
lutabulartools
some useful tabular tools (LuaLaTeX-based)

Kale Ewasiuk (kalekje@gmail.com)

2022–04–16

lutabulartools is a package that contains a few useful macros to help with tables. Most
functions require LuaLaTeX. This package redefines the tabular and tabular* en-
vironments. The following packages are loaded: booktabs, multirow, makecell,
xparse, array, xcolor, colortbl, luacode, penlight,

1 Options

The author likes tables with left and right-most columns flush to the end. Since the
tabular env is redefined in this, the author took the liberty to automatically pad the
tabular cell spec with @{} on each end. If you don’t want this, you can pass notrim to
the package. Or, you can manually fix it in a tabular with !{} like so:

1 \begin{tabular}{!{}c!{}}\toprule
2 Xyz\\\bottomrule \end{tabular} Xyz

1.1 Debugging

You can toggle log output debugging with \lttdebugON and \lttdebugOFF . The mes-
sages will be printed in a format like so:

vvvvv msg1 (lutabulartools)
msg2
^^^^^

1

2 \MC – Magic Cell

\MC (magic cell) combines the facilities of \multirow and \multicolumn from the
multirow package, and \makcell from the titular package. With the help of LuaLa-
TeX, it takes an easy-to-use cell specification and employs said commands as required.
\MC will not work properly if your table is only 1 column wide (you probably don’t
need MC in that case anyway...). Here is the usage:

\MC * [cell spec] <cell format> (override multicolumn col) {contents}

* This will wrap the entire command in {}. This is necessary for siunitx single-column
width columns. However, the \MC command attempts to detect this automatically.

[cell spec] Any letters placed in this argument are used for cell alignment. You can use one of
three: “t”, “m”, “b” for top, middle, bottom (vertical alignment), or “l”, “c”, “r” for
horizontal alignment. By default, \MC will try to autodetect the horizontal alignment
based on the current column. If it can’t, it will be left-aligned. The default vertical
alginment is top. More on this in section 2.1.

This argument can also contain two integers, separated by a comma (if two are used).
“C,R”, “C”, or “,R” are a valid inputs, where R=rows (int), and C=columns, (int). If you
want a 1 column wide, multirow cell, you can pass “,R”. These numbers can be negative
(positive numbers occupy columns to the right and rows below, and negative numbers
occupy columns to the left and rows above). If no spec is passed, (argument empty), \MC
acts like a makecell. Additionally, you can pass “+” in place of C (number of columns
wide), and it will make the cell width fill until the end of the current row.

Examples:
“\MC [2,2]” means two columns wide, two rows tall.
“\MC [2,1]” or “\MC [2]” means two columns wide, one row tall.
“\MC [1,2]” or “\MC [,2]” means one column wide, two rows tall.
“\MC [+,2]”, if placed in the first column, occupies the entire row and is two rows tall.
“\MC [+,2]”, if placed in the second column, occupies the second column to the end of
the table and is two rows tall.
In any of these examples, you can place the alignment letters anywhere. So, “\MC
[l1,2b]” and “\MC [1,2 lb]” are both left-bottom aligned (spaces are ignored).

(override You may want to adjust the column specification of a multicolumn cell,
multicolumn) for example, using (@{}c@{}) to remove padding between the cell.

<cell format> You can place formatting like \bfseries here.

2.1 Defaults

The tabular[*] environment is re-defined to use Lua pattern matching to parse the
column specification of the table. This is done to determine how many columns there

2

are, and what the current column type is, even if specifications like r@{.}l*{3}{r} are
used. If you have defined a column that expands many, you should register it with
\setMCrepl {?}{??} where ? is your column and ?? is what it expands to. You can
also specify default horizontal and vertical alignments (ie if alignment not passed to \MC
) for an arbitrary column by \setMChordef {?}{l|r|c} and
\setMChordef {?}{t|m|b}, where ? is the column. To add a column that should
be surrounded by brackets for siunitx purposes, do so with \addMCsicol {?}. S is
included by default.

3

2.2 Examples

2.2.1 A good use for headers

1 \begin{tabular}{ l l l }\toprule
2 \MC[+m]<\itshape >{A Decent
3 Example}\\\midrule
4 & \MC[2m]{Heading} \\\cmidrule←↩

{2-}
5 \MC[b,-2]{Multi\\Line} & A & B \\\←↩

midrule
6 \end{tabular}

A Decent Example
HeadingMulti

Line A B

2.2.2 A small example

1 \begin{tabular}{ l l l }\midrule
2 A & \MC[mc2,2]{Lttrs} \\
3 B & \\
4 1 & A & B \\
5 \end{tabular}

A LttrsB
1 A B

2.2.3 A small bad example

Notice that the top-aligned p-column doesn’t play particularly well with the middle
aligned \MC

1 \begin{tabular}{ p{1cm} l }\toprule
2 hello\newline world
3 & \MC[mr]{11\\2} \\
4 \end{tabular}

hello
world

11
2

2.2.4 If you insist on vertical lines

1 \begin{tabular}{|c|c|c|} \hline
2 1 & 2 & 3\\\hline
3 4 & \MC[2,2cm](@{}c@{}|)%
4 <\ttfamily >{5}\\\cline{1-1}
5 & \MC[2](r|){} \\\hline%hacky fix
6 6 & 7 & 8\\\hline
7 \end{tabular}

1 2 3
4

5

6 7 8

4

2.2.5 A perhaps useful example

1 \begin{tabularx}{\linewidth}{S[table-←↩
format=2.1,table-alignment=left]X}

2 % err & ... \\% ERROR, not wrap
3 \MC{Error,\%} & Comment \\% MC ←↩

helps
4 3.1 & \MC[,2]{multi-line\\comment}\\
5 10.1& \\
6 \MC[2c]{... ...} \\
7 \end{tabularx}

Error,% Comment
3.1 multi-line

comment10.1
... ...

2.2.6 A messy example

1 \begin{tabular}{| c | c | c | c | c |←↩
c |}\toprule

2 \MC[2,2cm]<\ttfamily >{2,2cm} & \MC←↩
[2r]<\ttfamily >{2r} & 5 & \MC[,2b←↩
]<\ttfamily >{,2b}\\

3 & & 3 & 4 & 5 & \\\midrule
4 1 & 2 & \MC[2l](@{}l)<\ttfamily >{2l ←↩

(\@\{\}l)} & 5 & 6666\\\cmidrule←↩
{3-4}

5 1 & \MC[+r]<\ttfamily >{+r} \\
6 \\
7 1 & 2 & 3 & 4 & 5 & \MC[,-2]<\←↩

ttfamily >{,\\-2}\\
8 \end{tabular}

2,2cm
2r 5

,2b3 4 5
1 2 2l ({}l) 5 6666
1 +r

1 2 3 4 5
,
-2

5

3 Some additional rules

This package also redefines the booktabs midrules.
\gmidrule is a full gray midrule.

By taking advantage of knowing how many columns there are (if you chose to redefine
tabular), you can specify individual column numbers (for a one column wide rule), or
reference with respect to the last column (blank, +1, +0, or + means last column, +2
means second last column, for example) or omit the last number.

\cmidrule is a single partial rule, with the above features
\gcmidrule is a single partial gray rule, with the above features

You can add multiple “cmidrule”’s with the (g)cmidrules command. Separate with a
comma. You can apply global trimming of the rules with the “()” optional argument,
and then override it for a specific rule by placing “r” or “l” with the span specification.

\gcmidrules Can produce multiple, light gray partial rules
\cmidrules Can produce multiple black partial rules.

Here’s an example:

1 \begin{tabular}{c c c c c c}
2 1 & 2 & 3 & 4 & 5 & 6\\
3 \cmidrule{+1} % rule on last ←↩

column
4 1 & 2 & 3 & 4 & 5 & 6\\
5 \cmidrules{1,3-+3,+} % rule on ←↩

first col, third to third last←↩
col, and last col

6 1 & 2 & 3 & 4 & 5 & 6\\
7 \cmidrules{1,3-+3rl,+} % same as ←↩

above, but trim middle
8 1 & 2 & 3 & 4 & 5 & 6\\
9 \cmidrules(l){1,r3-+3,+1}% trim ←↩

left for all, but only trim ←↩
right for middle rule

10 1 & 2 & 3 & 4 & 5 & 6\\
11 \gcmidrule{+1} % rule on last ←↩

column
12 1 & 2 & 3 & 4 & 5 & 6\\
13 \gcmidrules{1,3-+3,+} % rule on ←↩

first col, third to third last←↩
col, and last col

14 1 & 2 & 3 & 4 & 5 & 6\\
15 \gcmidrules{1,3-+3rl,+} % same as←↩

above, but trim middle
16 1 & 2 & 3 & 4 & 5 & 6\\
17 \gcmidrules(l){1,r3-+3,+1}% trim ←↩

left for all, but only trim ←↩
right for middle rule

18 \end{tabular}

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

6

3.1 Midrule every Xth row

\midruleX With this command, you can place a rule every X rows. You can change the step size
and what kind of midrule you prefer.

\def\midruleXstep{5}
\def\midruleXrule{\gmidrule}

To use, insert @{\midrulex } at the end of each row using the tabular column spec.
Before you want counting to begin, you should apply \resetmidruleX to avoid header
rows being counted. Use \noalign {\resetmiduleX } if you need place a rule on the
same line or in a cell.

1 \def\midruleXstep{3}
2 \def\midruleXrule{\cmidrules{1,3-4r}}
3 \begin{tabular}{rclc@{\midruleX}}
4 % ^^^ inject midrule
5 \toprule
6 Num & . & . & . \\
7 \midrule\resetmidruleX % reset
8 1 & & & \\
9 2 & & & \\
10 3 & & & \\
11 4 & & & \\
12 5 & & & \\
13 6 & & & \\
14 7 & & & \\
15 8 & & & \\
16 9 & & & \\
17 10 & & & \\
18 11 & & & \\
19 \resetmidruleX % no bottom rule
20 12 & & & \\
21 \bottomrule
22 \end{tabular}

Num . . .
1
2
3
4
5
6
7
8
9

10
11
12

7

