
The lualinalg Package

Chetan Shirore and Ajit Kumar

February 11, 2023

1 Introduction

The lualinalg package is developed to perform operations on vectors and matrices defined over the field
of real or complex numbers inside LaTeX documents. It provides flexible ways for defining and displaying
vectors and matrices. No particular environment of LaTeX is required to use commands in the package. The
package is written in Lua, and tex file is to be compiled with the LuaLaTeX engine. The time required for
calculations is not an issue while compiling with LuaLaTeX. There is no need to install Lua on the user’s
system as TeX distributions (TeXLive or MikTeX) come bundled with LuaLaTeX. It may also save users’
efforts to copy vectors and matrices from other software (which may not be in latex-compatible format) and
to use them in a tex file. The vectors and matrices of reasonable size can be handled with ease. The package
can be modified or extended by writing custom Lua programs (Section 5).

2 Installation and License

The installation of the lualinalg package is similar to the plain latex package, where the .sty file is in the
LaTeX directory of the texmf tree. The package can be included with \usepackage{lualinalg} command
in the preamble of the LaTeX document.

The lualinalg package is released under the LaTeX Project Public License v1.3c or later. The complete
license text is available at http://www.latex-project.org/lppl.txt. It is developed in Lua. Lua is
available as a certified open-source software. Its license is simple and liberal, which is compatible with
GPL. The package makes use of complex.lua file which is available on https://github.com/davidm/

lua-matrix/blob/master/lua/matrix.lua. It is available under the same licensing as that of Lua. The
package also loads the luamaths package, which is available under the LaTeX Project Public License v1.3c
or later. This package is loaded to use the standard mathematical functions and for computations on real
numbers while performing operations on vectors and matrices.

3 Defining vectors and performing operations on vectors

3.1 Defining Vectors

Vectors are defined with the \vectornew command.

\vectorNew{vector name}{coordinates}

This command has two compulsory arguments: vector name and coordinates. Coordinates of vectors are
enclosed in curly braces. A comma separates coordinates. The complex numbers are to be enclosed in single
or double quotes inside the complex() function. The following are a few valid ways of defining vectors.

\vectorNew{v1}{{1,2,3,4,5,6}}

\vectorNew{v2}{{3,6,complex('6+6i')}}

1

http://www.latex-project.org/lppl.txt
https://github.com/davidm/lua-matrix/blob/master/lua/matrix.lua
https://github.com/davidm/lua-matrix/blob/master/lua/matrix.lua
https://ctan.org/pkg/luamaths

The standard vector of dimension n with ith coordinate 1 can be produced by using the following command.

\vectorNew{e}{n,'e',i}

For example, the following commands

\vectorNew{e_1}{3,'e',1}

\(e_1=\left(\vectorPrint{e}\right)\)

output to e1 = (1.0, 0.0, 0.0).

3.2 Commands for operations on vectors

Table 1 lists commands for operations on vectors.

Command Format Description

\vectorPrint[truncate]{vector}

Prints vector. Accepts one optional argument:
truncate. It specifies the number of digits
up to which vector coordinates must be trun-
cated. The value of truncatemay be 0,1,2,. . .

\vectorGetCoordinate{vector}{i} Gives the ith coordinate of vector.

\vectorSetCoordinate

{vector}{i}{val}
Sets the ith coordinate of vector as val.

\vectorCopy{v}{w}
Defines a new vector v obtained by copying
coordinates of vector w.

\vectorAdd{vector}{v1}{v2}

Defines a new vector as the addition of vectors
v1 and v2. Both vectors v1 and v2 should be
of the same dimension. The addition is done
coordinate-wise.

\vectorSub{vector}{v1}{v2}

Defines a new vector as the subtraction of vec-
tors v1 and v2. Both vectors v1 and v2 should
be of the same dimension. The subtraction is
done coordinate-wise.

\vectorMulNum{vector}{v}{num}

Defines a new vector obtained by multiplying
each coordinate of a vector by number num. It
can be a real or complex number (scalar).

2

\vectorDot{v}{w}

Gives the dot product of two vectors: v and
w. If v = (v1, . . . , vn) and w = (w1, . . . , wn)
are defined over the field of real numbers, then
it is evaluated as v1 ·w1+ · · ·+vn ·wn. If they
are defined over the field of complex numbers,
then it is evaluated as v1 · w̄1 + · · · + vn · w̄n.
w̄i denotes the complex conjugate of complex
number wi.

\vectorCross{vector}{v}{w}

Defines a new vector obtained by taking the
cross product of vectors v and w of dimension
3. If v = (v1, v2, v3) and w = (w1, w2, w3),
then the cross product of these two vectors is
the vector (v2w3 − v3w2, v3w1 − v1w3, v1w2 −
v2w1).

\vectorSumNorm{v}
Calculates the sum norm of a vector v. If v =
(v1, . . . , vn) then it is given by |v1|+ · · ·+ |vn|.

\vectorEuclidNorm{v}

Calculates the Euclidean norm of a vector
v. If v = (v1, . . . , vn) then it is given by√
|v1|2 + · · ·+ |vn|2.

\vectorpNorm{v}

Calculates the p (p > 1) norm of a vector
v. If v = (v1, . . . , vn) then it is given by
p
√

|v1|2 + · · ·+ |vn|2.

\vectorSupNorm{v}

Calculates the sup norm of a vector v.
If v = (v1, . . . , vn) then it is given by
max{|v1|, . . . , |vn|}.

\vectorCreateRandom{v}{n}{a}{b}

Creates a new vector v of dimension n with
coordinates as random numbers from the in-
terval [a, b].

\vectorOp{vector}{expression}

Defines a new vector obtained by evaluating
an expression. The expression supports all
standard operations such as +,−, ∗.

3

\vectorGetAngle{v}{w}

Gives the angle between two vectors v and w
in radians. If v and w are defined over the
field of real numbers, then it is evaluated as

cos−1
(

v·w
|v||w|

)
. If they are defined over the

field of complex numbers, then it is evaluated

as cos−1
(

Re(v·w)
|v||w|

)
. Here v ·w denotes the dot

product of vectors v and w, Re(v ·w) denotes
real part of the dot product v ·w, and |v| and
|w| denote Euclidean norms of vectors v and
w respectively.

\vectorParse{vector}

Parses the coordinates of a vector defined over
the field of real numbers. The command helps
to plot vectors with different packages.

\vectorGramSchmidt[brckt,

truncate]{list of vectors}

Performs Gram Schmidt orthogonalisation
process on a list of vectors. Accepts two op-
tional arguments: brckt and truncate. The
brckt is type of parenthesis to be used for dis-
playing vectors. It can be ‘round’, ‘square’ or
‘curly’. The truncate is number of digits up to
which vector coordinates are to be truncated.
The value of truncate can be 0,1,2,. . .

\vectorGramSchmidtSteps[brckt,

truncate]{list of vectors}

Performs Gram Schmidt orthogonalisation
process on a list of vectors in a step-by-step
manner. Accepts two optional arguments:
brckt and truncate. The brckt is type of
parenthesis to be used for displaying vectors.
It can be ‘round’, ‘square’ or ‘curly’. The trun-
cate is number of digits up to which vector
coordinates are to be truncated. The value of
truncate can be 0,1,2,. . .

Table 1: Commands for operations on vectors

3.3 Illustrations of commands for operations on vectors

The following commands define vectors v, w, x, and y.

\vectorNew{v}{{1,2,complex('3+3i')}}

\vectorNew{w}{{3,6,complex('6+6i')}}

\vectorNew{x}{{1.12345678,6,complex('6+6i')}}

\vectorNew{y}{{1,2,3}}

Table 2 illustrates various operations on vectors v, w, x and y.

Commands Output Produced

\(v=\left(\vectorPrint{v}\right)\)

\(w=\left(\vectorPrint{w}\right)\)
v = (1.0, 2.0, 3.0 + 3.0i)

4

w = (3.0, 6.0, 6.0 + 6.0i)

\(x=\left(\vectorPrint

[truncate=3]{x}\right)\)
x = (1.123, 6.0, 6.0 + 6.0i)

third coordinate of vector

\(v = \vectorGetCoordinate{v}{3}\)
third coordinate of vector v = 3 + 3i

\(y = \vectorCopy{y}{w}\)

\(\left(\vectorPrint{y}\right)\)
y = (3.0, 6.0, 6.0 + 6.0i)

new third coordinate of vector

\(y = \vectorSetCoordinate{y}{3}{9.3}\)

\(y=\left(\vectorPrint{y}\right)\)

new third coordinate of vector y = 9.3

y = (3.0, 6.0, 9.3)

\vectorAdd{v1}{v}{w}

\(v1 = v+w =\left(\vectorPrint{v1}\right)\)
v1 = v + w = (4.0, 8.0, 9.0 + 9.0i)

\vectorSub{v2}{v}{w}

\(v2 = v-w =\left(\vectorPrint{v2}\right)\)
v2 = v − w = (−2.0,−4.0,−3.0− 3.0i)

\vectorMulNum{v3}{v}{complex('3+i')}

\(v3 = 3v =\left(\vectorPrint{v3}\right)\)
v3 = 3v = (3.0 + i, 6.0 + 2.0i, 6.0 + 12.0i)

\vectorDot{v}{w}

\(v \cdot w =\vectorDot{v}{w}\)
v · w = 51

\vectorCross{v4}{v}{w}

\(v \times w =\left(\vectorPrint{v4}\right)\)
v × w = (−6.0− 6.0i, 3.0 + 3.0i, 0.0)

Sum norm of a vector \(v = \vectorSumNorm{v}\) Sum norm of a vector v = 7.2426406871193

Euclidean norm of a vector

\(v = \vectorEuclidNorm{v}\)
Euclidean norm of a vector v = 4.7958315233127

p norm of a vector \(v = \vectorpNorm{v}{3}\) p norm of a vector v = 4.4031577258332

Sup norm of a vector \(v = \vectorSupNorm{v}\) Sup norm of a vector v = 4.2426406871193

\vectorCreateRandom{v5}{3}{9}{90}

\(v5 =\left(\vectorPrint{v5}\right)\)
v5 = (18.290405, 23.356018, 49.966278)

\vectorOp{v6}{v+w-2*v}

\(v6 =\left(\vectorPrint{v7}\right)\)
v6 = (2.0, 4.0, 27.0 + 27.0i)

angle between vector \(v\) and \(w\) is

\(\vectorGetAngle{v}{w}\).
angle between vector v and w is 0.32823410158508.

\vectorParse{y} (1, 2, 3)

Table 2: Illustration of commands for operations on vectors

The package has commands for performing Gram Schmidt Orthogonalisation process. It can also produce
the computations in a step-by step manner.

5

Listing 1: Gram Schmidt Orthogonalisation process in the lualinalgpackage

\vectorNew{v1}{{1,2,3}}

\vectorNew{v2}{{4,5,6}}

\vectorNew{v3}{{7,8,90}}

\[v1=\left(\vectorPrint{v1}\right)\]

\[v2=\left(\vectorPrint{v2}\right)\]

\[v3=\left(\vectorPrint{v3}\right)\]

Gram Schmidt on \(v1,v2,v3\):

\vectorGramSchmidt[brckt=round,truncate=3]{{'v1','v2','v3'}}

\vectorGramSchmidtSteps[brckt=round,truncate=3]{{'v1','v2','v3'}}

Listing 1 outputs the following.

v1 = (1, 2, 3)

v2 = (4, 5, 6)

v3 = (7, 8, 90)

Gram Schmidt on v1, v2, v3: (0.267, 0.535, 0.802) , (0.873, 0.218,−0.436) , (0.408,−0.816, 0.408)

Take given vectors as v1, . . . , v3 in order.
Step 1:

u1 = v1 = (1.0, 2.0, 3.0)

e1 =
u1

||u1||
= (0.267, 0.535, 0.802)

Step 2:

u2 = v2 −
1∑

j=1

projuj
(v2) = (1.714, 0.429,−0.857)

e2 =
u2

||u2||
= (0.873, 0.218,−0.436)

Step 3:

u3 = v3 −
2∑

j=1

projuj (v3) = (13.5,−27.0, 13.5)

e3 =
u3

||u3||
= (0.408,−0.816, 0.408)

In addition to \mathRound, the command complexRound is also available. It has the following syntax.

\complexRound{complex number}{number of decimal places}

This command has two compulsory arguments. The complex number and number of decimal places to
which number should be rounded off. For example, \complexRound{3.3333666+6.777666i}{3} outputs
to 3.333 + 6.778i. This command can be nested with other commands in the package.

6

3.4 Plotting vectors

The lualinalg package can be used with other packages that have facility to plot vectors defined over the
field of real numbers in 2 or 3 dimensions. Listing 2 illustrates plotting of vectors in 2-D plane by using
lualinalg and tikz package.

Listing 2: Plotting vectors in 2-dimensions with the lualinalg and tikz packages

\begin{document}

\tdplotsetmaincoords{0}{0}

\begin{tikzpicture}[scale=1,

tdplot_main_coords,

axis/.style={->,blue,thick},

vector/.style={-stealth,red,very thick},

vector guide/.style={dashed,red,thick}]

\vectorNew{o}{{0,0}}

\vectorNew{e1}{{4,0}}

\vectorNew{e2}{{0,4}}

\vectorNew{f}{{2,1}}

\vectorNew{g}{{1,2}}

% Axes

\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {x};

\draw [axis] \vectorParse{o}-- \vectorParse{e2} node [right] {y};

% Plotting Vectors

\draw [vector] \vectorParse{o} --\vectorParse{f};

\draw [vector] \vectorParse{o} --\vectorParse{g};

\vectorOp{h}{f+g}

\draw [vector] \vectorParse{o} --\vectorParse{h};

\draw [vector,dashed,black] \vectorParse{f} --\vectorParse{h};

\draw [vector,dashed,black] \vectorParse{g} --\vectorParse{h};

% Labels

\node [below right] at \vectorParse{f} {f};

\node [above left] at \vectorParse{g} {g};

\node [above left] at \vectorParse{h} {$f+g$};

\draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0) node

[below] {$x=\vectorGetCoordinate{h}{1}$};

\draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2}) node

[left] {$y=\vectorGetCoordinate{h}{2}$};

\end{tikzpicture}

\end{document}

Listing 2 produces figure 1. Listing 3 illustrates plotting of vectors in 3-D plane by using lualinalg and
tikz package.

Listing 3: Plotting vectors in 3-dimensions with the lualinalg and tikz packages

\documentclass{article}

\usepackage{tikz,tikz-3dplot,lualinalg}

\begin{document}

\tdplotsetmaincoords{60}{120}

\begin{tikzpicture}[scale=1,

tdplot_main_coords,

axis/.style={->,blue,thick},

vector/.style={-stealth,red,very thick},

vector guide/.style={dashed,red,thick}]

7

Figure 1: Plotting of 3-D Vectors with lualinalg and tikz packages

\vectorNew{o}{{0,0,0}}

\vectorNew{e1}{{3,0,0}}

\vectorNew{e2}{{0,5,0}}

\vectorNew{e3}{{0,0,4}}

\vectorNew{f}{{2,2,0}}

\vectorNew{g}{{-1,2,2}}

% Axes

\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {x};

\draw [axis] \vectorParse{o}-- \vectorParse{e2} node [right] {y};

\draw [axis] \vectorParse{o}-- \vectorParse{e3} node [above] {z};

% Plotting Vectors

\draw [vector] \vectorParse{o} --\vectorParse{f};

\draw [vector] \vectorParse{o} --\vectorParse{g};

\vectorOp{h}{f+g}

\draw [vector] \vectorParse{o} --\vectorParse{h};

% Labels

\node [below right] at \vectorParse{f} {f};

\node [above left] at \vectorParse{g} {g};

\node [right] at \vectorParse{h} {$f+g$};

\draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0,0) node

[left] {$x=\vectorGetCoordinate{h}{1}$};

\draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2},0) node

[below] {$y=\vectorGetCoordinate{h}{2}$};

\draw[vector guide, black] \vectorParse{h} -- (0,0,\vectorGetCoordinate{h}{3}) node

[left] {$z=\vectorGetCoordinate{h}{3}$};

\end{tikzpicture}

\end{document}

Listing 3 produces figure 2.

4 Defining matrices and operations on matrices

Matrices are defined with the \matrixNew command.

8

Figure 2: Plotting of Vectors with lualinalg and tikz packages

\matrixNew{matrix name}{row entries}

This command has two compulsory arguments: matrix name and row entries. Each row of the matrix
is enclosed in curly brackets. A comma separates numbers in rows. Rows are also separated by a comma.
The whole matrix is then enclosed in curly brackets. The complex numbers are to be enclosed in single
or double quotes inside the parenthesis of the complex() function. The following are a few valid ways of
defining matrices.

\def\n{{{1,2,3},{4,5,6},{7,8,complex('9+3i')}}}

\def\s{{{1,2,3},{4,5,6},{7,8,10}}}

\matrixNew{m}{\n}

\matrixNew{n}{\s}

% an alternative way

\matrixNew{m}{{{1,2,3},{4,5,6},{7,8,complex('9+3i')}}}

\matrixNew{n}{{{1,2,3},{4,5,6},{7,8,10}}}

The identity matrix can be defined as well by using the \matrixNew command. For example, the following
commands

\matrixNew{mtx}{3,'I'}

I = \(\matrixPrint{mtx}\)

output to

I =

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0


4.1 Commands for operations on matrices

Table 3 lists all commands for operations on matrices in the lualinalg package.

Command Format Description

Printing Matrices

9

\matrixPrint[type,truncate]{mtx}

Prints matrix. Accepts two op-
tional arguments: type and truncate.
The type may be one of the values
pmatrix,bmatrix, vmatrix,Vmatrix.
The default type is bmatrix. The truncate

specifies the number of digits up to which
matrix entries are to be truncated. The value
of truncate may be 0,1,2,. . . .

Some parameters of defined matrices

\matrixNumRows{matrix} Gives the number of rows in a matrix.

\matrixNumCols{matrix} Gives the number of columns in a matrix.

\matrixGetElement{matrix}{i}{j}
Gives an entry of matrix in the ith row and
the jth column.

Algebraic operations on matrices

\matrixAdd{matrix}{m1}{m2}

Defines a new matrix as the addition of matri-
ces m1 and m2. The second matrix may have
more rows and\or columns.

\matrixSub{matrix}{m1}{m2}

Defines a new matrix as the subtraction of ma-
trices m1 and m2. The second matrix may
have more rows and\or columns.

\matrixMulNum{matrix}{number}{m1}

Defines a new matrix obtained by multiplying
each entry of matrix m1 by s real or complex
number.

\matrixMul{matrix}{m1}{m2}

Defines a new matrix obtained by multiply-
ing matrix m1 by matrix m2. The number of
rows in matrix m2 must equal the number of
columns in matrix m1.

\matrixPow{matrix}{m1}{power}

Defines a new matrix obtained by taking the
ith power of matrix m11 (multiplying matrix1
i times with itself).

10

\matrixInvert{matrix}{matrix1}

Defines a new matrix obtained by taking the
inverse of matrix1. It throws an error if matrix
is not invertible.

\matrixTrace{matrix}

Gives the trace (sum of diagonal entries) of a
square matrix. It throws an error if the matrix
is not square.

\matrixConjugate{matrix}{m1}
Defines a new matrix obtained by taking the
complex conjugate of each entry of matrix m1.

\matrixConjugateT{matrix}{m1}

Defines a new matrix obtained by taking the
transpose of matrix m1 and then the complex
conjugate of each matrix entry.

\matrixNormOne{matrix}

Calculates the norm1 of a matrix. For matrix
A of size m× n, it is given by

∥A∥1 = max
1⩽j⩽n

m∑
i=1

|aij |

\matrixNormInfty{matrix}

Calculates the infinity norm of a matrix. For
matrix A of size m× n, it is given by

∥A∥∞ = max
1⩽i⩽m

n∑
j=1

|aij |

\matrixNormMax{matrix}

Calculates the max norm of a matrix. For
matrix A of size m× n, it is given by

∥A∥max = max
i,j

|aij |

\matrixNormF{matrix}

Calculates the Frobenius norm of a matrix.
For matrix A of size m× n, it is given by

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

\matrixRank{matrix}
Gives the rank of matrix m. It also supports
matrices of complex numbers.

11

\matrixDet{matrix}
Gives the determinant of matrix m. It also
supports matrices of complex numbers.

\matrixTranspose{matrix}{m1}
Defines a new matrix obtained by taking the
transpose of matrix m1.

\matrixSetElement{matrix}{i}{j}{val}
Set entry of a matrix in the ith row and jth

column as val.

\matrixSubmatrix{sm}{m}{i}{j}{k}{l}

Defines a new matrix sm obtained by taking a
submatrix of matrix m. Here i, j denotes the
start row and start column, and k, l denotes
the end row and end column for obtaining the
submatrix.

\matrixConcatH{matrix}{m1}{m2}
Defines a new matrix obtained by augmenting
matrix m1 with matrix m2 horizontally.

\matrixConcatV{matrix}{m1}{m2}
Defines a new matrix obtained by augmenting
matrix m1 with matrix m2 vertically.

\matrixOp{matrix}{expression}

Defines a new matrix obtained by evaluating
an expression. The expression supports all
standard operations such as +, ∗, ˆ .

\matrixCopy{matrix}{matrix1}
Defines a new matrix obtained by copying val-
ues from matrix1.

\matrixCreateRandom

{m}{i}{j}{k}{l}

Creates a new matrix m with random num-
bers. Here i, j denotes the number of rows
and columns, and k, l denotes the start and
end integers between which random numbers
are generated.

Elementary row operations on matrices

\matrixSwapRows{mtx}{m1}{i}{j}
Defines a new matrix mtx obtained by swap-
ping the ith and jth rows of matrix m1.

12

\matrixMulRow{matrix}{m}{i}{no}

Defines a new matrix obtained by multiplying
the ith row of matrix1 by a real or complex
number.

\matrixMulAddRow{mtx}{m}{i}{no}{j}

Defines a new matrix mtx obtained by mul-
tiplying the ith row of matrix1 by a real or
complex number and adding it to the jth row.

Elementary column operations on matrices

\matrixSwapCols{mtx}{m}{i}{j}
Defines a new matrix mtx obtained by swap-
ping the ith and jth columns of matrix m.

\matrixMulCol{matrix}{m}{i}{no}

Defines a new matrix obtained by multiplying
the ith column of matrix1 by a real or complex
number.

\matrixMulAddCol{mtx}{m}{i}{no}{j}

Defines a new matrix mtx obtained by mul-
tiplying the ith column of matrix1 by a real
or complex number and adding it to the jth

column.

Reduced row echelon form of matrix

\matrixRREF{matrix}{matrix1}

Defines a new matrix obtained by taking the
reduced row echelon form of matrix1. It sup-
ports matrices of complex numbers as well.

\matrixRREFSteps[type,truncate]

{matrix}

Obtains reduced row echelon form of matrix
in a step-by-step manner. The command has
two optional parameters type and truncate.
It supports matrices with complex numbers
as well. type may be one of the values
pmatrix,bmatrix, vmatrix,Vmatrix. The
default type is bmatrix. truncate speci-
fies number of digits up to which matrix en-
tries are to be truncated. truncate may be
0,1,2,. . . .

Gauss-Jordan Elimination

\matrixGaussJordan{matrix}

{m1}{m2}

Defines new matrix obtained by performing
Gauss-Jordan elimination on augmented ma-
trix m1|m2.

13

\matrixGaussJordanSteps[type,truncate]

{matrix}{m1}{m2}

Defines new matrix obtained by performing
Gauss-Jordan elimination on augmented ma-
trix m1|m2 in a step-by-step manner. The
command has two optional parameters type

and truncate. type may be one of the val-
ues pmatrix, bmatrix, vmatrix, Vmatrix.
The default type is bmatrix. truncate spec-
ifies number of digits up to which matrix en-
tries are to be truncated. truncate may be
0,1,2,. . . .

Table 3: Commands for operations on matrices

4.2 Illustrations of matrix operations

The following commands define matrices m,n, and r.

\def\r{{{1,2,3},{4,5,6},{7,8,complex('9+3i')}}}

\def\s{{{1,2,3},{4,5,6},{7,8,10}}}

\def\t{{{1,2,3},{4,5,6},{7,8,9}}}

\def\u{{{1},{2},{3}}}

\matrixNew{m}{\r}

\matrixNew{n}{\s}

\matrixNew{p}{\t}

\matrixNew{q}{\u}

Table 4 illustrates various operations on matrices m,n, p, and q.

Commands Output Produced

Printing matrices

\(m=\matrixPrint{\m}\) m =

1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0 + 3.0i


\(m=\matrixPrint[type=pmatrix]{\m}\) m =

1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0 + 3.0i


Some parameters of defined matrices

\(No. or rows in matrix m

= \matrixNumRows{m}\)
No. or rows in matrix m = 3

\(No. or columns in matrix m

= \matrixNumCols{m}\)
No. or columns in matrix m = 3

\(Element of matrix m at (3,3) =

\matrixGetElement{m}{3}{3}\)
9 + 3i

Algebraic operations on matrices

14

\matrixAdd{m1}{m}{p}

\(m1 = \matrixPrint{m1}\)
m1 =

 2.0 4.0 6.0
8.0 10.0 12.0
14.0 16.0 18.0 + 3.0i


\matrixSub{m2}{m}{p}

\(m2 = \matrixPrint{m2}\)
m2 =

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 3.0i


\matrixMulNum{m3}{3}{m}

\(m3 = \matrixPrint{m3}\)
m3 =

 3.0 6.0 9.0
12.0 15.0 18.0
21.0 24.0 27.0 + 9.0i


\matrixMul{m4}{m}{p}

\(m4 = \matrixPrint{m4}\)
m4 =

 30.0 36.0 42.0
66.0 81.0 96.0

102.0 + 21.0i 126.0 + 24.0i 150.0 + 27.0i


\matrixPow{m5}{m}{2}

\(m5 = \matrixPrint{m5}\)
m5 =

 30.0 36.0 42.0 + 9.0i
66.0 81.0 96.0 + 18.0i

102.0 + 21.0i 126.0 + 24.0i 141.0 + 54.0i


\matrixInvert{m6}{m}

\(m6 = \matrixPrint[truncate=4]{m6}\)
m6 =

−1.6667− 0.3333i 0.6667 + 0.6667i −0.3333i
1.3333 + 0.6667i −0.3333− 1.3333i 0.6667i

−0.3333i 0.6667i −0.3333i


Rank of matrix \(m =\matrixRank{m}\) Rank of matrix m = 3

Determinant of matrix \(m =\matrixDet{m}\) Determinant of matrix m = −9i

\matrixTranspose{m7}{m}

\(m7 = \matrixPrint{m7}\)
m7 =

1.0 4.0 7.0
2.0 5.0 8.0
3.0 6.0 9.0 + 3.0i


\matrixSetElement{n}{3}{3}{300}

\(n= \matrixPrint{n}\)
n =

1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 300.0


\matrixSubmatrix{m8}{m}{1}{2}{2}{3}

\(m8 = \matrixPrint{m8}\)
m8 =

[
2.0 3.0
5.0 6.0

]
\matrixConcatH{m9}{m}{q}

\(m9= \matrixPrint{m9}\)
m9 =

1.0 2.0 3.0 1.0
4.0 5.0 6.0 2.0
7.0 8.0 9.0 + 3.0i 3.0



\matrixConcatV{m10}{m}{n}

\(m10= \matrixPrint{m10}\)
m10 =


1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0 + 3.0i
1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 300.0


\matrixOp{m11}{m*m+2*m}

\(\matrixPrint[truncate=4]{m11}\)
m11 =

 32.0 40.0 48.0 + 9.0i
74.0 91.0 108.0 + 18.0i

116.0 + 21.0i 142.0 + 24.0i 159.0 + 60.0i


\matrixCopy{m12}{m}

\(m12 = \matrixPrint{m12}\)
m12 =

1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0 + 3.0i


trace of matrix \(m = \matrixTrace{m}\) trace of matrix m = 15 + 3i

15

\matrixConjugate{mc}{m}

\(mc = \matrixPrint{mc}\)
mc =

1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0− 3.0i


\matrixConjugateT{mct}{m}

\(mct = \matrixPrint{mct}\)
mct =

1.0 4.0 7.0
2.0 5.0 8.0
3.0 6.0 9.0− 3.0i


\(\matrixNormOne{m}\) 18.486832980505

\(\matrixNormInfty{m}\) 24.486832980505

\(\matrixNormMax{m}\) 9.4868329805051

\(\matrixNormF{m}\) 17.146428199482

Elementary row operations on matrices

\matrixSwapRows{m13}{m}{2}{3}

\(m13 = \matrixPrint{m13}\)
m13 =

1.0 2.0 3.0
7.0 8.0 9.0 + 3.0i
4.0 5.0 6.0


\matrixMulRow{m14}{m}{3}{300}

\(m14 = \matrixPrint{m14}\)
m14 =

 1.0 2.0 3.0
4.0 5.0 6.0

2100.0 2400.0 2700.0 + 900.0i


\matrixMulAddRow{m15}{m}{2}{10}{3}

\(m15 = \matrixPrint{m15}\)
m15 =

 1.0 2.0 3.0
4.0 5.0 6.0
47.0 58.0 69.0 + 3.0i


Elementary column operations on matrices

\matrixSwapCols{m16}{m}{2}{3}

\(m16 = \matrixPrint{m16}\)
m16 =

1.0 3.0 2.0
4.0 6.0 5.0
7.0 9.0 + 3.0i 8.0


\matrixMulCol{m17}{m}{3}{300}

\(m17 = \matrixPrint{m17}\)
m17 =

1.0 2.0 900.0
4.0 5.0 1800.0
7.0 8.0 2700.0 + 900.0i


\matrixMulAddCol{m18}{m}{2}{10}{3}

\(m18 = \matrixPrint{m18}\)
m18 =

1.0 2.0 23.0
4.0 5.0 56.0
7.0 8.0 89.0 + 3.0i


Reduced row echelon form of a matrix

\matrixRREF{m19}{p}

\(m19 = \matrixPrint{m19}\)
m19 =

1.0 0.0 −1.0
0.0 1.0 2.0
0.0 0.0 0.0


\matrixRREF{m20}{m}

\(m20 = \matrixPrint{m20}\)
m20 =

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0


Table 4: Illustration of commands for operations on matrices

The package has command \matrixRREFSteps to produce step-by-step computation of reduced row echelon
form of a matrix. The command \matrixRREFSteps{p} outputs the following.

16

Step 1:Multiply row 1 by 4.0 and subtract it from row 2.1.0 2.0 3.0
0.0 −3.0 −6.0
7.0 8.0 9.0


Step 2:Multiply row 1 by 7.0 and subtract it from row 3.1.0 2.0 3.0

0.0 −3.0 −6.0
0.0 −6.0 −12.0


Step 3:Divide row 2 by -3.0. 1.0 2.0 3.0

0.0 1.0 2.0
0.0 −6.0 −12.0


Step 4:Multiply row 2 by 2.0 and subtract it from row 1.1.0 0.0 −1.0

0.0 1.0 2.0
0.0 −6.0 −12.0


Step 5:Multiply row 2 by -6.0 and subtract it from row 3.1.0 0.0 −1.0

0.0 1.0 2.0
0.0 0.0 0.0



The command \matrixGaussJordan is used to obtain Gauss-Jordan elimination of an augmented matrix.

\def\a{{{1,1,1},{2,-1,-1},{1,-1,1}}}

\def\b{{{3},{3},{9}}}

\matrixNew{S}{\a}

\matrixNew{T}{\b}

\matrixConcatH{W}{S}{T}

$$W = \matrixPrint{W}$$

\matrixGaussJordan{U}{S}{T}

$$U = \matrixPrint{U}$$

The above code produces the following output.

W =

1.0 1.0 1.0 3.0
2.0 −1.0 −1.0 3.0
1.0 −1.0 1.0 9.0


U =

1.0 0.0 0.0 2.0
0.0 1.0 0.0 −3.0
0.0 0.0 1.0 4.0



The package also has a command \matrixGaussJordanSteps to produce step-by-step computation of Gauss-
Jordan elimination of an augmented matrix. The command \matrixGaussJordanSteps{S}{T} produces the

17

following output.

W =

1.0 1.0 1.0 3.0
2.0 −1.0 −1.0 3.0
1.0 −1.0 1.0 9.0


Step 1:Multiply row 1 by 2.0 and subtract it from row 2.1.0 1.0 1.0 3.0

0.0 −3.0 −3.0 −3.0
1.0 −1.0 1.0 9.0


Step 2:Multiply row 1 by 1.0 and subtract it from row 3.1.0 1.0 1.0 3.0

0.0 −3.0 −3.0 −3.0
0.0 −2.0 0.0 6.0


Step 3:Divide row 2 by -3.0. 1.0 1.0 1.0 3.0

0.0 1.0 1.0 1.0
0.0 −2.0 0.0 6.0


Step 4:Multiply row 2 by 1.0 and subtract it from row 1.1.0 0.0 0.0 2.0

0.0 1.0 1.0 1.0
0.0 −2.0 0.0 6.0


Step 5:Multiply row 2 by -2.0 and subtract it from row 3.1.0 0.0 0.0 2.0

0.0 1.0 1.0 1.0
0.0 0.0 2.0 8.0


Step 6:Divide row 3 by 2.0. 1.0 0.0 0.0 2.0

0.0 1.0 1.0 1.0
0.0 0.0 1.0 4.0


Step 7:Multiply row 3 by 1.0 and subtract it from row 2.1.0 0.0 0.0 2.0

0.0 1.0 0.0 −3.0
0.0 0.0 1.0 4.0



5 Customized usage

The commands available in the package can be used for performing further operations on vectors and
matrices. The command \vectorAdd can be extended to add more than two vectors. The latex document
(listing 4) provides some instances of such usage.

Listing 4: Customized usage of the lualinalg package

\documentclass{article}

18

\usepackage{lualinalg}

\begin{document}

\begin{luacode}

function sumcoordinates(v1)

local sum = 0

for i = 1,#v1 do

sum = sum + v1[i]

end

return sum

end

function vector.addmulti(...)

p=table.pack(...)

s=vector(p[1])

for i=2,#p do

s=vector.add(s,vector(p[i]))

end

return s

end

\end{luacode}

\vectorNew{v}{{1,2,complex('3+3i')}}

The sum of coordinates of vector

\(v = \directlua{tex.sprint(tostring(sumcoordinates(v)))}\).

\newcommand\vectorAddmulti[2]{%

\directlua{%

vectors['#1'] = vector.addmulti(#2)

}%

}

\vectorNew{w}{{3,6,complex('6+6i')}}

\vectorNew{x}{{9,12,complex('12+12i')}}

\vectorAddmulti{y}{v,w,x}

The sum of vectors \(v,w \text{ and } x =\left(\vectorPrint{y} \right)\).

\end{document}

The latex document (listing 4) outputs the following on compilation.

The sum of coordinates of vector v = 6 + 3i.

The sum of vectors v, w and x = (13.0, 20.0, 21.0 + 21.0i).

The command \matrixAdd can be extended to add more than two matrices. The latex document (listing 5)
provides some instances of such usage.

Listing 5: Customized usage of the lualinalg package

\documentclass{article}

\usepackage{lualinalg}

\begin{document}

\begin{luacode}

function squareDiagEntries(m1)

if #m1 ~= #m1[1] then error("matrix not square") end

local sum = 0

19

for i = 1,#m1 do

for j = 1,#m1[1] do

if i == j then sum = sum + (m1[i][j])^2 end

end

end

return sum

end

function matrix.addmulti(...)

p=table.pack(...)

s=matrix(p[1])

for i=2,#p do

s=matrix.add(s,matrix(p[i]))

end

return s

end

\end{luacode}

\def\r{{{1,2,3},{4,5,6},{7,8,complex('9+3i')}}}

\matrixNew{m}{\r}

The sum of squares of diagonal entries of matrix

\(m = \directlua{tex.sprint(tostring(squareDiagEntries(m)))}\).

\def\s{{{1,2,3},{4,5,complex('6+6i')}}}

\def\t{{{10,20,30},{40,50,complex('60+60i')}}}

\def\u{{{100,200,300},{400,500,complex('600+600i')}}}

\matrixNew{m1}{\s}

\matrixNew{m2}{\t}

\matrixNew{m3}{\u}

\newcommand\matrixAddmulti[2]{%

\directlua{%

matrices['#1'] = matrix.addmulti(#2)

}%

}

\matrixAddmulti{m4}{m1,m2,m3}

The sum of matrices \(m1,m2 \text{ and } m3 = \matrixPrint{m4}\).

\end{document}

The latex document (listing 5) outputs the following on compilation.

The sum of squares of diagonal entries of matrix m = 98.0 + 54i.

The sum of matrices m1,m2 and m3 =

[
111.0 222.0 333.0
444.0 555.0 666.0 + 666.0i

]
.

6 Known issues and limitations

� The package supports small and big numbers. They can be input in the usual scientific notation.
The math library in Lua defines constants with the maximum math.maxinteger and the minimum
math.mininteger values for an integer. The result wraps around when there is a computational
operation on integers that would result in a value smaller than the mininteger or larger than the
maxinteger. It means that the computed result is the only number between the miniinteger and

20

maxinteger.

� The package currently supports only numerical computations. The table in a Lua is a data type that
implements an associative array. This feature is used in packages to define and store vectors and
matrices. This approach is close to object-oriented programming. It will allow easy conversion of
algorithms in packages for symbolic computations. Future package updates will consider algorithm
conversions to support symbolic calculations.

� The error handling mechanism in the tool is not robust. There are some custom errors included in
the package. However the package mostly depends on error handling mechanism of Lua. The error
handling can be strengthened in future updates of the package.

21

	Introduction
	Installation and License
	Defining vectors and performing operations on vectors
	Defining Vectors
	Commands for operations on vectors
	Illustrations of commands for operations on vectors
	Plotting vectors

	Defining matrices and operations on matrices
	Commands for operations on matrices
	Illustrations of matrix operations

	Customized usage
	Known issues and limitations

