*

Gitinfo Lua package

Erik Nijenhuis (erik@xerdi.com)

12th February 2024

This file is maintained by Xerdi.
Bug reports can be opened at
https://github.com/Xerdi/gitinfo-1lua.

Abstract

This project aims to display git project information in PDF documents.
It’s mostly written in Lua for executing the git commands, therefore making
this package only applicable for lualatex with shell escape enabled. If
lualatex isn’t working for you, you could try gitinfo2 instead. For WTEX it
provides a set of standard macros for displaying basic information or setting
the project directory, and a set of advanced macros for formatting commits

and tags.
Contents Index
D
1 Usage 2 \dogitauthors
d Git .o 2
F
A
12 LualfTRX . .ooeee e 2 \forgitauthors
\forgitcommit
2 LaTeX Interface 2 \forgittag

2.1 Package Options 9 \forgittagseq

2.2 Basic macros 3 G
2.3 Multlple Authors 3 \gitauthor
. \gitcommit
2.4 LIS - e e e e 4 \gitdate
2.5 Tags 5 \gitdirectory
\gitemail
26 Changelog 6 \gittag ... oovvi
\gitunsetdirectory
3 Project Example 7 \gitversion

*This document corresponds to package gitinfo-lua version 1.0.1 written on 2024-02-12.

mailto:erik@xerdi.com
https://github.com/Xerdi/gitinfo-lua
https://ctan.org/pkg/gitinfo2

1 Usage

For the package to work one should work, and only work, with LuaTgX. An-
other prerequisite is that there is an available git repository either in the working
directory, or somewhere else on your machine (see section 2.2).

1.1 Git

For this package to work at a minimum, there has to be an initialized Git reposi-
tory, and preferably, at least with one commit. For example, the following minimal
example should do the trick already:

mkdir my_project

cd my_project

echo "# My Project" > README.md
git init && git commit -am "Init"

Listing 1: Minimal Git setup

Then in order for the changelog to work, the project needs to contain either
‘lightweight-" or ‘annotated’ tags. The main difference is that a lightweight tag
takes no extra options, for example: git tag 0.1. See listing 8 for more examples
on authoring and versioning with git.

1.2 Lual®TgX

For generating the document with I4TEX one must make use of lualatex. For
example, when having the main file ‘main.tex’:

lualatex -shell-escape main

latexmk -pvc -lualatex -shell-escape main

Listing 2: Generating the document with I¥TEX

Note that in both cases option -shell-escape is required. This is required for
issuing git via the commandline.

2 LaTeX Interface

2.1 Package Options

\usepackage [{opts...)]{gitinfo-lua} This package provides some options for
default formatting purposes. The author sorting is one of them. If the options
contain (contrib) the authors will be sorted based on their contributions, otherwise
the authors will be sorted alphabetically, which is the default option (alpha).
Another option is the (titlepage) option, which sets the \author and \date macros

\gitdirectory
\gitunsetdirectory

\gitversion

\gitdate

\gitauthor
\gitemail

\dogitauthors
\forgitauthors

w

accordingly. By default, it sets the local git author, equivalent to option (author).
Pass option (authors) to set all git authors of the project instead.

2.2 Basic macros

By default the main file’s directory is used as git project directory. This directory
can be manipulated with \gitdirectory{(path)}. This is only tested with rela-
tive paths on Linux. To undo this operation and switch back to the main file’s
directory use \gitunsetdirectory.

The current version can be display by using \gitversion and is equivalent to git
describe --tags --always, working for both lightweight and annotated tags.
For this project \gitversion results in 1.0.1. When the version is dirty it will be
post fixed with -<commit count>-<short ref>. For example, when this para-
graph was written, the version was displaying 0.0.1-14-gcc2bc30.

The \gitdate macro gets the most recent date from the git log. Meaning,
the last ‘short date’ variant is picked from the last commit. This short date is
formatted ISO based and is already suitable for use in packages like isodate for
more advanced date formatting.

The author’s name and email can be accessed using \gitauthor and \
gitemail. These values are based on git config user.name and git config
user.email.

2.3 Multiple Authors

When projects having multiple authors this package can help with the
\dogitauthors[({conj)] and \forgitauthors [{conj)]1{{csname)} macro. Where
\dogitauthors executes a default formatting implementation of
\git@format@author and \forgitauthors executes the given (csname) for every
author available. The optional {conj) conjunction makes it possible to even inte-
grate it further. For example, when setting the authors in pdfx, the conjunction
would be [\\sep~], so that the authors are properly separated in the document
propertiesl.

Listing 3: Formatting authors Results in

\newcommand{\myauthorformat}[2]{#1 \href{
mailto:#2}{#2}}
\forgitauthors[\\]{myauthorformat}

Alice (alice@example.com)
Bob (bob@example.com)

\dogitauthors [\\]

1See package documentation of pdfx: https://ctan.org/pkg/pdfx

mailto:alice@example.com
mailto:bob@example.com
https://ctan.org/pkg/pdfx

\gitcommit

\forgitcommit

This example is generated with the history of the git-test-project (see
section 3) and is alphabetically sorted with package option alpha.

2.4 Commits

For this section the git project of this document is used due to the fact that there
are references to revisions. The test project’s revisions change for every user, since
they get recreated every time test-scenario.sh is executed (see section 3).

[{format)]1{{csname)}H (revision)}

For displaying commit data \gitcommit can be used. The optional format
takes variables separated by a comma. The default format is h,an,ae,as,s,b.
The csname is a user defined command accepting every variable as argument.

Listing 4: Formatting a commit Results in
\newcommand{\formatcommit}[3]{#1, by #2 on \ Add value escapin
printdate{#3}} ping,

by Erik Nijenhuis on
23rd October 20232

\gitcommit[s,an,as]{formatcommit}{75dc036}

Consult man git-log for possible format variables and omit the % for every
variable.

[(format)]1{{csname)}H (rev_spec)}

For displaying multiple commits the \forgitcommit is used, which has the same
arguments as \gitcommit, but only this time the csname is executed for every
commit. The last argument rev_spec this time, however, can have no argument
or a sequence.

Listing 5: Formatting commits Results in
1 \newcommand{\formatcommits}[2]{\item #1\\\
quad -#2} e Add value escaping
2 —Erik Nijenhuis
3 \begin{itemize} .
4 \forgitcommit [s,an]{formatcommits}{75dc * Reimplement for_com-

5 \end{itemize}

mit

036...e51c481
¥ —Erik Nijenhuis

2\printdate from isodate: https://www.ctan.org/pkg/isodate

https://www.ctan.org/pkg/isodate

2.5 Tags

In this section the git-test-project is used.
The tags are mostly useful for generating changelogs. For formatting tags,
\forgittag there’s a \forgittag[(format)]{({csname)}. Again, like \forgitcommit it takes
a format, however, this time more complex, since the formatting options differ be-
tween git log and git for-each-ref. For more info regarding these formatting
options consult the man page of git-for-each-ref.

Listing 6: Formatting tags Results in
1 \newcommand{\formattags}[2]{\item Version #1\\
type: #2} e Version 0.0.1
2 type: commit

3 \begin{itemize}

4 \forgittag[refname:short,objecttypel{
formattags}

5 \end{itemize}

e Version 0.1.0
type: tag

This example shows that the versions used are mixed. This is, of course, a horrible
way to manage a project’s version, though, we’ll continue on with this hard objec-
tive. For example, if we wish to display the author of the lightweight and annotated
tag, we can do so by specifying a format using the if-then-else feature of the format
specification. The format would be: (taggername) (taggername) (authorname).
Here the taggername will show up, or if not present, the authorname will be shown
instead.

The default format specification is like the \forgitcommit format, but then
again, some bit more complex:
refname:short, (taggername) (taggername,taggeremail ,taggerdate:short)
(authorname,authoremail ,authordate:short), subject,body. This is a ro-
bust example of getting all information, being it a lightweight- or annotated tag.

\forgittagseq For displaying commits in between tags, there’s a \forgittagseq{(csname)}.
The (csname) takes exactly three arguments, namely, the (current), (next tag)
and (rev spec). The last iteration gives an empty value for (next tag) and the (rev
spec) is identical to (current).

\gittag Afterward tag info can be fetched using the \gittag[{format)]{{csname)}{(tag)}.
This macro takes the same formatting specification as \fotgittag. Beware of us-
ing \gittag for the (next tag) parameter in \forgittagseq.

All these macros put together are demonstrated in listing 7 (see next page).

S GV O R o

0 N O

10
11
12

2.6 Changelog

This example demonstrates the generation of a changelog. For simplicity’s sake,
every tag is displayed in a description environment’s item and within an
enumerate environment displaying commits in between.

Listing 7: Formatting a changelog

\section*{Changelog}
\newcommand{\commitline}[1]{\item #1}
\newcommand{\formatversion}[3]{
\item[#1]
\gittag[(taggerdate) (taggerdate:short) (authordate:short)]{
printdate}{#1}
\begin{itemize}
\forgitcommit [s]{commitline}{#3}
\end{itemize}
}
\begin{description}
\forgittagseq{formatversion}
\end{description}
Results in
Changelog

0.1.0 6th August 2017
e Add gitignore
0.0.1 5th August 2017

¢ Add intro (README.md)
o Add readme

For displaying the tagline (see line 5) we use the existing \printdate macro
of package isodate, which also takes exactly one argument For every version
sequence the commits in between are displayed (see line 7), where the last sequence
having the initial commit as second argument plays well with the \forgitcommit
macro and makes it possible to show the whole sequence of history.

© 00 ~NO O WN -

W WWWWWWWNNNDNDNNNMNDNNMNNNERPR R PBP2RP»22 2
~NOoO O WP, O OWO NP WNEFE, O OO NOOd WN - O

3 Project Example

This documentation uses an example project which gets created by the git-
scenario.sh script (see listing 8). It creates some commits having dates in the
past and different authors set. Lastly it creates a ‘lightweight-’ and ‘annotated’
tag.

To set up this scenario either do make scenario or bash scenario.sh.

Listing 8: git-scenario.sh

set -e
PROJECT_DIR="${1:-../../git-test-project}"

set_author() {
git config user.name $1
git config user.email $2
git config committer.name $1
git config committer.email $2
git config author.name $1
git config author.email $2

3

alice() {
set_author 'Alice' 'alice@example.com'

¥
bob() {
set_author 'Bob' 'bobQ@example.com'

b
charlie() {
set_author 'Charlie' 'charlie@example.com'

3

if [[-d "${PROJECT_DIR}"]1; then

rm -rf "${PROJECT_DIR}"
fi
mkdir "${PROJECT_DIR}"

cd "${PROJECT_DIR}"
git init
alice

echo "# My project" > README.md

38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54

55
56
57
58
59
60
61

git add README.md
git commit -m "Add readme" --date="2017-08-04 10:32"

bob

echo "

Another project by Alice and Bob." >> README.md

git add README.md

git commit -m "Add intro (README.md)" --date="2017-08-05 06:12"

alice

GIT_COMMITTER_DATE="2017-08-05 07:11" git tag 0.0.1

bob

curl https://raw.githubusercontent.com/github/gitignore/main/TeX.
gitignore > .gitignore

git add .gitignore

git commit -m "Add gitignore" --date="2017-08-06 12:03"

charlie

export GIT_COMMITTER_DATE="2017-08-06 08:41"
git tag -a 0.1.0 -m "Version 0.1.0"

	Usage
	Git
	LuaLaTeX

	LaTeX Interface
	Package Options
	Basic macros
	Multiple Authors
	Commits
	Tags
	Changelog

	Project Example

