
28 TUGboat, Volume 43 (2022), No. 1

Automatically removing widows and orphans
with lua-widow-control

Max Chernoff

Abstract
The lua-widow-control package, for plain LuaTEX/
LuaLATEX/ConTEXt/OpTEX, removes widows and
orphans without any user intervention. Using the
power of LuaTEX, it does so without stretching any
glue or shortening any pages or columns. Instead, lua-
widow-control automatically lengthens a paragraph
on a page or column where a widow or orphan would
otherwise occur.

To use lua-widow-control, all that most users
need do is place \usepackage{lua-widow-control}
in their preamble. No further changes are required.

1 Motivation
TEX provides top-notch typesetting: even 40 years af-
ter its first release, no other program produces higher
quality mathematical typesetting, and its paragraph-
breaking algorithm is still state-of-the-art. However,
its page breaking is not quite as sophisticated as
its paragraph breaking and thus suffers from some
minor issues.

Unmodified TEX has only two familiar ways
of dealing with widows and orphans: it can either
shorten a page by one line, or it can stretch verti-
cal whitespace. TEX was designed for mathematical
and scientific typesetting, where a typical page has
multiple section headings, tables, figures, and equa-
tions. For this style of document, TEX’s default be-
haviour works quite well, since the slight stretching of
whitespace between the various document elements
is nearly imperceptible; however, for prose or other
documents composed almost entirely of paragraphs,
there is little vertical whitespace to stretch.

Since no ready-made and fully-automated solu-
tion to remove widows and orphans from all types
of documents was available, I decided to create lua-
widow-control.

2 What are widows and orphans?
2.1 Widows
A “widow” occurs when the majority of a paragraph
is on one page or column, but the last line is on the
following page or column. It not only looks quite
odd for a lone line to be at the start of the page,
but it makes a paragraph harder to read since the
separation of a paragraph and its last line disconnects
the two, causing the reader to lose context for the
widowed line.

Widow Orphan
A widow occurs

when the last line of a
paragraph is placed on
a page separate from An orphan is
where it begins. when the first line of a

paragraph occurs on
the page before all of
the other lines.

Figure 1: The difference between widows and orphans.
If we imagine that each box is a different page, then this
roughly simulates how widows and orphans appear.

2.2 Orphans
An “orphan” occurs when the first line of a para-
graph is at the end of the page or column preceding
the remainder of the paragraph. They are not as
distracting for the reader, but they are still not ideal.
Visually, widows and orphans are about equally dis-
ruptive; however, orphans tend not to decrease the
legibility of a text as much as widows, so many au-
thors choose to ignore them.

See figure 1 for a visual reference.

2.3 Broken hyphens
“Broken” hyphens occur whenever a page break oc-
curs in a hyphenated word. These are not related
to widows and orphans; however, breaking a word
across two pages is at least as disruptive for the
reader as widows and orphans. TEX identifies broken
hyphens in the same ways as widows and orphans, so
lua-widow-control treats broken hyphens in the same
way.

3 History and etymology
The concept of widows and orphans is nearly as old
as printing itself. In [13], a printers manual from
1683, we have:

Nor do good Compoſiters account it good
Workmanſhip to begin a Page with a Break-
line, unleſs it be a very ſhort Break, and can-
not be gotten in the foregoing Page ; but if it
be a long Break, he will let it be the Direction-
line of the fore-going Page, and Set his Direc-
tion at the end of it. (p. 226)

3.1 Widows
However, the terms “widow” and “orphan” are much
newer. The earliest published source that I could
find referencing “widows” in typography is Webster’s
New International Dictionary from 1934. However,
no one — not even the editors of the dictionary [3] —

doi.org/10.47397/tb/43-1/tb133chernoff-widows

Max Chernoff

This document is a part of the lua-widow-control documentation. For the authoritative version of the article,
please see tug.org/TUGboat/tb43-1/tb133chernoff-widows.html.

Some commands may have changed since publication. Please see
the lua-widow-control manual for the current syntax. (Links: local,
CTAN, GitHub.)

https://doi.org/10.47397/tb/43-1/tb133chernoff-widows
https://tug.org/TUGboat/tb43-1/tb133chernoff-widows.html
http://mirrors.ctan.org/macros/luatex/generic/lua-widow-control/lua-widow-control.pdf
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest/download/lua-widow-control.pdf

TUGboat, Volume 43 (2022), No. 1 29

seems to know how it got there. Even then, the
definition is somewhat different than it is now:

widow, n. c. Print. A short line or single word
carried over from the foot of one column or
page to the head of a succeeding column or
page. [3]

Contrast this with the modern definition:
Typography. A short line of text (usually
one consisting of one word or part of a word)
which falls undesirably at the end of a para-
graph, esp. one set at the top of a page or
column. [16]

which includes a single lone line of any length.

3.2 Orphans
The term “orphan” is even more confusing. Its ini-
tial usage seems to have occurred some time after
“widow” [3], and it is given many contradictory def-
initions. Most sources define an orphan as a first
line at the bottom of the page and a widow as the
last line at the top [2, 3, 4, 6, 9, 12, 14, 16]; how-
ever, some sources define these two terms as exact
opposites of each other, with a widow as a first line
at the bottom of the page and an orphan as the
last line! [1, 3, 5, 14, 18] This usage is plain wrong;
nevertheless, it is sufficiently common that you need
to be careful when you see the terms “widow” and
“orphan”.

3.3 Clubs
The TEXbook never refers to “orphans” as such;
rather, it refers to them as “clubs”. This term is
remarkably rare: I could only find a single source
published before The TEXbook — a compilation arti-
cle about the definition of “widow” — that mentions
a “club line”:

The Dictionary staff informs me that they
have no example of the use of the word widow
in the typographical sense. [. . .]

Mr. Watson of the technical staff says that
the Edinburgh printing houses referred to it
as a “clubline”. [3, p. 4]

To my knowledge, a ‘widow’, or ‘widow-line,’
is a short line, forming the end of a paragraph,
which is carried over from the foot of a page or
column to the top of the succeeding one. [. . .]

To my personal knowledge, in typographical
parlance in Edinburgh, Scotland, the ‘widow’
is called a ‘club-line.’ [3, p. 23]
Both quotes above are from separate authors,

and they each define a “club” like we define “widow”,
not an “orphan”. In addition, they both mention that

the term is only used in Scotland. Even the extensive
OED — which lists 17 full definitions and 103 subdef-
initions for the noun “club” — doesn’t recognize the
phrase. [15]

I spent a few hours searching through Google
Books and my university library catalogue, but I
could not find a single additional source. If anyone
has any more information on the definition of a “club
line” or why Knuth chose to use this archaic Scottish
term in TEX, please let me know!

4 Pagination in TEX
Let’s move on to looking at how TEX treats these
widows and orphans.

4.1 Algorithm
It is tricky to understand how lua-widow-control
works if you aren’t familiar with how TEX breaks
pages and columns. For a full description, you should
consult Chapter 15 of The TEXbook [9] (“How TEX
Makes Lines into Pages”); however, this goes into
much more detail than most users require, so here is
a very simplified summary of TEX’s page breaking
algorithm:

TEX fills the page with lines and other objects
until the next object will no longer fit. Once no more
objects will fit, TEX will align the bottom of the last
line with the bottom of the page by stretching any
available vertical spaces if (in LATEX) \flushbottom
is set; otherwise, it will break the page and leave the
bottom empty.

However, some objects have penalties attached.
Penalties encourage or discourage page breaks from
occurring at specific places. For example, LATEX
sets a negative penalty before section headings to
encourage a page break there; conversely, it sets a
positive penalty after section headings to discourage
breaking.

To reduce widows and orphans, TEX sets weakly-
positive penalties between the first and second lines
of a paragraph to prevent orphans, and between the
penultimate and final lines to prevent widows.

One important note: once TEX begins breaking
a page, it never goes back to modify any content
on the page. Page breaking is a localized algorithm,
without any backtracking.

4.2 Behaviour
Merely describing the algorithm doesn’t allow us to
intuitively understand how TEX deals with widows
and orphans.

Due to the penalties attached to widows and
orphans, TEX tries to avoid them. Widows and
orphans with small penalties attached — like LATEX’s

Automatically removing widows and orphans with lua-widow-control

30 TUGboat, Volume 43 (2022), No. 1

default values of 150 — are only lightly coupled to
the rest of the paragraph, while widows and orphans
with large penalties — values of 10 000 or more — are
treated as infinitely bad and are thus unbreakable.
Intermediate values behave just as you would expect,
discouraging page breaks proportional to their value.

When TEX goes to break a page, it tries to avoid
breaking at a location with a high penalty. How it
does so depends on a few settings:

4.2.1 \flushbottom and \normalbottom

With the settings \normalbottom (Plain TEX) or
\flushbottom (LATEX), TEX is willing to stretch any
glue on the page by an amount roughly commen-
surate to the magnitude of the penalty: for small
\clubpenalty and \widowpenalty values, TEX will
only slightly stretch the glue on the page before cre-
ating a widow or orphan; for very large penalties,
TEX will stretch the glue by a near-infinite amount.

This corresponds to the “Stretch” column in Fig-
ure 2. It is the default behaviour of Plain TEX, and
of the standard LATEX classes when the twocolumn
option is given.

4.2.2 \raggedbottom

When \raggedbottom is set, TEX won’t stretch any
glue. Instead, for sufficiently-high \clubpenalty
and \widowpenalty values, TEX will shorten the
page or column by one line in order to prevent the
widow or orphan from being created.

This corresponds to the “Shorten” column in
Figure 2 and is the default behaviour of the LATEX
classes when the twocolumn option is not given.

5 \looseness

Before we can continue further, we need to discuss
one more TEX command: \looseness. The follow-
ing is excerpted from Chapter 14 of [9] (“How TEX
Breaks Paragraphs into Lines”):

If you set \looseness=1, TEX will try to make
the current paragraph one line longer than its
optimum length, provided that there is a way
to choose such breakpoints without exceeding
the tolerance you have specified for the bad-
nesses of individual lines. Similarly, if you set
\looseness=2, TEX will try to make the para-
graph two lines longer; and \looseness=-1
causes an attempt to make it shorter. [. . .]

For example, you can set \looseness=1
if you want to avoid a lonely “club line” or
“widow line” on some page that does not have
sufficiently flexible glue, or if you want the
total number of lines in some two-column
document to come out to be an even number.

It’s usually best to choose a paragraph that
is already pretty “full”, i.e., one whose last
line doesn’t have much white space, since such
paragraphs can generally be loosened without
much harm. You might also want to insert a
tie between the last two words of that para-
graph, so that the loosened version will not
end with only one “widow word” on the or-
phans line; this tie will cover your tracks, so
that people will find it hard to detect the fact
that you have tampered with the spacing. On
the other hand, TEX can take almost any suf-
ficiently long paragraph and stretch it a bit,
without substantial harm.

The widow and orphan removal strategy sug-
gested in the second paragraph works quite well;
however, it requires manual editing each and every
time a page or paragraph is rewritten or repositioned.

6 Alternate removal strategies
There have been a few previous attempts to im-
prove upon TEX’s previously-discussed widow and
orphan-handling abilities; however, none of these
have been able to automatically remove widows and
orphans without stretching any glue or shortening
any pages.

The articles “Strategies against widows” by Paul
Isambert [6] and “Managing forlorn paragraph lines”
by Frank Mittelbach [11] both begin with comprehen-
sive discussions of the methods of preventing widows
and orphans. They agree that widows and orphans
are bad and ought to be avoided; however, they differ
in their solutions. Strategies proposes an output rou-
tine that reduces the length of facing pages by one
line when necessary to remove widows and orphans,
while Managing proposes that the author manually
rewrites or adjusts \looseness when needed.

The post “Paragraph callback . . .” by jeremie [7]
contains a file widow-assist.lua that automatically
detects which paragraphs can be safely shortened
or lengthened by one line. Mittelbach’s widows-and-
orphans package [12] alerts the author to the pages
that contain widows or orphans. Combined, these
packages make it simple for the author to quickly
remove widows and orphans by adjusting the val-
ues of \looseness; however, it still requires the
author to make manual source changes after each
revision.

Another article by Mittelbach [10] suggests an
fully-automated solution to remove widows and or-
phans. This would seem to offer a complete solution;
however, it requires multiple passes, an external tool,
and has not yet been publicly released.

Max Chernoff

TUGboat, Volume 43 (2022), No. 1 31

Ignore Shorten
lua-widow-control can remove most

widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX’s
paragraph is output to the page, but lua-
widow-control’s paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX’s paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.
This removes the widow or the orphan with-

lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX’s
paragraph is output to the page, but lua-
widow-control’s paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX’s paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

out creating any additional work. This removes the widow or the orphan with-
out creating any additional work.

\parskip=0pt
\clubpenalty=0
\widowpenalty=0

\parskip=0pt
\clubpenalty=10000
\widowpenalty=10000

Stretch lua-widow-control
lua-widow-control can remove most

widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX’s
paragraph is output to the page, but lua-
widow-control’s paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX’s paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow
or orphan would otherwise occur. While
TEX breaks paragraphs into their natural
length, lua-widow-control is breaking the
paragraph 1 line longer than its natural
length. TEX’s paragraph is output to the
page, but lua-widow-control’s paragraph is
just stored for later. When a widow or
orphan occurs, lua-widow-control can take
over. It selects the previously-saved para-
graph with the least badness; then, it re-
places TEX’s paragraph with its saved para-
graph. This increases the text block height
of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

This removes the widow or the orphan with-
out creating any additional work.

This removes the widow or the orphan with-
out creating any additional work.

\parskip=0pt plus 1fill
\clubpenalty=10000
\widowpenalty=10000

\usepackage{lua-widow-control}

Figure 2: A visual comparison of various automated widow-handling techniques.

Automatically removing widows and orphans with lua-widow-control

32 TUGboat, Volume 43 (2022), No. 1

lua-widow-control is essentially a combination of
widow-assist.lua [7] and widows-and-orphans [12]
(although its implementation is independent of both):
when the \outputpenalty value indicates that a
widow or orphan has occurred, Lua is used to find
a stretchable paragraph. What lua-widow-control
mainly adds on top of these packages is automa-
tion: it eliminates the requirement for any manual
adjustments or changes to your document’s source.

7 Visual comparison
Although TEX’s page breaking algorithm is reason-
ably straightforward, it can lead to complex be-
haviour when widows and orphans are involved. The
usual choices, when rewriting is not possible, are to
ignore them, stretch some glue, or shorten the page.
Figure 2 has a visual comparison of these options,
which we’ll discuss in the following:

7.1 “Ignore”
As you can see, the last line of the page is on a
separate page from the rest of its paragraph, creating
a widow. This is usually highly distracting for the
reader, so it is best avoided for the reasons previously
discussed.

7.2 “Shorten”
This page did not leave any widows, but it did shorten
the previous page by one line. Sometimes this is
acceptable, but usually it looks bad because pages
will then have different text-block heights. This can
make the pages look quite uneven, especially when
typesetting with columns or in a book with facing
pages.

7.3 “Stretch”
This page also has no widows and it has a flush
bottom margin. However, the space between each
pair of paragraphs had to be stretched.

If this page had many equations, headings, and
other elements with natural space between them, the
stretched out space would be much less noticeable.
TEX was designed for mathematical typesetting, so
it makes sense that this is its default behaviour.
However, in a page with mostly text, these paragraph
gaps look unsightly.

Also, this method is incompatible with grid type-
setting, where all glue stretching must be quantised
to the height of a line.

7.4 “lua-widow-control”
lua-widow-control has none of these issues: it elimi-
nates the widows in a document while keeping a flush
bottom margin and constant paragraph spacing.

To do so, lua-widow-control lengthened the sec-
ond paragraph by one line. If you look closely, you
can see that this stretched the interword spaces. This
stretching is noticeable when typesetting in a narrow
text block, but is mostly imperceptible with larger
widths.

lua-widow-control automatically finds the “best”
paragraph to stretch, so the increase in interword
spaces should almost always be minimal.

8 Installation and standard usage
The lua-widow-control package was first released in
October 2021. It is available in the default installa-
tions of both MiKTEX and TEX Live, although you
will need recent versions of either.

You may also download lua-widow-control man-
ually from either CTAN,1 the ConTEXt Garden,2 or
GitHub,3 although it is best if you can install it
through your TEX distribution.

As its name may suggest, lua-widow-control re-
quires LuaTEX4 regardless of the format used. With
that in mind, using lua-widow-control is quite simple:
Plain TEX \input lua-widow-control
OpTEX \load[lua-widow-control]
LATEX \usepackage{lua-widow-control}
ConTEXt \usemodule[lua-widow-control]

And that’s usually enough. Most users won’t
need to do anything else since lua-widow-control comes
preconfigured and ready-to-go.

9 Options
Nevertheless, lua-widow-control does have a few op-
tions.

lua-widow-control tries very hard to have a “nat-
ural” user interface with each format, so how you set
an option heavily depends on how you are running
lua-widow-control. Also note that not every option is
available in every format.

Some general guidelines:
Plain TEX/OpTEX Some options are set by modify-

ing a register, while others must be set manually
using \directlua.

LATEX Options can be set either as package op-
tions or at any point in the document with
\lwcsetup.

ConTEXt Always use \setuplwc.
1 ctan.org/pkg/lua-widow-control
2 modules.contextgarden.net/cgi-bin/module.cgi/

action=view/id=127
3 github.com/gucci-on-fleek/lua-widow-control/

releases/latest/
4 Or LuaMetaTEX in the case of ConTEXt.

Max Chernoff

https://ctan.org/pkg/lua-widow-control
https://modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest/
https://ctan.org/pkg/lua-widow-control
https://modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127
https://modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest/
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest/

TUGboat, Volume 43 (2022), No. 1 33

9.1 Disabling
You may want to disable lua-widow-control for certain
portions of your document. You can do so with the
following commands:
Plain TEX/OpTEX \lwcdisable
LATEX \lwcsetup{disable}
ConTEXt \setuplwc[state=stop]

This prevents lua-widow-control from stretching
any paragraphs that follow. If a page has earlier
paragraphs where lua-widow-control was still enabled
and a widow or orphan is detected, lua-widow-control
will still attempt to remove the widow or orphan.

9.2 Enabling
lua-widow-control is enabled as soon as the package
is loaded. If you have previously disabled it, you will
need to re-enable it to save new paragraphs.
Plain TEX/OpTEX \lwcenable
LATEX \lwcsetup{enable}
ConTEXt \setuplwc[state=start]

9.3 Automatically disabling
You may want to disable lua-widow-control for cer-
tain commands where stretching is undesirable such
as section headings. Of course, manually disabling
and then enabling lua-widow-control multiple times
throughout a document would quickly become te-
dious, so lua-widow-control provides some options to
do this automatically for you.

lua-widow-control automatically patches the de-
fault LATEX, ConTEXt, Plain TEX, OpTEX, memoir,
KOMA-Script, and titlesec section commands, so you
don’t need to patch these. Any others, though, you’ll
need to patch yourself.
Plain TEX/OpTEX \lwcdisablecmd{〈\macro〉}
LATEX \lwcsetup{disablecmds={

〈csnameone〉, 〈csnametwo〉}}
ConTEXt \prependtoks\lwc@patch@pre

\to\everybefore〈hook〉
\prependtoks\lwc@patch@post

\to\everyafter〈hook〉

9.4 \emergencystretch

lua-widow-control defaults to an \emergencystretch
value of 3 em for stretched paragraphs, but you can
configure this.

lua-widow-control will only use the \emergency-
stretch when it cannot lengthen a paragraph in any
other way, so it is fairly safe to set this to a large value.
TEX accumulates badness when \emergencystretch
is used [8], so it’s pretty rare that a paragraph that

requires any \emergencystretch will actually be
used on the page.
Plain TEX/OpTEX \lwcemergencystretch=

〈dimension〉
LATEX \lwcsetup{emergencystretch=

〈dimension〉}
ConTEXt \setuplwc[emergencystretch=

〈dimension〉]

9.5 Penalties
You can also manually adjust the penalties that TEX
assigns to widows and orphans. Usually, the defaults
are fine, but there are a few circumstances where
you may want to change them.
Plain TEX/OpTEX \widowpenalty=〈integer〉

\clubpenalty=〈integer〉
\brokenpenalty=〈integer〉

LATEX \lwcsetup{ widowpenalty=〈integer〉}
\lwcsetup{orphanpenalty=〈integer〉}
\lwcsetup{brokenpenalty=〈integer〉}

ConTEXt \setuplwc[widowpenalty=〈integer〉]
\setuplwc[orphanpenalty=〈integer〉]
\setuplwc[brokenpenalty=〈integer〉]

The value of these penalties determines how
much TEX should attempt to stretch glue before
passing the widow or orphan to lua-widow-control. If
you set the values to 1 (default), TEX will stretch
nothing and immediately trigger lua-widow-control; if
you set the values to 10 000, TEX will stretch infinitely
and lua-widow-control will never be triggered. If you
set the value to some intermediate number, TEX
will first attempt to stretch some glue to remove the
widow or orphan; only if it fails will lua-widow-control
come in and lengthen a paragraph. As a special case,
if you set the values to 0, both TEX and lua-widow-
control will completely ignore the widow or orphan.

9.6 \nobreak behaviour
When lua-widow-control encounters an orphan, it re-
moves it by moving the orphaned line to the next
page. The majority of the time, this is an appro-
priate solution. However, if the orphan is immedi-
ately preceded by a section heading (or \nobreak/
\penalty 10000), lua-widow-control would naïvely
separate a section heading from the paragraph that
follows. This is almost always undesirable, so lua-
widow-control provides some options to configure this.
Plain TEX/OpTEX \directlua{lwc.

nobreak_behaviour="〈value〉"}
LATEX \lwcsetup{nobreak=〈value〉}
ConTEXt \setuplwc[nobreak=〈value〉]

Automatically removing widows and orphans with lua-widow-control

34 TUGboat, Volume 43 (2022), No. 1

keep split warn
Heading

Heading The first line
Heading The first line text text text
The first line text text text last line.
text text text last line.

Figure 3: A visual comparison of the nobreak option
values.

The default value, keep, keeps the section head-
ing with the orphan by moving both to the next page.
The advantage to this option is that it removes the
orphan and retains any \nobreaks; the disadvantage
is that moving the section heading can create a large
blank space at the end of the page.

The value split splits up the section heading
and the orphan by moving the orphan to the next
page while leaving the heading behind. This is usu-
ally a bad idea, but exists for the sake of flexibility.

The value warn causes lua-widow-control to give
up on the page and do nothing, leaving an orphaned
line. lua-widow-control warns the user so that they
can manually remove the orphan.

See figure 3 for a visual reference.

9.7 Maximum cost
lua-widow-control ranks each paragraph on the page
by how much it would “cost” to lengthen that para-
graph. By default, lua-widow-control selects the para-
graph on the page with the lowest cost; however, you
can configure it to only select paragraphs below a
selected cost.

If there aren’t any paragraphs below the set
threshold, then lua-widow-control won’t remove the
widow or orphan and will instead issue a warning.
Plain TEX/OpTEX \lwcmaxcost=〈integer〉
LATEX \lwcsetup{max-cost=〈integer〉}
ConTEXt \setuplwc[maxcost=〈integer〉]

Based on my testing, max-cost values less than
1 000 cause completely imperceptible changes in in-
terword spacing; values less than 5 000 are only no-
ticeable if you are specifically trying to pick out the
expanded paragraph on the page; values less than
15 000 are typically acceptable; and larger values
may become distracting. lua-widow-control defaults
to an infinite max-cost, although the “strict” and
“balanced” modes sets the values to 5 000 and 10 000
respectively.

10 Presets
As you can see, lua-widow-control provides quite a
few options. Luckily, there are a few presets that you

can use to set multiple options at once. These presets
are a good starting point for most documents, and
you can always manually override individual options.

Currently, these presets are LATEX-only.
LATEX \lwcsetup{〈preset〉}

10.1 default

If you use lua-widow-control without any options, it
defaults to this preset. In default mode, lua-widow-
control takes all possible measures to remove widows
and orphans and will not attempt to stretch any
vertical glue. This usually removes > 95% of all
possible widows and orphans. The catch here is
that this mode is quite aggressive, so it often leaves
behind some fairly “spacey” paragraphs.

This mode is good if you want to remove (nearly)
all widows and orphans from your document, without
fine-tuning the results.

10.2 strict

lua-widow-control also offers a strict mode. This
greatly restricts lua-widow-control’s tolerance and
makes it so that it will only lengthen paragraphs
where the change will be imperceptible.

The caveat with strict mode is that — depending
on the document — lua-widow-control will be able to
remove less than a third of the widows and orphans.
For the widows and orphans that can’t be automat-
ically removed, a warning will be printed to your
terminal and log file so that a human can manually
fix the situation.

This mode is good if you want the best possi-
ble typesetting and are willing to do some manual
editing.

10.3 balanced

Balanced mode sits somewhere between default mode
and strict mode. This mode first lets TEX stretch
a little glue to remove the widow or orphan; only
if that fails will it then trigger lua-widow-control.
Even then, the maximum paragraph cost is capped.
Here, lua-widow-control can usually remove 90% of
a document’s potential widows and orphans, and it
does so while making a minimal visual impact.

This mode is recommended for most users who
care about their document’s typography. This mode
is not the default since it doesn’t remove all wid-
ows and orphans: it still requires a little manual
intervention.

11 Compatibility
The lua-widow-control implementation is almost en-
tirely in Lua, with only a minimal TEX footprint.
It doesn’t modify the output routine, inserts/floats,

Max Chernoff

TUGboat, Volume 43 (2022), No. 1 35

Table 1: lua-widow-control options set by each mode.

Option default balanced strict

max-cost ∞ 10000 5000
emergencystretch 3em 1em 0pt
nobreak keep keep warn
widowpenalty 1 500 1
orphanpenalty 1 500 1
brokenpenalty 1 500 1

\everypar, and it doesn’t insert any whatsits. This
means that it should be compatible with nearly any
TEX package, class, and format. Most changes that
lua-widow-control makes are not observable on the
TEX side.

However, on the Lua side, lua-widow-control
modifies much of a page’s internal structure. This
should not affect any TEX code; however, it may
surprise Lua code that modifies or depends on the
page’s low-level structure. This does not matter for
Plain TEX or LATEX, where even most Lua-based
packages don’t depend on the node list structure;
nevertheless, there are a few issues with ConTEXt.

Simple ConTEXt documents tend to be fine, but
many advanced ConTEXt features rely heavily on
Lua and can thus be disturbed by lua-widow-control.
This is not a huge issue — the lua-widow-control man-
ual is written in ConTEXt — but lua-widow-control is
inevitably more reliable with Plain TEX and LATEX
than with ConTEXt.

Finally, keep in mind that adding lua-widow-
control to a document will almost certainly change
its page break locations.

11.1 Formats
lua-widow-control runs on all known LuaTEX-based
formats: Plain LuaTEX, LuaLATEX, ConTEXt MkIV,
ConTEXt MkXL/LMTX, and OpTEX. Unless other-
wise documented, all features should work equally
well in all formats.

11.2 Columns
Since TEX and the formats implement column break-
ing and page breaking through the same internal
mechanisms, lua-widow-control removes widows and
orphans between columns just as it does with widows
and orphans between pages.

lua-widow-control is known to work with the
LATEX class option twocolumn and the two-column
output routine from Chapter 23 of [9].

11.3 Performance
lua-widow-control runs entirely in a single pass, with-
out depending on any .aux files or the like. Thus, it
shouldn’t meaningfully increase compile times. Al-
though lua-widow-control internally breaks each para-
graph twice, modern computers break paragraphs
near-instantaneously, so you are not likely to notice
any slowdown.

11.4 ε-TEX penalties
Knuth’s original TEX has three basic line penal-
ties: \interlinepenalty, which is inserted between
all lines; \clubpenalty, which is inserted after the
first line; and \widowpenalty, which is inserted be-
fore the last line. The ε-TEX extensions [20] gen-
eralize these commands with a syntax similar to
\parshape: with \widowpenalties you can set the
penalty between the last, second last, and nth last
lines of a paragraph; \interlinepenalties and
\clubpenalties behave similarly.

lua-widow-control makes no explicit attempts to
support these new -penalties commands. Specifi-
cally, if you give a line a penalty that matches either
\widowpenalty or \clubpenalty, lua-widow-control
will treat the lines exactly as it would a widow or
orphan. So while these commands won’t break lua-
widow-control, they are likely to lead to some unex-
pected behaviour.

12 Short last lines
When lengthening a paragraph with \looseness,
it is common advice to insert ties (~) between the
last few words of the paragraph to avoid overly-
short last lines [9]. lua-widow-control does this au-
tomatically, but instead of using ties or \hboxes, it
uses the \parfillskip parameter [9, 21]. When
lengthening a paragraph (and only when length-
ening a paragraph — remember, lua-widow-control
doesn’t interfere with TEX’s output unless it de-
tects a widow or orphan), lua-widow-control sets
\parfillskip to 0pt plus 0.8\hsize. This nor-
mally makes the last line of a paragraph be at least
20% of the overall paragraph’s width, thus preventing
ultra-short lines.

13 How it works
lua-widow-control uses a fairly simple algorithm to
eliminate widows and orphans, but there are a few
subtleties.

13.1 Setup
lua-widow-control sets the parameters \clubpenalty,
\widowpenalty, and \brokenpenalty to sentinel
values of 1. This will signal to lua-widow-control when

Automatically removing widows and orphans with lua-widow-control

36 TUGboat, Volume 43 (2022), No. 1

a widow or orphan occurs, yet it is small enough that
it won’t stretch any glue.

lua-widow-control also enables LuaTEX’s micro-
typographic extensions [19]. This isn’t strictly neces-
sary; however, it significantly increases the number
of paragraphs that can be acceptably “loosened”.

That is all that happens on the TEX end. The
rest of lua-widow-control is pure Lua.

13.2 Paragraph breaking
First, lua-widow-control hooks into the paragraph
breaking process, before any output routines or page
breaking.

Before a paragraph is broken by TEX, lua-widow-
control grabs the unbroken paragraph. Then lua-
widow-control breaks the paragraph one line longer
than its natural length and stores it for later. It does
this in the background, without interfering with how
TEX breaks paragraphs into their natural length.

After TEX has broken its paragraph into its nat-
ural length, lua-widow-control appears again. Before
the broken paragraph is added to the main vertical
list, lua-widow-control “tags” the first and last nodes
of the paragraph using a LuaTEX attribute. These
attributes associate the previously-saved lengthened
paragraph with the naturally-typeset paragraph on
the page.

13.3 Page breaking
lua-widow-control intercepts \box255 (the \vbox out-
put by TEX) immediately before the output routine
runs, after all the paragraphs have been typeset.

First, lua-widow-control looks at the \output-
penalty of the page or column. If the page was
broken at a widow or orphan, the \outputpenalty
will be equal to either the \widowpenalty or the
\clubpenalty. If the \outputpenalty does not in-
dicate a widow or orphan, lua-widow-control will stop
and return \box255 unmodified to the output rou-
tine, and TEX continues as normal.

Otherwise, we assume that we have a widow
or orphan on the page, meaning that we should
lengthen the page by 1 line. We iterate through
the list of saved paragraphs to find the lengthened
paragraph with the least cost. After we’ve selected a
good paragraph, we traverse through the page to find
the original version of this paragraph — the one that
unmodified TEX originally typeset. Having found
the original paragraph, we splice in the lengthened
paragraph in place of the original.

Since the page is now 1 line longer than it was
before, we pull the last line off the page to bring it
back to its original length, and place that line onto
the top of TEX’s “recent contributions” list. When

the next page begins, this line will be inserted before
all other paragraphs, right at the top. Now, we can
return the new, widow-free page (updated \box255)
to the output routine, which proceeds as normal.

14 Choosing the “best” paragraph
As we discussed previously, lua-widow-control length-
ens the paragraph with the lowest cost. However,
assigning a cost to each paragraph is not quite as
simple as it sounds. Before we look at how lua-widow-
control assigns costs, let’s look at how TEX scores
paragraphs when breaking them naturally.

14.1 How TEX scores paragraphs
All glue in TEX has a certain natural size: the size
that it would be in an ideal scenario. However, most
glue also has stretch and shrink components so that
the glue can change in size to adapt to its surround-
ings. For each line, TEX individually sums the total
stretch/shrink for the line and the stretch/shrink
that was actually used. We define the stretch/shrink
ratio r as the quotient of the stretch/shrink used and
the stretch/shrink available. Then the badness b of
a line is approximately defined as

b = 100r3.

This is the badness referenced in the commonly-seen
Underfull \hbox (badness 1234) warnings that
TEX produces.

TEX calculates the badness for each line individ-
ually; however, we also need to assess the paragraph
as a whole. To do so, TEX defines the demerits for a
whole paragraph d as approximately5 the sum of the
squared badnesses for each line. The natural para-
graph that TEX breaks is the one that minimizes d.

One important thing to realize is that demerits
grow incredibly fast: demerits are proportional to
the sixth power of glue stretch. This means that
you can expect to see extremely large demerit values,
even for a relatively “good” paragraph.

14.2 Possible cost functions
Now, let’s return to how lua-widow-control assigns
costs to each paragraph. This is surprisingly more
complicated than it sounds, so we’ll go through a
few possible cost functions first.

Here, we use c for the cost of a paragraph, d for
the total demerits, and l for the number of lines
(\prevgraf).

5 We ignore any additional demerits or penalties that TEX
may add.

Max Chernoff

TUGboat, Volume 43 (2022), No. 1 37

14.2.1 The original implementation
The original implementation of lua-widow-control
used the very simple cost function

c = d.

This cost function works reasonably well, but has
one major issue: it doesn’t take into account the
number of lines in the paragraph. The demerits for
a paragraph is the sum of the demerits for each line.
This means this cost function will prefer using shorter
paragraphs since they tend to have fewer demerits.
However, long paragraphs tend to have much more
available glue stretch, so this strategy can lead to
suboptimal solutions.

14.2.2 Scaling by the number of lines
Once I realized this issue, I tried correcting it by
dividing by the number of lines in the paragraph to
get the average demerits instead of the total demerits:

c = d

l
This works better than the previous function, but
still has an issue. If we have a fairly bad ten-line
paragraph with total demerits 10d and an almost-
equally bad two-line paragraph with total demerits
2d + 1, then by this cost function, the ten-line para-
graph will have a lower cost and will be chosen. This
means that our page now has ten bad lines instead
of two bad lines, which is not ideal.

14.2.3 Current implementation
Our first cost function, c = dl0, doesn’t consider the
number of lines at all, while our second cost function,
c = dl−1, considers the number of lines too much.
Splitting the difference between the two functions,
we get the current implementation:

c = d√
l

I didn’t arrive at this function through any sort
of scientific testing; rather, I picked the simplest func-
tion that I could think of that satisfies the following
two properties:

• Given a long paragraph and a short paragraph
with different average badnesses per line, prefer
the one with the least average badness.

• Given two paragraphs with equal average bad-
nesses per line, prefer the shorter one.

15 Quantitative analysis
Let’s look at some statistics for lua-widow-control.
For testing, I downloaded the top ten books on
Project Gutenberg,6 converted them to LATEX us-
ing pandoc, concatenated them into a single article

1 2 3 4 5 6 7 8 9 101112131415 ≥16
0

1

2

3

4

Paragraph length (lines)

C
ou

nt
(t

ho
us

an
ds

)

Figure 4: Histogram of natural paragraph lengths in
the sample text.

file, and compiled twice. This gives us a PDF with
1 381 pages, 15 692 paragraphs, 61 865 lines, and
399 widows and orphans (if they aren’t removed).

This is a fairly challenging test: almost every
third page has a widow or orphan, over half of the
paragraphs have two lines or fewer, and the text
block is set to the fairly wide article defaults. An
average document is much less challenging for lua-
widow-control, so we can consider this to be a worst-
case scenario.

15.1 Widows and orphans removed
When we run LATEX with its default settings on
the file, 179 (47%) of the widows and orphans are
removed. When we add lua-widow-control with de-
fault settings, we remove 392 (98%). Switching to
strict mode, we can only remove 52 (13%) of the
widows and orphans. In balanced mode, we remove
348 (87%). See figure 5 for a visual comparison.

15.2 Paragraph costs
The last section showed us that lua-widow-control
is quite effective at removing widows and orphans,
so now let’s look at the paragraphs that lua-widow-
control expands. As TEX processes a document, lua-
widow-control is recording the costs for the naturally-
broken and expanded versions of each paragraph in
the document. Costs don’t mean that much on their
own, but a lower cost is always better.

6 Frankenstein, Pride and Prejudice, Alice’s Adventures in
Wonderland, The Great Gatsby, The Adventures of Sherlock
Holmes, Simple Sabotage Field Manual, A Tale of Two Cities,
The Picture of Dorian Gray, Moby Dick, and A Doll’s House.

Automatically removing widows and orphans with lua-widow-control

38 TUGboat, Volume 43 (2022), No. 1

Max
im

um

poss
ibl

e

lwc de
fa

ul
t

ba
la

nc
ed

LATEX

st
ri

ct

100

200

300

400
W

id
ow

s
an

d
or

ph
an

s
re

m
ov

ed

Figure 5: The number of widows and orphans removed
by each method.

0 20 40 60 80 100
102

103

104

105

Percentile

C
os

t

Natural
Long

Figure 6: Paragraph costs by percentile rank for
naturally-broken and one-line lengthened paragraphs.

As you can see in figure 6, the lengthened para-
graphs tend to have much higher costs than the
naturally-broken paragraphs. This is not surprising,
since (as we’ve seen) a paragraph’s demerits scale
with the sixth power of glue stretch, so even a small
amount of glue stretch can cause a huge increase in
demerits.

The empty space on the left of the “long” line
is from the paragraphs that lua-widow-control was
unable to lengthen at any cost. LuaTEX assigns these
paragraphs zero demerits, so they disappear on a
logarithmic plot.

15.3 Lengthening vs. shortening paragraphs
Figure 7 shows the number of paragraphs that lua-
widow-control could potentially stretch or shrink. The
one-line paragraphs are broken out separately since

0 2 4 6 8 10 12 14
Paragraphs (thousands)

n = 1 n n + 1 n ± 1 n − 1

Figure 7: The number of paragraphs in the test sample
that (respectively) have exactly one line, cannot be
stretched or shrunk, can be only stretched by one line,
can be either stretched or shrunk, and can be only
shrunk.

this test sample has an anomalous number of them.
Otherwise, we can see that lua-widow-control is capa-
ble of stretching the majority of paragraphs.

We can also see that of non-single-line para-
graphs, only about 8% of paragraphs can only be
shrunk (the last segment of figure 7), and this is in
a document where 13% of paragraphs have at least
eight lines. Most documents rarely have such long
paragraphs, and it is these long paragraphs that are
the easiest to shrink.

Because of this, lua-widow-control doesn’t even
attempt to shrink paragraphs; it only stretches them.

16 Known issues
lua-widow-control is quite stable these days, a few
issues remain:

• When a three-line paragraph is at the end of
a page forming a widow, lua-widow-control will
remove the widow; however, it will leave an or-
phan. This issue is inherent to any process that
removes widows through paragraph expansion
and is thus unavoidable. Orphans are consid-
ered to be better than widows [2], so this is still
an improvement.

• Sometimes a widow or orphan cannot be elimi-
nated because no paragraph has enough stretch.
Sometimes this can be remediated by increasing
lua-widow-control’s \emergencystretch; how-
ever, some pages just don’t have any suitable
paragraph.

Long paragraphs with short words tend to
be stretchier than short paragraphs with long
words since these long paragraphs have more
interword glue. Narrow columns also stretch
more easily than wide columns since you need
to expand a paragraph by less to make a new
line.

• When running under LuaMetaTEX (ConTEXt),
the log may contain many lines like “luatex
warning > tex: left parfill skip is gone”.

Max Chernoff

TUGboat, Volume 43 (2022), No. 1 39

These messages are completely harmless (al-
though admittedly quite annoying).

• TEX may warn about overfull \vboxes on pages
where lua-widow-control removed a widow or or-
phan. This happens due to the way that lua-
widow-control corrects for the \prevdepth when
replacing paragraphs. It does not actually pro-
duce an overfull vbox, but there is a warning
nevertheless. You can set \vfuzz=2.5pt to hide
the warning.

• lua-widow-control only attempts to expand para-
graphs on a page with a widow or orphan. A
global system like in [10] would solve this; how-
ever, this is both NP-complete [17] and impossi-
ble to solve in a single pass. Very rarely would
such a system remove widow or orphans that
lua-widow-control cannot.

17 Conclusion
All this probably makes lua-widow-control look quite
complicated, and this is true to some extent. How-
ever, this complexity is hidden from the end user:
as stated at the outset, most users merely need to
place \usepackage{lua-widow-control} in their
LATEX document preamble, and lua-widow-control
will remove all the troublesome widows and orphans,
without needing any manual intervention.

Should you have any issues, questions, or sugges-
tions for lua-widow-control, please visit the project’s
GitHub page: github.com/gucci-on-fleek/lua-
widow-control. Any feedback is greatly appreci-
ated!

References
[1] G. Ambrose, P. Harris. The Layout Book.

Advanced Level Series. Bloomsbury Academic,
2007.

[2] R. Bringhurst. The Elements of Typographic
Style. Hartley & Marks, 3rd ed., 2004.

[3] K. Brown. The typographical widow. Bulletin
of the New York Public Library 52(1):3–25, Jan.
1948. hdl.handle.net/2027/uc1.b3310084

[4] K. Brown. The typographical widow: Encore.
Bulletin of the New York Public Library
52(9):458–466, Sept. 1948.
hdl.handle.net/2027/uc1.b3310084

[5] R. Hunt. Advanced Typography: From
Knowledge to Mastery. Bloomsbury Publishing,
2020.

[6] P. Isambert. Strategies against widows.
TUGboat 31(1):12–17, 2010.
tug.org/TUGboat/tb31-1/tb97isambert.
pdf

[7] jeremie. Paragraph callback to help with
widows/orphans hand tuning, August 2017.
tex.stackexchange.com/q/372062

[8] D.E. Knuth. The new versions of TEX and
METAFONT. TUGboat 10(3):325–328, Nov. 1989.
tug.org/TUGboat/tb10-3/tb25knut.pdf

[9] D.E. Knuth. The TEXbook. Addison–Wesley,
2021.

[10] F. Mittelbach. A general framework for
globally optimized pagination. Computational
Intelligence 35(2):242–284, Mar. 2018.
doi.org/10.1111/coin.12165

[11] F. Mittelbach. Managing forlorn paragraph
lines (a.k.a. widows and orphans) in LATEX.
TUGboat 39(3):246–251, 2018. tug.org/
TUGboat/tb39-3/tb123mitt-widows.pdf

[12] F. Mittelbach. The widows-and-orphans
package, March 2021.
ctan.org/pkg/widows-and-orphans

[13] J. Moxon. Mechanick exercises,
vol. 2, 1683. archive.org/details/
mechanickexercis00moxo_0

[14] Oxford English Dictionary. line at end of
paragraph.
www.oed.com/view/th/class/195380

[15] Oxford English Dictionary. club, n., Sept. 2021.
www.oed.com/view/Entry/34788

[16] Oxford English Dictionary. widow, n., Dec.
2021. www.oed.com/view/Entry/228912

[17] M.F. Plass. Optimal pagination techniques for
automatic typesetting systems. Ph.D. thesis,
Stanford University, 1981.
tug.org/docs/plass/plass-thesis.pdf

[18] I. Saltz. Typography Essentials Revised and
Updated. Rockport Publishers, 2019.

[19] Hàn Thế Thành. Micro-typographic extensions
to the TEX typesetting system. TUGboat
21(4):317–317, Dec. 2000.
tug.org/TUGboat/tb21-4/tb69thanh.pdf

[20] The N T S Team. The ε-TEX manual, Feb.
1998. ctan.org/pkg/etex

[21] U. Wermuth. Experiments with
\parfillskip. TUGboat 39(3):276–303,
2018. tug.org/TUGboat/tb39-3/
tb123wermuth-parfillskip.pdf

� Max Chernoff
Calgary, Alberta
Canada

Automatically removing widows and orphans with lua-widow-control

https://github.com/gucci-on-fleek/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control
https://hdl.handle.net/2027/uc1.b3310084
https://hdl.handle.net/2027/uc1.b3310084
https://tug.org/TUGboat/tb31-1/tb97isambert.pdf
https://tug.org/TUGboat/tb31-1/tb97isambert.pdf
https://tex.stackexchange.com/q/372062
https://tug.org/TUGboat/tb10-3/tb25knut.pdf
https://doi.org/10.1111/coin.12165
https://tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf
https://tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf
https://ctan.org/pkg/widows-and-orphans
https://archive.org/details/mechanickexercis00moxo_0
https://archive.org/details/mechanickexercis00moxo_0
https://www.oed.com/view/th/class/195380
https://www.oed.com/view/Entry/34788
https://www.oed.com/view/Entry/228912
https://tug.org/docs/plass/plass-thesis.pdf
https://tug.org/TUGboat/tb21-4/tb69thanh.pdf
https://ctan.org/pkg/etex
https://tug.org/TUGboat/tb39-3/tb123wermuth-parfillskip.pdf
https://tug.org/TUGboat/tb39-3/tb123wermuth-parfillskip.pdf

	Motivation
	What are widows and orphans?
	Widows
	Orphans
	Broken hyphens

	History and etymology
	Widows
	Orphans
	Clubs

	Pagination in TeX
	Algorithm
	Behaviour
	\flushbottom and \normalbottom
	\raggedbottom

	\looseness
	Alternate removal strategies
	Visual comparison
	“Ignore”
	“Shorten”
	“Stretch”
	“lua-widow-control”

	Installation and standard usage
	Options
	Disabling
	Enabling
	Automatically disabling
	\emergencystretch
	Penalties
	\nobreak behaviour
	Maximum cost

	Presets
	default
	strict
	balanced

	Compatibility
	Formats
	Columns
	Performance
	ε-TeX penalties

	Short last lines
	How it works
	Setup
	Paragraph breaking
	Page breaking

	Choosing the “best” paragraph
	How TeX scores paragraphs
	Possible cost functions
	The original implementation
	Scaling by the number of lines
	Current implementation

	Quantitative analysis
	Widows and orphans removed
	Paragraph costs
	Lengthening vs. shortening paragraphs

	Known issues
	Conclusion

