\NeedsTeXFormat{LaTeX2e}% \ProvidesPackage{japanese-mathformulas}[2022/10/3,Version 1.0.1]% \RequirePackage{luatexja}% \RequirePackage{luatexja-fontspec}% \RequirePackage{luatexja-otf}% %\RequirePackage[hiragino-pron,deluxe,expert,bold]{luatexja-preset}% \RequirePackage{amsmath,amssymb,siunitx,ifthen,xparse,tikz,mathtools,graphics}% \usetikzlibrary{arrows,shapes,intersections,calc,angles,decorations.shapes,arrows.meta,quotes,through,decorations.text}% \newcommand{\空行}{\vskip0.00001\baselineskip}% %\def\空行{\br{.1}} \newlength{\@tempdimf@math}% \def\br{\@ifstar{\@br}{\@@br}}% \def\@br#1{% \allowbreak \setlength{\@tempdimf@math}{\baselineskip * \real{#1}}% \vspace*{\@tempdimf@math}% }% \def\@@br#1{% \setlength{\@tempdimf@math}{\baselineskip * \real{#1}}% \vspace{\@tempdimf@math}% }% \newcommand{\半空行}{\vskip.5\baselineskip}% \newcommand{\証明開始}{\noindent\textgt{【証明】}\par}% \newcommand{\証明終了}{\@rightalign{\ (Q.E.D.)}\par}% \newcommand{\数式カンマスペース}{,\ }% \NewDocumentCommand\根号{ O{} m }% {\ifthenelse{\equal{#1}{}}{\sqrt{#2\,}}{\sqrt[#1]{#2\,}}}% \newcommand{\ベクトル}[1]{\vec{\mathstrut #1}}% \newcommand{\overrightarrowtext}[1]{\overrightarrow{\text{#1}}}% \newcommand{\overarc}[1]% {% \tikz[baseline = (N.base),every node/.style={}]% {% \node[inner sep = 0pt](N){\text{#1}};% \draw[line width = 0.4pt] plot [smooth, tension=1.3]coordinates% {($(N.north west)+(0.1ex,0)$)($(N.north)+(0,0.5ex)$)($(N.north east)+(0,0)$)};% }% }% \newcommand*{\@rightalign}[1]% {% \hspace{\parfillskip}% \mbox{}\linebreak[0]\mbox{}% \nolinebreak[4]\hfill\mbox{#1}% }% \newcommand{\Ttyuukakko}[1]{\left(#1\right)}% \newcommand{\Ttyuubracket}[1]{\left[#1\right]}% \newcommand{\Tdaikakko}[1]{\left\{#1\right\}}% \newcommand{\Tzettaiti}[1]{\left|\,#1\,\right|}% \def\shikimaru#1{\text{\quad$\cdots\cdots$\,\ajMaru{#1}}} \let\originalbigtriangleup\bigtriangleup \def\bigtriangleup#1{\originalbigtriangleup{\mathrm{#1}}} \DeclareRobustCommand\bunsuu{\@ifstar{\bunsuu@}{\@@bunsuu}} \def\@@bunsuu#1#2{% \dfrac{\lower.44ex\hbox{$\,#1\,$}}{\lower-.1ex\hbox{$\,#2\,$}}}% \newlength{\@tempdima@math} \newlength{\@tempdimb@math} \newlength{\@tempdimd@math@math} \newlength{\@tempdimw@math} \DeclareRobustCommand\EMvphantom{\@ifstar{\EMvphantom@}{\EM@vphantom}} \def\EM@vphantom{\@ifnextchar[{\@EMvphantom}{\@EMvphantom[\apnd@ht]}} \def\@EMvphantom[#1]{\@ifnextchar[{\@@EMvphantom[#1]}{% \@@EMvphantom[#1][#1]}} \def\@@EMvphantom[#1][#2]#3{{% % \edef\apnd@ht{#1}\edef\apnd@dp{#2}% \@ifundefined{hakobanpush}{% \@@@EMvphantom{#3}\ignorespaces }{% \hakobanpush\@@@EMvphantom{#3}\hakobanpop\ignorespaces }% \setlength{\@tempdima@math}{\ht0+#1}% \setlength{\@tempdimb@math}{\dp0+#2}% \vrule width \z@ height \@tempdima@math depth \@tempdimb@math }} \def\@@@EMvphantom#1{% \ifmmode \setbox0=\hbox{{$#1$}}% \else \setbox0=\hbox{{#1}}% \fi }% \def\EMvphantom@{\@ifnextchar[{\@EMvphantom@}{\@EMvphantom@[\apnd@ht]}}% \def\@EMvphantom@[#1]{\@ifnextchar[{\@@EMvphantom@[#1]}{% \@@EMvphantom@[#1][#1]}}% \def\@@EMvphantom@[#1][#2]#3{{\smash{#3}}% \@@EMvphantom[#1][#2]{#3}\ignorespaces}% \newsavebox{\@tempboxd@math} \long\def\@colonfor#1:=#2\do#3{% % \@for の区切り記号を : に変えたバージョン \expandafter\def\expandafter\@fortmp\expandafter{#2}% \ifx\@fortmp\@empty \else \expandafter\@colonforloop#2:{\@nil}:\@nil\@@#1{#3}\fi} \long\def\@colonforloop#1:#2:#3\@@#4#5{\def#4{#1}\ifx #4\@nnil \else #5\def#4{#2}\ifx #4\@nnil \else#5\@icolonforloop #3\@@#4{#5}\fi\fi} \long\def\@icolonforloop#1:#2\@@#3#4{\def#3{#1}\ifx #3\@nnil \expandafter\@fornoop \else #4\relax\expandafter\@icolonforloop\fi#2\@@#3{#4}}% \def\phrases@math{\renewcommand{\arraystretch}{1}\@ifnextchar<{\@phrases@math}{\@phrases@math}} \def\@phrases@math<#1>{\@ifnextchar[{\@@phrases@math<#1>}{\@@phrases@math<#1>[l]}} \def\@@phrases@math<#1>[#2]{\@ifnextchar({\@@@phrases@math<#1>[#2]}{\@@@phrases@math<#1>[#2](c)}} \def\@@@phrases@math<#1>[#2](#3){\@ifnextchar|{\@@@@phrases@math<#1>[#2](#3)}{\@@@phrases@math<#1>[#2](#3)|0pt|}} \def\@@@@phrases@math<#1>[#2](#3)|#4|#5{% \savebox{\@tempboxd@math}{% \EMvphantom*[5pt]{% \ensuremath{% \ifthenelse{\equal{#1}{lr}\OR\equal{#1}{l}}{\left\{}{\left.}% \kern-.5ex% \setbox8\hbox{\begin{tabular}{#2}#5\end{tabular}}% \setlength{\@tempdimw@math}{\dp8+#4}% \setbox9 \vtop to \@tempdimw@math {\leftskip0pt\rightskip0pt\hsize\wd8\noindent\smash{\usebox8}}% \usebox9% \kern-.5ex% \ifthenelse{\equal{#1}{lr}\OR\equal{#1}{r}}{\right\}\ }{\right.}% }% }% }% \if#3t% \setlength{\@tempdimd@math@math}{-\ht\@tempboxd@math + \baselineskip}% \else \if#3b% \setlength{\@tempdimd@math@math}{\ht\@tempboxd@math - \baselineskip + 1pt}% \else \setlength{\@tempdimd@math@math}{0pt}% \fi \fi \raisebox{\@tempdimd@math@math}{\usebox{\@tempboxd@math}}% } \NewDocumentCommand{\二次式展開}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\Ttyuukakko{a+b}^2=a^2+2ab+b^2$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\Ttyuukakko{a+b}^2=a^2+2ab+b^2\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\Ttyuukakko{a-b}^2=a^2-2ab+b^2$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\Ttyuukakko{a-b}^2=a^2-2ab+b^2\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\Ttyuukakko{x-a}\Ttyuukakko{x+a}=x^2-a^2$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}} {\[\Ttyuukakko{x-a}\Ttyuukakko{x+a}=x^2-a^2\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$\Ttyuukakko{x+a}\Ttyuukakko{x+b}=x+\Ttyuukakko{a+b}x+ab$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {\[\Ttyuukakko{x+a}\Ttyuukakko{x+b}=x+\Ttyuukakko{a+b}x+ab\]}{\relax}% }% \NewDocumentCommand{\二次式因数分解}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$a^2+2ab+b^2=\Ttyuukakko{a+b}^2$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[a^2+2ab+b^2=\Ttyuukakko{a+b}^2\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$a^2-2ab+b^2=\Ttyuukakko{a-b}^2$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[a^2-2ab+b^2=\Ttyuukakko{a-b}^2\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$x^2-a^2=\Ttyuukakko{x-a}\Ttyuukakko{x+a}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}} {\[x^2-a^2=\Ttyuukakko{x-a}\Ttyuukakko{x+a}\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$x+\Ttyuukakko{a+b}x+ab=\Ttyuukakko{x+a}\Ttyuukakko{x+b}$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {\[x+\Ttyuukakko{a+b}x+ab=\Ttyuukakko{x+a}\Ttyuukakko{x+b}\]}{\relax}% }% \NewDocumentCommand{\平方根}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {$a$は実数として,$\根号{a^2}=\Tzettaiti{a}$}% {\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {% $a$は実数として,% \[\根号{a^2}=\Tzettaiti{a}\]% }% {\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{i}}% {% $a\geqq0$のとき,% $\Ttyuukakko{\根号{a}}^2=\Ttyuukakko{-\根号{a}}^2=a\数式カンマスペース\根号{a}\leqq0$% }% {\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{b}}% {% $a\leqq0$のとき,% \[\Ttyuukakko{\根号{a}}^2=\Ttyuukakko{-\根号{a}}^2=a\数式カンマスペース\根号{a}\leqq0\]% }% {\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{i}}% {$\根号{a}=\Tzettaiti{a}$}% {\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{b}}% {\[\根号{a}=\Tzettaiti{a}\]}% {\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{i}}% {% $a>0\数式カンマスペース b>0\数式カンマスペース a\neq b$のとき,% $\根号{a}\根号{b}=\根号{ab}$% }% {\relax} \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース b>0\数式カンマスペース a\neq b$のとき,% \[\根号{a}\根号{b}=\根号{ab}\]% }% {\relax}% \ifthenelse{\equal{#1}{性質D}\AND\equal{#2}{i}}% {$\bunsuu{\根号{a}}{\根号{b}}=\根号{\bunsuu{a}{b}}$}% {\relax}% \ifthenelse{\equal{#1}{性質D}\AND\equal{#2}{b}}% {\[\bunsuu{\根号{a}}{\根号{b}}=\根号{\bunsuu{a}{b}}\]}% {\relax}% \ifthenelse{\equal{#1}{性質E}\AND\equal{#2}{i}}% {$\根号{k^2a}=k\根号{a}$}% {\relax}% \ifthenelse{\equal{#1}{性質E}\AND\equal{#2}{b}}% {\[\根号{k^2a}=k\根号{a}\]}% {\relax}% }% \NewDocumentCommand{\一次不等式}{ m O{i} }% {% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{i}}% {$a0$のとき,$ac0$のとき,% \[acbc$}{\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{b}}% {% $c<0$のとき,% \[ac>bc\]% }% {\relax}% }% \NewDocumentCommand{\集合}{ m O{i} }% {% \ifthenelse{\equal{#1}{積集合}\AND\equal{#2}{i}}% {$\Ttyuukakko{A\cap B}$}{\relax}% \ifthenelse{\equal{#1}{積集合}\AND\equal{#2}{b}}% {\[\Ttyuukakko{A\cap B}\]}{\relax}% \ifthenelse{\equal{#1}{和集合}\AND\equal{#2}{i}}% {$\Ttyuukakko{A\cup B}$}{\relax}% \ifthenelse{\equal{#1}{和集合}\AND\equal{#2}{b}}% {\[\Ttyuukakko{A\cup B}\]}{\relax}% \ifthenelse{\equal{#1}{補集合}\AND\equal{#2}{i}}% {$\Ttyuukakko{\overline{A}}$}{\relax}% \ifthenelse{\equal{#1}{補集合}\AND\equal{#2}{b}}% {\[\Ttyuukakko{\overline{A}}\]}{\relax}% }% \NewDocumentCommand{\対偶}{ m O{i} }% {% \ifthenelse{\equal{#1}{定理}\AND\equal{#2}{i}}% {% $P$ならば$Q$の命題において,\par% 逆は$Q$ならば$P$\par% 裏は$P$でないならば$Q$でない\par% 対偶は$Q$でないならば$P$でない\par% 対偶と元の命題の真偽は一致する。% }% {\relax}% \ifthenelse{\equal{#1}{定理}\AND\equal{#2}{b}}% {% $P$ならば$Q$の命題において,\par% 逆は$Q$ならば$P$\par% 裏は$P$でないならば$Q$でない\par% 対偶は$Q$でないならば$P$でない\par% 対偶と元の命題の真偽は一致する。% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 命題を「$p$ならば$q$」とし$p$の真理集合を$P$\数式カンマスペース $q$の真理集合を$Q$とする。\par% 「$p$ならば$q$」が真のとき,$Q\subset P\Leftrightarrow\overline{P}\subset\overline{Q}$より対偶命題「$q$でないならば$p$でない」は真。\par% 「$p$ならば$q$」が偽のとき,$Q\not\subset P\Leftrightarrow\overline{P}\not\subset\overline{Q}$より対偶命題「$q$でないならば$p$でない」は偽。\par 従って,対偶命題と元の命題の真偽は一致する。% \証明終了% }% {\relax}% }% \newcommand{\背理法}{命題$P$ならば$Q$に対して$P$でないならば$Q$と仮定して矛盾を示す。}% \NewDocumentCommand{\二次関数}{ m O{i} }% {% \ifthenelse{\equal{#1}{標準形}\AND\equal{#2}{i}}% {$y=a\Ttyuukakko{x-p}^2+q$}{\relax}% \ifthenelse{\equal{#1}{標準形}\AND\equal{#2}{b}}% {\[y=a\Ttyuukakko{x-p}^2+q\]}{\relax}% \ifthenelse{\equal{#1}{一般形}\AND\equal{#2}{i}}% {$y=ax^2+bx+c$}{\relax}% \ifthenelse{\equal{#1}{一般形}\AND\equal{#2}{b}}% {\[y=ax^2+bx+c\]}{\relax}% \ifthenelse{\equal{#1}{切片形}\AND\equal{#2}{i}}% {$y=a\Ttyuukakko{x-\alpha}\Ttyuukakko{x-\beta}$}{\relax}% \ifthenelse{\equal{#1}{切片形}\AND\equal{#2}{b}}% {\[y=a\Ttyuukakko{x-\alpha}\Ttyuukakko{x-\beta}\]}{\relax}% \ifthenelse{\equal{#1}{平方完成}\AND\equal{#2}{i}}% {$y=ax^2+bx+c$に対して,$y=a\Ttyuukakko{x+\bunsuu{b}{2a}}-\bunsuu{b^2-4ac}{4a}$}{\relax}% \ifthenelse{\equal{#1}{平方完成}\AND\equal{#2}{b}}% {% $y=ax^2+bx+c$に対して,% \[y=a\Ttyuukakko{x+\bunsuu{b}{2a}}-\bunsuu{b^2-4ac}{4a}\]% }% {\relax}% }% \NewDocumentCommand{\二次方程式の解の公式}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {$ax^2+bx+c=0 \Ttyuukakko{a\neq0}$に対して,$x=\bunsuu{-b\pm\根号{b^2-4ac}}{2a}$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% $ax^2+bx+c=0 \Ttyuukakko{a\neq0}$に対して,% \[x=\bunsuu{-b\pm\根号{b^2-4ac}}{2a}\]% }% {\relax}% \ifthenelse{\equal{#1}{証明A}}% {% \証明開始% \vspace{-2.5\zw}% \begin{align*}% ax^2+bx+c&=0&\\% a\Ttyuukakko{x^2+\bunsuu{b}{a}x}+c&=0&\\% a\Tdaikakko{\Ttyuukakko{x+\bunsuu{b}{2a}}^2-\bunsuu{b^2}{4a^2}}+c&=0&\\% a\Ttyuukakko{x+\bunsuu{b}{2a}}^2-\bunsuu{b^2}{4a}+c&=0&\\% \Ttyuukakko{x+\bunsuu{b}{2a}}^2&=\bunsuu{b^2-4ac}{4a^2}&\\% x&=\bunsuu{-b\pm\根号{b^2-4ac}}{2a}% \end{align*}% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{証明B}}% {% \証明開始% \vspace{-2.5\zw}% \begin{align*}% ax^2+bx+c&=0&\\% 4a^2x^2+4abx+4ac&=0&\\% \Ttyuukakko{2ax+b}^2-b^2+4ac&=0&\\% 2ax+b&=\pm\根号{b^2-4ac}&\\% x&=\bunsuu{-b\pm\根号{b^2-4ac}}{2a}% \end{align*}% \証明終了% }% {\relax}% }% \NewDocumentCommand{\三角比の定義}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義A}\AND\equal{#2}{i}}% {% \begin{tikzpicture}% \draw(0,0)--(1.5,0)--(1.5,2)--cycle;% \draw(0,0)node[below]{A};% \draw(1.5,0)node[below]{B};% \draw(1.5,2)node[above]{C};% \draw(0,0)coordinate(A);% \draw(1.5,0)coordinate(B);% \draw(1.5,2)coordinate(C);% \draw pic[draw,black,thin,angle radius=0.3cm]{right angle=A--B--C};% \draw pic["$\theta$",draw=black,->,thin,angle eccentricity=1.4,angle radius=0.4cm]{angle=B--A--C};% \end{tikzpicture}% \空行% 図の様な直角$\triangle{\text{ABC}}$において$\angle\mathrm{CAB}=\theta$のとき,% \[% \sin\theta=\bunsuu{\text{BC}}{\text{AC}}\数式カンマスペース% \cos\theta=\bunsuu{\text{AB}}{\text{AC}}\数式カンマスペース% \tan\theta=\bunsuu{\text{BC}}{\text{AB}}% \]% }% {\relax}% \ifthenelse{\equal{#1}{定義B}\AND\equal{#2}{i}}% {% \begin{tikzpicture}% \draw(0,0)--(1.05,1.4);% \draw[dashed](0.75,1)--(0,1);% \draw(0,0)node[below right]{O};% \draw(0.75,0)node[below]{$x$};% \draw(0,1)node[left]{$y$};% \draw(0.8,1)node[right]{P$\Ttyuukakko{x,y}$};% \draw(0,0)circle[radius=1.25];% \draw(0,-1.25)node[below left]{$-r$};% \draw(-1.25,0)node[below left]{$-r$};% \draw(0,1.25)node[above left]{$r$};% \draw(1.25,0)node[below right]{$r$};% \draw[->,>=stealth,semithick](-1.5,0)--(1.5,0)node[right]{$x$};% \draw[->,>=stealth,semithick](0,-1.5)--(0,1.5)node[above]{$y$};% \draw[dashed](0,0)coordinate(O)-- (0.75,0)coordinate(Q)-- (0.75,1)coordinate(P);% \draw pic["$\theta$",draw=black,->,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=Q--O--P};% \end{tikzpicture}% \空行% 図において% \[\sin\theta=\bunsuu{y}{r}\数式カンマスペース\cos\theta=\bunsuu{x}{r}\数式カンマスペース\tan\theta=\bunsuu{y}{x}\]% このとき,$r=1$にしても一般性を失わない。% }% {\relax}% }% \NewDocumentCommand{\三角比の相互関係}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\sin^2\theta+\cos^2\theta=1$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\sin^2\theta+\cos^2\theta=1\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\tan\theta=\bunsuu{\sin\theta}{\cos\theta}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\tan\theta=\bunsuu{\sin\theta}{\cos\theta}\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$1+\tan^2\theta=\bunsuu{1}{\cos^2\theta}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[1+\tan^2\theta=\bunsuu{1}{\cos^2\theta}\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \begin{tikzpicture}% \draw(0,0)--(1.05,1.4);% \draw[dashed](0.75,1)--(0,1);% \draw(0,0)node[below right]{O};% \draw(0.75,0)node[below]{$x$};% \draw(0,1)node[left]{$y$};% \draw(0.8,1)node[right]{P$\Ttyuukakko{x,y}$};% \draw(0,0)circle[radius=1.25];% \draw(0,-1.25)node[below left]{$-r$};% \draw(-1.25,0)node[below left]{$-r$};% \draw(0,1.25)node[above left]{$r$};% \draw(1.25,0)node[below right]{$r$};% \draw[->,>=stealth,semithick](-1.5,0)--(1.5,0)node[right]{$x$};% \draw[->,>=stealth,semithick](0,-1.5)--(0,1.5)node[above]{$y$};% \draw[dashed](0,0)coordinate(O)-- (0.75,0)coordinate(Q)-- (0.75,1)coordinate(P);% \draw pic["$\theta$",draw=black, ->,thin,angle eccentricity=1.4,angle radius=0.4cm]{angle=Q--O--P};% \end{tikzpicture}% \空行% 図において,$\sin\theta=\bunsuu{y}{r}\数式カンマスペース\quad\cos\theta=\bunsuu{x}{r}$より% \[\sin^2\theta+\cos^2\theta=\bunsuu{y^2+x^2}{r^2}\]% ここで,三平方の定理より$x^2+y^2=r^2$なので% \[\sin^2\theta+\cos^2\theta=\bunsuu{r^2}{r^2}=1\]% \空行% $\sin\theta=\bunsuu{y}{r}\数式カンマスペース\quad\cos\theta=\bunsuu{x}{r}\quad\tan\theta=\bunsuu{y}{x}$より% \[\bunsuu{\sin\theta}{\cos\theta}=\bunsuu{y}{x}=\tan\theta\]% \空行% $\sin^2\theta+\cos^2\theta=1$の両辺を$\cos^2\theta$で割ることで,% \[\bunsuu{\sin^2\theta}{\cos^2\theta}+1=\bunsuu{1}{\cos^2\theta}\]% ここで,$\bunsuu{\sin\theta}{\cos\theta}=\tan\theta$なので% \[\tan^2\theta+1=\bunsuu{1}{\cos^2\theta}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\ユークリッド幾何の公理}{ m O{i} }% {% \ifthenelse{\equal{#1}{公理A}\AND\equal{#2}{i}}% {二つの異なる二点を与えることで,それを通る直線が一意的に決定する。}{\relax}% \ifthenelse{\equal{#1}{公理B}\AND\equal{#2}{i}}% {一つの直線$l$と$l$上にない一つの点が与えられたとき,与えられた点を通り,$l$に平行な直線をただ一つ引くことができる。}{\relax}% }% \newcommand{\直線}{両方向に限りなく伸びたまっすぐな線。}% \newcommand{\線分}{直線$\text{AB}$のうち,二点$\text{A}\数式カンマスペース\text{B}$を端とする部分。}% \newcommand{\半直線}{直線$\text{AB}$のうち,一方の点を端とし,もう一方に限りなく伸びた部分。}% \newcommand{\距離} {% 空でない集合Xの元$x\数式カンマスペース y$に対して,実数値$d(x\数式カンマスペース y)$が定義され,% \[d(x\数式カンマスペース y)=0\Leftrightarrow x=y\数式カンマスペース\quad(x\数式カンマスペース y)=d(y\数式カンマスペース x)\数式カンマスペース\quad(x\数式カンマスペース y)\leqq d(x\数式カンマスペース y)+d(y\数式カンマスペース x)\]% の三つの性質を満たす$d$をX上の距離といい,$(\text{X}\数式カンマスペース d)$を距離空間という。 % }% \newcommand{\円}{平面上の一点から等しい距離にある点の集合。}% \newcommand{\弧}{円周上の二点$\text{A}\数式カンマスペース\text{B}$に対して,A\数式カンマスペース Bによって分けられた円周の各々の部分を弧$\text{AB}$といい,$\overarc{AB}$と表す。}% \newcommand{\弦}{弧の両端を結んだ線分。}% \newcommand{\中心角}{円の中心を頂点として,2辺が弧の両端を通る角を,その弧に対する中心角という。}% \NewDocumentCommand{\対頂角}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}}% {% \begin{tikzpicture}% \draw(0,0)--(2,2);% \draw(2,0)--(0,2);% \draw(0,0)coordinate(O);% \draw(2,2)coordinate(A);% \draw(2,0)coordinate(B);% \draw(0,2)coordinate(C); % \draw(1,1)coordinate(D);% \draw pic["A",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=A--D--C};% \draw pic["B",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=O--D--B};% \end{tikzpicture}% \空行% 図において,$\angle\mathrm{A}$と$\angle\mathrm{B}$を対頂角という。% }% {\relax}% \ifthenelse{\equal{#1}{性質}}% {対頂角は等しい。}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \begin{tikzpicture}% \draw(0,0)--(2,2);% \draw(2,0)--(0,2);% \draw(0,0)coordinate(O);% \draw(2,2)coordinate(A);% \draw(2,0)coordinate(B);% \draw(0,2)coordinate(C);% \draw(1,1)coordinate(D);% \draw pic["A",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=A--D--C};% \draw pic["\,C",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.3cm] {angle=B--D--A};% \draw pic["B",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=O--D--B};% \end{tikzpicture}% \空行% \[180^\circ =\angle\mathrm{A}+\angle\mathrm{C}\]% \[180^\circ=\angle\mathrm{B}+\angle\mathrm{C}\]% \[\Leftrightarrow\angle\mathrm{A}=\angle\mathrm{B}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\錯角}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}}% {% \begin{tikzpicture}% \draw(-1,-0.5)--(2,1);% \draw(-1,-1)--(2,-1);% \draw(0,-2)--(2,2);% \draw(2,2)coordinate(A);% \draw(1.3333,0.66666)coordinate(B);% \draw(2,1)coordinate(C);% \draw(2,-1)coordinate(D);% \draw(0.5,-1)coordinate(E);% \draw(0,-2)coordinate(F);% \draw(-1,-1)coordinate(G);% \draw(-1,-0.5)coordinate(H);% \draw pic["\,A",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.3cm] {angle=E--B--C};% \draw pic["B\,\,\,",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.3cm] {angle=B--E--G};% \end{tikzpicture} \空行% 図において,$\angle\mathrm{A}$と$\angle\mathrm{B}$を錯角という。% }% {\relax}% \ifthenelse{\equal{#1}{性質}}% {直線$l\数式カンマスペース m$において,錯角が等しい$\Leftrightarrow$直線$l\数式カンマスペース m$は平行。}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \begin{tikzpicture}% \draw(-1,1)--(2,1);% \draw(-1,-1)--(2,-1);% \draw(0,-2)--(2,2);% \draw(2,2)coordinate(A);% \draw(1.5,1)coordinate(B);% \draw(2,1)coordinate(C);% \draw(2,-1)coordinate(D);% \draw(0.5,-1)coordinate(E);% \draw(0,-2)coordinate(F);% \draw(-1,-1)coordinate(G);% \draw(-1,1)coordinate(H);% \draw pic["\,\,\,A",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.3cm] {angle=E--B--C};% \draw pic["B\,\,\,",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.3cm] {angle=A--E--G};% \draw pic["C\,\,\,",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.3cm] {angle=A--B--H};% \end{tikzpicture} \空行% \begin{enumerate}% \item 「平行ならば錯角が等しい」の証明。% \空行% 対頂角は等しいので,% \[\angle\mathrm{A}=\angle\mathrm{C}\]% ここで,$\angle\mathrm{B}$と$\angle\mathrm{C}$は同位角なので等しいので,% \[\angle\mathrm{A}=\angle\mathrm{B}\]% \item 「錯角が等しいならば平行」の証明。% \空行% 錯角が等しいので,% \[\angle\mathrm{A}=\angle\mathrm{B}\]% 対頂角は等しいので,% \[\angle\mathrm{A}=\angle\mathrm{C}\]% \[\Leftrightarrow\angle\mathrm{C}=\angle\mathrm{B}\]% 即ち,同位角が等しいので二直線は平行。% \end{enumerate}% \証明終了% }% {\relax}% }% \NewDocumentCommand{\同位角}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}}% {% \begin{tikzpicture}% \draw(-1,-0.5)--(2,1);% \draw(-1,-1)--(2,-1);% \draw(0,-2)--(2,2);% \draw(2,2)coordinate(A);% \draw(1.3333,0.66666)coordinate(B);% \draw(2,1)coordinate(C);% \draw(2,-1)coordinate(D);% \draw(0.5,-1)coordinate(E);% \draw(0,-2)coordinate(F);% \draw(-1,-1)coordinate(G);% \draw(-1,-0.5)coordinate(H);% \draw pic["\,\,A",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=C--B--A};% \draw pic["\,\,B",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=D--E--B};% \end{tikzpicture} \空行% 図において,$\angle\mathrm{A}$と$\angle\mathrm{B}$を同位角という。 }% {\relax}% \ifthenelse{\equal{#1}{公理}}% {直線$l,m$において,同位角が等しい$\Leftrightarrow$直線$l\数式カンマスペース m$は平行。}{\relax}% }% \NewDocumentCommand{\正弦定理}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {$\triangle{\text{ABC}}$の外接円の半径を$R$として,$\bunsuu{a}{\sin\text{A}}=2\text{R}\text{\ (}b\数式カンマスペース\text{B }\数式カンマスペース c\数式カンマスペース\text{Cについても同様に成立})$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% $\triangle{\text{ABC}}$の外接円の半径を$R$として,% \[\bunsuu{a}{sin\text{A}}=2R\text{\ (\,$b\数式カンマスペース\text{B}\数式カンマスペース c\数式カンマスペース\text{C}$についても同様に成立)}\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \空行% \begin{tikzpicture}% \draw(0,1.25)coordinate(A)-- (1,-0.75)coordinate(C)-- (-1,-0.75)coordinate(B);% \draw pic[draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=B--A--C};% \draw(-1,0.75)coordinate(D);% \draw pic[draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=B--D--C};% \draw(0,1.25)--(1,-0.75)--(-1,-0.75)--cycle;% \draw(0,1.25)node[above]{A};% \draw(1,-0.75)node[below]{C};% \draw(-1,-0.75)node[left]{B};% \draw(-1,0.75)node[left]{D};% \draw(-1,0.75)--(1,-0.75)--(-1,-0.75)--cycle;% \draw [line width=0.2pt] (B) to [bend right=27] node [fill=white,midway] { $a$ }(C);% \draw(0,0)circle[radius=1.25];% \draw pic[draw,black,thin,angle radius=0.3cm] {right angle=D--B--C};% \draw(0,0)node[above]{O};% \draw(0,0)coordinate(O);% \fill[black](O)circle(0.03);% \end{tikzpicture}% \空行% 図において円周角の定理より,% \[\angle\mathrm{A}=\angle\mathrm{D}\]% なので,円Oの半径をRとして$\sin\text{A}=\sin\text{D}=\bunsuu{a}{2\text{R}}$より,% \[\bunsuu{a}{\sin\text{A}}=2\text{R}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\余弦定理}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {$\triangle{\text{ABC}}$において,$a^2=b^2+c^2-2bc\cos\text{A}$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% $\triangle{\text{ABC}}$において,% \[a^2=b^2+c^2-2bc\cos\text{A}\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \空行% \begin{tikzpicture}% \draw(0,0)--(2.5,0)--(1.5,2)--cycle;% \draw(0,0)node[below]{A};% \draw(1.5,2)node[above]{B};% \draw(2.5,0)node[below]{C};% \draw(1.5,0)node[below]{H};% \draw(0,0)coordinate(A);% \draw(1.5,0)coordinate(H);% \draw(1.5,2)coordinate(B);% \draw(1.5,0)--(1.5,2);% \draw pic[draw,black,thin,angle radius=0.3cm] {right angle=A--H--B};% \draw pic[draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=H--A--B};% \end{tikzpicture}% \空行% 図において$\text{BC}=a,\text{CA}=b,\text{AC}=c$として,% \[\text{BH}=c\sin\text{A},\quad\text{AH}=c\cos\text{A}\]% また,$\triangle{\text{BHC}}$に三平方の定理を用いることにより% \[\text{CB}^2=\text{BH}^2+\text{HC}^2\]% ここで,$\text{HC}=\text{AC}-\text{AH}=b-c\cos\text{A},\quad\text{BH}=c\sin\text{A}$より% \begin{align*}% a^2&=\Ttyuukakko{c\sin\text{A}}^2+\Ttyuukakko{b-c\cos\text{A}}^2&\\% &=c^2\sin^2\text{A}+b^2-2bc\cos\text{A}+c^2\cos^2\text{A}&\\% &=c^2\Ttyuukakko{1-\cos^2\text{A}}+b^2-2bc\cos\text{A}+c^2\cos^2\text{A}&\\% &=b^2+c^2-2bc\cos\text{A}% \end{align*}% よって,% \[a^2=b^2+c^2-2bc\cos\text{A}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\三角形の面積}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {$\triangle{\text{ABC}}$の面積を$S$として,$S=\bunsuu{1}{2}bc\sin\text{A}$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% $\triangle{\text{ABC}}$の面積を$S$として,% \[S=\bunsuu{1}{2}bc\sin\text{A}\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \begin{tikzpicture}% \draw(0,0)--(2.5,0)--(1.5,2)--cycle;% \draw(0,0)node[below]{A};% \draw(1.5,2)node[above]{B};% \draw(2.5,0)node[below]{C};% \draw(1.5,0)node[below]{H};% \draw(0,0)coordinate(A);% \draw(1.5,0)coordinate(H);% \draw(1.5,2)coordinate(B);% \draw(1.5,0)--(1.5,2);% \draw pic[draw,black,thin,angle radius=0.3cm] {right angle=A--H--B};% \draw pic[draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=H--A--B};% \end{tikzpicture}% \空行% 図において% \[\text{BC}=a\数式カンマスペース\text{CA}=B\数式カンマスペース\text{AC}=c\]% また,$\triangle{\text{ABC}}$の面積を$S$として$S=\bunsuu{1}{2}\text{AC}\times\text{BH}$と,$\text{AB}\sin\text{A}=\text{BH}$から,% \[S=\bunsuu{1}{2}bc\sin\text{A}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\場合の数と確率}{ m O{i} }% {% \ifthenelse{\equal{#1}{和集合の要素の個数}\AND\equal{#2}{i}}% {$n\Ttyuukakko{A\cup B}=n\Ttyuukakko{A}+n\Ttyuukakko{B}-n\Ttyuukakko{A\cap B}$}{\relax}% \ifthenelse{\equal{#1}{和集合の要素の個数}\AND\equal{#2}{b}}% {\[n\Ttyuukakko{A\cup B}=n\Ttyuukakko{A}+n\Ttyuukakko{B}-n\Ttyuukakko{A\cap B}\]}{\relax}% \ifthenelse{\equal{#1}{補集合の要素の個数}\AND\equal{#2}{i}}% {全体集合を$U$として,$n\Ttyuukakko{\overline{A}}=n\Ttyuukakko{U}-n\Ttyuukakko{A}$}{\relax}% \ifthenelse{\equal{#1}{補集合の要素の個数}\AND\equal{#2}{b}}% {全体集合を$U$として,\[n\Ttyuukakko{\overline{A}}=n\Ttyuukakko{U}-n\Ttyuukakko{A}\]}{\relax}% \ifthenelse{\equal{#1}{和の法則}\AND\equal{#2}{i}}% {二つの事象$\text{A}$\数式カンマスペース Bにたいして,Aの起こりかたが$a$通り,Bの起こりかたが$b$通りのとき,AまたはBの起こる場合の数は$a+b$通り}{\relax}% \ifthenelse{\equal{#1}{和の法則}\AND\equal{#2}{b}}% {二つの事象$\text{A}$\数式カンマスペース Bにたいして,Aの起こりかたが$a$通り,Bの起こりかたが$b$通りのとき,AまたはBの起こる場合の数は$a+b$通り}{\relax}% \ifthenelse{\equal{#1}{積の法則}\AND\equal{#2}{i}}% {二つの事象$\text{A}$\数式カンマスペース Bにたいして,Aの起こりかたが$a$通り,Bの起こりかたが$b$通りのとき,AかつBの起こる場合の数は$ab$通り}{\relax}% \ifthenelse{\equal{#1}{積の法則}\AND\equal{#2}{b}}% {二つの事象$\text{A}$\数式カンマスペース Bにたいして,Aの起こりかたが$a$通り,Bの起こりかたが$b$通りのとき,AかつBの起こる場合の数は$ab$通り}{\relax}% \ifthenelse{\equal{#1}{順列}\AND\equal{#2}{i}}% {異なる$n$個のものから$r$個選んで並べる場合の数は${}_{n}P_{r}=\bunsuu{n!}{\Ttyuukakko{n-r}!}$}{\relax}% \ifthenelse{\equal{#1}{順列}\AND\equal{#2}{b}}% {% 異なる$n$個のものから$r$個選んで並べる場合の数は% \[{}_{n}P_{r}=\bunsuu{n!}{\Ttyuukakko{n-r}!}\]% }% {\relax}% \ifthenelse{\equal{#1}{順列の証明}}% {% \証明開始% 異なる$n$個のものから$r$個選んで並べる場合の数は,% \[n\times\Ttyuukakko{n-1}\times\Ttyuukakko{n-2}\times\cdots\Ttyuukakko{n-r+1}=\bunsuu{n!}{\Ttyuukakko{n-r}!}\]% ここで,$\bunsuu{n!}{\Ttyuukakko{n-r}!}$を${}_{n} P_{r}$と表す。% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{円順列}\AND\equal{#2}{i}}% {異なる$n$個のものを円に並べる場合の数は$\Ttyuukakko{n-1}!$}{\relax}% \ifthenelse{\equal{#1}{円順列}\AND\equal{#2}{b}}% {異なる$n$個のものを円に並べる場合の数は\[\Ttyuukakko{n-1}!\]}{\relax}% \ifthenelse{\equal{#1}{円順列の証明}}% {% \証明開始% $n$個のものを円形に並べるとき,1つを固定して考えると,残り$n-1$個を並べる順列の個数に等しい。よって$\Ttyuukakko{n-1}!$通りとなる。% }% {\relax}% \ifthenelse{\equal{#1}{重複順列}\AND\equal{#2}{i}}% {$n$個から$r$個,重複を許して並べる場合の数は$n^r$}{\relax}% \ifthenelse{\equal{#1}{重複順列}\AND\equal{#2}{b}}% {$n$個から$r$個,重複を許して並べる場合の数は\[n^r\]}{\relax}% \ifthenelse{\equal{#1}{組み合わせ}\AND\equal{#2}{i}}% {異なる$n$個のものから$r$個選ぶ場合の数は,${}_{n}C_{r}=\bunsuu{n!}{r!\Ttyuukakko{n-r}!}$}{\relax}% \ifthenelse{\equal{#1}{組み合わせ}\AND\equal{#2}{b}}% {% 異なる$n$個のものから$r$個選ぶ場合の数は,% \[{}_{n}C_{r}=\bunsuu{n!}{r!\Ttyuukakko{n-r}!}\]% }% {\relax}% \ifthenelse{\equal{#1}{組み合わせの証明}}% {% \証明開始% 異なる$n$個のものから$r$個選ぶ場合の数は,順列を重複度で割ったものなので% \[\bunsuu{{}_{n} P_{r}}{r!}=\bunsuu{n!}{r!\Ttyuukakko{n-r}!}\]% ここで,$\bunsuu{n!}{r!\Ttyuukakko{n-r}!}$を${}_{n}C_{r}$と表す。 \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{同じものを含む順列}\AND\equal{#2}{i}}% {$a$が$p$個,$b$が$q$個,$c$が$r$個,とあるとき,それら全部を並べる場合の数は,$\bunsuu{n!}{p!q!r!}$(ただし,$p+q+r=n$)}{\relax}% \ifthenelse{\equal{#1}{同じものを含む順列}\AND\equal{#2}{b}}% {% $a$が$p$個,$b$が$q$個,$c$が$r$個,とあるとき,それら全部を並べる場合の数は,% \[\bunsuu{n!}{p!q!r!}\text{\ (ただし,$p+q+r=n$)}\]% }% {\relax}% \ifthenelse{\equal{#1}{同じものを含む順列の証明}}% {% \証明開始% $n$個のものを並べる場合の数は$n!$通りだが,$n$個の中に同じものが含まれているので,重複度で割ることで$\bunsuu{n!}{p!q!r!}$を得る。% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{確率の定義}\AND\equal{#2}{i}}% {全事象$\text{U}$のどの根元事象も同様に確からしいとき,事象$\text{A}$の起こる確率は,$P\Ttyuukakko{A}=\bunsuu{n\Ttyuukakko{A}}{n\Ttyuukakko{U}}$}{\relax}% \ifthenelse{\equal{#1}{確率の定義}\AND\equal{#2}{b}}% {% 全事象$\text{U}$のどの根元事象も同様に確からしいとき,事象$\text{A}$の起こる確率は,% \[P\Ttyuukakko{A}=\bunsuu{n\Ttyuukakko{A}}{n\Ttyuukakko{U}}\]% }% {\relax}% \ifthenelse{\equal{#1}{排反の定義}\AND\equal{#2}{i}}% {事象$\text{A}$\数式カンマスペース$\text{B}$が同時に起こりえないとき,AとBは互いに排反であるという。}{\relax}% \ifthenelse{\equal{#1}{排反の定義}\AND\equal{#2}{b}}% {事象$\text{A}$\数式カンマスペース$\text{B}$が同時に起こりえないとき,AとBは互いに排反であるという。}{\relax}% \ifthenelse{\equal{#1}{確率の性質A}\AND\equal{#2}{i}}% {任意の事象$\text{A}$に対して,$0\leqq A\leqq1$}{\relax}% \ifthenelse{\equal{#1}{確率の性質A}\AND\equal{#2}{b}}% {% 任意の事象$\text{A}$に対して,% \[0\leqq A\leqq1\]% }% {\relax}% \ifthenelse{\equal{#1}{確率の性質B}\AND\equal{#2}{i}}% {全事象$\text{U}$の確率$P\Ttyuukakko{U}=1$}{\relax}% \ifthenelse{\equal{#1}{確率の性質B}\AND\equal{#2}{b}}% {% 全事象$\text{U}$の確率% \[P\Ttyuukakko{U}=1\]% }% {\relax}% \ifthenelse{\equal{#1}{和事象の確率}\AND\equal{#2}{i}}% {$P\Ttyuukakko{A\cup B}=P\Ttyuukakko{A}+P\Ttyuukakko{B}-P\Ttyuukakko{A\cap B}$}{\relax}% \ifthenelse{\equal{#1}{和事象の確率}\AND\equal{#2}{b}}% {\[P\Ttyuukakko{A\cup B}=P\Ttyuukakko{A}+P\Ttyuukakko{B}-P\Ttyuukakko{A\cap B}\]}{\relax}% \ifthenelse{\equal{#1}{余事象の確率}\AND\equal{#2}{i}}% {$P\Ttyuukakko{\overline{A}}=1-P\Ttyuukakko{A}$}{\relax}% \ifthenelse{\equal{#1}{余事象の確率}\AND\equal{#2}{b}}% {\[P\Ttyuukakko{\overline{A}}=1-P\Ttyuukakko{A}\]}{\relax}% \ifthenelse{\equal{#1}{独立な事象の確率}\AND\equal{#2}{i}}% {事象$\text{A}$とBが独立のとき,事象$\text{A}$が起こりかつ事象$\text{B}$が起こる確率$p$は,$p=P\Ttyuukakko{A}P\Ttyuukakko{B}$}{\relax}% \ifthenelse{\equal{#1}{独立な事象の確率}\AND\equal{#2}{b}}% {% 事象$\text{A}$とBが独立のとき,事象$\text{A}$が起こりかつ事象$\text{B}$が起こる確率$p$は,% \[p=P\Ttyuukakko{A}P\Ttyuukakko{B}\]% }% {\relax}% \ifthenelse{\equal{#1}{反復試行の確率}\AND\equal{#2}{i}}% {一回の試行で事象$\text{A}$の起こる確率を$p$として,この試行を$n$回行う反復試行でAが$r$回起こる確率は,${}_{n}C_{r}\Ttyuukakko{p}^r\Ttyuukakko{1-p}^{n-r}$}{\relax}% \ifthenelse{\equal{#1}{反復試行の確率}\AND\equal{#2}{b}}% {% 一回の試行で事象$\text{A}$の起こる確率を$p$として,この試行を$n$回行う反復試行でAが$r$回起こる確率は,% \[{}_{n}C_{r}\Ttyuukakko{p}^r\Ttyuukakko{1-p}^{n-r}\]% }% {\relax}% \ifthenelse{\equal{#1}{反復試行の確率の証明}}% {% \証明開始% $n$回の試行のうち事象$\text{A}$が$r$回起こる順番の場合の数は${}_{n} C_{r}$通り。さらに,Aが起こる確率は$p$で$r$回起こり,Aの余事象が起こる確率は$p-1$で$n-r$回起こるので,% \[{}_{n}C_{r}\Ttyuukakko{p}^r\Ttyuukakko{1-p}^{n-r}\]% となる。 \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{条件付き確率}\AND\equal{#2}{i}}% {事象$\text{A}$が起こったときの事象$\text{B}$の起こる確率は,$P_{A}\Ttyuukakko{B}=\bunsuu{P\Ttyuukakko{A\cap B}}{P\Ttyuukakko{A}}$}{\relax}% \ifthenelse{\equal{#1}{条件付き確率}\AND\equal{#2}{b}}% {% 事象$\text{A}$が起こったときの事象$\text{B}$の起こる確率は,% \[P_{A}\Ttyuukakko{B}=\bunsuu{P\Ttyuukakko{A\cap B}}{P\Ttyuukakko{A}}\]% }% {\relax}% }% \newcommand{\図形の性質}[1]% {% \ifthenelse{\equal{#1}{内心}}% {% \begin{tikzpicture}% \draw(-2.4,0.2)--(0,2)--(0,-3)--cycle;% \draw(-1,0)circle[radius=1];% \draw(-2.4,0.2)node[left]{A};% \draw(0,2)node[above]{B};% \draw(0,-3)node[below]{C};% \draw(-1,0)node[below]{O};% \end{tikzpicture}% \空行% 図においてOが内心% }% {\relax}% \ifthenelse{\equal{#1}{外心}}% {% \begin{tikzpicture}% \draw(-2,0)--(1.6,1.2)--(1.2,-1.6)--cycle;% \draw(0,0)circle[radius=2];% \draw(0,0)node[below]{O};% \draw(-2,0)node[left]{A};% \draw(1.6,1.2)node[right]{B};% \draw(1.2,-1.6)node[below]{C};% \end{tikzpicture}% \空行% 図においてOが外心% }% {\relax}% \ifthenelse{\equal{#1}{垂心}}% {% \begin{tikzpicture}% \draw(0,0)--(3,0)--(2,3)--cycle;% \draw(0,0)--(2.7,0.9);% \draw(2,3)--(2,0);% \draw(3,0)--(0.92,1.4);% \draw(0,0)node[below]{A};% \draw(3,0)node[below]{C};% \draw(2,3)node[above]{B};% \draw(2.7,0.9)node[right]{P};% \draw(2,0)node[below]{Q};% \draw(0.92309,1.46154)node[left]{R};% \draw(2,1)node[right]{H};% \end{tikzpicture}% \空行% 図においてHが垂心% }% {\relax}% \ifthenelse{\equal{#1}{重心}}% {% \begin{tikzpicture}% \draw(0,0)--(3,0)--(2,3)--cycle;% \draw(0,0)--(2.5,1.5);% \draw(3,0)--(1,1.5);% \draw(2,3)--(1.5,0);% \draw(0,0)node[below]{A};% \draw(3,0)node[below]{B};% \draw(2,3)node[above]{C};% \draw(1.5,0)node[below]{D};% \draw(2.5,1.5)node[right]{E};% \draw(1,1.5)node[left]{F};% \draw(1.75,1)node[right]{G};% \end{tikzpicture}% \空行% 図においてGが重心% }% {\relax}% \ifthenelse{\equal{#1}{傍心}}% {% \begin{tikzpicture} \draw(-0.4,2.8)--(-1,2)--(0.666666,2)--cycle;% \draw(-0.4,2.8)node[above]{A};% \draw(-1,2)node[left]{B};% \draw(0.666666,2)node[right]{C};% \draw(-0.4,2.8)--(-2.8,-0.4);% \draw(-2.8,-0.4)node[below]{H};% \draw(-0.4,2.8)--(2.8,0.4);% \draw(2.8,0.4)node[right]{G};% \draw(-0.4,2.8)--(0,0);% \draw(0,0)node[below]{I};% \draw(-1,2)--(0,0);% \draw(0.666666,2)--(0,0);% \draw(0,2)node[above]{D};% \draw(-1.6,1.2)node[left]{E};% \draw(1.2,1.6)node[right]{F};% \draw(0,0)circle[radius=2];% \end{tikzpicture}% \空行% 図においてIが傍心% }% {\relax}% \ifthenelse{\equal{#1}{チェバの定理}}% {% \begin{tikzpicture} \draw(2,3)--(0,0)--(3,0)--cycle;% \draw(2,3)node[above]{A};% \draw(2,3)--(1.5,0);% \draw(0,0)node[below]{B};% \draw(0,0)--(2.75,0.75);% \draw(3,0)node[below]{C};% \draw(3,0)--(0.5,0.75);% \draw(1.5,0)node[below]{P};% \draw(2.75,0.75)node[right]{Q};% \draw(0.5,0.75)node[left]{R};% \draw(1.62,0.8)node[right]{O};% \end{tikzpicture} \空行% $\bunsuu{\text{BP}}{\text{PC}}\cdot\bunsuu{\text{CQ}}{\text{QA}}\cdot\bunsuu{\text{AR}}{\text{RB}}=1$% }% {\relax}% \ifthenelse{\equal{#1}{チェバの定理の証明}}% {% \証明開始% \begin{tikzpicture}% \draw(2,3)--(0,0)--(3,0)--cycle;% \draw(2,3)node[above]{A};% \draw(2,3)--(1.5,0);% \draw(0,0)node[below]{B};% \draw(0,0)--(2.75,0.75);% \draw(3,0)node[below]{C};% \draw(3,0)--(0.5,0.75);% \draw(1.5,0)node[below]{P};% \draw(2.75,0.75)node[right]{Q};% \draw(0.5,0.75)node[left]{R};% \draw(1.62,0.8)node[right]{O};% \end{tikzpicture}% \空行% 図において三角形の面積比を考えると,% \[\bigtriangleup{ABO}:\bigtriangleup{ACO}=\mathrm{BP}:\mathrm{CP}\]% \[\Leftrightarrow\bunsuu{\bigtriangleup{ABO}}{\bigtriangleup{ACO}}=\bunsuu{BP}{PC}\]% 同様にして,% \[\bunsuu{\bigtriangleup{BCO}}{\bigtriangleup{BAO}}=\bunsuu{CQ}{QA}\]% \[\bunsuu{\bigtriangleup{CAO}}{\bigtriangleup{CBO}}=\bunsuu{AR}{RB}\]% ここで,% \[\bunsuu{\bigtriangleup{ABO}}{\bigtriangleup{ACO}}\cdot\bunsuu{\bigtriangleup{BCO}}{\bigtriangleup{BAO}}\cdot\bunsuu{\bigtriangleup{CAO}}{\bigtriangleup{CBO}}=1\]% \[\Leftrightarrow\bunsuu{\text{BP}}{\text{PC}}\cdot\bunsuu{\text{CQ}}{\text{QA}}\cdot\bunsuu{\text{AR}}{\text{RB}}=1\]% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{メネラウスの定理}}% {% \begin{tikzpicture}% \draw(2,3)--(0,0)--(3,0)--cycle;% \draw(2,3)node[above]{A};% \draw(0,0)node[below]{B};% \draw(3,0)node[right]{C};% \draw(3,0)--(3.11111,-0.33333);% \draw(2.25,0)node[below]{P};% \draw(3.11111,-0.33333)node[below]{Q};% \draw(3.11111,-0.33333)--(0.5,0.75);% \draw(0.5,0.75)node[left]{R};% \end{tikzpicture}% \空行% $\bunsuu{\text{BP}}{\text{PC}}\cdot\bunsuu{\text{CQ}}{\text{QA}}\cdot\bunsuu{\text{AR}}{\text{RB}}=1$% }% {\relax}% \ifthenelse{\equal{#1}{メネラウスの定理の証明}}% {% \証明開始% \begin{tikzpicture}% \draw(2,3)--(0,0)--(3,0)--cycle;% \draw(2,3)node[above]{A};% \draw(0,0)node[below]{B};% \draw(3,0)node[right]{C};% \draw(3,0)--(3.11111,-0.33333);% \draw(2.25,0)node[below]{P};% \draw(3.11111,-0.33333)node[below]{Q};% \draw(3.11111,-0.33333)--(0.5,0.75);% \draw(0.5,0.75)node[left]{R};% \draw(0.65,0.975)node[above left]{S};% \draw(0.65,0.975)--(3,0);% \end{tikzpicture}% \空行% $\text{SC}/ \!/ \text{RP}$より,% \[\text{RA}:\text{SR}=\text{QA}:\text{CQ},\text{BR}:\text{RS}=\text{BP}:\text{PC}\]% \[\Leftrightarrow\bunsuu{\text{CQ}}{\text{QA}}=\bunsuu{\text{SR}}{\text{AR}},\bunsuu{\text{BP}}{\text{PC}}=\bunsuu{\text{BR}}{\text{RS}}\]% \[\bunsuu{\text{BP}}{\text{PC}}\cdot\bunsuu{\text{CQ}}{\text{QA}}\cdot\bunsuu{\text{AR}}{\text{RB}}=\bunsuu{\text{BR}}{\text{RS}}\cdot\bunsuu{\text{SR}}{\text{AR}} \cdot\bunsuu{\text{AR}}{\text{RB}}=1\]% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{円周角の定理}}% {% \begin{tikzpicture}% \draw(-1.6,-1.2)--(1.2,-1.6)--(1.2,1.6)--cycle;% \draw(-1.6,-1.2)--(1.2,-1.6)--(-2,0)--cycle;% \draw(-1.6,-1.2)node[left]{A};% \draw(1.2,-1.6)node[right]{B};% \draw(1.2,1.6)node[above]{P};% \draw(-2,0)node[left]{Q};% \draw(0,0)circle[radius=2];% \end{tikzpicture}% \空行% $\angle\mathrm{APB}=\angle\mathrm{AQB}$% }% {\relax}% \ifthenelse{\equal{#1}{円周角の定理の証明}}% {% \証明開始% \begin{tikzpicture}%% \draw(-1.6,-1.2)--(1.2,-1.6)--(1.2,1.6)--cycle;% \draw(-1.6,-1.2)--(1.2,-1.6)--(0,0)--cycle;% \draw(-1.6,-1.2)node[left]{A};% \draw(1.2,-1.6)node[right]{B};% \draw(1.2,1.6)node[above]{P};% \draw(0,0)node[right]{O};% \draw[dashed](-1.2,-1.6)--(1.2,1.6);% \draw(-0.6,-1.4)node[above]{D};% \draw(0,0)circle[radius=2];% \end{tikzpicture}% \空行% $\triangle{\text{AOP}}$\数式カンマスペース$\triangle{\text{BOP}}$は二等辺三角形なので,% \[\angle\mathrm{APO}=\angle\mathrm{OAP}\数式カンマスペース\angle\mathrm{BPO}=\angle\mathrm{OBP}\]% 外角定理より,% \[\angle\mathrm{AOD}=2\angle\mathrm{APO}\数式カンマスペース\angle\mathrm{BOD}=2\angle\mathrm{BPO}\]% \[\Leftrightarrow\angle\mathrm{AOB}=2\angle\mathrm{APB}\]% \空行% \begin{tikzpicture}% \draw(-1.6,-1.2)--(1.6,-1.2)--(1.6,1.2)--cycle;% \draw(-1.6,-1.2)--(1.6,-1.2)--(0,0)--cycle;% \draw(-1.6,-1.2)node[left]{A};% \draw(1.6,-1.2)node[right]{B};% \draw(1.6,1.2)node[above]{P};% \draw(0,0)node[above]{O};% \draw(0,0)circle[radius=2];% \end{tikzpicture}% \空行% $\triangle{\text{OPB}}$は二等辺三角形なので,% \[\angle\mathrm{OPB}=\angle\mathrm{OBP}\]% 外角定理より% \[\angle\mathrm{AOB}=2\angle\mathrm{OPB}\]% \空行% \begin{tikzpicture}% \draw(-1.6,-1.2)--(1.2,-1.6)--(0,0)--cycle;% \draw(-1.6,-1.2)--(1.2,-1.6)--(-2,0)--cycle;% \draw[dashed](-2,0)--(2,0);% \draw(-1.6,-1.2)node[left]{A};% \draw(1.2,-1.6)node[right]{B};% \draw(0,0)node[above]{O};% \draw(2,0)node[right]{D};% \draw(-2,0)node[left]{Q};% \draw(0,0)circle[radius=2];% \end{tikzpicture}% \空行% $\triangle{\text{QOA}}\数式カンマスペース\triangle{\text{OQB}}$は二等辺三角形なので,% \[\angle\mathrm{OQA}=\angle\mathrm{OAQ}\数式カンマスペース\angle\mathrm{OQB}=\angle\mathrm{OBQ}\]% 外角定理より,% \[\angle\mathrm{OQA}+\angle\mathrm{OAQ}=\angle\mathrm{DOA}\数式カンマスペース\angle\mathrm{OQB}+\angle\mathrm{OBQ}=\angle\mathrm{DOB}\]% \[\Leftrightarrow\angle\mathrm{DOA}-\angle\mathrm{DOB}=2\Ttyuukakko{\angle\mathrm{OQA}-\angle\mathrm{BQO}}\]% \[\Leftrightarrow\angle\mathrm{AOB}=2\angle\mathrm{AQB}\]% 従って,円に内接する三角形について,円周角の$2$倍が中心角である。% \空行% \begin{tikzpicture}% \draw(-1.6,-1.2)--(1.2,-1.6)--(1.2,1.6)--cycle;% \draw(-1.6,-1.2)--(1.2,-1.6)--(-2,0)--cycle;% \draw(0,0)--(-1.6,-1.2)--(1.2,-1.6)--cycle;% \draw(-1.6,-1.2)node[left]{A};% \draw(1.2,-1.6)node[right]{B};% \draw(1.2,1.6)node[above]{P};% \draw(-2,0)node[left]{Q};% \draw(0,0)node[above]{O};% \draw(0,0)circle[radius=2];% \end{tikzpicture}% \[\angle\mathrm{APB}=2\angle\mathrm{AOB},\angle\mathrm{AQB}=2\angle\mathrm{AOB}\]% \[\Leftrightarrow\angle\mathrm{AQB}=\angle\mathrm{APB}\]が成立。 \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{内接四角形の定理}}% {% \begin{tikzpicture}% \draw(-1.6,-1.2)--(1.6,-1.2)--(1.2,1.6)--(0,2);% \draw(-1.6,-1.2)--(0,2);% \draw(-1.6,-1.2)--(3,-1.2);% \draw(-1.6,-1.2)node[left]{A};% \draw(1.6,-1.2)node[below]{B};% \draw(1.2,1.6)node[above]{C};% \draw(0,2)node[above]{D};% \draw(3,-1.2)node[below]{T};% \draw(0,0)circle[radius=2];% \end{tikzpicture}% \空行% $\angle\mathrm{ADC}=\angle\mathrm{CBT}$% }% {\relax}% \ifthenelse{\equal{#1}{内接四角形の定理の証明}}% {% \証明開始% \begin{tikzpicture}% \draw(-1.6,-1.2)--(1.6,-1.2)--(1.2,1.6)--(0,2);% \draw(-1.6,-1.2)--(0,2);% \draw(-1.6,-1.2)--(3,-1.2);% \draw(-1.6,-1.2)node[left]{A};% \draw(1.6,-1.2)node[below]{B};% \draw(1.2,1.6)node[above]{C};% \draw(0,2)node[above]{D};% \draw(3,-1.2)node[below]{T};% \draw(0,0)circle[radius=2];% \draw(-1.6,-1.2)--(0,0);% \draw(1.2,1.6)--(0,0);% \draw(0,0)coordinate(O);% \fill[black](O)circle(0.03);% \end{tikzpicture}% \空行% \[\angle\mathrm{AOC}=2\angle\mathrm{ABC}\]% \[\angle\mathrm{AOC}=2\angle\mathrm{ADC}\]% ここで,$\angle\mathrm{ABC}+\angle\mathrm{ADC}=180^\circ$% \[\Leftrightarrow\angle\mathrm{AOC}+\angle\mathrm{AOC}=180^\circ\]% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{接弦定理}}% {% \begin{tikzpicture}% \draw(0,-2)--(2,0)--(-1.2,1.6)--cycle;% \draw(0,-2)node[below]{A};% \draw(2,0)node[right]{B};% \draw(-1.2,1.6)node[above]{C};% \draw(3,-2)--(-3,-2);% \draw(3,-2)node[below]{T};% \draw(-3,-2)node[below]{S};% \draw(0,0)circle[radius=2];% \end{tikzpicture} \空行% $\angle\mathrm{BAT}=\angle\mathrm{ACB}$% }% {\relax}% \ifthenelse{\equal{#1}{接弦定理の証明}}% {% \証明開始% \vspace{-1\zw}% \begin{enumerate}% \item 鋭角のとき% \空行% \begin{tikzpicture}% \draw(0,-2)--(2,0)--(-1.2,1.6)--cycle;% \draw[dashed](0,-2)--(2,0)--(0,2)--cycle;% \draw(0,-2)node[below]{A};% \draw(2,0)node[right]{B};% \draw(-1.2,1.6)node[above]{C};% \draw(3,-2)--(-3,-2);% \draw(3,-2)node[below]{T};% \draw(-3,-2)node[below]{S};% \draw(0,2)node[above]{E};% \draw(0,0)circle[radius=2];% \draw(0,2)coordinate(E);% \draw(2,0)coordinate(B);% \draw(0,-2)coordinate(A);% \draw pic[draw,black,thin,angle radius=0.3cm] {right angle=E--B--A};% \end{tikzpicture}% \空行% $\triangle{\text{ACB}}$と$\triangle{\text{ABE}}$について円周角の定理より,% \[\angle\mathrm{ACB}=\angle\mathrm{AEB}\]% ここで,$\triangle{\text{ABE}}$について% \[\angle\mathrm{BEA}+\angle\mathrm{BAE}=90^\circ\]% また,ATが円の接線なので$\angle\mathrm{BAE}+\angle\mathrm{BAT}=90^\circ$から,% \[\angle\mathrm{BAT}=\angle\mathrm{AEB}\]% \[\Leftrightarrow\angle\mathrm{ACB}=\angle\mathrm{BAT}\]% \空行% \item 直角のとき% \空行 \begin{tikzpicture}% \draw(0,-2)--(2,0)--(0,2)--cycle;% \draw(0,-2)node[below]{A};% \draw(2,0)node[right]{B};% \draw(3,-2)--(-3,-2);% \draw(3,-2)node[below]{T};% \draw(-3,-2)node[below]{S};% \draw(0,2)node[above]{E};% \draw(0,0)circle[radius=2];% \draw(0,2)coordinate(E);% \draw(2,0)coordinate(B);% \draw(0,-2)coordinate(A);% \draw pic[draw,black,thin,angle radius=0.3cm] {right angle=E--B--A};% \end{tikzpicture}% \空行% ATが円の接線なので,% \[\angle\mathrm{EAS}=90^\circ\]% \[\Leftrightarrow\angle\mathrm{EBA}=\angle\mathrm{EAS}\]% \空行% \item 鈍角のとき% \空行% \begin{tikzpicture}% \draw(0,-2)--(-2,0)--(-1.2,1.6)--cycle; \draw(0,-2)node[below]{A};% \draw(-2,0)node[left]{B};% \draw(-1.2,1.6)node[above]{C};% \draw(3,-2)--(-3,-2);% \draw(3,-2)node[below]{T};% \draw(-3,-2)node[below]{S};% \draw(0,0)circle[radius=2];% \end{tikzpicture}% \空行% 鋭角のときの接弦定理より,% \[\angle\mathrm{BCA}=\angle\mathrm{BAS}\]% また,$\triangle{\text{ABC}}$において% \[\angle\mathrm{ABC}=\angle\mathrm{ACB}+\angle\mathrm{BAC}\]% \[\Leftrightarrow\angle\mathrm{ABC}=\angle\mathrm{CAT}\]% \空行% \end{enumerate}% 従って円に内接する三角形について成り立つことが証明された。% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{内角と外角の二等分線}}% {% \begin{tikzpicture}% \draw(5.3,0.8)--(0,0)--(4.8,0)--cycle;% \draw(5.3,0.8)--(0,0)--(4,0)--cycle;% \draw(5.3,0.8)--(0,0)--(6,0)--cycle;% \draw(5.3,0.8)node[above]{A};% \draw(0,0)--(6.3,0.950943395);% \draw(0,0)node[below]{B};% \draw(4.8,0)node[below]{C};% \draw(4,0)node[below]{P};% \draw(6,0)node[below]{Q};% \draw(6.3,0.950943395)node[above]{R};% \end{tikzpicture}% \空行% $\angle\mathrm{BAP}=\angle\mathrm{PAC},\angle\mathrm{CAQ}=\angle\mathrm{QAR}$のとき,\par% $\text{BP}:\text{PC}=\text{BQ}:\text{QC}=\text{AB}:\text{AC}$% }% {\relax}% \ifthenelse{\equal{#1}{方べきの定理A}}% {% \begin{tikzpicture}% \draw(0,2)--(1.6,-1.2);% \draw(0,2)node[above]{A};% \draw(1.6,-1.2)node[below]{B};% \draw(-1.6,-1.2)--(1.2,1.6);% \draw(-1.6,-1.2)node[below]{C};% \draw(1.2,1.6)node[above]{D};% \draw(0.7,0.9)node[right]{P};% \draw(0,0)circle[radius=2];% \draw(0,0)node[below]{O};% \end{tikzpicture}% \空行% $\text{PA}\cdot\text{PB}=\text{PC}\cdot\text{PD}$% }% {\relax}% \ifthenelse{\equal{#1}{方べきの定理Aの証明}}% {% \証明開始% \begin{tikzpicture}% \draw(0,2)--(1.6,-1.2);% \draw(0,2)node[above]{A};% \draw(1.6,-1.2)node[below]{B};% \draw(-1.6,-1.2)--(1.2,1.6);% \draw(-1.6,-1.2)node[below]{C};% \draw(1.2,1.6)node[above]{D};% \draw(0.7,0.9)node[right]{P};% \draw(0,0)circle[radius=2];% \draw(0,0)node[below]{O};% \end{tikzpicture}% \空行% 円周角の定理より,% \[\angle\mathrm{CAP}=\angle\mathrm{BDP},\quad\angle\mathrm{ACP}=\angle\mathrm{DBP}\]% $\triangle{\text{ACP}}$と$\triangle{\text{DBP}}$は相似なので,% \[\text{PA}\cdot\text{PB}=\text{PC}\cdot\text{PD}\]% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{方べきの定理B}}% {% \begin{tikzpicture}% \draw(-1.2,-1.6)node[below]{A};% \draw(1.2,-1.6)--(-3.6,-1.6);% \draw(1.2,-1.6)node[below]{B};% \draw(-2,0)node[left]{C};% \draw(0,2)--(-3.6,-1.6);% \draw(0,2)node[above]{D};% \draw(-3.6,-1.6)node[below]{P};% \draw(0,0)circle[radius=2];% \end{tikzpicture}% \空行% $\text{PA}\cdot\text{PB}=\text{PC}\cdot\text{PD}$% }% {\relax}% \ifthenelse{\equal{#1}{方べきの定理Bの証明}}% {% \証明開始% \begin{tikzpicture}% \draw(-1.2,-1.6)node[below]{A};% \draw(1.2,-1.6)--(-3.6,-1.6);% \draw(1.2,-1.6)node[below]{B};% \draw(-2,0)node[left]{C};% \draw(0,2)--(-3.6,-1.6);% \draw(0,2)node[above]{D};% \draw(-3.6,-1.6)node[below]{P};% \draw(0,0)circle[radius=2];% \draw(-1.2,-1.6)--(-2,0);% \end{tikzpicture}% \空行% 内接四角形の証明より,% \[\angle\mathrm{CDB}=\angle\mathrm{CAP}\数式カンマスペース\angle\mathrm{DBA}=\angle\mathrm{PCA}\]% $\triangle{\text{ACP}}$と$\triangle{\text{DPB}}$は相似なので,% \[\text{PA}\cdot\text{PB}=\text{PC}\cdot\text{PD}\]% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{方べきの定理C}}% {% \begin{tikzpicture}% \draw(-1.6,-1.2)node[below]{A};% \draw(1.6,-1.2)--(-4.93,-1.2);% \draw(1.6,-1.2)node[right]{B};% \draw(-1.2,1.6)--(-4.93,-1.2);% \draw(-1.2,1.6)node[above]{T};% \draw(-4.93,-1.2)node[below]{P};% \draw(0,0)circle[radius=2];% \end{tikzpicture}% \空行% $\text{PA}\cdot\text{PB}=\text{PT}^2$% }% {\relax}% \ifthenelse{\equal{#1}{方べきの定理Cの証明}}% {% \証明開始% \begin{tikzpicture}% \draw(-1.6,-1.2)node[below]{A};% \draw(1.6,-1.2)--(-4.93,-1.2);% \draw(1.6,-1.2)node[right]{B};% \draw(-1.2,1.6)--(-4.93,-1.2);% \draw(-1.2,1.6)node[above]{T};% \draw(-4.93,-1.2)node[below]{P};% \draw(0,0)circle[radius=2];% \draw(-1.6,-1.2)--(-1.2,1.6);% \draw(-1.2,1.6)--(1.6,-1.2);% \end{tikzpicture}% \空行% 接弦定理より,% \[\angle\mathrm{TBA}=\angle\mathrm{PTA}\]% これと,$\angle\mathrm{P}$共通なので$\triangle{\text{PTA}}$と$\triangle{\text{PBT}}$は相似より,% \[\text{PA}\cdot\text{PB}=\text{PT}^2\]% \証明終了% }% {\relax}% }% %%%%%%%%%%%%%%%%%%%%ここから数\UTF{2161}B%%%%%%%%%%%%%%%%%%%% \NewDocumentCommand{\三次式展開}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\Ttyuukakko{a+b}^{3}=a^{3}+3a^2b+3ab^2+b^{3}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\Ttyuukakko{a+b}^{3}=a^{3}+3a^2b+3ab^2+b^{3}\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\Ttyuukakko{a-b}^{3}=a^{3}-3a^2b+3ab^2-b^{3}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\Ttyuukakko{a-b}^{3}=a^{3}-3a^2b+3ab^2-b^{3}\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\Ttyuukakko{a+b}\Ttyuukakko{a^2-ab+b^2}=a^{3}+b^{3}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\Ttyuukakko{a+b}\Ttyuukakko{a^2-ab+b^2}=a^{3}+b^{3}\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$\Ttyuukakko{a-b}\Ttyuukakko{a^2+ab+b^2}=a^{3}-b^{3}$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {\[\Ttyuukakko{a-b}\Ttyuukakko{a^2+ab+b^2}=a^{3}-b^{3}\]}{\relax}% }% \NewDocumentCommand{\三次式因数分解}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$a^{3}+b^{3}=\Ttyuukakko{a+b}\Ttyuukakko{a^2-ab+b^2}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[a^{3}+b^{3}=\Ttyuukakko{a+b}\Ttyuukakko{a^2-ab+b^2}\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$a^{3}-b^{3}=\Ttyuukakko{a-b}\Ttyuukakko{a^2+ab+b^2}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[a^{3}-b^{3}=\Ttyuukakko{a-b}\Ttyuukakko{a^2+ab+b^2}\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$a^{3}+3a^2b+3ab^2+b^{3}=\Ttyuukakko{a+b}^{3}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[a^{3}+3a^2b+3ab^2+b^{3}=\Ttyuukakko{a+b}^{3}\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$a^{3}-3a^2b+3ab^2-b^{3}=\Ttyuukakko{a-b}^{3}$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {\[a^{3}-3a^2b+3ab^2-b^{3}=\Ttyuukakko{a-b}^{3}\]}{\relax}% }% \NewDocumentCommand{\二項定理}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {$\Ttyuukakko{a+b}^{n}={}_{n}C_{0} a^{n}+{}_{n}C_{1} a^{n-1}b+{}_{n}C_{2} a^{n-2}b^2+....{}_{n}C_{n-1} ab^{n-1}+{}_{n}C_{n} b^{n}$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {\[\Ttyuukakko{a+b}^{n}={}_{n}C_{0} a^{n}+{}_{n}C_{1} a^{n-1}b+{}_{n}C_{2} a^{n-2}b^2+....{}_{n}C_{n-1} ab^{n-1}+{}_{n}C_{n} b^{n}\]}{\relax}% \ifthenelse{\equal{#1}{一般項}\AND\equal{#2}{i}}% {${}_{n}C_{r}a^{n-r}b^{r}$}{\relax}% \ifthenelse{\equal{#1}{一般項}\AND\equal{#2}{b}}% {\[{}_{n}C_{r}a^{n-r}b^{r}\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% $\Ttyuukakko{a+b}^{n}$を展開すると,$a^{r}b^{n-r}$の項の係数は$n$個の$a$から$r$個$a$を選ぶ場合の数に等しいので係数は${}_{n} C_{r}$よって,一般項は% \[{}_{n}C_{r}a^{n-r}b^{r}\]% この$r$に$1$から順番に自然数を代入したものが二項定理となる。% \証明終了% }% {\relax}% }% \NewDocumentCommand{\分数式}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\bunsuu{A}{B}\times\bunsuu{C}{D}=\bunsuu{AC}{BD}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\bunsuu{A}{B}\times\bunsuu{C}{D}=\bunsuu{AC}{BD}\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\bunsuu{A}{B}\div \bunsuu{C}{D}=\bunsuu{AD}{BC}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\bunsuu{A}{B}\div \bunsuu{C}{D}=\bunsuu{AD}{BC}\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\bunsuu{A}{C}+\bunsuu{B}{C}=\bunsuu{A+B}{C}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\bunsuu{A}{C}+\bunsuu{B}{C}=\bunsuu{A+B}{C}\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$\bunsuu{A}{C}-\bunsuu{B}{C}=\bunsuu{A-B}{C}$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {\[\bunsuu{A}{C}-\bunsuu{B}{C}=\bunsuu{A-B}{C}\]}{\relax}% }% \NewDocumentCommand{\相加相乗平均}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {$a>0\数式カンマスペース b>0$のとき,$\bunsuu{a+b}{2}\geqq\根号{ab}$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース b>0$のとき,% \[\bunsuu{a+b}{2}\geqq\根号{ab}\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% $a+b-2\根号{ab}\geqq0$を示す。% \[a+b-2\根号{ab}=\Ttyuukakko{\根号{a}-\根号{b}}^2\]% より,$\根号{a}-\根号{b}$は実数なので,% \[\Ttyuukakko{\根号{a}-\根号{b}}^2\geqq0\]% よって,$a>0\数式カンマスペース b>0$のとき,% \[\bunsuu{a+b}{2}\geqq\根号{ab}\text{\ (等号成立条件は$a=b$)}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\虚数の定義}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {$i=\根号{-1}$}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {\[i=\根号{-1}\]}{\relax}% }% \NewDocumentCommand{\複素数の定義}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {実数$a\数式カンマスペース b$を用いて,$a+bi$}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {% 実数$a\数式カンマスペース b$を用いて,% \[a+bi\]% }% {\relax}% }% \newcommand{\二次方程式の解の判別}% {% $ax^2+bx+c=0\数式カンマスペース\Ttyuukakko{a\neq0}$の判別式を$D=b^2-4ac$とすると,% \phrases@math[l]% {% $D>0$のとき,異なる二つの実数解\\% $D=0$のとき,重解\\% $D<0$のとき,異なる二つの虚数解% }% を持つ。 }% \NewDocumentCommand{\解と係数の関係}{ m O{i} }% {% \ifthenelse{\equal{#1}{二次方程式の解と係数の関係A}\AND\equal{#2}{i}}% {$ax^2+bx+c=0 \Ttyuukakko{a\neq0}$の解を$\alpha\数式カンマスペース\beta$として,$\alpha+\beta=-\bunsuu{b}{a}$}{\relax}% \ifthenelse{\equal{#1}{二次方程式の解と係数の関係A}\AND\equal{#2}{b}}% {% $ax^2+bx+c=0 \Ttyuukakko{a\neq0}$の解を$\alpha\数式カンマスペース\beta$として,% \[\alpha+\beta=-\bunsuu{b}{a}\]% }% {\relax}% \ifthenelse{\equal{#1}{二次方程式の解と係数の関係B}\AND\equal{#2}{i}}% {$ax^2+bx+c=0 \Ttyuukakko{a\neq0}$の解を$\alpha\数式カンマスペース\beta$として,$\alpha\beta=\bunsuu{c}{a}$}{\relax}% \ifthenelse{\equal{#1}{二次方程式の解と係数の関係B}\AND\equal{#2}{b}}% {% $ax^2+bx+c=0 \Ttyuukakko{a\neq0}$の解を$\alpha\数式カンマスペース\beta$として,% \[\alpha\beta=\bunsuu{c}{a}\]% }% {\relax}% \ifthenelse{\equal{#1}{二次方程式の解と係数の関係の証明}}% {% \証明開始% \vspace{-2.5\zw}% \[ax^2+bx+c=a\Ttyuukakko{x-\alpha}\Ttyuukakko{x-\beta}=a\Tdaikakko{x^2-\Ttyuukakko{\alpha+\beta}x+\alpha\beta}\]% \[\Leftrightarrow ax^2+bx+c=a\Ttyuukakko{x^2+\bunsuu{b}{a}x+\bunsuu{c}{a}}\]% 係数比較することで,% \[\alpha+\beta=-\bunsuu{b}{a}\数式カンマスペース\alpha\beta=\bunsuu{c}{a}\]% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{三次方程式の解と係数の関係A}\AND\equal{#2}{i}}% {$ax^{3}+bx^2+cx+d=0\Ttyuukakko{a\neq0}$の解を$\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$として,$\alpha+\beta+\gamma=-\bunsuu{b}{a}$}{\relax}% \ifthenelse{\equal{#1}{三次方程式の解と係数の関係A}\AND\equal{#2}{b}}% {% $ax^{3}+bx^2+cx+d=0\Ttyuukakko{a\neq0}$の解を$\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$として,% \[\alpha+\beta+\gamma=-\bunsuu{b}{a}\]% }% {\relax}% \ifthenelse{\equal{#1}{三次方程式の解と係数の関係B}\AND\equal{#2}{i}}% {$ax^{3}+bx^2+cx+d=0\Ttyuukakko{a\neq0}$の解を$\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$として,$\alpha\beta+\beta\gamma+\gamma\alpha=\bunsuu{c}{a}$}{\relax}% \ifthenelse{\equal{#1}{三次方程式の解と係数の関係B}\AND\equal{#2}{b}}% {% $ax^{3}+bx^2+cx+d=0\Ttyuukakko{a\neq0}$の解を$\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$として,% \[\alpha\beta+\beta\gamma+\gamma\alpha=\bunsuu{c}{a}\] }% {\relax}% \ifthenelse{\equal{#1}{三次方程式の解と係数の関係C}\AND\equal{#2}{i}}% {$ax^{3}+bx^2+cx+d=0\Ttyuukakko{a\neq0}$の解を$\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$として,$\alpha\beta\gamma=-\bunsuu{d}{a}$}{\relax}% \ifthenelse{\equal{#1}{三次方程式の解と係数の関係C}\AND\equal{#2}{b}}% {% $ax^{3}+bx^2+cx+d=0\Ttyuukakko{a\neq0}$の解を$\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$として,% \[\alpha\beta\gamma=-\bunsuu{d}{a}\]% }% {\relax}% \ifthenelse{\equal{#1}{三次方程式の解と係数の関係の証明}}% {% \証明開始% \vspace{-2.5\zw}% \[ax^{3}+bx^2+cx+d=a\Ttyuukakko{x-\alpha}\Ttyuukakko{x-\beta}\Ttyuukakko{x-\gamma}=a\Tdaikakko{x^3-\Ttyuukakko{\alpha+\beta+\gamma}x^2+\Ttyuukakko{\alpha\beta+\beta\gamma+\gamma\alpha}x-\alpha\beta\gamma}\]% \[\Leftrightarrow ax^{3}+bx^2+cx+d=a\Ttyuukakko{x^3+\bunsuu{b}{a}x^2+\bunsuu{c}{a}x+\bunsuu{d}{a}}\]% 係数比較することで,\par% \[\alpha+\beta+\gamma=-\bunsuu{b}{a}\数式カンマスペース\alpha\beta+\beta\gamma+\gamma\alpha=\bunsuu{c}{a}\数式カンマスペース\alpha\beta\gamma=-\bunsuu{d}{a}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\剰余定理}{ m O{i} }% {% \ifthenelse{\equal{#1}{定理A}\AND\equal{#2}{i}}% {整式 $P\Ttyuukakko{x}$を$x-k$で割った余りは$P\Ttyuukakko{k}$}{\relax}% \ifthenelse{\equal{#1}{定理A}\AND\equal{#2}{b}}% {% 整式 $P\Ttyuukakko{x}$を$x-k$で割った余りは% \[P\Ttyuukakko{k}\]% }% {\relax}% \ifthenelse{\equal{#1}{定理B}\AND\equal{#2}{i}}% {整式$P\Ttyuukakko{x}$を$ax-b$で割った余りは$P\Ttyuukakko{\bunsuu{b}{a}}$}{\relax}% \ifthenelse{\equal{#1}{定理B}\AND\equal{#2}{b}}% {% 整式$P\Ttyuukakko{x}$を$ax-b$で割った余りは% \[P\Ttyuukakko{\bunsuu{b}{a}}\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% $P\Ttyuukakko{x}$を$\Ttyuukakko{x-k}$で割った商を$Q\Ttyuukakko{x}$あまりを$R$として,% \[P\Ttyuukakko{x}=\Ttyuukakko{x-k}Q\Ttyuukakko{x}+R\]% $x=k$のとき,% \[P\Ttyuukakko{k}=R\]% よって,余りは% \[P\Ttyuukakko{k}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\因数定理}{ m O{i} }% {% \ifthenelse{\equal{#1}{定理}\AND\equal{#2}{i}}% {% 整式$P\Ttyuukakko{x}$が$x-k$を因数に持つ$\Leftrightarrow P\Ttyuukakko{k}=0$% }% {\relax}% \ifthenelse{\equal{#1}{定理}\AND\equal{#2}{b}}% {% 整式$P\Ttyuukakko{x}$が$x-k$を因数に持つ% \[\Leftrightarrow P\Ttyuukakko{k}=0\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 剰余の定理より,$x-k$で割った余りが$0$なので,% \[P\Ttyuukakko{k}=0\]% 剰余の定理より,$P\Ttyuukakko{k}=0$ということは$P\Ttyuukakko{x}$を$x-k$で割った余りが$0$ということなので,$P\Ttyuukakko{x}$は$x-k$を因数に持つ。% \証明終了% }% {\relax}% }% \NewDocumentCommand{\点の座標}{ m O{i} }% {% \ifthenelse{\equal{#1}{二点間の距離}\AND\equal{#2}{i}}% {$\text{A}\Ttyuukakko{x_{1}\数式カンマスペース y_{1}}\数式カンマスペース \text{B}\Ttyuukakko{x_{2}\数式カンマスペース y_{2}}$として,線分$\text{AB}$間の距離は,$\根号{\Ttyuukakko{x_{2}-x_{1}}^2-\Ttyuukakko{y_{2}-y_{1}}^2}$}{\relax}% \ifthenelse{\equal{#1}{二点間の距離}\AND\equal{#2}{b}}% {% $\text{A}\Ttyuukakko{x_{1}\数式カンマスペース y_{1}}\数式カンマスペース \text{B}\Ttyuukakko{x_{2}\数式カンマスペース y_{2}}$として,線分$\text{AB}$間の距離は,% \[\根号{\Ttyuukakko{x_{2}-x_{1}}^2-\Ttyuukakko{y_{2}-y_{1}}^2}\]% }% {\relax}% \ifthenelse{\equal{#1}{内分点の座標}\AND\equal{#2}{i}}% {$\text{A}\Ttyuukakko{x_{1}\数式カンマスペース y_{1}}\数式カンマスペース \text{B}\Ttyuukakko{x_{2}\数式カンマスペース y_{2}}$として,線分$\text{AB}$を$m:n$に内分する点の座標は,$\Ttyuukakko{\bunsuu{nx_{1}+mx_{2}}{n+m}\数式カンマスペース\bunsuu{ny_{1}+my_{2}}{n+m}}$}{\relax}% \ifthenelse{\equal{#1}{内分点の座標}\AND\equal{#2}{b}}% {% $\text{A}\Ttyuukakko{x_{1}\数式カンマスペース y_{1}}\数式カンマスペース \text{B}\Ttyuukakko{x_{2}\数式カンマスペース y_{2}}$として,線分$\text{AB}$を$m:n$に内分する点の座標は,% \[\Ttyuukakko{\bunsuu{nx_{1}+mx_{2}}{n+m}\数式カンマスペース\bunsuu{ny_{1}+my_{2}}{n+m}}\]% }% {\relax}% \ifthenelse{\equal{#1}{内分点の座標の証明}}% {% \証明開始% $m:n$に内分する点の座標を$\text{P}\Ttyuukakko{x\数式カンマスペース y}$として,% \[m:n=x-x_{1}:x_{2}-x\]% \[\Leftrightarrow\Ttyuukakko{\bunsuu{nx_{1}+mx_{2}}{n+m}\数式カンマスペース\bunsuu{ny_{1}+my_{2}}{n+m}}\]% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{外分点の座標}\AND\equal{#2}{i}}% {$\text{A}\Ttyuukakko{x_{1}\数式カンマスペース y_{1}}\数式カンマスペース \text{B}\Ttyuukakko{x_{2}\数式カンマスペース y_{2}}$として,線分$\text{AB}$を$m:n$に外分する点の座標は,$\Ttyuukakko{\bunsuu{-nx_{1}+mx_{2}}{m-n}\数式カンマスペース \bunsuu{-ny_{1}+my_{2}}{m-n}}$}{\relax}% \ifthenelse{\equal{#1}{外分点の座標}\AND\equal{#2}{b}}% {% $\text{A}\Ttyuukakko{x_{1}\数式カンマスペース y_{1}}\数式カンマスペース \text{B}\Ttyuukakko{x_{2}\数式カンマスペース y_{2}}$として,線分$\text{AB}$を$m:n$に外分する点の座標は,% \[\Ttyuukakko{\bunsuu{-nx_{1}+mx_{2}}{m-n}\数式カンマスペース \bunsuu{-ny_{1}+my_{2}}{m-n}}\]% }% {\relax}% \ifthenelse{\equal{#1}{外分点の座標の証明}}% {% \証明開始% \vspace{-1\zw}% \begin{enumerate}% \item $m>n$のとき\par% $n:m$に外分する点の座標を$\text{P}\Ttyuukakko{x\数式カンマスペース y}$として,% \[m:n=x-x_{1}:x-x_{2}\]% \[\Leftrightarrow\Ttyuukakko{\bunsuu{-nx_{1}+mx_{2}}{m-n}\数式カンマスペース \bunsuu{-ny_{1}+my_{2}}{m-n}}\]% \item $m0}$の形でもよい)。}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% 中心$\Ttyuukakko{a\数式カンマスペース b}$で半径$r$の円は,% \[\Ttyuukakko{x-a}^2+\Ttyuukakko{y-b}^2=r^2\]% また,円は% \[x^2+y^2+Ax+By+C=0\Ttyuukakko{A^2+B^2-4C>0}\]% とも表せられる。% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 円の中心をO\数式カンマスペース 円周上の任意の点を$\text{P}\Ttyuukakko{x\数式カンマスペース y}$として,三平方の定理より% \[\Ttyuukakko{x-a}^2+\Ttyuukakko{y-b}^2=r^2\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\円と直線}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {円$x^2+y^2=r^2$上の点 $\Ttyuukakko{x_{1}\数式カンマスペース y_{1}}$における接線の方程式は,$xx_{1}+yy_{1}=r^2$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% 円$x^2+y^2=r^2$上の点 $\Ttyuukakko{x_{1}\数式カンマスペース y_{1}}$における接線の方程式は,% \[xx_{1}+yy_{1}=r^2\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \vspace{-1\zw}% \begin{enumerate}% \item $x_{0}\neq0\数式カンマスペース y_{0}\neq0$のとき\par% $A\Ttyuukakko{x_{0}\数式カンマスペース y_{0}}$と置いて,OAの傾きは$\bunsuu{y_{0}}{x_{0}}$となる。接線の傾きはこれに垂直なので,$-\bunsuu{x_{0}}{y_{0}}$また接線は点$\Ttyuukakko{x_{0}\数式カンマスペース y_{0}}$を通るので% \[y=-\bunsuu{x_{0}}{y_{0}}\Ttyuukakko{x-x_{0}}+y_{0}\]% より,$\Ttyuukakko{x_{0}\数式カンマスペース y_{0}}$が$x^2+y^2=r^2$上に存在することに留意して,$x_{0}x+y_{0}y=r^2$となる。\par% \item $x_{0}\neq0$のとき\par% $y_{0}=\pm r$より接線は$y=\pm r\text{\ (複号同順)}$\par% \item $y_{0}=0$のとき\par% $x_{0}=\pm r$より接線は$x=\pm r\text{\ (複号同順)}$% \end{enumerate}% よって,接線の方程式は% \[xx_{1}+yy_{1}=r^2\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\三角関数の相互関係}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\sin^2 \theta+\cos^2 \theta=1$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\sin^2 \theta+\cos^2 \theta=1\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\tan\theta =\bunsuu{\sin\theta}{\cos\theta}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\tan\theta =\bunsuu{\sin\theta}{\cos\theta}\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$1+\tan^2 \theta=\bunsuu{1}{\cos^2 \theta}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[1+\tan^2 \theta=\bunsuu{1}{\cos^2 \theta}\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \begin{tikzpicture}% \draw(0,0)--(1.05,1.4);% \draw[dashed](0.75,1)--(0,1);% \draw(0,0)node[below right]{O};% \draw(0.75,0)node[below]{$x$};% \draw(0,1)node[left]{$y$};% \draw(0.8,1)node[right]{P$\Ttyuukakko{x,y}$};% \draw(0,0)circle[radius=1.25];% \draw(0,-1.25)node[below left]{$-r$};% \draw(-1.25,0)node[below left]{$-r$};% \draw(0,1.25)node[above left]{$r$};% \draw(1.25,0)node[below right]{$r$};% \draw[->,>=stealth,semithick](-1.5,0)--(1.5,0)node[right]{$x$};% \draw[->,>=stealth,semithick](0,-1.5)--(0,1.5)node[above]{$y$};% \draw[dashed](0,0)coordinate(O)-- (0.75,0)coordinate(Q)-- (0.75,1)coordinate(P);% \draw pic["$\theta$",draw=black,->,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=Q--O--P};% \end{tikzpicture}% \空行% 図において,$\sin\theta=\bunsuu{y}{r}\数式カンマスペース\quad\cos\theta=\bunsuu{x}{r}$より% \[\sin^2\theta+\cos^2\theta=\bunsuu{y^2+x^2}{r^2}\]% ここで,三平方の定理より$x^2+y^2=r^2$なので\par% $\sin^2\theta+\cos^2\theta=\bunsuu{r^2}{r^2}=1$% \空行% $\sin\theta=\bunsuu{y}{r}\数式カンマスペース\quad\cos\theta=\bunsuu{x}{r}\quad\tan\theta=\bunsuu{y}{x}$より\par% $\bunsuu{\sin\theta}{\cos\theta}=\bunsuu{y}{x}=\tan\theta$% \空行% $\sin^2\theta+\cos^2\theta=1$の両辺を$\cos^2\theta$で割ることで,\par% \[\bunsuu{\sin^2\theta}{\cos^2\theta}+1=\bunsuu{1}{\cos^2\theta}\]% ここで,$\bunsuu{\sin\theta}{\cos\theta}=\tan\theta$なので\par% $\tan^2\theta+1=\bunsuu{1}{\cos^2\theta}$% \証明終了% }% {\relax}% }% \NewDocumentCommand{\三角関数の性質}{ m O{i} }% {% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{i}}% {$\sin\Ttyuukakko{-\theta}=-\sin\theta$}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{b}}% {\[\sin\Ttyuukakko{-\theta}=-\sin\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{i}}% {$\cos\Ttyuukakko{-\theta}=\cos\theta$}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{b}}% {\[\cos\Ttyuukakko{-\theta}=\cos\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{i}}% {$\tan\Ttyuukakko{-\theta}=-\tan\theta$}{\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{b}}% {\[\tan\Ttyuukakko{-\theta}=-\tan\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質D}\AND\equal{#2}{i}}% {$\sin\Ttyuukakko{\theta+\pi}=-\sin\theta$}{\relax}% \ifthenelse{\equal{#1}{性質D}\AND\equal{#2}{b}}% {\[\sin\Ttyuukakko{\theta+\pi}=-\sin\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質E}\AND\equal{#2}{i}}% {$\cos\Ttyuukakko{\theta+\pi}=-\cos\theta$}{\relax}% \ifthenelse{\equal{#1}{性質E}\AND\equal{#2}{b}}% {\[\cos\Ttyuukakko{\theta+\pi}=-\cos\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質F}\AND\equal{#2}{i}}% {$\tan\Ttyuukakko{\theta+\pi}=\tan\theta$}{\relax}% \ifthenelse{\equal{#1}{性質F}\AND\equal{#2}{b}}% {\[\tan\Ttyuukakko{\theta+\pi}=\tan\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質G}\AND\equal{#2}{i}}% {$\sin\Ttyuukakko{\pi-\theta}=\sin\theta$}{\relax}% \ifthenelse{\equal{#1}{性質G}\AND\equal{#2}{b}}% {\[\sin\Ttyuukakko{\pi-\theta}=\sin\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質H}\AND\equal{#2}{i}}% {$\cos\Ttyuukakko{\pi-\theta}=-\cos\theta$}{\relax}% \ifthenelse{\equal{#1}{性質H}\AND\equal{#2}{b}}% {\[\cos\Ttyuukakko{\pi-\theta}=-\cos\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質I}\AND\equal{#2}{i}}% {$\tan\Ttyuukakko{\pi-\theta}=-\tan\theta$}{\relax}% \ifthenelse{\equal{#1}{性質I}\AND\equal{#2}{b}}% {\[\tan\Ttyuukakko{\pi-\theta}=-\tan\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質J}\AND\equal{#2}{i}}% {$\sin\Ttyuukakko{\bunsuu{\pi}{2}-\theta}=\cos\theta$}{\relax}% \ifthenelse{\equal{#1}{性質J}\AND\equal{#2}{b}}% {\[\sin\Ttyuukakko{\bunsuu{\pi}{2}-\theta}=\cos\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質K}\AND\equal{#2}{i}}% {$\cos\Ttyuukakko{\bunsuu{\pi}{2}-\theta}=\sin\theta$}{\relax}% \ifthenelse{\equal{#1}{性質K}\AND\equal{#2}{b}}% {\[\cos\Ttyuukakko{\bunsuu{\pi}{2}-\theta}=\sin\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質L}\AND\equal{#2}{i}}% {$\tan\Ttyuukakko{\bunsuu{\pi}{2}-\theta}=\bunsuu{1}{\tan\theta}$}{\relax}% \ifthenelse{\equal{#1}{性質L}\AND\equal{#2}{b}}% {\[\tan\Ttyuukakko{\bunsuu{\pi}{2}-\theta}=\bunsuu{1}{\tan\theta}\]}{\relax}% \ifthenelse{\equal{#1}{性質M}\AND\equal{#2}{i}}% {$\sin\Ttyuukakko{\theta+\bunsuu{\pi}{2}}=\cos\theta$}{\relax}% \ifthenelse{\equal{#1}{性質M}\AND\equal{#2}{b}}% {\[\sin\Ttyuukakko{\theta+\bunsuu{\pi}{2}}=\cos\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質N}\AND\equal{#2}{i}}% {$\cos\Ttyuukakko{\theta+\bunsuu{\pi}{2}}=-\sin\theta$}{\relax}% \ifthenelse{\equal{#1}{性質N}\AND\equal{#2}{b}}% {\[\cos\Ttyuukakko{\theta+\bunsuu{\pi}{2}}=-\sin\theta\]}{\relax}% \ifthenelse{\equal{#1}{性質O}\AND\equal{#2}{i}}% {$\tan\Ttyuukakko{\theta+\bunsuu{\pi}{2}}=-\bunsuu{1}{\tan\theta}$}{\relax}% \ifthenelse{\equal{#1}{性質O}\AND\equal{#2}{b}}% {\[\tan\Ttyuukakko{\theta+\bunsuu{\pi}{2}}=-\bunsuu{1}{\tan\theta}\]}{\relax}% }% \NewDocumentCommand{\三角関数の加法定理}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\sin\Ttyuukakko{\alpha\pm\beta}=\sin\alpha \cos\beta\pm \cos\alpha \sin\beta\text{\ (複号同順)}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\sin\Ttyuukakko{\alpha\pm\beta}=\sin\alpha \cos\beta\pm \cos\alpha \sin\beta\text{\ (複号同順)}\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\cos\Ttyuukakko{\alpha\pm\beta}=\cos\alpha \cos\beta\mp \sin\alpha \sin\beta\text{\ (複号同順)}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\cos\Ttyuukakko{\alpha\pm\beta}=\cos\alpha \cos\beta\mp \sin\alpha \sin\beta\]\text{\ (複号同順)}}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\tan\Ttyuukakko{\alpha\pm\beta}=\bunsuu{\tan\alpha \pm \tan\beta}{1\mp \tan\alpha \tan\beta}\text{\ (複号同順)}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\tan\Ttyuukakko{\alpha\pm\beta}=\bunsuu{\tan\alpha \pm \tan\beta}{1\mp \tan\alpha \tan\beta}\text{\ (複号同順)}\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \begin{tikzpicture}% \draw(0,0)--(0.75,1);% \draw(0,0)node[below right]{O};% \draw(0.8,1)node[right]{P$\Ttyuukakko{\cos\alpha,\sin\alpha}$};% \draw(0,0)circle[radius=1.25];% \draw(0,-1.25)node[below left]{$-1$};% \draw(-1.25,0)node[below left]{$-1$};% \draw(0,1.25)node[above left]{$1$};% \draw(1.25,0)node[below right]{$1$};% \draw[->,>=stealth,semithick](-1.5,0)--(1.5,0)node[right]{$x$};% \draw[->,>=stealth,semithick](0,-1.5)--(0,1.5)node[above]{$y$};% \draw(-1,0.75)node[left]{Q$\Ttyuukakko{\cos\beta,\sin\beta}$};% \draw(-1,0.75)coordinate(Q);% \draw(-1,0.75)--(0.75,1);% \draw(-1,0.75)--(0,0);% \draw(0,0)coordinate(O)-- (0.75,0)coordinate(R)-- (0.75,1)coordinate(P);% \draw pic["$\alpha$",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.5cm] {angle=R--O--P};% \draw pic["$\beta$",draw=black,-,thin,angle eccentricity=1.4,angle radius=0.4cm] {angle=R--O--Q};% \end{tikzpicture}% \空行% 図において,三角関数の性質より$\cos\Ttyuukakko{\beta-\alpha}=\cos\Ttyuukakko{\alpha-\beta}$なので,$\triangle{\text{QOP}}$について余弦定理より% \[\mathrm{QP}^2=1^2+1^2-2\cdot1\cdot1\cdot\cos\Ttyuukakko{\alpha-\beta}\]% また,QP間の距離について三平方の定理を用いて% \[\mathrm{QP}^2=\Ttyuukakko{\cos\beta-\cos\alpha}^2+\Ttyuukakko{\sin\alpha-\sin\beta}^2\]% \[\Leftrightarrow 2-2\cos\Ttyuukakko{\alpha-\beta}=\Ttyuukakko{\cos\beta-\cos\alpha}^2+\Ttyuukakko{\sin\alpha-\sin\beta}^2\]% 両辺整理して,% \[\cos\Ttyuukakko{\alpha-\beta}=\cos\alpha\cos\beta+\sin\alpha\sin\beta\]% を得る。\par% また,$\sin-\theta=-\sin\theta$より,% \[\cos\Ttyuukakko{\alpha+\beta}=\cos\alpha\cos\beta-\sin\alpha\sin\beta\]% \空行% \[\cos\Ttyuukakko{\alpha-\beta}=\cos\alpha\cos\beta+\sin\alpha\sin\beta\]% において,$\alpha$を$\bunsuu{\pi}{2}-\alpha$にすることで,% \[\sin\Ttyuukakko{\alpha+\beta}=\sin\alpha \cos\beta+ \cos\alpha \sin\beta\]% ここで,$\beta$を$-\beta$にすることで,% \[\sin\Ttyuukakko{\alpha-\beta}=\sin\alpha \cos\beta-\cos\alpha \sin\beta\]% \空行% $\tan\theta=\bunsuu{\sin\theta}{\cos\theta}$より,% \[\tan\Ttyuukakko{\alpha\pm\beta}=\bunsuu{\sin\alpha \cos\beta\pm \cos\alpha \sin\beta}{\cos\alpha \cos\beta\mp \sin\alpha \sin\beta}\text{\ (複号同順)}\]% 両辺を$\cos\alpha\cos\beta$でわることで,% \[\tan\Ttyuukakko{\alpha\pm\beta}=\bunsuu{\tan\alpha \pm \tan\beta}{1\mp \tan\alpha \tan\beta}\text{\ (複号同順)}\]% を得る。% \証明終了% }% {\relax}% }% \NewDocumentCommand{\三角関数の二倍角の公式}{ m O{i} }%% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\sin2\alpha=2\sin\alpha\cos\beta$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\sin2\alpha=2\sin\alpha\cos\beta\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\cos2\alpha=\cos^{2}\alpha-\sin^{2}\alpha$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\cos2\alpha=\cos^{2}\alpha-\sin^{2}\alpha\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\cos2\alpha=2\cos^{2}\alpha-1$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\cos2\alpha=2\cos^{2}\alpha-1\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$\cos2\alpha=1-2\sin^{2}\alpha$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {\[\cos2\alpha=1-2\sin^{2}\alpha\]}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{i}}% {$\tan2\alpha=\bunsuu{2\tan\alpha}{1-\tan^{2}\alpha}$}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{b}}% {\[\tan2\alpha=\bunsuu{2\tan\alpha}{1-\tan^{2}\alpha}\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 三角関数の加法定理% \phrases@math[c]% {% $\sin\Ttyuukakko{\alpha+\beta}=\sin\alpha \cos\beta+\cos\alpha \sin\beta$\\% $\cos\Ttyuukakko{\alpha+\beta}=\cos\alpha \cos\beta-\sin\alpha \sin\beta$\\% $\tan\Ttyuukakko{\alpha+\beta}=\bunsuu{\tan\alpha+\tan\beta}{1-\tan\alpha \tan\beta}$% }% において,$\alpha=\beta=\theta$として,\par% \hspace{3\zw}\phrases@math[c]% {% $\sin2\theta=2\sin\theta\cos\theta$\\% $\cos2\theta=\cos^{2}\theta-\sin^{2}\theta$\\% $\tan2\theta=\bunsuu{2\tan\theta}{1-\tan^{2}\theta}$% }% を得る。\par% また,$\cos2\theta=\cos^{2}\theta-\sin^{2}\theta$において,三角関数の相互関係$\sin^2\theta+\cos^2\theta=1$を用いて,% \[\cos2\theta=2\cos^{2}\theta-1\]% \[\Leftrightarrow\cos2\theta=1-2\sin^{2}\theta\]% を得る。% \証明終了% }% {\relax}% }% \NewDocumentCommand{\三角関数の三倍角の公式}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\sin3\alpha=-4\sin^{3}\alpha+3\sin\alpha$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\sin3\alpha=-4\sin^{3}\alpha+3\sin\alpha\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\cos3\alpha=4\cos^{3}\alpha-3\cos\alpha$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\cos3\alpha=4\cos^{3}\alpha-3\cos\alpha\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 三角関数の加法定理% \[\sin\Ttyuukakko{\alpha+\beta}=\sin\alpha \cos\beta+ \cos\alpha \sin\beta\]% \[\cos\Ttyuukakko{\alpha+\beta}=\cos\alpha \cos\beta- \sin\alpha \sin\beta\]% において,$\alpha=\theta\数式カンマスペース\beta=2\theta$のとき,% \[\sin3\theta=\sin\theta \cos2\theta+ \cos\theta \sin2\theta\]% \[\cos3\theta=\cos\theta\cos2\theta-\sin\theta\sin2\theta\]% 二倍角の公式と三角関数の相互関係より,% \begin{align*}% \sin3\theta&=\sin\theta\Ttyuukakko{1-2\sin^{2}\theta}+2\sin\theta\cos^2\theta&\\% &=\sin\theta-2\sin^{3}\theta+2\sin\theta\Ttyuukakko{1-\sin^2\theta}&\\% &=-4\sin^{3}\theta+3\sin\theta&\\% \cos3\theta&=\cos\theta\Ttyuukakko{2\cos^2\theta-1}-2\sin^2\theta\cos\theta&\\% &=2\cos^{3}\theta-\cos\theta-2\Ttyuukakko{1-\cos^2\theta}\cos\theta &\\ &=4\cos^{3}\theta-3\cos\theta% \end{align*}% \証明終了% }% {\relax}% }% \NewDocumentCommand{\三角関数の積和公式}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\sin\alpha\cos\beta=\bunsuu{\sin\Ttyuukakko{\alpha+\beta}+\sin\Ttyuukakko{\alpha-\beta}}{2}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\sin\alpha\cos\beta=\bunsuu{\sin\Ttyuukakko{\alpha+\beta}+\sin\Ttyuukakko{\alpha-\beta}}{2}\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\cos\alpha\cos\beta=\bunsuu{\cos\Ttyuukakko{\alpha+\beta}+\cos\Ttyuukakko{\alpha-\beta}}{2}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\cos\alpha\cos\beta=\bunsuu{\cos\Ttyuukakko{\alpha+\beta}+\cos\Ttyuukakko{\alpha-\beta}}{2}\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\sin\alpha\sin\beta=\bunsuu{\cos\Ttyuukakko{\alpha+\beta}-\cos\Ttyuukakko{\alpha-\beta}}{2}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\sin\alpha\sin\beta=\bunsuu{\cos\Ttyuukakko{\alpha+\beta}-\cos\Ttyuukakko{\alpha-\beta}}{2}\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 三角関数の加法定理% \begin{align*} \sin\Ttyuukakko{\alpha+\beta}=\sin\alpha\cos\beta+\cos\alpha\sin\beta\shikimaru{1}\\% \sin\Ttyuukakko{\alpha-\beta}=\sin\alpha\cos\beta-\cos\alpha\sin\beta\shikimaru{2}\\% \cos\Ttyuukakko{\alpha+\beta}=\cos\alpha\cos\beta-\sin\alpha\sin\beta\shikimaru{3}\\% \cos\Ttyuukakko{\alpha-\beta}=\cos\alpha\cos\beta+\sin\alpha\sin\beta\shikimaru{4}% \end{align*} より,$\text{\ajMaru{1}}+\text{\ajMaru{2}}$から% \[\sin\alpha\cos\beta=\bunsuu{1}{2}\Tdaikakko{\sin\Ttyuukakko{\alpha+\beta}+\sin\Ttyuukakko{\alpha-\beta}}\]% \半空行% $\text{\ajMaru{3}}+\text{\ajMaru{4}}$から% \[\cos\alpha\cos\beta=\bunsuu{1}{2}\Tdaikakko{\cos\Ttyuukakko{\alpha+\beta}+\cos\Ttyuukakko{\alpha-\beta}}\]% \半空行% $\text{\ajMaru{4}}-\text{\ajMaru{3}}$から% \[\sin\alpha\sin\beta=\bunsuu{1}{2}\Tdaikakko{\cos\Ttyuukakko{\alpha-\beta}-\cos\Ttyuukakko{\alpha+\beta}}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\三角関数の和積公式}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\sin{A}+\sin{B}=2 \sin\bunsuu{A+B}{2}\cos\bunsuu{A-B}{2}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\sin{A}+\sin{B}=2 \sin\bunsuu{A+B}{2}\cos\bunsuu{A-B}{2}\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\sin{A}-\sin{B}=2 \cos\bunsuu{A+B}{2}\sin\bunsuu{A-B}{2}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\sin{A}-\sin{B}=2 \cos\bunsuu{A+B}{2}\sin\bunsuu{A-B}{2}\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\cos{A}+\cos{B}=2 \cos\bunsuu{A+B}{2}\cos\bunsuu{A-B}{2}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\cos{A}+\cos{B}=2 \cos\bunsuu{A+B}{2}\cos\bunsuu{A-B}{2}\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$\cos{A}-\cos{B}=-2 \sin\bunsuu{A+B}{2}\sin\bunsuu{A-B}{2}$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {\[\cos{A}-\cos{B}=-2 \sin\bunsuu{A+B}{2}\sin\bunsuu{A-B}{2}\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 三角関数の積和の公式% \[\sin\alpha\cos\beta=\bunsuu{1}{2}\Tdaikakko{\sin\Ttyuukakko{\alpha+\beta}+\sin\Ttyuukakko{\alpha-\beta}}\]% \[\cos\alpha\cos\beta=\bunsuu{1}{2}\Tdaikakko{\cos\Ttyuukakko{\alpha+\beta}+\cos\Ttyuukakko{\alpha-\beta}}\]% \[\sin\alpha\sin\beta=\bunsuu{1}{2}\Tdaikakko{\cos\Ttyuukakko{\alpha-\beta}-\cos\Ttyuukakko{\alpha+\beta}}\]% において,$\alpha+\beta=A\数式カンマスペース\alpha-\beta=B$と置くことで,$\alpha=\bunsuu{A+B}{2}\数式カンマスペース\beta=\bunsuu{A-B}{2}$となるので,% \[\sin{A}+\sin{B}=2 \sin\bunsuu{A+B}{2}\cos\bunsuu{A-B}{2}\]% \[\sin{A}-\sin{B}=2 \cos\bunsuu{A+B}{2}\sin\bunsuu{A-B}{2}\]% \[\cos{A}+\cos{B}=2 \cos\bunsuu{A+B}{2}\cos\bunsuu{A-B}{2}\]% \[\cos{A}-\cos{B}=-2 \sin\bunsuu{A+B}{2}\sin\bunsuu{A-B}{2}\]% \証明終了% となる。% }% {\relax}% }% \NewDocumentCommand{\三角関数の合成}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {% $% a\sin\theta+b\cos\theta=\根号{a^2+b^2}\sin\Ttyuukakko{\theta+\alpha}\ % \Ttyuukakko% {% \text% {% ただし,% $% \sin\alpha=\bunsuu{b}{\根号{a^2+b^2}}\数式カンマスペース\cos\alpha=\bunsuu{a}{\根号{a^2+b^2}}% $% }% }% $% }% {\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% \[a\sin\theta+b\cos\theta=\根号{a^2+b^2}\sin\Ttyuukakko{\theta+\alpha}\text{\ $\Ttyuukakko{\text{ただし,$\sin\alpha=\bunsuu{b}{\根号{a^2+b^2}}\数式カンマスペース\cos\alpha=\bunsuu{a}{\根号{a^2+b^2}}$}}$}\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 三角関数の加法定理\par% $\sin\Ttyuukakko{\alpha+\beta}=\sin\alpha \cos\beta+ \cos\alpha \sin\beta$について,% \[\bunsuu{a}{\根号{a^2+b^2}}=\cos\alpha\数式カンマスペース\bunsuu{b}{\根号{a^2+b^2}}=\sin\alpha\]% とすることで,\par% \[a\sin\theta+b\cos\theta=\根号{a^2+b^2}\sin\Ttyuukakko{\theta+\alpha}\]% となる。% \証明終了% }% {\relax}% }% \NewDocumentCommand{\有理数の指数}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$a>0$また$m\数式カンマスペース n$が正の整数,$r$が正の有理数のとき,$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {% $a>0$また$m\数式カンマスペース n$が正の整数,$r$が正の有理数のとき,% \[a^{\frac{m}{n}}=\sqrt[n]{a^{m}}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$a>0$また$n$が正の整数のとき,$a^{\frac{1}{n}}=\根号[n]{a}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {% $a>0$また$n$が正の整数のとき,% \[a^{\frac{1}{n}}=\根号[n]{a}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$a>0$,$r$が正の有理数のとき,$a^{-r}=\bunsuu{1}{a^{r}}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {% $a>0$,$r$が正の有理数のとき,% \[a^{-r}=\bunsuu{1}{a^{r}}\]% }% {\relax}% }% \NewDocumentCommand{\指数法則}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$a>0$また,$r\数式カンマスペース s$は有理数のとき,$a^{r}a^{s}=a^{r+s}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {% $a>0$また,$r\数式カンマスペース s$は有理数のとき,% \[a^{r}a^{s}=a^{r+s}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$a>0$また,$r\数式カンマスペース s$は有理数のとき,$\Ttyuukakko{a^{r}}^{s}=a^{rs}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {% $a>0$また,$r\数式カンマスペース s$は有理数のとき,% \[\Ttyuukakko{a^{r}}^{s}=a^{rs}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$a>0\数式カンマスペース b>0$また,$r$は有理数のとき,$\Ttyuukakko{ab}^{r}=a^{r}b^{r}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース b>0$また,$r$は有理数のとき,% \[\Ttyuukakko{ab}^{r}=a^{r}b^{r}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$a>0$また,$r\数式カンマスペース s$は有理数のとき,$\bunsuu{a^{r}}{a^{s}}=a^{r-s}$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {% $a>0$また,$r\数式カンマスペース s$は有理数のとき,% \[\bunsuu{a^{r}}{a^{s}}=a^{r-s}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{i}}% {$a>0\数式カンマスペース b>0$また,$r$は有理数のとき,$\Ttyuukakko{\bunsuu{a}{b}}^{r}=\bunsuu{a^{r}}{b^{r}}$}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース b>0$また,$r$は有理数のとき,% \[\Ttyuukakko{\bunsuu{a}{b}}^{r}=\bunsuu{a^{r}}{b^{r}}\]% }% {\relax}% }% \NewDocumentCommand{\対数の定義}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {% $a>0\数式カンマスペース b>0$で,$r\数式カンマスペース s$は有理数とする。\par% $a^{p}=M$ならば,$\log_{a}M$,$\log_{a}M \log_{a}M$ならば,$a^{p}=M$% }% {\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース b>0$で,$r\数式カンマスペース s$は有理数とする。\par% $a^{p}=M$ならば,$\log_{a}M$\par% $\log_{a}M$ならば,$a^{p}=M$% }% {\relax}% }% \NewDocumentCommand{\対数の性質}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$a>0\数式カンマスペース a\neq1$とするとき,$\log_{a}a=1$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース a\neq1$とするとき,% \[\log_{a}a=1\]% }% {\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$a>0\数式カンマスペース a\neq1$とするとき,$\log_{a}1=0$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース a\neq1$とするとき,% \[\log_{a}1=0\]% }% {\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$a>0\数式カンマスペース a\neq1$とするとき,$\log_{a}\bunsuu{1}{a}=-1$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース a\neq1$とするとき,% \[\log_{a}\bunsuu{1}{a}=-1\]% }% {\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$a>0\数式カンマスペース a\neq1\数式カンマスペース M>0\数式カンマスペース N>0$とするとき,$\log_{a}MN=\log_{a}M+\log_{a}N$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース a\neq1\数式カンマスペース M>0\数式カンマスペース N>0$とするとき,% \[\log_{a}MN=\log_{a}M+\log_{a}N\]% }% {\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{i}}% {$a>0\数式カンマスペース a\neq1\数式カンマスペース M>0\数式カンマスペース N>0$とするとき,$\log_{a}\bunsuu{M}{N}=\log_{a}M-\log_{a}N$}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース a\neq1\数式カンマスペース M>0\数式カンマスペース N>0$とするとき,% \[\log_{a}\bunsuu{M}{N}=\log_{a}M-\log_{a}N\]% }% {\relax}% \ifthenelse{\equal{#1}{公式F}\AND\equal{#2}{i}}% {$a>0\数式カンマスペース a\neq1\数式カンマスペース M>0\数式カンマスペース N>0$とするとき,$\log_{a}M^{k}=k\log_{a}M$}{\relax}% \ifthenelse{\equal{#1}{公式F}\AND\equal{#2}{b}}% {% $a>0\数式カンマスペース a\neq1\数式カンマスペース M>0\数式カンマスペース N>0$とするとき,% \[\log_{a}M^{k}=k\log_{a}M\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% $p=\log_{a}M\数式カンマスペース q=\log_{a}N$として,\par% $MN=a^{p}a^{q}$指数法則より% \[MN=a^{p+q}\]% ここで,対数の定義より% \[\log_{a}MN=p+q\]%     \[\Leftrightarrow\log_{a}MN=\log_{a}M+\log_{a}N\]% \空行% $p=\log_{a}M\数式カンマスペース q=\log_{a}N$として,% \[\bunsuu{M}{N}=\bunsuu{a^{p}}{a^{q}}\]% 指数法則より% \[\bunsuu{M}{N}=a^{p-q}\]% ここで,対数の定義より% \[\log_{a}\bunsuu{M}{N}=p-q\]% \[\Leftrightarrow\log_{a}\bunsuu{M}{N}=\log_{a}M-\log_{a}N\]% \空行% $p=\log_{a}M$として,$a^{p}=M$より両辺$k$乗して% \[a^{pk}=M^{k}\]% 対数を取ると% \[pk=\log_{a}M^{k}\]% $p=\log_{a}M$より,% \[\log_{a}M^{k}=k\log_{a}M\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\底の変換公式}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {$a\数式カンマスペース b\数式カンマスペース c$は正の実数で,$a\neq1\数式カンマスペース b\neq1\数式カンマスペース c\neq1$のとき,$\log_{a}b=\bunsuu{\log_{c}b}{\log_{c}a}$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% $a\数式カンマスペース b\数式カンマスペース c$は正の実数で,$a\neq1\数式カンマスペース b\neq1\数式カンマスペース c\neq1$のとき,% \[\log_{a}b=\bunsuu{\log_{c}b}{\log_{c}a}\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 対数の定義より$a^{\log_{a}b}=b$が成立。\par% 底が$c$の対数を取ると,% \[\log_{c}a^{\log_{a}b}=\log_{c}b\]% 対数の性質より,% \[\log_{a}b\log_{c}a=\log_{c}b\]% よって,% \[\log_{a}b=\bunsuu{\log_{c}b}{\log_{c}a}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\導関数の定義}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {$f'\Ttyuukakko{x}=\displaystyle\lim_{h \to 0}\bunsuu{f\Ttyuukakko{x+h}-f\Ttyuukakko{x}}{h}$}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {\[f'\Ttyuukakko{x}=\displaystyle\lim_{h \to 0}\bunsuu{f\Ttyuukakko{x+h}-f\Ttyuukakko{x}}{h}\]}{\relax}% }% \NewDocumentCommand{\べき乗関数と定数関数の導関数}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\Ttyuukakko{x^{n}}'=nx^{n-1}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\Ttyuukakko{x^{n}}'=nx^{n-1}\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\Ttyuukakko{c}'=0$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\Ttyuukakko{c}'=0\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 導関数の定義より,\par% \[\Ttyuukakko{x^{n}}'=\displaystyle\lim_{h \to 0}\bunsuu{\Ttyuukakko{x+h}^{n}-x^{n}}{h}\]% 二項定理より,\par% \begin{align*}% \Ttyuukakko{x^{n}}'&=\displaystyle\lim_{h \to 0} \bunsuu{\Ttyuukakko{x+h}^{n}-x^{n}}{h}&\\% &=\displaystyle\lim_{h \to 0}\bunsuu{{}_{n}C_{0} x^{n}+{}_{n}C_{1} x^{n-1}h+{}_{n}C_{2}x^{n-2}h^2+\cdots\cdot{}_{n}C_{n-1} xh^{n-1}+{}_{n}C_{n} h^{n}-x^{n}}{h}&\\% &=\displaystyle\lim_{h \to 0}\Ttyuukakko{{}_{n}C_{1} x^{n-1}+{}_{n}C_{2}x^{n-2}h+\cdots+{}_{n}C_{n-1} xh^{n-2}+{}_{n}C_{n} h^{n-1}}&\\% &=\displaystyle\lim_{h \to 0}\Tdaikakko{{}_{n}C_{1} x^{n-1}+\Ttyuukakko{{}_{n}C_{2}x^{n-2}+\cdots\cdot{}_{n}C_{n-1} xh^{n-3}+{}_{n}C_{n} h^{n-2}}h}&\\% &={}_{n}C_{1} x^{n-1}&\\% &=nx^{n-1}% \end{align*}% \証明終了% }% {\relax}% }% \NewDocumentCommand{\導関数の性質}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {${kf\Ttyuukakko{x}}'=kf'\Ttyuukakko{x}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[{kf\Ttyuukakko{x}}'=kf'\Ttyuukakko{x}\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {${f\Ttyuukakko{x}\pm g\Ttyuukakko{x}}'=f'\Ttyuukakko{x}\pm g'\Ttyuukakko{x}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[{f\Ttyuukakko{x}\pm g\Ttyuukakko{x}}'=f'\Ttyuukakko{x}\pm g'\Ttyuukakko{x}\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {${kf\Ttyuukakko{x}+lg\Ttyuukakko{x}}'=kf'\Ttyuukakko{x}+lg'\Ttyuukakko{x}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[{kf\Ttyuukakko{x}+lg\Ttyuukakko{x}}'=kf'\Ttyuukakko{x}+lg'\Ttyuukakko{x}\]}{\relax}% }% \NewDocumentCommand{\接線の方程式}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {曲線$y=f\Ttyuukakko{x}$上の点$\Ttyuukakko{a\数式カンマスペース f\Ttyuukakko{a}}$における曲線の接線の方程式は,$y-f\Ttyuukakko{a}=f'\Ttyuukakko{x}\Ttyuukakko{x-a}$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% 曲線$y=f\Ttyuukakko{x}$上の点$\Ttyuukakko{a\数式カンマスペース f\Ttyuukakko{a}}$における曲線の接線の方程式は,% \[y-f\Ttyuukakko{a}=f'\Ttyuukakko{x}\Ttyuukakko{x-a}\]% }% {\relax}% }% \NewDocumentCommand{\不定積分の定義}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {$F'\Ttyuukakko{x}=f\Ttyuukakko{x}$のとき,$\displaystyle\int_{}^{} f\Ttyuukakko{x}dx=F\Ttyuukakko{x}+C\text{($C$は積分定数)}$}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {% $F'\Ttyuukakko{x}=f\Ttyuukakko{x}$のとき,% \[\int_{}^{} f\Ttyuukakko{x}dx=F\Ttyuukakko{x}+C\text{\ (\,$C$は積分定数)}\]% }% {\relax}% }% \NewDocumentCommand{\べき乗関数の不定積分}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {$\displaystyle\int_{}^{} x^{n}dx=\bunsuu{1}{n+1}x^{n+1}+C\text{\ (\,$C$は積分定数)}$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% \[\int_{}^{} x^{n}dx=\bunsuu{1}{n+1}x^{n+1}+C\text{\ (\,$C$は積分定数)}\]% }% {\relax}% }% \NewDocumentCommand{\不定積分の性質}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\displaystyle\int_{}^{} kf\Ttyuukakko{x}dx=k\displaystyle \int_{}^{} f\Ttyuukakko{x}dx$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\int_{}^{} kf\Ttyuukakko{x}dx=k\int_{}^{} f\Ttyuukakko{x}dx\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\displaystyle\int_{}^{} {f\Ttyuukakko{x}\pm g\Ttyuukakko{x}}dx=\displaystyle \int_{}^{} f\Ttyuukakko{x}dx\pm\displaystyle \int_{}^{} g\Ttyuukakko{x}dx$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\int_{}^{} {f\Ttyuukakko{x}\pm g\Ttyuukakko{x}}dx=\int_{}^{} f\Ttyuukakko{x}dx\pm\int_{}^{} g\Ttyuukakko{x}dx\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\displaystyle\int_{}^{} {kf\Ttyuukakko{x}+lg\Ttyuukakko{x}}dx=k\displaystyle \int_{}^{} f\Ttyuukakko{x}dx+l\displaystyle \int_{}^{} g\Ttyuukakko{x}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\int_{}^{} {kf\Ttyuukakko{x}+lg\Ttyuukakko{x}}dx=k\int_{}^{} f\Ttyuukakko{x}dx+l\int_{}^{} g\Ttyuukakko{x}\]}{\relax}% }% \NewDocumentCommand{\定積分の定義}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {曲線$y=f\Ttyuukakko{x}$と$x$軸(区間は$a$から$b$)に囲まれた部分の面積$S$について,$F'\Ttyuukakko{x}=f\Ttyuukakko{x}$のとき,$S=\int_{b}^{a} f\Ttyuukakko{x}dx=[F\Ttyuukakko{x}]^{b}_{a}=F\Ttyuukakko{b}-F\Ttyuukakko{a}$}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {% 曲線$y=f\Ttyuukakko{x}$と$x$軸(区間は$a$から$b$)に囲まれた部分の面積$S$について,$F'\Ttyuukakko{x}=f\Ttyuukakko{x}$のとき,% \[S=\int_{b}^{a} f\Ttyuukakko{x}dx=[F\Ttyuukakko{x}]^{b}_{a}=F\Ttyuukakko{b}-F\Ttyuukakko{a}\]% }% {\relax}% }% \NewDocumentCommand{\定積分の性質}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\displaystyle\int_{b}^{a} kf\Ttyuukakko{x}dx=k\int_{b}^{a} f\Ttyuukakko{x}dx$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\int_{b}^{a} kf\Ttyuukakko{x}dx=k\int_{b}^{a} f\Ttyuukakko{x}dx\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\displaystyle\int_{b}^{a} {f\Ttyuukakko{x}\pm g\Ttyuukakko{x}}dx=\int_{b}^{a} f\Ttyuukakko{x}dx\pm\int_{b}^{a} g\Ttyuukakko{x}dx$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\int_{b}^{a} {f\Ttyuukakko{x}\pm g\Ttyuukakko{x}}dx=\int_{b}^{a} f\Ttyuukakko{x}dx\pm\int_{b}^{a} g\Ttyuukakko{x}dx\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\displaystyle\int_{a}^{a} f\Ttyuukakko{x}dx=0$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\int_{a}^{a} f\Ttyuukakko{x}dx=0\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$\displaystyle\int_{b}^{a} f\Ttyuukakko{x}dx=-\int_{a}^{b} f\Ttyuukakko{x}dx$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {\[\int_{b}^{a} f\Ttyuukakko{x}dx=-\int_{a}^{b} f\Ttyuukakko{x}dx\]}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{i}}% {$\displaystyle\int_{b}^{a} f\Ttyuukakko{x}dx=\int_{a}^{c} f\Ttyuukakko{x}dx+\int_{c}^{b} f\Ttyuukakko{x}dx$}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{b}}% {\[\int_{b}^{a} f\Ttyuukakko{x}dx=\int_{a}^{c} f\Ttyuukakko{x}dx+\int_{c}^{b} f\Ttyuukakko{x}dx\]}{\relax}% }% \NewDocumentCommand{\ベクトルの演算}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$k\数式カンマスペース l$が実数のとき,$\ベクトル{a}+\ベクトル{b}=\ベクトル{b}+\ベクトル{a}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {% $k\数式カンマスペース l$が実数のとき% \[\ベクトル{a}+\ベクトル{b}=\ベクトル{b}+\ベクトル{a}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$k\数式カンマスペース l$が実数のとき,$\Ttyuukakko{\ベクトル{a}+\ベクトル{b}}+\ベクトル{c}=\ベクトル{a}+\Ttyuukakko{\ベクトル{b}+\ベクトル{c}}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {% $k\数式カンマスペース l$が実数のとき% \[\Ttyuukakko{\ベクトル{a}+\ベクトル{b}}+\ベクトル{c}=\ベクトル{a}+\Ttyuukakko{\ベクトル{b}+\ベクトル{c}}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\ベクトル{a}+\Ttyuukakko{a\ベクトル{a}}=\ベクトル{0}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\ベクトル{a}+\Ttyuukakko{a\ベクトル{a}}=\ベクトル{0}\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$\ベクトル{a}+\ベクトル{0}=\ベクトル{a}$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {\[\ベクトル{a}+\ベクトル{0}=\ベクトル{a}\]}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{i}}% {$\ベクトル{a}-\ベクトル{b}=\ベクトル{a}+\Ttyuukakko{-\ベクトル{b}}$}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{b}}% {\[\ベクトル{a}-\ベクトル{b}=\ベクトル{a}+\Ttyuukakko{-\ベクトル{b}}\]}{\relax}% \ifthenelse{\equal{#1}{公式F}\AND\equal{#2}{i}}% {$k\数式カンマスペース l$が実数のとき,$k\Ttyuukakko{l\ベクトル{a}}=l\Ttyuukakko{k\ベクトル{b}}$}{\relax}% \ifthenelse{\equal{#1}{公式F}\AND\equal{#2}{b}}% {% $k\数式カンマスペース l$が実数のとき% \[k\Ttyuukakko{l\ベクトル{a}}=l\Ttyuukakko{k\ベクトル{b}}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式G}\AND\equal{#2}{i}}% {$k\数式カンマスペース l$が実数のとき,$\Ttyuukakko{k+l}\ベクトル{a}=k\ベクトル{a}+l\ベクトル{a}$}{\relax}% \ifthenelse{\equal{#1}{公式G}\AND\equal{#2}{b}}% {% $k\数式カンマスペース l$が実数のとき% \[\Ttyuukakko{k+l}\ベクトル{a}=k\ベクトル{a}+l\ベクトル{a}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式H}\AND\equal{#2}{i}}% {$k$が実数のとき,$k\Ttyuukakko{\ベクトル{a}+\ベクトル{b}}=k\ベクトル{a}+k\ベクトル{b}$}{\relax}% \ifthenelse{\equal{#1}{公式H}\AND\equal{#2}{b}}% {% $k$が実数のとき% \[k\Ttyuukakko{\ベクトル{a}+\ベクトル{b}}=k\ベクトル{a}+k\ベクトル{b}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式I}\AND\equal{#2}{i}}% {$\overrightarrowtext{AB}+\overrightarrowtext{BC}=\overrightarrowtext{AC}$}{\relax}% \ifthenelse{\equal{#1}{公式I}\AND\equal{#2}{b}}% {\[\overrightarrowtext{AB}+\overrightarrowtext{BC}=\overrightarrowtext{AC}\]}{\relax}% \ifthenelse{\equal{#1}{公式J}\AND\equal{#2}{i}}% {$\overrightarrowtext{OA}-\overrightarrowtext{OB}=\overrightarrowtext{BA}$}{\relax}% \ifthenelse{\equal{#1}{公式J}\AND\equal{#2}{b}}% {\[\overrightarrowtext{OA}-\overrightarrowtext{OB}=\overrightarrowtext{BA}\]}{\relax}% \ifthenelse{\equal{#1}{公式K}\AND\equal{#2}{i}}% {$\overrightarrowtext{AA}=\ベクトル{0}$}{\relax}% \ifthenelse{\equal{#1}{公式K}\AND\equal{#2}{b}}% {\[\overrightarrowtext{AA}=\ベクトル{0}\]}{\relax}% \ifthenelse{\equal{#1}{公式L}\AND\equal{#2}{i}}% {$\overrightarrowtext{BA}=\overrightarrowtext{AB}$}{\relax}% \ifthenelse{\equal{#1}{公式L}\AND\equal{#2}{b}}% {\[\overrightarrowtext{BA}=\overrightarrowtext{AB}\]}{\relax}% }% \NewDocumentCommand{\平面ベクトルの分解}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {$\ベクトル{a}\neq0\数式カンマスペース\ベクトル{b}\neq0$で,$\ベクトル{a}$と$\ベクトル{b}$が平行でないとき,任意の$\ベクトル{p}$はただ一通りに,$\ベクトル{p}=s\ベクトル{a}+t\ベクトル{b}$の形に表せられる。}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% $\ベクトル{a}\neq0\数式カンマスペース\ベクトル{b}\neq0$で,$\ベクトル{a}$と$\ベクトル{b}$が平行でないとき,任意の$\ベクトル{p}$はただ一通りに,% \[\ベクトル{p}=s\ベクトル{a}+t\ベクトル{b}\]% の形に表せられる。% }% {\relax}% }% \NewDocumentCommand{\平面ベクトルの成分}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\ベクトル{a}=\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}\数式カンマスペース\ベクトル{b}=\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}$とすると,$\ベクトル{a}=\ベクトル{b}\Leftrightarrow a_{1}=b_{1}\数式カンマスペース a_{2}=b_{2}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {% $\ベクトル{a}=\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}\数式カンマスペース\ベクトル{b}=\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}$とすると,% $\ベクトル{a}=\ベクトル{b}$% \[\Leftrightarrow a_{1}=b_{1}\数式カンマスペース a_{2}=b_{2}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\ベクトル{a}=\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}\数式カンマスペース\ベクトル{b}=\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}$とすると,$a_{1}=b_{1}\数式カンマスペース a_{2}=b_{2}\Leftrightarrow\ベクトル{a}=\ベクトル{b}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {% $\ベクトル{a}=\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}\数式カンマスペース\ベクトル{b}=\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}$とすると,% $a_{1}=b_{1}\数式カンマスペース a_{2}=b_{2}$% \[\Leftrightarrow\ベクトル{a}=\ベクトル{b}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\ベクトル{a}=\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}$とすると,$\Tzettaiti{\ベクトル{a}}=\根号{a_{1}^2+a_{2}^2}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {% $\ベクトル{a}=\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}$とすると,% \[\Tzettaiti{\ベクトル{a}}=\根号{a_{1}^2+a_{2}^2}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$\ベクトル{a}=\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}\数式カンマスペース\ベクトル{b}=\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}$また,$k\数式カンマスペース l$を実数として,$k\ベクトル{a}+l\ベクトル{b}=k\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}+l\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}=\Ttyuukakko{ka_{1}+lb_{1}\数式カンマスペース ka_{2}+lb_{2}}$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {% $\ベクトル{a}=\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}\数式カンマスペース\ベクトル{b}=\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}$また,$k\数式カンマスペース l$を実数として,% \[k\ベクトル{a}+l\ベクトル{b}=k\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}+l\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}=\Ttyuukakko{ka_{1}+lb_{1}\数式カンマスペース ka_{2}+lb_{2}}\]% }% {\relax}% }% \NewDocumentCommand{\ベクトルの成分と大きさ}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$A\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}\数式カンマスペース B\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}$とすると,$\overrightarrowtext{AB}=\Ttyuukakko{b_{1}-a_{1}\数式カンマスペース b_{2}-a_{2}}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {% $A\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}\数式カンマスペース B\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}$とすると,% \[\overrightarrowtext{AB}=\Ttyuukakko{b_{1}-a_{1}\数式カンマスペース b_{2}-a_{2}}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$A\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}\数式カンマスペース B\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}$とすると,$\Tzettaiti{\overrightarrowtext{AB}}=\根号{\Ttyuukakko{b_{1}-a_{1}}^2+\Ttyuukakko{b_{2}-a_{2}}^2}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {% $A\Ttyuukakko{a_{1}\数式カンマスペース a_{2}}\数式カンマスペース B\Ttyuukakko{b_{1}\数式カンマスペース b_{2}}$とすると,% \[\Tzettaiti{\overrightarrowtext{AB}}=\根号{\Ttyuukakko{b_{1}-a_{1}}^2+\Ttyuukakko{b_{2}-a_{2}}^2}\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 三平方の定理より,% \[\Tzettaiti{\overrightarrowtext{AB}}=\根号{\Ttyuukakko{b_{1}-a_{1}}^2+\Ttyuukakko{b_{2}-a_{2}}^2}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\平面ベクトルの内積}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {ベクトルの内積は,$\ベクトル{a} \cdot\ベクトル{b}=|\ベクトル{a}||\ベクトル{b}|\cos\theta \Ttyuukakko{0^{\circ} \leqq \theta \leqq 180^{\circ}}\text{\ (ただし,$\theta$は$\ベクトル{a}$と$\ベクトル{b}$のなす角)}$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% ベクトルの内積は,% \[\ベクトル{a} \cdot\ベクトル{b}=|\ベクトル{a}||\ベクトル{b}|\cos\theta \Ttyuukakko{0^{\circ} \leqq \theta \leqq 180^{\circ}}\text{\ (ただし,$\theta$は$\ベクトル{a}$と$\ベクトル{b}$のなす角)}\]% }% {\relax}% }% \NewDocumentCommand{\内積の性質}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$\ベクトル{a} \cdot\ベクトル{b}=\ベクトル{b} \cdot\ベクトル{a}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {\[\ベクトル{a} \cdot\ベクトル{b}=\ベクトル{b} \cdot\ベクトル{a}\]}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\Ttyuukakko{\ベクトル{a}+\ベクトル{b}} \cdot\ベクトル{c}=\ベクトル{a} \cdot\ベクトル{c}+\ベクトル{b} \cdot\ベクトル{c}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\Ttyuukakko{\ベクトル{a}+\ベクトル{b}} \cdot\ベクトル{c}=\ベクトル{a} \cdot\ベクトル{c}+\ベクトル{b} \cdot\ベクトル{c}\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\ベクトル{c} \cdot\Ttyuukakko{\ベクトル{b}+\ベクトル{c}}=\ベクトル{a} \cdot\ベクトル{c}+\ベクトル{b} \cdot\ベクトル{c}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\ベクトル{c} \cdot\Ttyuukakko{\ベクトル{b}+\ベクトル{c}}=\ベクトル{a} \cdot\ベクトル{c}+\ベクトル{b} \cdot\ベクトル{c}\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$k$が実数のとき,$\Ttyuukakko{k\ベクトル{a}} \cdot\ベクトル{b}=\ベクトル{a} \cdot\Ttyuukakko{k\ベクトル{b}}=k\Ttyuukakko{\ベクトル{a} \cdot\ベクトル{b}}$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {% $k$が実数のとき,% \[\Ttyuukakko{k\ベクトル{a}} \cdot\ベクトル{b}=\ベクトル{a} \cdot\Ttyuukakko{k\ベクトル{b}}=k\Ttyuukakko{\ベクトル{a} \cdot\ベクトル{b}}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{i}}% {$\ベクトル{a} \cdot\ベクトル{a}=\Tzettaiti{\ベクトル{a}}^2$}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{b}}% {\[\ベクトル{a} \cdot\ベクトル{a}=\Tzettaiti{\ベクトル{a}}^2\]}{\relax}% \ifthenelse{\equal{#1}{公式F}\AND\equal{#2}{i}}% {$\Tzettaiti{\ベクトル{a}}=\根号{\ベクトル{a} \cdot\ベクトル{a}}$}{\relax}% \ifthenelse{\equal{#1}{公式F}\AND\equal{#2}{b}}% {\[\Tzettaiti{\ベクトル{a}}=\根号{\ベクトル{a} \cdot\ベクトル{a}}\]}{\relax}% }% \NewDocumentCommand{\平面ベクトルの平行条件}{ m O{i} }% {% \ifthenelse{\equal{#1}{条件}\AND\equal{#2}{i}}% {% $\ベクトル{a}\neq\ベクトル{0}\数式カンマスペース\ベクトル{b}\neq\ベクトル{0}$また,$k$は実数とする,\par% $\ベクトル{a}/ \!/ \ベクトル{b}\Leftrightarrow\ベクトル{b}=k\ベクトル{a}$,$\ベクトル{b}=k\ベクトル{a}$% }% {\relax}% \ifthenelse{\equal{#1}{条件}\AND\equal{#2}{b}}% {% $\ベクトル{a}\neq\ベクトル{0}\数式カンマスペース\ベクトル{b}\neq\ベクトル{0}$また,$k$は実数とする,\par% $\ベクトル{a}/ \!/ \ベクトル{b}$% \[\Leftrightarrow\ベクトル{b}=k\ベクトル{a}\]% }% {\relax}% }% \NewDocumentCommand{\平面ベクトルの垂直条件}{ m O{i} }% {% \ifthenelse{\equal{#1}{条件}\AND\equal{#2}{i}}% {% $\ベクトル{a}\neq\ベクトル{0}\数式カンマスペース\ベクトル{b}\neq\ベクトル{0}$で,$k$は実数とすると,% $\ベクトル{a} \perp \ベクトル{b}\Leftrightarrow\ベクトル{a} \cdot\ベクトル{b}=0$% }% {\relax}% \ifthenelse{\equal{#1}{条件}\AND\equal{#2}{b}}% {% $\ベクトル{a}\neq\ベクトル{0}\数式カンマスペース\ベクトル{b}\neq\ベクトル{0}$で,$k$は実数とすると,% \[\ベクトル{a} \perp \ベクトル{b}\Leftrightarrow\ベクトル{a} \cdot\ベクトル{b}=0\]% }% {\relax}% }% \NewDocumentCommand{\位置ベクトル}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}$とすると,線分$\text{AB}$を$m:n$に内分する点は,$\bunsuu{n\ベクトル{a}+m\ベクトル{b}}{m+n}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {% $A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}$とすると,線分$\text{AB}$を$m:n$に内分する点は,% \[\bunsuu{n\ベクトル{a}+m\ベクトル{b}}{m+n}\]% }% {\relax}% \ifthenelse{\equal{#1}{内分点の位置ベクトルの証明}}% {% \証明開始% $P\Ttyuukakko{\ベクトル{p}}$が$A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}$を$m:n$に内分するとき,% \begin{align*}% \ベクトル{p}&=\ベクトル{a}+\bunsuu{m}{m+n}\Ttyuukakko{\ベクトル{b}-\ベクトル{a}}&\\% &=\bunsuu{n\ベクトル{a}+m\ベクトル{b}}{m+n}&\\% \end{align*}% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}$とする,線分$\text{AB}$を$m:n$に外分する点は,$\bunsuu{-n\ベクトル{a}+m\ベクトル{b}}{m-n}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {% $A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}$とする,線分$\text{AB}$を$m:n$に外分する点は,% \[\bunsuu{-n\ベクトル{a}+m\ベクトル{b}}{m-n}\]% }% {\relax}% \ifthenelse{\equal{#1}{外分点の位置ベクトルの証明}}% {% \証明開始% $m:n$に外分ということは$m:-n$に内分ということなので,$\bunsuu{-n\ベクトル{a}+m\ベクトル{b}}{m-n}$% \証明終了% }% {\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}$とする,線分$\text{AB}$の中点は,$\bunsuu{\ベクトル{a}+\ベクトル{b}}{2}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {% $A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}$とする,線分$\text{AB}$の中点は,% \[\bunsuu{\ベクトル{a}+\ベクトル{b}}{2}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}\数式カンマスペース C\Ttyuukakko{\ベクトル{c}}$とする,$\triangle{\text{ABC}}$の重心は,$\bunsuu{\ベクトル{a}+\ベクトル{b}+\ベクトル{c}}{3}$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {% $A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}\数式カンマスペース C\Ttyuukakko{\ベクトル{c}}$とする,$\triangle{\text{ABC}}$の重心は,% \[\bunsuu{\ベクトル{a}+\ベクトル{b}+\ベクトル{c}}{3}\]% }% {\relax}% }% \NewDocumentCommand{\ベクトル方程式}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$s\数式カンマスペース t$を実数とする。点$A\Ttyuukakko{\ベクトル{a}}$をとおり,$\ベクトル{d}$に平行な直線は,$\ベクトル{p}=\ベクトル{a}+t\ベクトル{b}$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {% $s\数式カンマスペース t$を実数とする。点$A\Ttyuukakko{\ベクトル{a}}$をとおり,$\ベクトル{d}$に平行な直線は,% \[\ベクトル{p}=\ベクトル{a}+t\ベクトル{b}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$s\数式カンマスペース t$を実数とする。二点$A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}$を通る直線は,$\ベクトル{p}=\Ttyuukakko{1-t}\ベクトル{a}+t\ベクトル{b}\数式カンマスペース\ベクトル{p}=a\ベクトル{a}+t\ベクトル{b}\text{\ (ただし,$s+t=1$)}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {% $s\数式カンマスペース t$を実数とする。二点$A\Ttyuukakko{\ベクトル{a}}\数式カンマスペース B\Ttyuukakko{\ベクトル{b}}$を通る直線は,% \[\ベクトル{p}=\Ttyuukakko{1-t}\ベクトル{a}+t\ベクトル{b}\数式カンマスペース\ベクトル{p}=a\ベクトル{a}+t\ベクトル{b}\text{\ (ただし,$s+t=1$)}\]% }% {\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {点$A\Ttyuukakko{\ベクトル{a}}$を通り,$\ベクトル{n}$に垂直な直線$\ベクトル{p}$について,$\ベクトル{n}\cdot\Ttyuukakko{\ベクトル{p}-\ベクトル{a}}=0$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {% 点$A\Ttyuukakko{\ベクトル{a}}$を通り,$\ベクトル{n}$に垂直な直線$\ベクトル{p}$について,% \[\ベクトル{n}\cdot\Ttyuukakko{\ベクトル{p}-\ベクトル{a}}=0\]% }% {\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {中心$C\Ttyuukakko{\ベクトル{c}}$,半径$r$の円は,$\Tzettaiti{\ベクトル{p}-\ベクトル{c}}=r\数式カンマスペース\Ttyuukakko{\ベクトル{p}-\ベクトル{c}}\cdot\Ttyuukakko{\ベクトル{p}-\ベクトル{c}}=r^2$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {% 中心$C\Ttyuukakko{\ベクトル{c}}$,半径$r$の円は,% \[\Tzettaiti{\ベクトル{p}-\ベクトル{c}}=r\]% \[\Ttyuukakko{\ベクトル{p}-\ベクトル{c}}\cdot\Ttyuukakko{\ベクトル{p}-\ベクトル{c}}=r^2\]% }% {\relax}% }% \NewDocumentCommand{\等差数列}{ m O{i} }% {% \ifthenelse{\equal{#1}{一般項}\AND\equal{#2}{i}}% {初項$a_{1}$,公差$d$のとき,$a_{n}=a_{1}+\Ttyuukakko{n-1}d$}{\relax}% \ifthenelse{\equal{#1}{一般項}\AND\equal{#2}{b}}% {% 初項$a_{1}$,公差$d$のとき,% \[a_{n}=a_{1}+\Ttyuukakko{n-1}d\]% }% {\relax}% \ifthenelse{\equal{#1}{総和}\AND\equal{#2}{i}}% {$S_{n}=\bunsuu{n\Ttyuukakko{a_{1}+a_{n}}}{2}$}{\relax}% \ifthenelse{\equal{#1}{総和}\AND\equal{#2}{b}}% {\[S_{n}=\bunsuu{n\Ttyuukakko{a_{1}+a_{n}}}{2}\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \[S_{n}=a_{1}+\Ttyuukakko{a_{1}+d}+\Ttyuukakko{a_{1}+2d}+\cdots+\Tdaikakko{a_{1}+\Ttyuukakko{n-1}d}\]% \[S_{n}=\Tdaikakko{a_{1}+\Ttyuukakko{n-1}d}+\cdots+a_{1}+\Ttyuukakko{a_{1}+d}+\Ttyuukakko{a_{1}+2d}\]% 連立して,$2S=\Ttyuukakko{a_{1}+a_{n}}n$より,\par% $S_{n}=\bunsuu{n\Ttyuukakko{a_{1}+a_{n}}}{2}$% \証明終了% }% {\relax}% }% \NewDocumentCommand{\等比数列}{ m O{i} }% {% \ifthenelse{\equal{#1}{一般項}\AND\equal{#2}{i}}% {$a_{n}=ar^{n-1}$}{\relax}% \ifthenelse{\equal{#1}{一般項}\AND\equal{#2}{b}}% {\[a_{n}=ar^{n-1}\]}{\relax}% \ifthenelse{\equal{#1}{総和}\AND\equal{#2}{i}}% {% $r\neq1$のとき,$S_{n}=\bunsuu{a_{1}\Ttyuukakko{1-r^{n}}}{1-r}$もしくは,$\bunsuu{a_{1}\Ttyuukakko{r^{n}-1}}{r-1}$\par% $r=1$のとき,$S_{n}=na_{1}$% }% {\relax}% \ifthenelse{\equal{#1}{総和}\AND\equal{#2}{b}}% {% $r\neq1$のとき,% \[S_{n}=\bunsuu{a_{1}\Ttyuukakko{1-r^{n}}}{1-r}\]% もしくは,% \[S_{n}=\bunsuu{a_{1}\Ttyuukakko{r^{n}-1}}{r-1}\]% $r=1$のとき,% \[S_{n}=na_{1}\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% \[S_{n}=a_{1}+ra_{1}+r^2a_{1}+\cdots+r^{n-1}a_{1}\]% \[S_{n}r=ra_{1}+r^2a_{2}+r^{3}a_{1}+\cdots+r^{n}\]% 連立することで,$S\Ttyuukakko{1-r}=a_{1}-r^{n}a_{1}$となる。\par% よって,% \[S=\bunsuu{a_{1}\Ttyuukakko{1-r^{n}}}{1-r}\]% また,$\bunsuu{-1}{-1}$をかけることで,% \[S=\bunsuu{a_{1}\Ttyuukakko{r^{n}-1}}{r-1}\]% 以上より,% \[S=\bunsuu{a_{1}\Ttyuukakko{1-r^{n}}}{1-r}=\bunsuu{a_{1}\Ttyuukakko{r^{n}-1}}{r-1}\]% \証明終了% }% {\relax}% }% \NewDocumentCommand{\シグマの公式}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{i}}% {$c$は$k$に無関係なとき,$\displaystyle \sum_{k=1}^{n} c=nc$}{\relax}% \ifthenelse{\equal{#1}{公式A}\AND\equal{#2}{b}}% {% $c$は$k$に無関係なとき,% \[\displaystyle \sum_{k=1}^{n} c=nc\]% }% {\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{i}}% {$\displaystyle \sum_{k=1}^{n} k=\bunsuu{1}{2}n\Ttyuukakko{n+1}$}{\relax}% \ifthenelse{\equal{#1}{公式B}\AND\equal{#2}{b}}% {\[\displaystyle \sum_{k=1}^{n} k=\bunsuu{1}{2}n\Ttyuukakko{n+1}\]}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{i}}% {$\displaystyle \sum_{k=1}^{n} k^2=\bunsuu{1}{6}n\Ttyuukakko{n+1}\Ttyuukakko{2n+1}$}{\relax}% \ifthenelse{\equal{#1}{公式C}\AND\equal{#2}{b}}% {\[\displaystyle \sum_{k=1}^{n} k^2=\bunsuu{1}{6}n\Ttyuukakko{n+1}\Ttyuukakko{2n+1}\]}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{i}}% {$\displaystyle \sum_{k=1}^{n} k^{3}=\Tdaikakko{\bunsuu{1}{2}n\Ttyuukakko{n+1}}^2$}{\relax}% \ifthenelse{\equal{#1}{公式D}\AND\equal{#2}{b}}% {\[\displaystyle \sum_{k=1}^{n} k^{3}=\Tdaikakko{\bunsuu{1}{2}n\Ttyuukakko{n+1}}^2\]}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{i}}% {$\displaystyle \sum_{k=1}^{n} r^{k-1}=\bunsuu{\Ttyuukakko{1-r^{n}}}{1-r}=\bunsuu{r^{n}-1}{r-1}$}{\relax}% \ifthenelse{\equal{#1}{公式E}\AND\equal{#2}{b}}% {\[\displaystyle \sum_{k=1}^{n} r^{k-1}=\bunsuu{\Ttyuukakko{1-r^{n}}}{1-r}=\bunsuu{r^{n}-1}{r-1}\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% $\Ttyuukakko{k+1}^{3}=k^{3}+3k^2+3k+1$を用いる。\par% $\Ttyuukakko{k+1}^{3}-k^{3}=3k^2+3k+1$の$k$に$1$から$n$までの自然数を代入したものを足したものは,% \[\Ttyuukakko{n+1}^{3}-1=3\displaystyle \sum_{k=1}^{n} k^2+3\displaystyle \sum_{k=1}^{n} k=\bunsuu{1}{2}n\Ttyuukakko{n+1}+n\]% \[\Leftrightarrow\displaystyle \sum_{k=1}^{n} k^2=\bunsuu{1}{6}n\Ttyuukakko{n+1}\Ttyuukakko{2n+1}\] となる。% \証明終了% }% {\relax}% }% \NewDocumentCommand{\シグマの性質}{ m O{i} }% {% \ifthenelse{\equal{#1}{性質}\AND\equal{#2}{i}}% {$p\数式カンマスペース q$が$k$に無関係な定数のとき,$\displaystyle\sum_{k=1}^{n}\Ttyuukakko{pa_{k}+qb_{k}}=p\displaystyle\sum_{k=1}^{n}a_{k}+q\displaystyle\sum_{k=1}^{n}a_{k}$}{\relax}% \ifthenelse{\equal{#1}{性質}\AND\equal{#2}{b}}% {% $p\数式カンマスペース q$が$k$に無関係な定数のとき,% \[\displaystyle\sum_{k=1}^{n}\Ttyuukakko{pa_{k}+qb_{k}}=p\displaystyle\sum_{k=1}^{n}a_{k}+q\displaystyle\sum_{k=1}^{n}a_{k}\]% }% {\relax}% }% \NewDocumentCommand{\階差数列}{ m O{i} }% {% \ifthenelse{\equal{#1}{一般項}\AND\equal{#2}{i}}% {数列${a_{n}}$の階差数列を${b_{n}}$とすると,$2\leqq n$のとき,$a_{n}=a_{1}+\displaystyle\sum_{k=1}^{n-1}b_{k}$}{\relax}% \ifthenelse{\equal{#1}{一般項}\AND\equal{#2}{b}}% {% 数列${a_{n}}$の階差数列を${b_{n}}$とすると,$2\leqq n$のとき,% \[a_{n}=a_{1}+\displaystyle\sum_{k=1}^{n-1}b_{k}\]% }% {\relax}% }% \NewDocumentCommand{\漸化式}{ m O{i} }% {% \ifthenelse{\equal{#1}{等差型}\AND\equal{#2}{i}}% {$a_{n+1}=a_{n}+d$のとき,$a_{n}=a_{1}+\Ttyuukakko{n-1}d$}{\relax}% \ifthenelse{\equal{#1}{等差型}\AND\equal{#2}{b}}% {% $a_{n+1}=a_{n}+d$のとき,% \[a_{n}=a_{1}+\Ttyuukakko{n-1}d\]% }% {\relax}% \ifthenelse{\equal{#1}{等比型}\AND\equal{#2}{i}}% {$a_{n+1}=ra_{n}$のとき,$a_{n}=a_{1}r^{n-1}$}{\relax}% \ifthenelse{\equal{#1}{等比型}\AND\equal{#2}{b}}% {% $a_{n+1}=ra_{n}$のとき,% \[a_{n}=a_{1}r^{n-1}\]% }% {\relax}% \ifthenelse{\equal{#1}{階差型}\AND\equal{#2}{i}}% {$a_{n+1}-a_{n}=f\Ttyuukakko{n}$のとき,$a_{1}+\displaystyle \sum_{k=1}^{n-1}f\Ttyuukakko{k}$ただし,$2\leqq n$}{\relax}% \ifthenelse{\equal{#1}{階差型}\AND\equal{#2}{b}}% {% $a_{n+1}-a_{n}=f\Ttyuukakko{n}$のとき,% \[a_{1}+\displaystyle \sum_{k=1}^{n-1}f\Ttyuukakko{k}\text{\ (ただし,$2\leqq n$)}\]% }% {\relax}% \ifthenelse{\equal{#1}{特性方程式}\AND\equal{#2}{i}}% {$a_{n+1}=pa_{n}+q \Ttyuukakko{p\neq0\数式カンマスペース q\neq0}$のとき,$a_{n+1}-c=p\Ttyuukakko{a_{n}-c}$と変形して等差型に(ただし,$c=pc+q$を満たす)。}{\relax}% \ifthenelse{\equal{#1}{特性方程式}\AND\equal{#2}{b}}% {% $a_{n+1}=pa_{n}+q \Ttyuukakko{p\neq0\数式カンマスペース q\neq0}$のとき,% \[a_{n+1}-c=p\Ttyuukakko{a_{n}-c}\]% と変形して等差型に(ただし,$c=pc+q$を満たす)。% }% {\relax}% }% \newcommand{\数学的帰納法}{自然数$n$に関する命題$P$が全ての自然数$n$について成立することを証明するには,$n=1$のときに$P$が成立することと,$n=k$のときに$P$が成立するという仮定のもと,$n=k+1$が成立することを証明する。}% %%%%%%%%%%%%%%%%%%%%ここから数\UTF{2162}%%%%%%%%%%%%%%%%%%%% \NewDocumentCommand{\共役複素数}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {$\alpha=a+bi$のとき,共役な複素数$\overline{\alpha}$は$a-bi$}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {% $\alpha=a+bi$のとき,共役な複素数$\overline{\alpha}$は% \[a-bi\]% }% {\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{i}}% {$z$が実数かつ,$\overline{z}=z$ならば,$z$が実数。}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{b}}% {$z$が実数かつ,$\overline{z}=z$ならば,$z$が実数。}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{i}}% {$z$が純虚数ならば,$\overline{z}=-z\数式カンマスペース z\neq0$}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{b}}% {% $z$が純虚数ならば,% \[\overline{z}=-z\数式カンマスペース z\neq0\]% }% {\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{i}}% {$\overline{z}=-z\数式カンマスペース z\neq0$ならば,$z$が純虚数。 }{\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{b}}% {% \[\overline{z}=-z\数式カンマスペース z\neq0\]% ならば,$z$が純虚数。 % }% {\relax}% \ifthenelse{\equal{#1}{性質D}\AND\equal{#2}{i}}% {$\overline{\alpha+\beta}=\overline{\alpha}+\overline{\beta}$}{\relax}% \ifthenelse{\equal{#1}{性質D}\AND\equal{#2}{b}}% {\[\overline{\alpha+\beta}=\overline{\alpha}+\overline{\beta}\]}{\relax}% \ifthenelse{\equal{#1}{性質E}\AND\equal{#2}{i}}% {$\overline{\alpha-\beta}=\overline{\alpha}-\overline{\beta}$}{\relax}% \ifthenelse{\equal{#1}{性質E}\AND\equal{#2}{b}}% {\[\overline{\alpha-\beta}=\overline{\alpha}-\overline{\beta}\]}{\relax}% \ifthenelse{\equal{#1}{性質F}\AND\equal{#2}{i}}% {$\overline{\alpha\beta}=\overline{\alpha}\overline{\beta}$}{\relax}% \ifthenelse{\equal{#1}{性質F}\AND\equal{#2}{b}}% {\[\overline{\alpha\beta}=\overline{\alpha}\overline{\beta}\]}{\relax}% \ifthenelse{\equal{#1}{性質G}\AND\equal{#2}{i}}% {$\overline{\Ttyuukakko{\bunsuu{\alpha}{\beta}}}=\bunsuu{\overline{\alpha}}{\overline{\beta}}$}{\relax}% \ifthenelse{\equal{#1}{性質G}\AND\equal{#2}{b}}% {\[\overline{\Ttyuukakko{\bunsuu{\alpha}{\beta}}}=\bunsuu{\overline{\alpha}}{\overline{\beta}}\]}{\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% $\alpha=a+bi\数式カンマスペース\beta=c+di$\quad($a\数式カンマスペース b c\数式カンマスペース d$は実数かつ$a\neq0\数式カンマスペース c\neq0$)として,% \begin{align*}% \overline{\alpha+\beta}&=\overline{\Ttyuukakko{a+c}+\Ttyuukakko{b+d}i}&\\% &=\Ttyuukakko{a+c}-\Ttyuukakko{b+d}i&\\% &=\Ttyuukakko{a-ci}+\Ttyuukakko{b-di}&\\% &=\overline{\alpha}+\overline{\beta}% \end{align*}% \begin{align*}% \overline{\alpha\beta}&=\overline{\Ttyuukakko{a+bi}\Ttyuukakko{c+di}}&\\% &=\overline{\Ttyuukakko{ac-bd}+\Ttyuukakko{ad+bc}i}&\\ &=\Ttyuukakko{ac-bd}-\Ttyuukakko{ad+bc}i&\\% &=\Ttyuukakko{a-bi}\Ttyuukakko{c-di}&\\% &=\overline{\alpha}\overline{\beta}% \end{align*}% \証明終了% }% {\relax}% }% \NewDocumentCommand{\複素数の絶対値}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {複素数$z=a+bi$に対して,$\Tzettaiti{z}=\Tzettaiti{a+bi}=\根号{a^2+b^2}$}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {% 複素数$z=a+bi$に対して,% \[\Tzettaiti{z}=\Tzettaiti{a+bi}=\根号{a^2+b^2}\]% }% {\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{i}}% {$\Tzettaiti{z}=\Tzettaiti{\overline{z}}=\Tzettaiti{-z}$}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{b}}% {\[\Tzettaiti{z}=\Tzettaiti{\overline{z}}=\Tzettaiti{-z}\]}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{i}}% {$z\overline{z}=\Tzettaiti{z^2}$}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{b}}% {\[z\overline{z}=\Tzettaiti{z^2}\]}{\relax}% }% \NewDocumentCommand{\極形式}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {複素数$\alpha=a+bi$について,$\alpha=r\Ttyuukakko{\cos\theta+i\sin\theta}\text{\ (ただし$z>0$)}$また,$r=\Tzettaiti{\alpha}=\根号{a^2+b^2}\数式カンマスペース\cos\theta=\bunsuu{a}{r}\数式カンマスペース\sin\theta=\bunsuu{b}{r}$を極形式という。}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {% 複素数$\alpha=a+bi$について,% \[\alpha=r\Ttyuukakko{\cos\theta+i\sin\theta}\text{\ (ただし$z>0$)}\]% また,$r=\Tzettaiti{\alpha}=\根号{a^2+b^2}\数式カンマスペース\cos\theta=\bunsuu{a}{r}\数式カンマスペース\sin\theta=\bunsuu{b}{r}$を極形式という。% }% {\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{i}}% {% $\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$を複素数とする。$\alpha=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\beta=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}$のとき,\par% $\alpha\beta=r_{1}r_{2}\Tdaikakko{\cos\Ttyuukakko{\theta_{1}+\theta_{2}}+i\sin\Ttyuukakko{\theta_{1}+\theta_{2}}}$}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{b}}% {% $\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$を複素数とする。$\alpha=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\beta=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}$のとき,% \[\alpha\beta=r_{1}r_{2}\Tdaikakko{\cos\Ttyuukakko{\theta_{1}+\theta_{2}}+i\sin\Ttyuukakko{\theta_{1}+\theta_{2}}}\]% }% {\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{i}}% {% $\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$を複素数とする。$\alpha=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\beta=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}$のとき,\par% $\bunsuu{\alpha}{\beta}=\bunsuu{r_{1}}{r_{2}}\Tdaikakko{\cos\Ttyuukakko{\theta_{1}+\theta_{2}}+i\sin\Ttyuukakko{\theta_{1}+\theta_{2}}}$}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{b}}% {% $\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$を複素数とする。$\alpha=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\beta=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}$のとき,% \[\bunsuu{\alpha}{\beta}=\bunsuu{r_{1}}{r_{2}}\Tdaikakko{\cos\Ttyuukakko{\theta_{1}+\theta_{2}}+i\sin\Ttyuukakko{\theta_{1}+\theta_{2}}}\]% }% {\relax}% }% \NewDocumentCommand{\偏角}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {% 複素数$\alpha=a+bi$について,$\alpha=r\Ttyuukakko{\cos\theta+i\sin\theta}$\par ただし$z>0$のとき$\theta$を偏角といい,$\mathrm{aug}\alpha$で表す。% }% {\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {% 複素数$\alpha=a+bi$について,% \[\alpha=r\Ttyuukakko{\cos\theta+i\sin\theta}\]% ただし$z>0$のとき$\theta$を偏角といい,% \[\mathrm{aug}\alpha\]% で表す。% }% {\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{i}}% {$\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$を複素数とする。$\alpha=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\beta=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}$のとき,$\theta_{1}=\mathrm{arg}\alpha$また,$\mathrm{arg}\alpha=\theta_{1}+2n\pi$ ($n$は整数)}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{b}}% {% $\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$を複素数とする。$\alpha=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\beta=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}$のとき,% \[\theta_{1}=\theta_{1}+2n\pi=\mathrm{arg}\alpha\]% ($n$は整数)% }% {\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{i}}% {$\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$を複素数とする。$\alpha=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\beta=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}$のとき,$\mathrm{arg}z_{1}z_{2}=\mathrm{arg}z_{1}+\mathrm{arg}z_{2}$}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{b}}% {% $\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$を複素数とする。$\alpha=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\beta=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}$のとき,% \[\mathrm{arg}z_{1}z_{2}=\mathrm{arg}z_{1}+\mathrm{arg}z_{2}\]% }% {\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{i}}% {$\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$を複素数とする。$\alpha=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\beta=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}$のとき,$\mathrm{arg}\bunsuu{z_{1}}{z_{2}}=\mathrm{arg}z_{1}-\mathrm{arg}z_{2}$}{\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{b}}% {% $\alpha\数式カンマスペース\beta\数式カンマスペース\gamma$を複素数とする。$\alpha=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\beta=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}$のとき,% \[\mathrm{arg}\bunsuu{z_{1}}{z_{2}}=\mathrm{arg}z_{1}-\mathrm{arg}z_{2}\]% }% {\relax}% }% \NewDocumentCommand{\ドモアブルの定理}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {$n$が整数のとき,$\Ttyuukakko{\cos\theta+i\sin\theta}^{n}=\cos n\theta+i\sin n\theta$}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% $n$が整数のとき,% \[\Ttyuukakko{\cos\theta+i\sin\theta}^{n}=\cos n\theta+i\sin n\theta\]% }% {\relax}% \ifthenelse{\equal{#1}{証明}}% {% \証明開始% 複素数% \[\alpha_{1}=r_{1}\Ttyuukakko{\cos\theta_{1}+i\sin\theta_{1}}\数式カンマスペース\alpha_{2}=r_{2}\Ttyuukakko{\cos\theta_{2}+i\sin\theta_{2}}\ldots\alpha_{n}=r_{n}\Ttyuukakko{\cos\theta_{n}+i\sin\theta_{n}}\] に対して,$\alpha_{1}\alpha_{2}\cdots\alpha_{n}$を考えると,三角関数の積和の公式から% \[\alpha_{1}\alpha_{2}\cdots\alpha_{n}=r_{1}r_{2}\cdots r_{n}\Tdaikakko{\cos\Ttyuukakko{\theta_{1}+\theta_{2}+\cdots+\theta_{n}}+i\sin\Ttyuukakko{\theta_{1}+\theta_{2}+\cdots+\theta_{n}}}\]% となる。ここで,$\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}$のとき,% \[\alpha^{n}=r^{n}\Ttyuukakko{\cos\theta+i\sin\theta}^{n}=r^{n}\Ttyuukakko{\cos n\theta+i\sin n\theta}\]% \[\Leftrightarrow\Ttyuukakko{\cos\theta+i\sin\theta}^{n}=\cos n\theta+i\sin n\theta\]% を得る。% \証明終了% }% {\relax}% }% \NewDocumentCommand{\放物線}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {定点$F$ (焦点)と$F$を通らない直線$l$ (準線)があるとき,焦点と準線からの距離の和が一定な点の軌跡。}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {定点$F$ (焦点)と$F$を通らない直線$l$ (準線)があるとき,焦点と準線からの距離の和が一定な点の軌跡。}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{i}}% {放物線は$y^2=4px$と表せられる。}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{b}}% {% 放物線は% \[y^2=4px\]% と表せられる。% }% {\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{i}}% {放物線の焦点は$F\Ttyuukakko{p\数式カンマスペース 0}$}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{b}}% {% 放物線の焦点は% \[F\Ttyuukakko{p\数式カンマスペース 0}\]% }% {\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{i}}% {放物線の準線は$x=-p$}{\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{b}}% {% 放物線の準線は% \[x=-p\]% }% {\relax}% }% \NewDocumentCommand{\楕円}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {二つの焦点$F$と$F'$からの距離の和が一定な点の軌跡。}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {二つの焦点$F$と$F'$からの距離の和が一定な点の軌跡。}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{i}}% {楕円は$\bunsuu{x^2}{a^2}+\bunsuu{y^2}{b^2}=1$と表せられる。}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{b}}% {% 楕円は% \[\bunsuu{x^2}{a^2}+\bunsuu{y^2}{b^2}=1\]% と表せられる。% }% {\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{i}}% {楕円の焦点は$F\Ttyuukakko{\根号{a^2-b^2}\数式カンマスペース 0}$と,$F'\Ttyuukakko{\根号{a^2-b^2}\数式カンマスペース 0}$}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{b}}% {% 楕円の焦点は% \[F\Ttyuukakko{\根号{a^2-b^2}\数式カンマスペース 0} F'\Ttyuukakko{\根号{a^2-b^2}\数式カンマスペース 0}\]% }% {\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{i}}% {楕円の二つの焦点からの距離の和は$2a$である。}{\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{b}}% {% 楕円の二つの焦点からの距離の和は% \[2a\]% }% {\relax}% }% \NewDocumentCommand{\双曲線}{ m O{i} }% {% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{i}}% {二つの焦点$F$と$F'$からの距離の差が$0$でなく一定な点の軌跡。}{\relax}% \ifthenelse{\equal{#1}{定義}\AND\equal{#2}{b}}% {二つの焦点$F$と$F'$からの距離の差が$0$でなく一定な点の軌跡。}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{i}}% {双曲線は$\bunsuu{x^2}{a^2}-\bunsuu{y^2}{b^2}=1$と表せられる。}{\relax}% \ifthenelse{\equal{#1}{性質A}\AND\equal{#2}{b}}% {% 双曲線は% \[\bunsuu{x^2}{a^2}-\bunsuu{y^2}{b^2}=1\]% と表せられる。% }% {\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{i}}% {双曲線の焦点は$F\Ttyuukakko{\根号{a^2+b^2}\数式カンマスペース 0}$と,$F'\Ttyuukakko{\根号{a^2+b^2}\数式カンマスペース 0}$}{\relax}% \ifthenelse{\equal{#1}{性質B}\AND\equal{#2}{b}}% {% 双曲線の焦点は% \[F\Ttyuukakko{\根号{a^2+b^2}\数式カンマスペース 0} F'\Ttyuukakko{\根号{a^2+b^2}\数式カンマスペース 0}\]% }% {\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{i}}% {双曲線の二つの焦点からの距離の差は$2a$ }{\relax}% \ifthenelse{\equal{#1}{性質C}\AND\equal{#2}{b}}% {% 双曲線の二つの焦点からの距離の差は% \[2a\]% }% {\relax}% \ifthenelse{\equal{#1}{性質D}\AND\equal{#2}{i}}% {双曲線の漸近線は$\bunsuu{x}{a}-\bunsuu{y}{b}=0\数式カンマスペース\bunsuu{x}{a}+\bunsuu{y}{b}=0$}{\relax}% \ifthenelse{\equal{#1}{性質D}\AND\equal{#2}{b}}% {% 双曲線の漸近線は% \[\bunsuu{x}{a}-\bunsuu{y}{b}=0\数式カンマスペース\bunsuu{x}{a}+\bunsuu{y}{b}=0\]% }% {\relax}% }% \NewDocumentCommand{\連続な関数}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {定義域の$x$の値$a$に関して,$\displaystyle \lim_{x \to a}f\Ttyuukakko{x}=f\Ttyuukakko{a}$のとき,$f\Ttyuukakko{x}$は$x=a$で連続。}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% 定義域の$x$の値$a$に関して,% \[\displaystyle \lim_{x \to a}f\Ttyuukakko{x}=f\Ttyuukakko{a}\]% のとき,$f\Ttyuukakko{x}$は$x=a$で連続。% }% {\relax}% }% \NewDocumentCommand{\中間値の定理}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {閉区間$[a\数式カンマスペース b]$で連続な関数$f\Ttyuukakko{x}$について,$f\Ttyuukakko{a}\neq f\Ttyuukakko{b}$のとき,$f\Ttyuukakko{a}$と$f\Ttyuukakko{b}$の間の任意の実数$k$について,$f\Ttyuukakko{c}=k$となる$c$が少なからず一つ存在する。}{\relax}% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{b}}% {% 閉区間$[a\数式カンマスペース b]$で連続な関数$f\Ttyuukakko{x}$について,$f\Ttyuukakko{a}\neq f\Ttyuukakko{b}$のとき,$f\Ttyuukakko{a}$と$f\Ttyuukakko{b}$の間の任意の実数$k$について,% \[f\Ttyuukakko{c}=k\]% となる$c$が少なからず一つ存在する。% }% {\relax}% }% \NewDocumentCommand{\平均値の定理}{ m O{i} }% {% \ifthenelse{\equal{#1}{公式}\AND\equal{#2}{i}}% {関数$f\Ttyuukakko{x}$が閉区間$[a\数式カンマスペース b]$で連続,開区間$\Ttyuukakko{a\数式カンマスペース b}$で微分可能ならば,$\bunsuu{f\Ttyuukakko{b}-f\Ttyuukakko{a}}{b-a}=f'\Ttyuukakko{c} \Ttyuukakko{a