
The pyluatex package

Tobias Enderle
https://github.com/tndrle/PyLuaTeX

v0.5.1 (2022/12/30)

Execute Python code on the fly in your LATEX documents

PyLuaTeX allows you to execute Python code and to include the resulting output in your LATEX documents in
a single compilation run. LATEX documents must be compiled with LuaLATEX for this to work.

1 Example

1. LATEX document example.tex

\documentclass{article}

\usepackage{pyluatex}

\begin{python}

import math

import random

random.seed(0)

greeting = ’Hello PyLuaTeX!’

\end{python}

\newcommand{\randint}[2]{\py{random.randint(#1, #2)}}

\begin{document}

\py{greeting}

$\sqrt{371} = \py{math.sqrt(371)}$

\randint{2}{5}

\end{document}

2. Compile using LuaLATEX (shell escape is required)

lualatex -shell-escape example.tex

1

Note: PyLuaTeX starts Python 3 using the command python3 by default. If python3 does not start
Python 3 on your system, find the correct command and replace \usepackage{pyluatex} with
\usepackage[executable=<your python command>]{pyluatex} . For example,
\usepackage[executable=python.exe]{pyluatex} .

Note: Running LATEX with the shell escape option enabled allows arbitrary code to be executed. For this
reason, it is recommended to compile trusted documents only.

1.1 Further Examples

The folder example contains additional example documents:

• beamer.tex

Demonstrates the use of PyLuaTeX environments and typesetting in BEAMER presentations. In
particular, the fragile option for frames is highlighted.

• data-visualization.tex

Demonstrates the visualization of data using pgfplots and pandas

• matplotlib-external.tex

Demonstrates how matplotlib plots can be generated and included in a document

• matplotlib-pgf.tex

Demonstrates how matplotlib plots can be generated and included in a document using PGF

• readme-example.tex

The example above

• repl.tex

Demonstrates how a Python console/REPL can be run and typeset

• sessions.tex

Demonstrates the use of different Python sessions in a document

• typesetting-example.tex

The code typesetting example below

• typesetting-listings.tex

A detailed example for typesetting code and output with the listings package

• typesetting-minted.tex

A detailed example for typesetting code and output with the minted package

2 Installation

PyLuaTeX is available in TeX Live, MiKTeX, and on CTAN1 as pyluatex .

To install PyLuaTeX in TeX Live run tlmgr install pyluatex .

In MiKTeX, PyLuaTeX can be installed in the MiKTeX Console.
1https://ctan.org/pkg/pyluatex

2

3 Reference

PyLuaTeX offers a simple set of options, macros and environments.

Most macros and environments are available as quiet versions as well. They have the suffix q in their
name, e.g. \pycq or \pyfileq . The quiet versions suppress any output, even if the Python code
explicitly calls print() . This is helpful if you want to process code or output further and do your own
typesetting. For an example, see the Typesetting Code section.

3.1 Package Options

• executable

Specifies the path to the Python executable. (default: python3)

Example: \usepackage[executable=/usr/local/bin/python3]{pyluatex}

• ignoreerrors

By default, PyLuaTeX aborts the compilation process when Python reports an error. If the
ignoreerrors option is set, the compilation process is not aborted.

Example: \usepackage[ignoreerrors]{pyluatex}

• localimports

If this option is set, the folder containing the TeX input file is added to the Python path. This allows
local Python packages to be imported. (default: true)

Example: \usepackage[localimports=false]{pyluatex}

• shutdown

Specifies when the Python process is shut down. (default: veryveryend)

Options: veryveryend , veryenddocument , off

PyLuaTeX uses the hooks of the package atveryend to shut down the Python interpreter when the
compilation is done. With the option veryveryend , Python is shut down in the \AtVeryVeryEnd

hook. With the option veryenddocument , Python is shut down in the \AtVeryEndDocument hook.
With the option off , Python is not shut down explicitly. However, the Python process will shut down
when the LuaTeX process finishes even if off is selected. Using off on Windows might lead to
problems with SyncTeX, though.

Example: \usepackage[shutdown=veryenddocument]{pyluatex}

• verbose

If this option is set, Python input and output is written to the LATEX log file.

Example: \usepackage[verbose]{pyluatex}

The package options verbose and ignoreerrors can be changed in the document with the \pyoption

command, e.g. \pyoption{verbose}{true} or \pyoption{ignoreerrors}{false} .

3.2 Macros

• \py{<code>}

Executes (object-like) <code> and writes its string representation to the document.

3

Example: \py{3 + 7}

• \pyq{<code>}

Executes (object-like) <code> . Any output is suppressed.

Example: \pyq{3 + 7}

• \pyc{<code>}

Executes <code> . Output (e.g. from a call to print()) is written to the document.

Examples: \pyc{x = 5} , \pyc{print(’hello’)}

• \pycq{<code>}

Executes <code> . Any output is suppressed.

Example: \pycq{x = 5}

• \pyfile{<path>}

Executes the Python file specified by <path> . Output (e.g. from a call to print()) is written to the
document.

Example: \pyfile{main.py}

• \pyfileq{<path>}

Executes the Python file specified by <path> . Any output is suppressed.

Example: \pyfileq{main.py}

• \pysession{<session>}

Selects <session> as Python session for subsequent Python code.

The session that is active at the beginning is default .

Example: \pysession{main}

• \pyoption{<option>}{<value>}

Assigns <value> to the package option <option> anywhere in the document. For more
information consider the Package Options section.

Example: \pyoption{verbose}{true}

• \pyif{<test>}{<then clause>}{<else clause>}

Evaluates the Python boolean expression <test> , and then executes either the LATEX code in
<then clause> or the LATEX code in <else clause> .

Example: \pyif{a == 1}{$a = 1$}{$a \neq 1$}

3.3 Environments

• python

Executes the provided block of Python code.

The environment handles characters like _ , # , % , \ , etc.

Code on the same line as \begin{python} is ignored, i.e., code must start on the next line.

If leading spaces are present they are gobbled automatically up to the first level of indentation.

Example:

4

\begin{python}

x = ’Hello PyLuaTeX’

print(x)

\end{python}

• pythonq

Same as the python environment, but any output is suppressed.

• pythonrepl

Executes the provided block of Python code in an interactive console/REPL. Code and output are
stored together in the output buffer and can be typeset as explained in section Typesetting Code or as
shown in the example repl.tex in the folder example .

You can create your own environments based on the python , pythonq and pythonrepl environments.
However, since they are verbatim environments, you have to use the macro \PyLTVerbatimEnv in your
environment definition, e.g.

\newenvironment{custompy}

{\PyLTVerbatimEnv\begin{python}}

{\end{python}}

4 Requirements

• LuaLATEX

• Python 3

• Linux, macOS or Windows

5 Typesetting Code

Sometimes, in addition to having Python code executed and the output written to your document, you also
want to show the code itself in your document. PyLuaTeX does not offer any macros or environments that
directly typeset code. However, PyLuaTeX has a code and output buffer which you can use to create your
own typesetting functionality. This provides a lot of flexibility for your typesetting.

After a PyLuaTeX macro or environment has been executed, the corresponding Python code and output
can be accessed via the Lua functions pyluatex.get_last_code() and
pyluatex.get_last_output() , respectively. Both functions return a Lua table2 (basically an array)
where each table item corresponds to a line of code or output.

A simple example for typesetting code and output using the listings package would be:

\documentclass{article}

2https://www.lua.org/pil/2.5.html

5

\usepackage{pyluatex}

\usepackage{listings}

\usepackage{luacode}

\begin{luacode}

function pytypeset()

tex.print("\\begin{lstlisting}[language=Python]")

tex.print(pyluatex.get_last_code())

tex.print("\\end{lstlisting}")

tex.print("") -- ensure newline

end

\end{luacode}

\newcommand*{\pytypeset}{%

\noindent\textbf{Input:}

\directlua{pytypeset()}

\textbf{Output:}

\begin{center}

\directlua{tex.print(pyluatex.get_last_output())}

\end{center}

}

\begin{document}

\begin{pythonq}

greeting = ’Hello PyLuaTeX!’

print(greeting)

\end{pythonq}

\pytypeset

\end{document}

Notice that we use the pythonq environment, which suppresses any output. After that, the custom macro
\pytypeset is responsible for typesetting the code and its output.

Using a different code listings package like minted, or typesetting inline code is very easy. You can also
define your own environments that combine Python code and typesetting. See the typesetting-*.tex

examples in the example folder.

To emulate an interactive Python console/REPL, the pythonrepl environment can be used.

6 How It Works

PyLuaTeX runs a Python InteractiveInterpreter 3 (actually several if you use different sessions) in the
background for on the fly code execution. Python code from your LATEX file is sent to the background
interpreter through a TCP socket. This approach allows your Python code to be executed and the output to

3https://docs.python.org/3/library/code.html#code.InteractiveInterpreter

6

be integrated in your LATEX file in a single compilation run. No additional processing steps are needed. No
intermediate files have to be written. No placeholders have to be inserted.

7 License

LPPL 1.3c4 for LATEX code and MIT license5 for Python and Lua code.

We use the great json.lua6 library under the terms of the MIT license7.

4http://www.latex-project.org/lppl.txt
5https://opensource.org/licenses/MIT
6https://github.com/rxi/json.lua
7https://opensource.org/licenses/MIT

7

