
minim version 2021/1.0

author Esger Renkema
contact minim@elrenkema.nl

This is a modern plain format for the LuaTeX engine, adding improved low-level
support for many LuaTeX extensions and newer PDF features. While it can be
used as drop-in replacement for plain TeX, it probably is most useful as a basis
for your own formats.

Most features included in the format are provided by separate packages that
can be used on their own; see the packages

minim-mp for mplib (MetaPost) support
minim-math for Unicode mathematics
minim-pdf for hypertext and Tagged PDF
minim-xmp for XMP (metadata) inclusion

The documentation for the above packages will be replicated in separate chapters
below.

You can use this package by simply saying \input minim; this will load the file
minim.tex. For building your own format files, you can re-use the file minim.ini:
if you define \fmtname before inputting this file, no \dump will be performed.

Contents

Compatibility . 1
Licence . 1

Metapost 2
Metapost instances . 2
Running tex from within metapost . 3
Running lua from within metapost . 3
Tiling patterns . 4
Other metapost extensions . 4
Lua interface . 5
PDF resource management . 5
Debugging . 6
Extending metapost . 6

Mathematics 7
Styles and alphabets . 7
Character variants . 8
Setting up fonts . 8
Shorthands and additions . 9
Best practices . 10

Hypertext 11
Hyperlinks . 11
Bookmarks . 11
Page labels . 11
PDF/A . 11
Embedded files . 12
Lua module . 12

1

Tagged PDF 13
Purpose, limitations and pitfalls . 13
General overview . 14
Marked content items . 14
Artifacts . 14
Document structure . 15
Structure element aliases . 15
Manipulating the logical order . 15
Structure element options . 16
Languages . 16
Helper macros . 17

Metadata 18
Setting metadata . 18
Getting metadata . 19
Supported metadata keys . 19
Adding new keys and schemas . 19
Generated XMP . 20
Format files . 21
Register allocation . 21
Callbacks . 22
Miscellaneous functions . 23

Compatibility
One central design goal of minim is to be as unobtrusive as possible: you should
be able to safely ignore any function you do not want to use. Please get in
touch if you find this not the case.

Particular care has been taken to be compatible with ltluatex. All overlapping
functions should produce the same results and ltluatex can be loaded either
before or after minim.

One point of incompatibility exists between tikz/pgf and the pattern functionality
of minim-mp, due to conflicting implementations of pdf resource management. If
you do not use filling patterns, however, the two packages can be used together.

Licence
This package may be distributed under the terms of the European Union Public
Licence (EUPL) version 1.2 or later. An english version of this licence has been
included as an attachment to this file; copies in other languages can be obtained
at

https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12

2

https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12

Metapost

This package offers low-level mplib integration for plain luatex. The use of
multiple simultaneous metapost instances is supported, as well as running
tex or lua code from within metapost. In order to use it, simply say \input
minim-mp.tex.

After this, \directmetapost [options] { mp code } will result in a series
of images corresponding to the beginfig ... endfig statements in your mp
code. Every image will be in a box of its own.

Every call to \directmetapost opens and closes a separate metapost instance.
If you want your second call to remember the first, you will have to define a
persistent metapost instance. This will also give you more control over image
extraction. See below under „Metapost instances”. The options will also be
explained there (for simple cases, you will not need them).

The logging of the metapost run will be included in the regular log file. If an
error occurs, the logging will also be shown on the terminal.

This package can also be used as a stand-alone metapost compiler. Saying
luatex --fmt=minim-mp your_file.mp

will create a pdf file of all images in your_file.mp, in order, with page sizes
adjusted to image dimensions.

Metapost instances
For more complicated uses, you can define your own instances by saying
\newmetapostinstance [options] \id. An instance can be closed with
\closemetapostinstance \id. These are the options you can use:

Option Default Description
jobname ':metapost:' Used in error messages.
format 'plain.mp' Format to initialise the instance with.
math 'scaled' One of scaled, decimal or double.
seed nil Random seed for this instance.
catcodes 0 Catcode table for btex ... etex.
env copy of _G Lua environment; see below.

Now that you have your own instance, you can run chunks of metapost code in
it with \runmetapost \id { code }. Any images that your code may have
contained will have to be extracted explicitly. This is possible in a number of
ways, although each image can be retrieved only once.

\getnextmpimage \id – Writes the first unretrieved image to the current
node list. There, the image will be contained in a single box node.

\getnamedmpimage \id {name} – Retrieves an image by name regardless of
its position, and writes it to the current node list.

\boxnextmpimage \id box-nr – Puts the next unretrieved image in box
box-nr. The number may be anything tex can parse as a number.

\boxnamedmpimage \id box-nr {name} – Puts the image named name in box
box-nr.

Say \remainingmpimages \id for the number of images not yet retrieved.
Finally, as a shorthand, \runmetapostimage \id { code } will add beginfig

3

... endfig to your code and write the resulting image immediately to the
current list.

Running tex from within metapost
You can include tex snippets with either maketext "tex text" or btex ...
etex statements. The tex code will be executed in the current environment
without an extra grouping level. The result of either statement at the place
where it is invoked is an image object of the proper dimensions that can be
moved, scaled, rotated and mirrored. You can even specify a colour. Its contents,
however, will only be added afterwards and are invisible to metapost.

Arbitrary tex statements may be included in verbatimtex ... etex, which
may occur anywhere. These btex and verbatimtex statements are executed in
the order they are given.

You can also use metapost’s infont operator, which restricts the text to-be-
typeset to a single font, but returns an picture containing a picture for each
character. The right-hand argument of infont should either be a (numerical)
font id or the (cs)name of a font.

One possible use of the infont operator is setting text along curves:

beginfig(1)
 save t, w, r, a; picture t;
 t = "Running TeX from within MetaPost" infont "tenrm";
 w = xpart lrcorner t = 3.141593 r;
 for c within t :
 x := xpart (llcorner c + lrcorner c)/2;
 a := 90 - 180 x/w;
 draw c rotatedaround((x,0), a)
 shifted (-r*sind(a)-x, r*cosd(a));
 endfor
endfig;

R
un

ni
ng

TeX
from within M

etaPost

Running lua from within metapost
You can call out to lua with runscript "lua code". For this purpose, each
metapost instance carries around its own lua environment so that assignments
you make are local to the instance. (You can of course order the global environ-
ment to be used by giving env = _G as option to \newmetapostinstance.)

If your lua snippet returns nothing, the runscript call will be invisible to
metapost. If on the other hand it does return a value, that value will have to be
translated to metapost. Numbers and strings will be returned as they are (so
make sure the string is surrounded by quotes if you want to return a metapost
string). You can return a point or colour by returning an array of two to four
elements. For other return values, tostring() will be called.

Do keep in mind that metapost and lua represent numbers in different ways
and that rounding errors may occur. For instance, metapost’s decimal ep-
silon returns 0.00002, which metapost understands as 1/65536, but lua as

4

1/50000. Use the metapost macro hexadecimal instead of decimal for passing
unambiguous numbers to lua.

Additionally, you should be aware that metapost uses slightly bigger points
than tex, so that epsilon when taken as a dimension is not quite equal to 1sp.
Use the metapost macro scaledpoints for passing to lua a metapost dimension
as an integral number of scaled points.

Tiling patterns
The withpattern(<name>) added to a fill statement will fill the path with a
pattern instead of a solid colour. If the patterns contains no colour information
of itself, it will have the colour given by withcolor. Stroking operations (the
draw part) will not be affected. Patterns will always look the same, irrespective
of any transformations you apply to the picture.

To define a pattern, sketch it between beginpattern(<name>) ... endpat-
tern(xstep, ystep); where <name> is a suffix and (xstep, ystep) are the
horizontal and vertical distances between applications of the pattern. Inside the
definition, you can draw the pattern using whatever coordinates you like; assign
a value to the matrix transformation to specify how the pattern should be
projected onto the page. This matrix will also be applied to xstep and ystep.

You can also change the internal variable tilingtype and the normal variable
painttype, although the latter will be set to 1 automatically if you use any
colour inside the pattern definition. Consult the pdf specification for more
information on these parameters.

You can use text inside patterns, as in this example:

% define the pattern
picture letter; letter = maketext("a");
beginpattern(a)
 draw letter rotated 45;
 matrix = identity rotated 45;
endpattern(12pt,12pt);
% use the pattern
beginfig(1)
 fill fullcircle scaled 3cm withpattern(a) withcolor 3/4red;
 draw fullcircle scaled 3cm withpen pencircle scaled 1;
endfig;

A small pattern library is available in the minim-hatching.mp file; see the
accompanying documentation sheet for an overview of patterns. Tiling patterns
cannot be used together with tikz/pgf; see below under ‘Resource management’.

Other metapost extensions
There is currently no support for the glyph of operator.

You can set the baseline of an image with baseline(p). There, p must either
be a point through which the baseline should pass, or a number (where an
x coordinate of zero will be added). Transformations will be taken into account,
hence the specification of two coordinates. The last given baseline will be used.

Previously-defined box resources can be included with boxresource(nr). The
result will be an image object with the proper dimensions. This image can be

5

transformed in any way you like, but you cannot inspect the contents of the
resource within metapost.

You can write to tex’s log directly with texmessage "hello".

You can write direct pdf statements with special "pdf: statements" and
you can add comments to the pdf file with special "pdfcomment: comments".
Say special "latelua: lua code" to insert a late_lua whatsit. All three
specials can also be given as pre- or postscripts to another object. In that case,
they will be added before or after the object they are attached to.

Lua interface
In what follows, you should assume M to be the result of

M = require('minim-mp')

as this package does not claim a table in the global environment for itself.

You can open a new instance with nr = M.open {options}. This returns an
index in the M.instances table. Run code with M.run (nr, code) and close
the instance with M.close (nr). Images can be retrieved only with box_node
= M.get_image(nr, [name]); omit the name to select the first image. Say
nr_remaining = M.left(nr) for the number of remaining images.

Each metapost instance is a table containing the following entries:

jobname The jobname.
instance The primitive metapost instance.
results A linked list of unretrieved images.
status The last exit status (will never decrease).
catcodes Number of the catcode table used with btex ... etex.
env The lua environment for runscript.

PDF resource management
This package can add /Pattern and /ColorSpace entries to all page and xform
resource dictionaries. Both refer to a single, global dictionary shared by all
pages. Support for other keys may be added in the future.

At the moment, this implementation only serves tiling pattern support; the
mechanism will be enabled automatically at the first use of a tiling pattern
(merely defining a pattern will not enable it) and is of little use for anything
else. The relevant tables, should you want to expand on it yourself, are
M.colourspaces and M.patterns; see the source file for additional instructions.

Since pdf resource management must be done exactly once, this package may
clash with other graphics packages doing the same. In particular, minim’s
resource management will cause double (and thus invalid) entries in pages’
attribute dictionaries when used together with tikz or pgf. They can be used
together, however, if you do not use minim’s tiling patterns.

6

Debugging
You can enable (global) debugging by saying debug_pdf to metapost or M.en-
able_debugging() to lua. This will write out a summary of metapost object
information to the pdf file, just above the pdf instructions that object was
translated into. For this purpose, the pdf will be generated uncompressed.
Additionally, a small summary of every generated image will be written to log
and terminal.

Extending metapost
You can extend this package by adding new metapost specials. Specials should
have the form "identifier: instructions" and can be added as pre- or
postscript to metapost objects. A single object can carry multiple specials and a
special "..." statement is equivalent to an empty object with a single prefix.

Handling of specials is specified in three lua tables: M.specials, M.prescripts
and M.postscripts. The identifier above should equal the key of an entry
in the relevant table, while the value of an entry in one of these tables should
be a function with three parameters: the internal image processor state, the
instructions from above and the metapost object itself.

If the identifier of a prescript is present in the first table, the corresponding
function will replace normal object processing. Only one prescript may match
with this table. Functions in the the other two tables will run before or after
normal processing.

Specials can store information in the user table of the picture that is being
processed; this information is still available inside the finish_mpfigure callback
that is executed just before the processed image is surrounded by properly-
dimensioned boxes.

The M.init_files table contains the list of metapost files that new instances
are initialised with. The actual format will be loaded after the files in this table.

7

Mathematics

This package gives a simple and higly-configurable way of using unicode and
OpenType mathematics with plain LuaTeX, making use of most of the latter
engine’s new capabilities in mathematical typesetting. Also included are proper
settings and definitions for nearly all unicode mathematical characters, as well
as a few shorthands and helper macros that seemed useful additions.

Load the package by saying \input minim-math.tex; this will set up luatex
for using opentype mathematical fonts and unicode math input. It will not,
however, select mathematical fonts for you. That you will have to do for yourself;
see below for instructions.

Styles and alphabets
For some (mostly alphabetical) characters, multiple variants are available, e.g.
𝐴A𝐀𝑨𝔸𝔄𝕬𝒜𝓐. You can (locally) override the default style of these with
\mathstyle {style} (equivalent to the old \bf, \rm etc.) or with one of the
shorthands that apply the style to their argument only:

Shorthand Value of style Result
\mup up/rm ABC
\mit it 𝐴𝐵𝐶
\mbf bf 𝐀𝐁𝐂
\mbfit bfit 𝑨𝑩𝑪
\mbb bb 𝔸𝔹ℂ
\frak frak 𝔄𝔅ℭ
\bffrak bffrak 𝕬𝕭𝕮
\scr cal/scr 𝒜ℬ𝒞
\bfscr bfscr 𝓐𝓑𝓒

Styles without shorthand are sans/sf, sfit, sfbf, sfbfit, tt/mono and finally
the special value clear for using the default style. You can use the shorthands
directly in sub- and superscripts: v^\scr F will result in 𝑣ℱ.

While math families are not used anymore for switching between styles (see
below), you still can use \fam with the values 0, 1, 2, 4, 5, 6 or 7 for doing so.
This means that plain tex’s \rm, \it, \cal, \sl, \bf and \tt can still be used
(at least in math mode).

Please note that \mup is not the right choice for upright multiletter symbols
or operators: you should use \mord or \mop instead (see near the end of this
chapter). For nonmathematical text, you should use \text instead of \mup.

The default properties of characters can be set with one of the following three
commands:

 \mathmap {character list} {style}
 \mathclass {character list} {class}
 \mathfam {character list} nr

There, style is one of the above and class is the name of a class as below.
Finally, the character list should be a comma-separated list with elements
of one of the following forms:

1. a list of characters, like abc or \partial or ℝ;
2. a character range, like `A-`Z, 65-90 or "41-"5A;

8

3. one of the alphabets [Ll]atin, [Gg]reek, or digits;
4. one of the style groups bold, boldgreek, sans, sansgreek, mono, black-

board, fraktur or script;
5. the name of a math class: ord, op, bin, rel, fence, open, close or punct.

Note that unicode is somewhat irregular in its encoding of mathematical
letters; this is taken into account when using ranges as under (2) above. Thus,
`\mscra-`\mscrz really gives you all lowercase script characters, despite e.g. ℯ
being well outside that range.

The default style settings are \mathmap {latin, greek, Latin}{it}. Since
the math family setting is not used anymore for selecting different styles, the
default family of every symbol is zero. Instead, you can use \mathfam for mixing
fonts (see below). The class option to \mathclass should be one of the names
under 5.

Character variants
You can change the default appearance of several greek characters with \use-
mathvariant {chars} or \usemathdefault {chars}, where chars is a list of
normal greek characters. As in unicode but against tex’s tradition, the variants
are 𝜖𝜗ϴ𝜘𝜛𝜚𝜙 and the defaults 𝜀𝜃Θ𝜅𝜋𝜌𝜑. The macros \varepsilon etc. have
been updated to reflect the unicode variants.

The appearance of root symbols can be set with \closedroots (
√

2) and
\normalroots (

√
2, the default).

Say \unicodedots to use the unicode dots characters (…⋮⋰⋱) and \tradi-
tionaldots to construct these characters from periods (. . .

..., the default).
Both settings affect the meaning of both the actual characters and the \xdots
macros (𝚡 ∈ {𝚕, 𝚟, 𝚌, 𝚊, 𝚍}). Unlike in traditional plain tex, the traditional dots
are available in script sizes, too.

Say \decimalcomma and have commas appear as 1,2 instead of 1, 2 (\nodecim-
alcomma restores the default). The explicit \comma, like \colon, will always be
punctuation.

The behaviour of limits on integral signs can be set by redefining \intlimits
(the default is \let \intlimits = \nolimits).

If you want to change the meaning (inside math mode) altogether for a single
character, you can use the commands \mathdef and \mathlet. For example,
by default, you can use the letter ħ for the reduced planck constant ℏ; this has
been made so with \mathdef ħ {\hbar} (you could also have said \mathlet
ħ \hbar).

Setting up fonts
The minimum you need do to set up a mathematical font is this:

\font\tenmath
 {Latin Modern Math:mode=base;script=math;ssty=0} at 10pt
\font\tenmaths
 {Latin Modern Math:mode=base;script=math;ssty=1} at 7pt
\font\tenmathss
 {Latin Modern Math:mode=base;script=math;ssty=2} at 5pt
\textfont 0 = \tenmath

9

\scriptfont 0 = \tenmaths
\scriptscriptfont 0 = \tenmathss

Note that you only have to set up the font for a single family: opentype
mathematical fonts typically contain all necessary variants of all mathematical
characters. Therefore, the \fam setting has been made a no-op (use \setfam if
you really need the old primitive) and the default family of all symbols has
been set to zero.

As mentioned above, you can still change the family number of specific characters
and this allows you to mix mathematical fonts. For instance, if you dislike the
current blackboard bold characters, just assign a second font to family 1 and
say \mathfam {blackboard} 1. Less useful are the parameters \accentfam,
\radicalfam and \extensiblefam that control the family of all accents, radicals
and extensibles.

Shorthands and additions
You can use \text for adding nonmathematical text to your equations. It
will behave well in sub- and superscripts: \text{word}^\text{word} gives
wordword. By default, the font used is the normal mathematical font. You can
change this by setting the \textfam parameter to some nonzero value and
assigning a different font to that family (see above). You probably want to do
this, since most commonly-used mathematical fonts do not include a normal
kerning table.

All the usual arrows can be made extensible by prefacing them with an x,
including \xmapsto and \xmapsfrom. Alternatively, you can use \→ etc. as
shorthands. Additionally, you can use the following:

Shorthand Result

\bra x, \ket y ⟨𝑥| , |𝑦⟩

\braket x y ⟨𝑥|𝑦⟩

\norm x, \Norm x |𝑥| , ‖𝑥‖

x \stackrel ?= y 𝑥 ?= 𝑦

x \stackbin a+ y 𝑥
𝑎
+ 𝑦

f\inv 𝑓 −1 (cf. 𝑓−1)

a \xrightarrow[down]{up} b 𝑎
𝑢𝑝

→→→→→→→
𝑑𝑜𝑤𝑛

𝑏

a \xeq[down]{up} b 𝑎 𝑢𝑝===========
𝑑𝑜𝑤𝑛

𝑏

\frac12, \tfrac12, \dfrac12 1
2 , 1

2 ,
1
2

Also new are the operators \Tr, \tr, \Span, \GL, \SL, \SU, \U, \SO, \O, \Sp, \im,
\End, \Aut, \Dom and \Codom. You can define new operators with \newmathop
and \newlargemathop: \newmathop{op} will define the new operator \op. For
single use of an upright symbol, operator or large operator you can use \mord,
\mop and \mlop. The difference between \mord and \mup is that \mord also
applies the correct symbol spacing.

The accents \overbrace, \underbracket etc. allow a label between square
brackets: $$\underbrace[=1]{(x^2+y^2)}$$ gives

(𝑥2 + 𝑦2)⏟
=1

.

10

Best practices
The following remarks on mathematical typesetting have no relation to the
contents of this package; I have included them because I find them hard to
remember.

1. \eqalign gives a vertically centered box and can occur many times in
an equation, while \eqalignno and \leqalignno span whole lines (put
the equation numbers in the third column). All assume the relation (or
operator) appears at the right hand side of the ampsersand.

2. The command \displaylines can only have one column that spans the
whole line (and you will have to add the equation number by hand).

3. Further alignment commands are \cases, \matrix, \pmatrix (with paren-
theses) and \bordermatrix (includes labels for lines and columns).

4. Finetuning alignments can be done with \smash, \phantom, \hphantom
and \vphantom.

5. Small matrices like (1 2
3 4) can be made by misusing \choose or \atop.

6. If you start a line with a binary operator, put a {} before it: this way, tex
recognises it as such.

7. Thin spaces (\,) should be inserted: before d𝑥, before units, after factorials
and after \dots if those are followed by a closing parenthesis.

8. Whether the differential operator should be set upright or not is as of yet
an open question in mathematics.

9. You should prefer \bigr and \bigl etc. over \big, \Big, \bigg and \Bigg.
10. An overview of mathematical symbols, with control sequences and their

availability in different fonts, can be found in unimath-symbols.pdf, which
is part of the unicode-math package.

11

Hypertext

This chapter and the next document the support of the modern pdf features
provided by the minim-pdf package. Load it by saying \input minim-pdf. The
next chapter concerns the creation of tagged pdf; all other features of the
package are described here.

Hyperlinks
For most simple cases, you can use \hyperlink [name {...} | url {...}]
... \endlink for linking to a named destination in your own document or to
an external hyperlink respectively. There is no support for nonsimple cases.

A named destination can be created with \nameddestination {...} (also in
horizontal mode, unlike the backend primitive) and if you cannot think of a
name, \newdestinationname should generate a unique one. If you need the
latter twice, \lastdestinationname gives the last generated name.

Bookmarks
Bookmarks can be added with \outline [open] [dest {name}] {title}.
Add open to have the bookmark appear initially open and say dest {name}
for having it refer to a specific named destination (otherwise, a new one will be
created where the \outline command appears).

A bookmark is automatically associated with the current structure element
and the hierarchy of structure elements determines the nesting of bookmarks.
Therefore, if you want nested bookmarks, you must precede the \outline
command with a declaration of the current structure element, even if you have
otherwise disabled tagging. See the next chapter on how to do this.

Page labels
If the page numbers of your document are not a simple sequence starting with 1,
you can use \setpagelabels [pre {prefix}] style nr for communicating
this to the pdf viewer. This command affects the page labels from the next
page on: nr should be the numerical page number of that page. The prefix
is prepended to each number and the style must be one of decimal, roman,
Roman, alphabetic, Alphabetic or none. In the last case, only the prefix is
used.

PDF/A
You can declare pdf/a conformance with \pdfalevel xy, with version 𝚡 ∈
{𝟷, 𝟸, 𝟹} and conformance level 𝚢 ∈ {𝚊, 𝚋, 𝚞}. This will set the correct pdf version
and pdfaid metadata. If the conformance level is ‘a’, tagging will be enabled
(see the next chapter). Finally, a default RGB colour profile will be included. The
conformance level can be queried from the \pdfaconformancelevel register.

Note that merely declaring conformance will not make your document pdf/a
compliant, and that minim will not warn you if it is not. However, the features
described in this chapter and the next should be enough to make pdf/a
compliance possible.

12

Also note that there currently is no documented way of choosing a different
colour profile from the default (i.e. the default rgb profile provided by the
colorprofiles package). Should you need do that, you will have to do so manually,
after disabling the automatic inclusion by saying \expandafter\let \csname
minim:default:rgb:profile\endcsname = \relax.

Finally, note that pdf/a requires that spaces are represented by actual space
characters and that discretionary hyphens are marked as soft hyphens (U+00AD).
Since both features benefit accessibility and text extraction in general, they are
enabled by default. You can disable them by setting \writehyphensandspaces
to a nonpositive value.

Embedded files
You can attach (associate) files with \embedfile <options>. The file will
be attached to the current structure element (see the next chapter) unless
the global option is given: then it will be added to the document catalog.
Arguments consisting of a single word can be given without braces and exactly
one of the options file or string must be present.
file {...} The file to embed.
string {...} The string to embed.
global Attach to the document catalog.
uncompressed Do not compress the file stream.
mimetype {...} The file’s mime type.
moddate {...}* The modification date (see * below).
desc {...} A description (the /Desc key).
relation {...} The /AFRelationship value as defined in pdf/a-3.
name {...} The file name (only required when writing a string).

* The modification date must be of the form yyyy[-m[m][-d[d]]]. A de-
fault moddate can be set with \setembeddedfilesmoddate {default}. The
default date will be expanded fully at the time of embedding. With the minim-
xmp package, a useful setting is \setembeddedfilesmoddate {\getmetadata
date}.

Lua module
The interface of the lua module (available via local M = require('minim-
pdf')) is not stable yet, and may change. One function of interest, however, is
M.pdf_string(...), wich converts a lua string to a pdf string. The surrounding
<> or () characters are included in the return value.

13

Tagged PDF

This chapter is a continuation of the previous and describes the parts of
minim-pdf that concern the creation of tagged pdf. All features in this chapter
must be explicitly enabled by setting \writedocumentstructure to a positive
value. This will be done automatically if you declare pdf/a conformance (see
above).

This part of the package is rather low-level and this chapter rather technical.
For a more general introduction to and discussion of tagged pdf, please read the
(excellent) manual of latex’s tagpdf package.

Purpose, limitations and pitfalls
The main purpose of this package is semi-automatically marking up the
(hierarchical) structure of your document, thereby creating so-called tagged pdf.
The mechanism presented here is not quite as versatile as the pdf format allows.
The most important restriction is that all content of the document must be
seen by tex’s stomach in the logical order.

Furthermore, while the macros in this package are sophisticated enough that
tagging can be done without any manual intervantion, it is quite possible and
rather easy to generate the wrong document structore, or even cause syntax
errors in the resulting pdf code. You should always check the result in an
external application.

This is the full list of limitations, pitfalls and shortcomings:

1. Document content must be seen by tex in its logical order (although you
can mark out-of-order content explicitly if you know what you are doing;
see below).

2. Artifacts cannot be split across pages. A pagebreak inmidst an artifact will
cause incorrect pdf without error or warning.

3. The contents of \localleftbox and \localrightbox must be marked
manually, probably as artifact.

4. You must mark page header, page footer and footnote rule yourself; no
default is set.

5. There currently is no way of marking xforms or other pdf objects as content
items of themselves.

6. The content of xforms (i.e. pdf objects created by \useboxresource)
should not contain tagging commands.

7. Likewise, you should be careful with box reuse: it might work, but you
should check.

8. The use of structure element attributes is currently not supported except
in a limited number of cases.

9. This package currently only supports pdf 1.7 tagging and is not yet ready
for use with pdf 2.0.

In order to help you debugging, some errors will refer you to the resulting
pdf file. If you get such errors, decompress the pdf and search for the string
‘Warning:’. It will appear in the pdf stream at the exact spot the problem
occurs.

14

General overview
When speaking about tagging, we have to do with two (or perhaps three)
separate and orthogonal tagging processes. The first is the creation of a
hierarchical document structure, made up of structure elements (SEs). The
document structure describes the logical structure of a document, made up of
chapters, paragraphs, references etc. The second tagging process is the tagging
of marked content items (MCIs): this is the partition of the actual page contents
into (disjoint) blocks that can be assigned to the proper structure element.
Finally, as a separate process, some parts of the page can be marked as artifacts,
excluding their content from both content and structure tagging.

When using this package, artifacts and structure elements (excluding paragraphs;
see below) must be marked explicitly, while marked content items will be created,
marked and assigned automatically. There is some (partial and optional) logic
for automatically arranging structure elements in their correct hierarchical
relation.

The mechanism through which this is achieved uses attributes and whatsits for
marking the contents and borders of SEs, MCIs and artifacts. At the end of the
output routine, just before the pdf page is assembled, this information will be
converted into markers inserted in the pdf stream.

Marked content items
Content items are automatically delineated at page, artifact and structure
element boundaries and terminated at paragraph or display skips. This should
relieve you from any manual intervention. However, if you run into problems,
the commands below might be helpful.

Use of ActualText, Alt or Lang attribute on MCIs, while allowed by the pdf
standard, is not supported by this package. You should set these on the structure
element instead.

The begining and ending of a content item can be forced with \startcon-
tentitem and \stopcontentitem, while \ensurecontentitem will only open
a new content item if you are currently outside any. If you need some part
to be a single content item, that can use \startsinglecontentitem ...
\stopsinglecontentitem. This will disable all SE and MCI tagging inside.

Tagging (both of MCIs and SEs) can be disabled and re-enabled locally with
\stoptagging and \starttagging.

Artifacts
Artifacts can be marked in two ways: with \markartifact {type} {...} or
with \startartifact {type} ... \stopartifact. The type is written to
the pdf attribute dictionary directly, so that if you need a subtype, you can
write e.g. \startartifact {Pagination /Subtype/Header} etc. Do make
sure your artifact does not contain a page break, as this will result in invalid
output.

Inside artifacts, other structure content markers will be ignored. Furthermore,
this package makes sure artifacts are never part of marked content items,
automatically closing and re-opening content items before and after the artifact.
While the pdf standard does not require the latter, not enforcing this seems to
confuse some pdf software.

15

Document structure
Like artifacts, structure elements can be given as \markelement {Tag} {...}
or \startelement {Tag} ... \stopelement {Tag}. Here, in many cases the
\stopelement is optional: whenever opening an element would cause a nesting
of incompatible Tags, the current element will be closed until such a nesting
is possible. Thus, opening a TR will close the previous TR, opening an H1 will
automatically close any open inline or block structure elements, opening a TOCI
will close all elements up until the current TOC etc. etc.

As a special case, the tags Document, Part, Art, Sect and Div (and their
aliases) will try and close all open structure elements up to and including the
last structure element with the same tag. (An alias will of course only match
the same alias.)

While the above can greatly reduce the effort of tagging, the logic is neither
perfect nor complete. You should always check the results in an external
application. Particular care should be taken when ‘skipping’ structure levels:
the sequence chapter – subsection – section will result in the section beneath
the subsection. If you are in doubt about an element being closed already, you
can use \ensurestopelement {Tag} instead of \stopelement to prevent an
error being raised.

All these helpful features can also be disabled by setting \strictstruc-
turetagging to a positive value. Then, every structure element will have to be
closed by an explicit closing tag, as in xml. In this case, \stopelement and
\ensurestopelement will be equivalent.

By default, P structure elements are inserted automatically at the start of
every paragraph. The tag can be changed with \nextpartag {Tag}; leaving the
argument empty will prevent marking the next paragraph. Auto-marking para-
graphs can be (locally) disabled or enabled by saying \markparagraphsfalse
or \markparagraphstrue.

Structure element aliases
New structure element tags can be created with \addstructuretype [op-
tions] Existing Alias. This will create a new structure tag named Alias
with the same properties as Existing. The properties can be modified by
specifying options: these will set values of the corresponding entry in the
structure_types table (see the lua source file for this package). Any aliases
you declare will be written to the pdf’s RoleMap only if they have actually been
used.

Manipulating the logical order
With the process outlined above, the logical order of structure elements has to
coincide with the order in which the SEs are ‘digested’ by tex. This, together
with the marked content items being assigned to structure elements in their
order of appearance, lies behind the restriction that logical and processing
orders should match.

With manual intervention, this restriction can be relaxed somewhat. Issuing
the pair \savecurrentelement ... \continueelement will append the MCIs
following \continueelement to the SE containing \savecurrentelement. Since
the assignments made here are global, this process cannot be nested; in more
complicated situations you should therefore use \savecurrentelementto\name

16

... \continueelementfrom\name which restores the current SE from a named
identifier \name.

Structure element options
The \startcontentitem command allows a few options that are not mentioned
above: its full syntax is \startcontentitem <options> {Tag}. The three most
useful options are alt for setting an alt-text (the /Alt entry in the structure
element dicionary), actual for a text replacement (/ActualText) and lang for
the language (/Lang; see the next section). The alternative and actual texts can
also be given after the fact with \setalttext{...} and \setactualtext{...}.
These apply to the current structure element.

Setting structure element attributes is not supported at this moment, except
the placement attributes block and inline, which can be given as options.

Languages
If you do not specify a language code for a structure element, its language will
be determined automatically. In order for this to work, you must associate a
language code to every used language; you can do so with \setlanguagecode
name code, where name must be an identifier used with \uselanguage {name}
and code must be a two or three-letter language code, optionally followed by a
dialect specification, a country code, and/or some other tag. Note that the
language code is associated to a language name, not to the numerical value of
the \language parameter. This allows you to assign separate codes to dialects.

There is a small set of default language code associations, which can be found
in the file minim-languagecodes.lua. It covers most languages defined by
the hyph-utf8 package, as well as (due to their ubiquitous use) many ancient
languages.

An actual language change introduced by \uselanguage will not otherwise
be acted upon by this package. Therefore, you will probably want to add
\startelement{Span} after every in-line invocation of \uselanguage.

You can set the document language with \setdocumentlanguage language-
code. If unset, the language code associated with the first \uselanguage
statement will be used, or else und (undetermined). The only function of the
document language is that it is mentioned in the pdf catalog: it has no other
influence.

New languages can be declared with \newnamedlanguage {name} {lhm} {rhm}
and new dialects with \newnameddialect {language name} {dialect name}.
Dialects will use the same hyphenation patterns (and will indeed have the same
\language value) as their parent languages; newly declared languages will start
with no hyphenation patterns. Do note that you will probably also have to
specify language codes for new languages or dialects.

This package ensures the existence of the nohyph, nolang, uncoded and un-
determined dummy languages, all without hyphenation.

17

Helper macros
For marking up an entry in a table of contents, you can use the macro
\marktocentry {dest} {lbl} {title} {filler} {pageno}, which should
insert all tags in the correct way. (The dest is a link destination and can be
empty; the lbl is a section number and can also be empty.)

For marking up tables, a whole array of helper macros is available. First,
\marktable should be given before the \halign. Then, in the template, the first
cell should start with \marktablerow and each subsequent cell with \mark-
tablecell. If your table starts with a header, insert \marktableheader before
it and \marktablebody after. Before a table footer, insert \marktablefooter.

For greater convenience, insert just \automarktable before the \halign. Then
you can leave out all the above commands (unless you \omit a template of
course). This assumes the table has a single header row and more than one
column. If you use a table for typesetting a list, you can use \marktableaslist
instead, which marks the first column as list label and the second column as list
item. Of course, this only works with two-column tables.

Finally, you can auto-tag equations as formulas by specifing \autotagformulas.
This is especially dangerous, because sometimes equations are used for lay-out
and should not be marked as such. After the latter command, auto-tagging can be
switched off and on with \stopformulatagging and \startformulatagging.

Both alt and actualtext of the Formula structure element will be set to the
(unexpanded) source code of the equation, surrounded by the appropriate
number of dollar signs. Furthermore, if \pdfaconformancelevel equals three,
the source of the formula will be attached in an embedded file with the
/AFRelation set to Source. The name of this file can be changed by redefining
\formulafilename inside the equation.

18

Metadata

This package enables simple XMP (eXtensible Metadata Platform) packet
inclusion and will automatically generate pdf/a extension schemas. Use it by
saying \input minim-xmp.tex. Thereafter, you can use \setmetadata key
{value} and \getmetadata key for setting and retrieving document-level
metadata values.

You do not need this package if you have your metadata ready-made in a
separate file, for then you can simply say
\immediate\pdfextension obj uncompressed

stream attr {/Type/Metadata /Subtype/XML}
file {your-file.xmp}

\pdfextension catalog
{/Metadata \pdffeedback lastobj 0 R}

Setting metadata
Metadata fields that contain (ordered or unordered) lists will be split on the
\metadataseparator character; this is a semicolon by default. Alternatively,
you can just make multiple assignments: these will be concatenated.

Where applicable, language alternatives can be given like \setmetadata /de
dc:title {...} or \setmetadata /{de_DE} dc:title {...}. Braces are ne-
cessary in the second case because the catcode of the underscore is not 11 or 12.
When no alternative is given, the value x-default will be used.

Instead of using \setmetadata, multiple fields can be set in one go with
\startmetadata. This way is particularly useful when assigning structured
data to a key (see later on). In this example, key1 contains a normal value,
key2 language alternatives and key3 structured data:

\startmetadata
 key1 {...}
 key2 {... (default) ...}
 /alt1 {...}
 /alt2 {...}
 key3
 /field1 {...}
 /field2 {...}
 stopmetadata

Since metadata values are read by lua as text, linebreaks and paragraphs are not
preserved. You can work around this by saying {\def\par{\Uchar"A\Uchar"A}
\setmetadata abstract {...}}.

19

Getting metadata
Metadata values can be retrieved again with \getmetadata key. This command
is fully expandible.

If the data is a list, it will be returned according to the current value of
\metadataseparator. If the data has language alternatives, the x-default
value will be returned: the alternatives are accessible by \getmetadata /lang
key.

For structured types (discussed below), \getmetadata /field key will return
the value of a single field and \getmetadata key will return all fields as
/{field1} {value1} /{field2} {value2} ... (this can be used again as
input to \startmetadata).

Supported metadata keys
Initially, the \setmetadata and \getmetadata recognise all pdf/a compatible
fields in the pdf, pdfaid, dc, xmp, xmpMM and xmpRights namespaces. Keys
should be prefixed with their namespace, e.g. dc:creator or xmp:CreatorTool.
Note that the dc namespace has lower-case fields; field names are case-sensitive.

Because the precise details of the above metadata namespaces can be confusing,
you might want use one of the aliases author (dc:creator), title (dc:title), date
(dc:date and xmp:CreateDate), language (dc:language), keywords (dc:sub-
ject and pdf:Keywords), publisher (dc:publisher), abstract (dc:description),
copyright (dc:rights), version (xmpMM:VersionID) and identifier (dc:iden-
tifier). New aliases can be defined in the aliases table of the lua module.

Adding new keys and schemas
New metadata namespaces can be added in the following way:

require('minim-xmp').add_namespace(
 'Example namespace', 'colours',
 'http://example.com/minim/colours/', {
 -- metadata keys
 Favourite = { 'Colour', 'The author’s favourite colour' },
 }, {
 -- value types
 Colour = { 'RGB Colour', {
 R = { 'Integer', 'Red component' },
 G = { 'Integer', 'Green component' },
 B = { 'Integer', 'Blue component' }
 }, prefix = 'c' },
 })

This will setup a namespace with prefix colours and one key: Favourite, of
type Colour. That value type happens to be a structured type with three fields,
which are also described. You can now use this namespace as

\startmetadata colours:Favourite /R 0 /G 0 /B 255 stopmetadata

or the equivalent but more verbose

\setmetadata/R colours:Favourite 0
\setmetadata/G colours:Favourite 0
\setmetadata/B colours:Favourite 255

20

after which the generated XMP code will be

 <rdf:Description rdf:about=""
 xmlns:colours="http://example.com/minim/colours/"
 xmlns:c="http://example.com/minim/colours/">
 <colours:Favourite rdf:parseType="Resource">
 <c:B>255</c:B>
 <c:G>0</c:G>
 <c:R>0</c:R>
 </colours:Favourite>
 </rdf:Description>

You probably will not need defining your own value types, so in most cases you
should omit the fifth argument to add_namespace. If you do define a new value
type, you can specify its prefix if it differs from the namespace prefix (as is
done above) and likewise its uri identifier if it differs from the namespace URI.

List types can be given as 'Bag TypeName' or 'Seq TypeName'; language
alternatives as 'Lang Alt'. All other types will be treated as 'Text', though
for 'Boolean', 'Integer' and 'Date' some validation is performed when
setting values.

Additional metadata value type handling can be defined in the getters and
setters tables of the lua module. Appropriate entries to those tables will be
generated automatically for new structured types (which is why you could set
the colour like we did above). Value types without fields, however, will be stored
and retrieved as if they were Text until you provide another way.

Generated XMP
All metadata will be written to the PDF file uncompressed.

The \metadatamodification setting controls whether XMP packets will be
marked as read-only (value 0; default) or writeable (value 1). Writeable XMP
packets will be padded with about 2 kB of whitespace.

If the document-level metadata contains values in the pdfaid namespace,
metadata extension schemas will be appended to the document-level metadata
packet automatically. These extension schema’s will only include keys that have
been set somewhere, though they need not have been set in the document-level
metadata. No extension schemas are generated for the built-in namespaces, as
they are already included in the pdf/a standards.

This chapter describes the programming helper modules on which all the above
modules depend. It mainly concerns register allocation, callback management
and format file inclusion.

They can be loaded separately by saying \input minim-alloc; thereafter, you
can use local M = require('minim-alloc') to access the lua interface. In
this chapter, when discussing lua functions, you are assumed to have issued the
latter statement, so that the table M refers to the contents of this module.

The callback-related code lives in a separate file that can and must be loaded
separately as local C = require('minim-callbacks'). This is the only file
in this collection that does not itself depend on the minim-alloc module.

There is a large functional overlap between this module and the ltluatex package.
You can use both at the same time, however, and the order in which you load
both packages should not matter.

21

Format files
A major motivation for writing this module (and not, instead, depending on
ltluatex.tex) is the ability to write lua-heavy code that can be safely included
in format files. For this purpose, the register allocation functions described
below allow ensuring that the allocation is made only once.

Apart from registers, you need only do two more things to make your code
format file safe. The first is saying M.remember('your-file.lua') somewhere,
anywhere. This will mark your file for inclusion in the format. At the start of
every job, all remembered files will be executed (in order) and their return
values will be stored to be retrieved whenever you say require('your-file').
Note that while this feature does not improve speed in any meaningful way, it
will ensure the lua file used by the format is identical to the one used to create
it.

It does mean, however, that your file may be executed twice: once when building
the format and once when the format is used. In most cases (e.g. callback
registration) this is exactly what you want. Sometimes however, you may
need to store variable (configurable) data in the format file. You can do this
by saying local t = M.saved_table('identifier', default-table). This
will retrieve the table from the format file if possible; otherwise, it will return
default-table and mark it to be saved to the format. A missing second
argument is equivalent to an empty table. Saved tables may only contain
(arbitrary but non-cyclic nestings of) tables, numbers and strings.

Register allocation
For allocating the new luatex registers, you can use the following: \newfunction,
\newattribute, \newwhatsit, \newluabytecode, \newluachunkname, \new-
catcodetable and \newuserrule. Note the one difference with ltluatex, which
has \newluafunction instead. (The reason for this is that ltluatex, instead of
a more sensible method, uses this macro for determining whether it has been
read before.) Internally, the very same counts are used for keeping track of
register allocation as in ltluatex. Their effect should therefore be identical in all
circumstances, with one exception: no bounds checking is performed on any
allocation macro defined by minim. Please do not go and use more than sixty
five thousand different whatsits.

All the above and all traditional registers can be allocated from within lua
as well, using M.new_count('name'), M.new_whatsit('name') etc. All return
the allocated number. The (optional) string name prevents the same allocation
from being made twice: if another register has been retrieved with the same
name, the number of that register will be returned. You will need this when you
want to allow your lua code to be included in a format file; it has nothing to do
with the tex-side \countdef and the like.

For the new allocation macros listed above and (as a special case) for \newbox,
after saying \newwhatsit\name, the call M.new_whatsit('name') will return
the number of \name. For the other (older) allocation macros, this is not the
case. After all, because of the \countdef etc. included in \newcount etc. you
can already use tex.count['name'] etc. for retrieving tex-side allocations from
lua. The exceptions to this are \newbox, which is why it is included with the
new macros, and \newattribute, for which you can use both methods.

Besides \newluachunkname\name, you can also use \setluachunkname \name
{actual name} to enter the value of the name directly.

22

Finally, for the registers for which etex defines a local allocation macro (and for
those only), you can use M.local_count() etc. These allocation functions take
no parameters.

Callbacks
As noted at the beginning of this chapter, the callback functions are only
available after you say local C = require('minim-callbacks').

This module will override the primitive callback functions with its own C.re-
gister, C.find and C.list; the original primitive functions can be found in
the C.primitives table.

The simple function of this module is allowing multiple callbacks to co-exist.
Different callbacks call for different implementations, and some callbacks can
only contain a single function. Any callbacks that are already assigned before
loading this module will be preserved; this includes the ltluatex callback
mechanism if it has already been installed.

You can create your own callbacks with C.new_callback(name, type). The
type should be one of the types mentioned below or 'single' for callbacks
that allow only one function. If the name is that of a primitive callback, new
registrations will target your new callback. You can call the new callback with
C.call_callback(name, ...), adding any number of parameters.

Callbacks of type node operate on a node list: for these, all registered func-
tions will be called in order, each function receiving the result of the last.
After one function returns false, no others will be called. Callbacks of
this type are pre_linebreak_filter, post_linebreak_filter, hpack_fil-
ter, vpack_filter, pre_output_filter and mlist_to_mlist. There is no
way of unregistering callbacks of this type.

Similarly, for the data callbacks process_input_buffer, process_output_buf-
fer and process_jobname, all registered functions will be called in order on
the output of the previous. Returning false will in this case result in the
output of the previous function passing to the next.

For stack callbacks, a stack is kept and only the top function on the stack
will be called. These are mlist_to_hlist, hpack_quality, vpack_quality,
hyphenate, linebreak_filter, buildpage_filter and build_page_insert.
Register nil at the callback to pop a function off the stack.

Finally, for the simple callbacks contribute_filter, pre_dump, wrapup_run,
finish_pdffile, finish_pdfpage, insert_local_par, ligaturing, kerning
and process_rule. all registered functions are called in order with the same
arguments.

The new mlist_to_mlist callback is called before mlist_to_hlist and should
not convert noads to nodes.

If you create a new callback with a number for a name, that callback will replace
the process_rule callback when its number matches the index property of the
rule.

23

Miscellaneous functions
This section describes functions and macros that are internal to this package,
but might be of general usefulness.

For instance, you might find the function M.table_to_text(table) useful
when debugging lua code. The small functions M.msg(...), M.log(...) and
M.err(...) include a call to M.string.format; additionally, M.amsg(...) and
M.alog(...) do not start a new line.

Very useful is M.luadef('csname', function, ...) for defining primitive-like
tex macros from lua: function can be any function (it will be assigned a lua
function register) and at the place of the dots you may append 'protected'
and/or 'global'.

Both M.unset and \unset contain the value -0x7FFFFFFF that can be used for
clearing attributes.

On the tex side, \voidbox, \ignore, \spacechar, \unbrace, \firstoftwo
and \secondoftwo should be self-explanatory and uncontroversial additions.
For looking ahead, you can use \nextif \token {executed if present}
{executed if not} or its siblings \nextifx and \nextifcat. For defining
macros with optional arguments, \withoptions[default]{code} will ensure
something within square brackets follows code.

Finally, \splitcommalist {code} {list} will apply code to every nonempty
item on a comma-separated list. Items of the list will be re-tokenised and
have surrounding spaces removed. This macro is fully expandable.

Because of their usefulness and simplicity, these macros have been made available
without special characters in their names; I hope you can tolerate their presence.
Please let me know if their names clash with something important.

24

	Contents
	Compatibility
	Licence
	Metapost
	Metapost instances
	Running tex from within metapost
	Running lua from within metapost
	Tiling patterns
	Other metapost extensions
	Lua interface
	PDF resource management
	Debugging
	Extending metapost

	Mathematics
	Styles and alphabets
	Character variants
	Setting up fonts
	Shorthands and additions
	Best practices

	Hypertext
	Hyperlinks
	Bookmarks
	Page labels
	PDF/A
	Embedded files
	Lua module

	Tagged PDF
	Purpose, limitations and pitfalls
	General overview
	Marked content items
	Artifacts
	Document structure
	Structure element aliases
	Manipulating the logical order
	Structure element options
	Languages
	Helper macros

	Metadata
	Setting metadata
	Getting metadata
	Supported metadata keys
	Adding new keys and schemas
	Generated XMP
	Format files
	Register allocation
	Callbacks
	Miscellaneous functions

 EUROPEAN UNION PUBLIC LICENCE v. 1.2
 EUPL © the European Union 2007, 2016

This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined
below) which is provided under the terms of this Licence. Any use of the Work,
other than as authorised under this Licence is prohibited (to the extent such
use is covered by a right of the copyright holder of the Work).

The Work is provided under the terms of this Licence when the Licensor (as
defined below) has placed the following notice immediately following the
copyright notice for the Work:

 Licensed under the EUPL

or has expressed by any other means his willingness to license under the EUPL.

1. Definitions

In this Licence, the following terms have the following meaning:

- ‘The Licence’: this Licence.

- ‘The Original Work’: the work or software distributed or communicated by the
 Licensor under this Licence, available as Source Code and also as Executable
 Code as the case may be.

- ‘Derivative Works’: the works or software that could be created by the
 Licensee, based upon the Original Work or modifications thereof. This Licence
 does not define the extent of modification or dependence on the Original Work
 required in order to classify a work as a Derivative Work; this extent is
 determined by copyright law applicable in the country mentioned in Article 15.

- ‘The Work’: the Original Work or its Derivative Works.

- ‘The Source Code’: the human-readable form of the Work which is the most
 convenient for people to study and modify.

- ‘The Executable Code’: any code which has generally been compiled and which is
 meant to be interpreted by a computer as a program.

- ‘The Licensor’: the natural or legal person that distributes or communicates
 the Work under the Licence.

- ‘Contributor(s)’: any natural or legal person who modifies the Work under the
 Licence, or otherwise contributes to the creation of a Derivative Work.

- ‘The Licensee’ or ‘You’: any natural or legal person who makes any usage of
 the Work under the terms of the Licence.

- ‘Distribution’ or ‘Communication’: any act of selling, giving, lending,
 renting, distributing, communicating, transmitting, or otherwise making
 available, online or offline, copies of the Work or providing access to its
 essential functionalities at the disposal of any other natural or legal
 person.

2. Scope of the rights granted by the Licence

The Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
sublicensable licence to do the following, for the duration of copyright vested
in the Original Work:

- use the Work in any circumstance and for all usage,
- reproduce the Work,
- modify the Work, and make Derivative Works based upon the Work,
- communicate to the public, including the right to make available or display
 the Work or copies thereof to the public and perform publicly, as the case may
 be, the Work,
- distribute the Work or copies thereof,
- lend and rent the Work or copies thereof,
- sublicense rights in the Work or copies thereof.

Those rights can be exercised on any media, supports and formats, whether now
known or later invented, as far as the applicable law permits so.

In the countries where moral rights apply, the Licensor waives his right to
exercise his moral right to the extent allowed by law in order to make effective
the licence of the economic rights here above listed.

The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to
any patents held by the Licensor, to the extent necessary to make use of the
rights granted on the Work under this Licence.

3. Communication of the Source Code

The Licensor may provide the Work either in its Source Code form, or as
Executable Code. If the Work is provided as Executable Code, the Licensor
provides in addition a machine-readable copy of the Source Code of the Work
along with each copy of the Work that the Licensor distributes or indicates, in
a notice following the copyright notice attached to the Work, a repository where
the Source Code is easily and freely accessible for as long as the Licensor
continues to distribute or communicate the Work.

4. Limitations on copyright

Nothing in this Licence is intended to deprive the Licensee of the benefits from
any exception or limitation to the exclusive rights of the rights owners in the
Work, of the exhaustion of those rights or of other applicable limitations
thereto.

5. Obligations of the Licensee

The grant of the rights mentioned above is subject to some restrictions and
obligations imposed on the Licensee. Those obligations are the following:

Attribution right: The Licensee shall keep intact all copyright, patent or
trademarks notices and all notices that refer to the Licence and to the
disclaimer of warranties. The Licensee must include a copy of such notices and a
copy of the Licence with every copy of the Work he/she distributes or
communicates. The Licensee must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modification.

Copyleft clause: If the Licensee distributes or communicates copies of the
Original Works or Derivative Works, this Distribution or Communication will be
done under the terms of this Licence or of a later version of this Licence
unless the Original Work is expressly distributed only under this version of the
Licence — for example by communicating ‘EUPL v. 1.2 only’. The Licensee
(becoming Licensor) cannot offer or impose any additional terms or conditions on
the Work or Derivative Work that alter or restrict the terms of the Licence.

Compatibility clause: If the Licensee Distributes or Communicates Derivative
Works or copies thereof based upon both the Work and another work licensed under
a Compatible Licence, this Distribution or Communication can be done under the
terms of this Compatible Licence. For the sake of this clause, ‘Compatible
Licence’ refers to the licences listed in the appendix attached to this Licence.
Should the Licensee's obligations under the Compatible Licence conflict with
his/her obligations under this Licence, the obligations of the Compatible
Licence shall prevail.

Provision of Source Code: When distributing or communicating copies of the Work,
the Licensee will provide a machine-readable copy of the Source Code or indicate
a repository where this Source will be easily and freely available for as long
as the Licensee continues to distribute or communicate the Work.

Legal Protection: This Licence does not grant permission to use the trade names,
trademarks, service marks, or names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the copyright notice.

6. Chain of Authorship

The original Licensor warrants that the copyright in the Original Work granted
hereunder is owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each Contributor warrants that the copyright in the modifications he/she brings
to the Work are owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each time You accept the Licence, the original Licensor and subsequent
Contributors grant You a licence to their contributions to the Work, under the
terms of this Licence.

7. Disclaimer of Warranty

The Work is a work in progress, which is continuously improved by numerous
Contributors. It is not a finished work and may therefore contain defects or
‘bugs’ inherent to this type of development.

For the above reason, the Work is provided under the Licence on an ‘as is’ basis
and without warranties of any kind concerning the Work, including without
limitation merchantability, fitness for a particular purpose, absence of defects
or errors, accuracy, non-infringement of intellectual property rights other than
copyright as stated in Article 6 of this Licence.

This disclaimer of warranty is an essential part of the Licence and a condition
for the grant of any rights to the Work.

8. Disclaimer of Liability

Except in the cases of wilful misconduct or damages directly caused to natural
persons, the Licensor will in no event be liable for any direct or indirect,
material or moral, damages of any kind, arising out of the Licence or of the use
of the Work, including without limitation, damages for loss of goodwill, work
stoppage, computer failure or malfunction, loss of data or any commercial
damage, even if the Licensor has been advised of the possibility of such damage.
However, the Licensor will be liable under statutory product liability laws as
far such laws apply to the Work.

9. Additional agreements

While distributing the Work, You may choose to conclude an additional agreement,
defining obligations or services consistent with this Licence. However, if
accepting obligations, You may act only on your own behalf and on your sole
responsibility, not on behalf of the original Licensor or any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against such Contributor by
the fact You have accepted any warranty or additional liability.

10. Acceptance of the Licence

The provisions of this Licence can be accepted by clicking on an icon ‘I agree’
placed under the bottom of a window displaying the text of this Licence or by
affirming consent in any other similar way, in accordance with the rules of
applicable law. Clicking on that icon indicates your clear and irrevocable
acceptance of this Licence and all of its terms and conditions.

Similarly, you irrevocably accept this Licence and all of its terms and
conditions by exercising any rights granted to You by Article 2 of this Licence,
such as the use of the Work, the creation by You of a Derivative Work or the
Distribution or Communication by You of the Work or copies thereof.

11. Information to the public

In case of any Distribution or Communication of the Work by means of electronic
communication by You (for example, by offering to download the Work from a
remote location) the distribution channel or media (for example, a website) must
at least provide to the public the information requested by the applicable law
regarding the Licensor, the Licence and the way it may be accessible, concluded,
stored and reproduced by the Licensee.

12. Termination of the Licence

The Licence and the rights granted hereunder will terminate automatically upon
any breach by the Licensee of the terms of the Licence.

Such a termination will not terminate the licences of any person who has
received the Work from the Licensee under the Licence, provided such persons
remain in full compliance with the Licence.

13. Miscellaneous

Without prejudice of Article 9 above, the Licence represents the complete
agreement between the Parties as to the Work.

If any provision of the Licence is invalid or unenforceable under applicable
law, this will not affect the validity or enforceability of the Licence as a
whole. Such provision will be construed or reformed so as necessary to make it
valid and enforceable.

The European Commission may publish other linguistic versions or new versions of
this Licence or updated versions of the Appendix, so far this is required and
reasonable, without reducing the scope of the rights granted by the Licence. New
versions of the Licence will be published with a unique version number.

All linguistic versions of this Licence, approved by the European Commission,
have identical value. Parties can take advantage of the linguistic version of
their choice.

14. Jurisdiction

Without prejudice to specific agreement between parties,

- any litigation resulting from the interpretation of this License, arising
 between the European Union institutions, bodies, offices or agencies, as a
 Licensor, and any Licensee, will be subject to the jurisdiction of the Court
 of Justice of the European Union, as laid down in article 272 of the Treaty on
 the Functioning of the European Union,

- any litigation arising between other parties and resulting from the
 interpretation of this License, will be subject to the exclusive jurisdiction
 of the competent court where the Licensor resides or conducts its primary
 business.

15. Applicable Law

Without prejudice to specific agreement between parties,

- this Licence shall be governed by the law of the European Union Member State
 where the Licensor has his seat, resides or has his registered office,

- this licence shall be governed by Belgian law if the Licensor has no seat,
 residence or registered office inside a European Union Member State.

Appendix

‘Compatible Licences’ according to Article 5 EUPL are:

- GNU General Public License (GPL) v. 2, v. 3
- GNU Affero General Public License (AGPL) v. 3
- Open Software License (OSL) v. 2.1, v. 3.0
- Eclipse Public License (EPL) v. 1.0
- CeCILL v. 2.0, v. 2.1
- Mozilla Public Licence (MPL) v. 2
- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3
- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for
 works other than software
- European Union Public Licence (EUPL) v. 1.1, v. 1.2
- Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong
 Reciprocity (LiLiQ-R+).

The European Commission may update this Appendix to later versions of the above
licences without producing a new version of the EUPL, as long as they provide
the rights granted in Article 2 of this Licence and protect the covered Source
Code from exclusive appropriation.

All other changes or additions to this Appendix require the production of a new
EUPL version.

$\mit A \mup A \mbf A \mbfit A \mbb A \frak A \bffrak A \scr A \bfscr A$

$\mup {ABC}$

$\mit {ABC}$

$\mbf {ABC}$

$\mbfit {ABC}$

$\mbb {ABC}$

$\frak {ABC}$

$\bffrak {ABC}$

$\scr {ABC}$

$\bfscr {ABC}$

$v^\scr F$

$ℝ$

$ℯ$

$\usemathvariant {εθΘκπρφ}εθΘκπρφ$

$εθΘκπρφ$

$\closedroots \smash {√2}$

$\smash {√2}$

$\unicodedots …⋮⋰⋱$

$\smash {…⋮⋰⋱}$

$\mathstyle {mono}x∈\{l,v,c,a,d\}$

$\decimalcomma 1,2$

$1,2$

$ħ$

$\smash {\text {word}^\text {word}}$

$\bra x, \ket y$

$\braket x y$

$\norm x, \Norm x$

$x \stackrel ?= y$

$x \stackbin a+ y$

$f\inv $

f^{-1}

$a \xrightarrow [down]{up} b$

$a \xeq [down]{up} b$

$\frac 12, \tfrac 12, \dfrac 12$

$$\underbrace [=1]{(x^2 + y^2)}.$$

$1\;2\choose 3\;4$

$\mup dx$

$\tt x ∈ \{1,2,3\}$

$\tt y ∈ \{a,b,u\}$

