (section 2.8.1) apply here too. But additionally we deal with 3D
specifics and unfortunate Flash leftovers.

Unlike Renditions both page area and multimedium specifaction are handled in a single annotation –
the Rich Media annotation. The code is unfortunately obscured due to the weird requirements, but this
is essentially what we are trying to create with \RM:

/Type /Annot
/Subtype /RichMedia
/RichMediaSettings <<

/Activation <<
/Condition /PV
/Scripts [14 0 R]

>>
/Deactivation << /Condition /XD >>

>>
/RichMediaContent <<

/Assets << /Names [(kladka.prc) 2 0 R (wireframe.js) 14 0 R] >>
/Configurations [<<

/Type /RichMediaConfiguration
/Subtype /3D
/Instances [<<

/Type /RichMediaInstance
/Subtype /3D
/Asset 2 0 R

>>]
>>]

>>

The activation/deactivation will be dealt with later. But we see that to insert a simple 3D file,
we have to pack it inside a file specification (indirect reference to object 2 0 R), then in “instance”,
inside a “configuration” inside “content”. As if it wasn’t enough the names (normally contained in
the file specification) have to be specified again in Assets name tree that uselessly maps names to file
specifications. Because this is a 3D Rich Media annotation there are other files at play – initialization
scripts. These are specified in /Scripts and are executed in turn when the annotation is activated. Not
shown is, that some “configurations” and “instances” actually have to be specified indirectly.

If it wasn’t for Flash we could do with something like:

/Type /Annot
/Subtype /RichMedia
/Activation /PV
/Scripts [14 0 R]
/Deactivation /XD
/Content 2 0 R

Which contains equivalent information. But unfortunately here we are. . .

24

pdfextra.opm
1152 \.secondoptdef\.RM#1{\.isfiledefined{\.name}_iftrue
1153 _edef\.tmp{\.cs{filemime:\.name}}%
1154 _edef\.subtype{_ea\.mimetormsubtype_ea[\.tmp]_space}%
1155 _ifx\.subtype_space
1156 _opwarning{unknown rich media type for '\.name', ignored}_else
1157 _bgroup
1158 _ea_readkv_ea{_ea\.RMdefaults_ea,_the_opt}%
1159 % Instance that has the media file as an asset
1160 _pdfobj {<</Type /RichMediaInstance
1161 /Subtype /\.subtype
1162 /Asset \.cs{filespec:\.name}
1163 >>}_pdfrefobj_pdflastobj
1164 % Configuration with one single instance (the above)
1165 _pdfobj {<</Type /RichMediaConfiguration
1166 /Subtype /\.subtype
1167 /Instances [_the_pdflastobj _space 0 R]
1168 >>}_pdfrefobj_pdflastobj _edef\.configuration{_the_pdflastobj}%
1169 _edef\.names{\.cs{filename:\.name} \.cs{filespec:\.name} }% initial asset
1170 \.redefinename{rm}%
1171 _def\.scriptfilespecs{}%
1172 _edef\.views{_kv{views}}_edef\.scripts{_kv{scripts}}%
1173 _ifx\.views_empty _edef\.views{\.name}_fi
1174 _ea\.DDDscripts_ea{\.scripts}%
1175 % annotation in hbox
1176 \.boxedannot[rm:\.name]{#1}{}{%
1177 /Subtype /RichMedia
1178 /RichMediaSettings <<
1179 /Activation <<
1180 /Condition \.cs{activation:_kv{activation}}
1181 \.emptyor{\.scriptfilespecs}{/Scripts [\.nonempty]}
1182 /Presentation << /Toolbar _kv{toolbar} \.RMpresentationextra >>
1183 >>
1184 /Deactivation << /Condition \.cs{deactivation:_kv{deactivation}} >>
1185 >>
1186 /RichMediaContent <<
1187 /Assets << /Names [\.names] >>
1188 /Configurations [\.configuration _space 0 R]
1189 \.emptyor{_ea\.DDDviews_ea{\.views}}{/Views [\.nonempty]}
1190 >>
1191 }%
1192 \.sxdef{rm:\.name}{_the_pdflastannot}%
1193 _global\.slet{rm:}{rm:\.name}%
1194 _egroup_fi_fi
1195 }
1196 _nspublic \RM ;

The code is similiar to \render, but we also ignore everything if we don’t recognize the type of media
(Video, Sound or 3D). For that we use a simple mapping from MIME types with \.mimetormsubtype.
This means that although we aim Rich Media mostly for 3D art it may also be used for Video and Sound.

pdfextra.opm
1206 _def\.mimetormsubtype[#1/#2]{\.cs{rmtype:#1}}
1207

1208 \.sdef{rmtype:model}{3D}
1209 \.sdef{rmtype:video}{Video}
1210 \.sdef{rmtype:audio}{Sound}

Then we also need to construct the weird name “tree” (essentialy an array in our case) and script array.
\.DDDscripts and \.DDDviews do this. Name tree is accumulated in \.names, and starts with the media
file. After that each script is added to \.names and \.scriptfilespecs. The scripts are passed as a
comma separated array. Ignoring initial spaces is done using undelimited-delimited argument pair trick.

pdfextra.opm
1221 _def\.DDDscripts#1{\.DDDscriptsA#1,,,\.end}
1222 _def\.DDDscriptsA#1#2,{_ifx,#1_ea\.untilend_else
1223 \.isfiledefined{#1#2}_iftrue%
1224 _addto\.scriptfilespecs{\.cs{filespec:#1#2} }%
1225 _addto\.names{\.cs{filename:#1#2} \.cs{filespec:#1#2} }%
1226 _fi
1227 _ea\.DDDscriptsA_fi
1228 }

25

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:opwarning
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:bgroup
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:readkv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:opt
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:empty
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:egroup
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:addto
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:addto
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea

For 3D views we need to process yet another comma separated list, this time with \.DDDviews. The
result has to be separated by spaces and we also don’t want to emit something if the specified view was
invalid. Unfortunately this is expansion only context, so we can’t issue a warning.

As a user convenience, before \.DDDview is executed, view with the name of \.name is tried instead
of empty view array. This means that for simple 3D art with one view, one can create view with the
same name as the 3D object and not have to specify anything. We also take the name only after it is
redefined from optional key-value parameters – this is so we can support even the case of e.g. screw
3D model used twice, once with name=screw1, another time with name=screw2 (with the corresponding
screw1 and screw2 views). This is probably less useful, but. . .

pdfextra.opm
1246 _def\.DDDviews#1{\.DDDviewsA#1,,,\.end}
1247 _def\.DDDviewsA#1#2,{_ifx,#1_ea\.untilend_else
1248 \.isdefined{3dview:#1#2}_iftrue
1249 _lastnamedcs_space _fi
1250 _ea\.DDDviewsA_fi
1251 }

The activation/deactivation names are kind of cryptic, so we give them descriptive names. Default is
explicit (de)activation. Instead of /PV (page visible) and /PI (page invisible) it would be possible to use
“page open” and “page close”. These are slightly different in cases when more pages are shown on screen
at once, because only one page is “open”, while multiple are “visible”.

pdfextra.opm
1262 \.sdef{activation:explicit}{/XA}
1263 \.sdef{activation:auto}{/PV}
1264 \.sdef{deactivation:explicit}{/XD}
1265 \.sdef{deactivation:auto}{/PI}

Additional means of customization are here. \.RMdefaults contains the default key-value parameters.
\.RMpresentationextra can be used to set more attributes in /RichMediaPresentation dictionary
(although those are more specific and not generally useful).

pdfextra.opm
1274 _def\.RMdefaults{%
1275 name=\.name,
1276 activation=explicit,
1277 deactivation=explicit,
1278 toolbar=true,
1279 views=,
1280 scripts=,
1281 }
1282 _def\.RMpresentationextra{}

For scripting using JavaScript actions one needs to access the 3D context of the 3D / Rich Media
annotation. This requires the page number. We can’t use this.pageNum from [TODO], because the script
strictly doesn’t have to be on the same page. We use \.pageof (\.setpageof was done in \.boxedannot)
to retrieve the page number in next run. Also PDF indexes page numbers from 0. \DDDannot{⟨name⟩}.
and \DDDcontext{⟨name⟩} allow this.

pdfextra.opm
1293 _def\.DDDannot#1{%
1294 this.getAnnotRichMedia(_the_numexpr\.pageof{rm:#1}-1_relax, '#1')%
1295 }
1296 _def\.DDDcontext#1{\.DDDannot{#1}.context3D}
1297

1298 _nspublic \DDDannot \DDDcontext ;

2.8.3 3D views
This is the interesting part about 3D art. They can have a set of predefined views – although a user may
start from one, they can interactively change all the aspects by dragging with mouse or messing with the
settings shown by right click menu.

There are several transformations that have to be done before it is possible to display 3D scene on
a computer screen:

1. 3D transformation from the coordinate system of 3D artwork (“model”) to the “world coordinate
system”.

2. 3D transformation from the world coordinate system to camera coordinate system.
3. projection to 2D (3D to 2D transformation).

26

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic

When talking about PDF, positive 𝑥 goes to the right, positive 𝑦 up, and positive 𝑧 “away” from us
(“into the page”). This means we are working with a left handed coordinate system. In camera space,
the camera sits at (0, 0, 0) facing towards positive 𝑧 with positive 𝑥 and 𝑦 going right and up respectively.
Projection (one way or another) discards the 𝑧 coordinate.

Although the transformations are not strictly linear, they are essentially done using multiplication
by transformation matrices. The matrix for “model to world” (or “model”) transformation is part of the
3D art file and can’t be changed. However, we can make it up, because we can fully control the second
transformation (“world to camera” or “view” transformation) – although we don’t specify the “world to
camera” matrix but rather its inverse, the “camera to world” matrix (/C2W). This matrix has the 4 × 4
form, which also allows linear transformation and translation:

𝑀𝑐2𝑤 =
⎛⎜⎜⎜
⎝

𝑎 𝑑 𝑔 𝑡𝑥
𝑏 𝑒 ℎ 𝑡𝑦
𝑐 𝑓 𝑖 𝑡𝑧
0 0 0 1

⎞⎟⎟⎟
⎠

Here we use the column major convention, which is also the order how we would write the matrix
to PDF file, where it is an array of 12 elements:

/C2W [𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑡𝑥 𝑡𝑦 𝑡𝑧]

In the rendering pipeline everything is transformed from world coordinates to camera space coordi-
nates. We can think about the process also in the other way. Using 𝑀𝑐2𝑤 we specify camera’s position
and orientation in the world coordinate system. Due to how transformation using matrix multiplica-
tion works, the first column in the 𝑀𝑐2𝑤 matrix (vector (𝑎, 𝑏, 𝑐)𝑇) specifies how “positive 𝑥 direcetion”
(“right”) from camera space ends up in world coordinate system. Similiarly for (𝑑, 𝑒, 𝑓)𝑇 being the image
of positive 𝑦 (“up”) and (𝑔, ℎ, 𝑖)𝑇 being the image of positive 𝑧 (“forward”). The last column, (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)𝑇

represents translation from camera space to world. Translation of origin (camera position) will leave it
in the point with coordinates (𝑡𝑥, 𝑡𝑦, 𝑡𝑧). Because of these associations with the intuitive meanings of 𝑥,
𝑦, 𝑧 in camera space we also sometimes call the vectors in the first three columns of 𝑀𝑐2𝑤 “right”, “up”
and “forward” and the last one “eye”:

�⃗� = ⎛⎜
⎝

𝑎
𝑏
𝑐

⎞⎟
⎠

, ⃗𝑈 = ⎛⎜
⎝

𝑑
𝑒
𝑓

⎞⎟
⎠

, ⃗𝐹 = ⎛⎜
⎝

𝑔
ℎ
𝑖

⎞⎟
⎠

, ⃗𝐸 = ⎛⎜
⎝

𝑡𝑥
𝑡𝑦
𝑡𝑧

⎞⎟
⎠

.

We usually want �⃗�, ⃗𝑈 and ⃗𝐹 to form an orthonormal set of vectors, i.e. all of unit length and each
pair is orthogonal. The orthoganility will come from the way we calculate them, but the normality has
to be ensured by normalizing the vectors after computing them, which will not be explicitly written out
in the following text. ⃗𝐸 is a positional, not directional, vector and it’s length will be preserved.

Now we only need a convenient way to calculate all four vectors. A wide spread method is sometimes
called “look at”. It essentially involves having two points: “eye” (𝐸, position of the camera) and “target”
(𝑇, the point where the camera is pointing at). The camera position is already provided:

⃗𝐸 = 𝐸

From these two points alone we can easily calculate the forward vector, which corresponds to the direction
of the camera:

⃗𝐹 = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐸𝑇 = 𝑇 − 𝐸

When we now imagine the point 𝐸 and vector ⃗𝐹 looking towards 𝑇 we can see that there is a degree of
freedom – the camera can rotate about the forward vector. There is no other way than to arbitrarily
choose either up or right vector. Usually we choose an arbitrary “global up” vector 𝑈𝐺, which will
influence the general direction of the final up vector. This is because we use it to calculate the right
vector:

�⃗� = ⃗𝑈𝐺 × ⃗𝐹

The cross product makes it so that:

1. �⃗� is perpendicular to ⃗𝐹
2. it is also perpendicular to global up vector (⃗𝑈𝐺) which we used to get rid of remaining degree of

freedom.

27

Now that we have two orthonormal vectors (with the normalization not being explicit) we can calculate
the remaining up vector:

⃗𝑈 = ⃗𝐹 × �⃗�

The last mysterious part about the calculation are the cross products. They are of course not
commutitative, so why e.g. ⃗𝑈𝐺 × ⃗𝐹 and not the other way around? This is because we have to preserve
the relations these vectors had as directions of positive axes of the original camera space. There we had
positive 𝑥 going right, positive 𝑦 up and positive 𝑧 forward in a left handed coordinate system. This
means that following holds (according the left hand rule):

�⃗� = ⃗𝑈 × ⃗𝐹
⃗𝑈 = ⃗𝐹 × �⃗�
⃗𝐹 = �⃗� × ⃗𝑈

The scheme has one flaw though. When the directions of global up vector ⃗𝑈𝐺 and forward vector
⃗𝐹 are linearly dependent the computed right vector will be (0, 0, 0). Hence some handling of this special

case is needed.
The “look at” method is essentially what is used in Alexander Grahn’s package movie151. Although

the input aren’t two points, but rather a “center of orbit” point (𝐶𝑂𝑂, our “target”), “center of orbit to
camera vector” (⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶2𝐶, default is (0, −1, 0)) and distance of camera from the center of orbit (𝑅𝑂𝑂). The
value used for the arbitrary “global up” vector is (0, 0, 1). When forward vector is (0, 0, 𝑧), then global
up is chosen to be (0, −1, 0) or (0, 1, 0) to handle the “0 right vector” issue.

Because the movie15 method of providing the parameters is used in essentially all packages that
handle PDF 3D art (movie15, media9, rmannot, ConTEXt) we also follow the suite.

\DDDview[⟨view name⟩][⟨key-value parameters⟩] is the command for defining 3D views. These have
to be saved into separate PDF objects anyways, using this interface we allow their reuse. If ⟨view name⟩
is same as ⟨name⟩ of \RM argument and no other views are specified ⟨view name⟩ view is automatically
used (see \RM for details).

Key-value parameters are not optional this time, because rarely one suffices with default values –
different 3D views are about customization. Handling of them is not as straightforward as before. We
initially read the key-value parameters only to determine the method used for calculating the /C2W matrix.
Then we reread key-value parameters again, this time with also with the default values for this particular
method. Not that the general 3d views details are changed, but the methods themselves have key-value
parameters of their own, and we support specifying them in this “flat” way.

Additionally we allow the different methods used to compute /C2W to not be expandable. Hence
they are executed outside of expansion only context and are fully processed – the text they add to 3D
view PDF object is temporarily stored in \.viewparams.

The rest is simply setting sensible defaults (or user overrides) for internal/external name of the view
(/IN and /XN, one is used for scripting, one is shown by the PDF viewer), background color, rendering
mode, and lighting. Cross sections and nodes are currently not supported, although users can hook in
their own code using \.DDDviewextra, \.DDDrendermodeextra or \.DDDprojectionextra.

We have to be careful about setting rendering mode and lighting scheme, because they normally fall
back to the values specified in 3D art file, which we can’t access, so better not set them to anything if
they are empty.

pdfextra.opm
1474 _def\.DDDview[#1][#2]{_bgroup
1475 _readkv{\.DDDviewdefaults,#2}%
1476 _edef\.tmp{\.DDDviewdefaults,\.cs{3dview:_kv{method}:defaults}}%
1477 _readkv{\.tmp,#2}%
1478 \.colortorgbdef\.bgcolor{_kv{background}}%
1479 \.cs{3dview:_kv{method}}% sets \.viewparams (/MS, /C2W, /CO)
1480 _pdfobj {<</Type /3DView
1481 /XN (#1)
1482 /IN (#1)
1483 \.viewparams % /MS, /C2W, /CO
1484 /P <<
1485 \.cs{3dprojection:_kv{projection}}
1486 \.DDDprojectionextra

1 https://www.ctan.org/pkg/movie15

28

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:bgroup
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:readkv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:readkv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
https://www.ctan.org/pkg/movie15

1487 >>
1488 /BG <<%/Type /3DBG
1489 /Subtype /SC
1490 /C [\.bgcolor]
1491 >>
1492 \.emptyor{_kv{rendermode}}{%
1493 /RM <<%/Type /3DRenderMode
1494 /Subtype /\.nonempty
1495 \.DDDrendermodeextra >> }%
1496 \.emptyor{_kv{lighting}}{%
1497 /LS <<%/Type /3DLightingScheme
1498 /Subtype /\.nonempty >> }%
1499 >>}%
1500 _pdfrefobj_pdflastobj
1501 \.sxdef{3dview:#1}{_the_pdflastobj _space 0 R}%
1502 _egroup
1503 }
1504

1505 _nspublic \DDDview ;

\.DDDviewdefaults stores default key-value parameters for 3D views. They are mostly the PDF standard
defaults or what movie15/media9 uses (for compatibility).\.DDDviewextra, \.DDDrendermodeextra or
\.DDDprojectionextra can be used by the users to hook themself into 3D view object creation.

pdfextra.opm
1516 _def\.DDDviewdefaults{
1517 projection=perspective,
1518 scale=1,
1519 ps=Min,
1520 FOV=30,
1521 background=1 1 1,
1522 rendermode=,
1523 lighting=,
1524 method=media9,
1525 }
1526 _def\.DDDprojectionextra{}
1527 _def\.DDDrendermodeextra{}
1528 _def\.DDDviewextra{}

There are two different projection methods:

• Orthographic: 𝑧 coordinate is simply thrown away, scale is used for scaling the result. For technical
parts where we want lines that are parallel stay parallel in the view.

• Perspective: is the way human eye sees. FOV can be used to set field of view. (ps parameter for
additonal scaling to fit width/height is also available, but the default is fine for casual users).

pdfextra.opm
1542 \.sdef{3dprojection:ortho}{/Subtype /O /OS _kv{scale}}
1543 \.sdef{3dprojection:perspective}{/Subtype /P /FOV _kv{FOV} /PS /_kv{ps}}

We offer the possibility of setting/C2W matrix and /CO (distance from camera to center of orbit) directly
using method=manual.

pdfextra.opm
1551 \.sdef{3dview:manual:defaults}{
1552 matrix=1 0 0 0 1 0 0 0 1 0 0 0 ,
1553 centeroforbit=0,
1554 }
1555 \.sdef{3dview:manual}{_edef\.viewparams{
1556 /MS /M
1557 /C2W [_kv{matrix}]
1558 /CO _kv{centeroforbit}
1559 }}

Another simple way of specifying camera position/orientation is to use a named setting of U3D file using
a U3D path with method=u3d.

pdfextra.opm
1566 \.sdef{3dview:u3d:defaults}{
1567 u3dpath=,
1568 }
1569 \.sdef{3dview:u3d}{%

29

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sxdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:egroup
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_nspublic
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv

1570 _pdfunidef\.tmp{_kv{u3dpath}}%
1571 _edef\.viewparams{
1572 /MS /U3D
1573 /U3DPath \.tmp _space
1574 }}

The most advanced method of setting /C2W matrix and /CO is method=media9. It is thoroughly explained
above, the few differences are because the input values are not two points. Also for conciseness “x”, “y”
and “z” are used instead of right, up and forward. The calculations are done in Lua, for simplicity.

We expect the user to supply the numbers in the form “1 2 3”, but in Lua we need them comma
separated (“1, 2, 3”). \.luatriplet does this. Just in case the code is somehow adapted without
ensuring that 𝑥 and 𝑧 are orthonormal, we normalize also 𝑦 after the second cross product.

pdfextra.opm
1589 _def\.luatriplet#1 #2 #3 {#1, #2, #3}
1590

1591 \.sdef{3dview:media9:defaults}{%
1592 roo=0,
1593 coo=0 0 0,
1594 c2c=0 -1 0,
1595 }
1596 \.sdef{3dview:media9}{_edef\.coo{_kv{coo}}_edef\.c2c{_kv{c2c}}_edef\.viewparams{
1597 /MS /M
1598 /C2W [_directlua{
1599 local function normalize(x, y, z)
1600 local len = math.sqrt(x*x + y*y + z*z)
1601 if len ~= 0 then return x/len, y/len, z/len else return 0, 0, 0 end
1602 end
1603 local function cross(ux, uy, uz, vx, vy, vz)
1604 return uy*vz - uz*vy, uz*vx - ux*vz, ux*vy - uy*vx
1605 end
1606 local function printmat(...)
1607 local arr = table.pack(...)
1608 for k, v in ipairs(arr) do
1609 arr[k] = string.format("_pcent.6f", v)
1610 end
1611 tex.print(table.concat(arr, " "))
1612 end
1613

1614 local roo = _kv{roo}
1615 local coo_x, coo_y, coo_z = _ea\.luatriplet_expanded{_kv{coo}}
1616 local c2c_x, c2c_y, c2c_z = normalize(_ea\.luatriplet_expanded{_kv{c2c}})
1617

1618 local eye_x, eye_y, eye_z = coo_x + c2c_x*roo, coo_y + c2c_y*roo, coo_z + c2c_z*roo
1619

1620 local z_x, z_y, z_z = -c2c_x, -c2c_y, -c2c_z
1621

1622 local up_x, up_y, up_z = 0, 0, 1
1623 if math.abs(z_x) + math.abs(z_y) < 0.0000001 then % z_x == 0 and z_y == 0
1624 if z_z < 0.0000001 then % z_z <= 0
1625 up_x, up_y, up_z = 0, 1, 0
1626 else
1627 up_x, up_y, up_z = 0, -1, 0
1628 end
1629 end
1630

1631 local x_x, x_y, x_z = normalize(cross(up_x, up_y, up_z, z_x, z_y, z_z))
1632 local y_x, y_y, y_z = normalize(cross(z_x, z_y, z_z, x_x, x_y, x_z))
1633

1634 local eye_x, eye_y, eye_z = coo_x - z_x*roo, coo_y - z_y*roo, coo_z - z_z*roo
1635

1636 printmat(x_x, x_y, x_z, y_x, y_y, y_z, z_x, z_y, z_z, eye_x, eye_y, eye_z)
1637 }]
1638 /CO _kv{roo}
1639 }}

Last, but not least, is an action for setting the 3D view of a 3D/RM annotation using an action.
\.goto3dviewaction[goto3dview:⟨name⟩:⟨view⟩]. ⟨name⟩ is name of the annotation which will be
influenced. ⟨view⟩ is passed directly to PDF. Therefore it can be either an index to the view array
(starting at 0) or name of view in parentheses – “(⟨view name⟩)”.

30

http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:pdfunidef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:space
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:c
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_ea
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:kv

pdfextra.opm
1649 \.sdef{goto3dviewaction}[#1:#2:#3]{/S /GoTo3DView
1650 /TA \.cs{rm:#2} 0 R
1651 /V #3
1652 }

2.9 MIME type database
This is the uninteresting MIME type database teased in section 2.3. Ideally this would only be a subset of
what IANA defines at https://www.iana.org/assignments/media-types/media-types.xhtml. But
there are additions like model/u3d and model/prc, which don’t seem to be official, yet. Other “unofficial”
MIME types are taken from Mozilla’s “common” lists:

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types.
• https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Com-

mon_types

\.mimetype{⟨extension⟩}{⟨MIME type⟩} is a shortcut of mapping ⟨extension⟩ to ⟨MIME type⟩.
pdfextra.opm

1674 _def\.mimetype#1#2{_sdef{_pdfextra_mimetype:#1}{#2}}
1675

1676 \.mimetype{js}{application/javascript}
1677 \.mimetype{pdf}{application/pdf}
1678

1679 \.mimetype{prc}{model/prc}
1680 \.mimetype{u3d}{model/u3d}
1681

1682 \.mimetype{wav}{audio/x-wav}
1683 \.mimetype{mp3}{audio/mpeg}
1684 \.mimetype{opus}{audio/opus}
1685

1686 \.mimetype{avi}{video/x-msvideo}
1687 \.mimetype{mp4}{video/mp4}
1688 \.mimetype{webm}{video/webm}
1689

1690 _endnamespace

31

https://www.iana.org/assignments/media-types/media-types.xhtml
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:sdef
http://petr.olsak.net/ftp/olsak/optex/optex-doc.pdf#cs:_endnamespace

	PDF extra
	Contents
	User documentation
	Defining files
	Multimedia
	Actions
	External references
	Named actions
	Transition actions
	JavaScript actions
	3D JavaScript actions
	GoTo3Dview actions
	Rendition actions

	Transitions and other page attributes
	Attachments
	Document view

	Technical documentation
	Package initialization
	Helper macros
	Handling of files
	PDF actions
	Additional actions
	Link annotations
	Open action
	Jump actions
	Named actions
	JavaScript actions

	Page attributes
	Transitions, page durations

	Attachments and document level JavaScript
	Viewer preferences
	Multimedia
	Renditions (audio/video)
	Rich Media (3D/audio/video)
	3D views

	MIME type database

