
YAMLvars
a YAML variable parser for LuaLaTeX

Kale Ewasiuk (kalekje@gmail.com)

2022–02–25

YAMLvars is a LuaLaTeX-based package to help make definitions or produce LaTeX
code using a YAML file. This package might be useful for you if you want to batch
create docummnts by pushing various sets YAML data to a fixed LaTeX template, or
just find it easier to read document metadata from a YAML file compared to the standard
title, author, etc. commands.

1 Package Options

useyv By default, when you specify a YAML variable, it will be defined using gdef (only if
it wasn’t defined previously). If you use this setting, unless otherwise specified, YAML
variables will be accessible under the \yv{<var>} command. This also allows numbers
and symbols in the variable names. Note that internally, the variables are stored in the
command sequence yv--<var>.

parseCLI If this option is enabled, any arguments passed to your lualatex compile command that
end in “.yaml” will be used, separated by a space. If two yaml files are passed, the first
one will be the declaration file, and the second will be the parsing file. They will be
used at the beginning of the document. If one yaml file is passed, it will be treated as a
parsing file, so you should declare the variables somewhere in the preamble. This option
is offered to help with automation scripts. An example is showin in Section 8.

allowundeclared It might be helpful to define something in your YAML parsing doc without declaring
it. If you want this flexibility, use this setting. Note that existing definitions will not be
overwritten and an error will br thrown if the name exists. Alternatively, you can use the
commands \AllowUndeclaredYV or \ForbidUndeclaredYV to toggle this behavior.

overwritedefs Danger! This will allow you to gdef commands with YAML. Caution should be taken
to not set definitions like begin, section, etc.

1

2 Dependencies

Note: This package requires that the markdown (https://ctan.org/pkg/markdown) be in-
stalled. This package does not use the package in its entirety, but rather depends on the
YAML interpreter it comes with: markdown-tinyyaml.lua. This dependency is chosen
to avoid redundancy in your TeX installation and align development of the tinyyaml
Lua package. If you want to use the YAML interpreter for other purposes, you can bring
it into Lua by either:

\directlua{yaml = YAMLvars.yaml} or
\directlua{yaml = require'markdown-tinyyaml'}

The distribution: https://github.com/api7/lua-tinyyaml
The YAML specification: https://yaml.org/spec/

Many of the “transform” and “processing” functions built-in to this package rely on
other packages, like hyperref, for example, but it is not loaded, and this package will
only load penlight, luacode, xspace, and etoolbox.

3 Declaring variables

A declaration file can either be parsed with the command declareYAMLvarsFile com-
mand, or, if you want to do it LATEX, you can put the YAML code in the declareYAMLvars
environment. It is a declaring YAML docuemnt is (like all YAML) key-value ditionary:
The top level key is the name of the variable to be defined/used. If the value of the top
level is a string: it’s interpreted as a single transform function to be applied. Otherwise,
it must be a table that contains at least one of the following keys:
xfm (transform, may be a string or list of strings),
prc (processing, must be a single string), or
dft (default value, if being defined. Must be a string).

If you want to change the way a variable is initialized, you can change the function
YAMLvars.dec.PRC = function (var) ... end where PRC is how the variable will
be processed (gdef, yvdef, length, or something of your choosing).

The default value for variables is the Lua nil. YAMLvars will first check if the definition
exists, if so, an error will be thrown so that we avoid overwriting. If the token is available,
it is set to a package error, so that if the variable no defined later on, an error will tell
the user they forgot to set it. This will be overwritten when you parse the variables and
assign a value to it.

You can change the default xfm, prc, or dft by changing the value (in Lua): YAMLvars.xfmDefault
= '' etc.

2

Here is an example of a declaration document.

\begin{declareYAMLvars}
Location: addxspace # sets xfm=addxspace
People: [arrsortlastnameAZ, list2nl] # BAD! don't do.
People:

xfm: [arrsortlastnameAZ, list2nl] # Correct way
Company:

dft: Amazon # Change default only
Revisions:

dft: '1 & \today & initial version \\'
xfm: [sortZA, list2tab]

Rhead:
prc: setRightHead

\end{declareYAMLvars}

To change how a variable is declared (initialize), you can modify or add functions in
YAMLvars.dec table, where the index is the same as the prc name. This function
accepts two variables, the var name, and the default value set by dft. For lengths and
toggles (from etoolbox), these functions are used to initialize lengths with newlength
and newtoggle.

4 Parsing variables

A YAML file to be parsed will contain the variables as the top level keys, similar to
declaring. The value can be anything you want; as long as you have applied appro-
priate transform and declaring functions to it so that it can be useful. For example,
a value specified as a YAML list will first be interpreted as a Lua table (with numeric
indexes/keys). You could declare a series of transforms functions to sort this table, map
functions, and convert it to a series of LATEX\items.

Here is an example of a parsing document.

\begin{parseYAMLvars}
Location: Planet Earth
People: # a YAML list

- Some One # turns into Lua table
- No Body

company assumed Amazon if not set here
Rhead: \today
\end{parseYAMLvars}

3

5 xfm – Transform Functions

These functions accept two arguments: (var, val) where var is the variable (or key)
and val is the value. The transforms are specified as a list and are iteratively applied to
the val. Usually, the final xfm function should produce a string so it can be defined.

Hint: if for some reason, your xfm and prc depends on other variables, you can access
them within the function with YAMLvars.varsvals

5.1 Defining your own transform functions

After the package is loaded, you may add your function (somewhere in Lua) by adding
it to the YAMLvars.xfm table. For example, if you wanted to wrap a variable’s value
with “xxx”, here’s how you could do that.

function myfunction(var, val)
return 'xxx'..val..'xxx'

end
YAMLvars.xfm['addmyfunction'] = myfunction

If you want to run some Lua code and write in your YAML file (weird idea, but maybe
useful for one-off functions), you can do so by specifying a transform function with an
= in it to make a lambda function. For example, a xfm equal to “= '---'..x..'---'”
would surround your YAML variable’s value with em-dashes. You can access the variable
name with this lambda function with v. If you want to just execute code (instead of
settings x = , use /).

6 prc – Processing Functions

Like the transform functions, the processing function must accept (var, val). Only
one processing function is applied to the final (var, val) after the transforms are done.

This package includes gdef to set a definition, yvdef to define a variable under the yv
command. title, author, date to set \@title, \@author, \@date, respectively

4

7 Some Examples

1 %! language = yaml
2 \begin{declareYAMLvars}
3 address:
4 xfm:
5 - list2nl
6 - = x..'!!!'
7 name: null
8
9 title:
10 xfm:
11 - lb2nl
12 # - / YAMLvars.prvcmd(←↩

titletext , YAMLvars.varsvals['←↩
atitle ']:gsub('\n', ' ')..'\\←↩
xspace{}')

13 \end{declareYAMLvars}
14
15 %! language = yaml
16 \begin{parseYAMLvars}
17 title: |-
18 A Multiline
19 Monumental Title!
20
21 name: Joe Smith
22 address:
23 - 1234 Fake St.
24 - City
25 \end{parseYAMLvars}
26
27 \title
28
29 %\titletext!
30
31 \name
32
33 \address

A Multiline
Monumental Title!
Joe Smith
1234 Fake St.
City!!!

5

8 Automation Example

Suppose you had a number of bills of sales in yaml format and wanted to produce some
nice pdfs. The following code shows how this could be done.

6

8.1 The main tex template

%% main.tex
\documentclass{article}
\usepackage[paperheight=4in,paperwidth=3in,margin=0.25in]{geometry}
\usepackage[pl,func,extras]{penlight}
\usepackage[useyv,parseCLI]{YAMLvars} % using command line option to make files
\usepackage{hyperref}
\usepackage{xspace}
\usepackage{luacode}

\setlength{\parindent}{0ex}
\setlength{\parskip}{0.75em}

\begin{luacode*} -- adding a custom function, put hfill between k-v pairs
function YAMLvars.xfm.kv2hfill(var, val)

local t = {}
for k, v in pairs(val) do

t[#t+1] = k..'\\hfill '..tostring(v)
end
return t

end
\end{luacode*}

%! language = yaml
\begin{declareYAMLvars}
Customer: addxspace
Date: addxspace
Items:

xfm: [kv2hfill, arr2itemize]
\end{declareYAMLvars}

\begin{document}
Bill of sale for: \hfill \yv{Customer}\\
Purchased: \hfill \yv{Date}\\
\begin{itemize}

\item[] ITEM \hfill PRICE
\yv{Items} % the yaml variable
\begin{luacode*}

totalcost = pl.tablex.reduce('+',
pl.tablex.values(YAMLvars.varsvals['Items']), 0)

tex.print('\\item[] TOTAL:\\hfill'..tostring(totalcost))
\end{luacode*}

\end{itemize}

7

\end{document}

8.2 The lua automation script

--automate.lua
for f in io.popen('dir .'):lines() do -- get all files and info in cwd

local i, j = f:find('%S*%.yaml') -- find fnames
if i ~= nil then

f = f:sub(i,j) -- extract .yaml file name (no space in fname allowed)
os.execute('lualatex -output-format=pdf main.tex '.. f)

-- compile w/ yaml file as arg
local fnew = f:gsub('yaml', 'pdf') -- file name for output pdf
os.remove(fnew) -- delete if it exists already
os.rename('main.pdf', fnew) -- change main.pdf to same as yaml file name

end
end

8.3 The yaml data files

sale1.yaml
Customer: Someone Cold
Date: January 2, 2021
Items:

Toque: 12
Mitts: 5.6
Boots: 80

sale2.yaml
Customer: Someone Warm
Date: July 1, 2021
Items:

Beer (24 pk): 24
Sunscreen: 5
Hat: 12

8

