
1

l u a - w i d o w - c o n t r o l
Max Chernoff

v 1.1.6

ctan.org/pkg/lua-widow-control
github.com/gucci-on-fleek/lua-widow-control

Lua-widow-control is a Plain TEX/LATEX/ConTEXt/OpTEX package that removes wid­
ows and orphans without any user intervention. Using the power of LuaTEX, it does
so without stretching any glue or shortening any pages or columns. Instead, lua-
widow-control automatically lengthens a paragraph on a page or column where a
widow or orphan would otherwise occur.

q u i c k s t a r t
Ensure that your TEX Live/MikTEX distribution is up-to-date. Then, LATEX users
just need to place \usepackage{lua-widow-control} in the preamble of your
document. For more details, see the Installation and Usage sections.

c o n t e n t s
Quick Start 1
Motivation 2

Widows and Orphans 3
Widows · Orphans

TEX’s Pagination 3
Algorithm · Behavior

Other Solutions 4
Demonstration 6

Ignore · Shorten · Stretch · lua-widow-control

Installation 7
TEX Live · MikTEX · ConTEXt mkiv Standalone

Manual · Steps

Dependencies 7

https://www.ctan.org/pkg/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control

2

Plain TEX · LATEX · ConTEXt · OpTEX

Loading the Package 8
Plain TEX · LATEX · ConTEXt · OpTEX

Columns 8
Advanced Usage 8

Plain TEX · LATEX · ConTEXt · OpTEX

\emergencystretch · Selectively Disabling

Known Issues 10
The Algorithm 10

Paragraph Breaking · Page Breaking

Contributions 11
License 12

References 12
Implementation 13

lua-widow-control.lua · lua-widow-control.tex

lua-widow-control.sty

t-lua-widow-control.mkxl

t-lua-widow-control.mkiv

lua-widow-control.opm · Demo from Table 1

m o t i v a t i o n
TEX provides top-notch typesetting: even 40 years after its first release, no other pro­
gram produces higher quality mathematical typesetting, and its paragraph-breaking
algorithm is still state-of-the-art. However, its page breaking is not quite as sophisti­
cated as its paragraph breaking and thus suffers from some minor issues.

Unmodified TEX typically has only 2 ways of dealing with widows and or­
phans: it can either shorten a page by 1 line, or it can stretch out some vertical
whitespace. TEX was designed for mathematical and scientific typesetting, where a
typical page has multiple section headings, tables, figures, and equations. For this
style of document, TEX’s default behavior works quite well; however, for prose or
any other document composed almost entirely of text, there is no vertical whitespace
to stretch.

Since there were no ready-made and fully-automated solutions to remove

3

widows and orphans from all types of documents, I decided to create lua-widow-
control.

w i d o w s a n d o r p h a n s
Widows Widows occur when when the majority of a paragraph is on one page or column,

but the last line is on the following page or column. Widows are undesirable for
both aesthetics and readability. Aesthetically, it looks quite odd for a lone line to be
at the start of the page. Functionally, the separation of a paragraph and its last line
disconnects the two, causing the reader to lose context for the widowed line.

Orphans Orphans are when the first line of a paragraph occurs on the page or column before
the remainder of they paragraph. They are not nearly as distracting for the reader, but
they are still not ideal. Visually, widows and orphans are about equally disruptive;
however, orphans tend not to decrease the legibility of a text as much as widows do,
so they tend to be ignored more often.

Widow Orphan

Figure 1 A visual comparison of widows and orphans.

tex ’ s p a g i n a t i o n
Algorithm It is tricky to understand how lua-widow-control works if you aren’t familiar with

how TEX breaks pages and columns. Chapter 15 of The TEXBook1 (“How TEX Makes
Lines into Pages”) is the best reference for this; however, it goes into much more
detail than most users require. As a supplemental resource, I can also recommend
Section 27 of TEXby Topic2, available online for free. Below follows a very simplified
(and likely error-ridden) summary of TEX’s page breaking algorithm:

TEX fills the page with lines and other objects until the next object will no
longer fit. Once no more objects will fit, TEX, will align the bottom of the last line
with the bottom of the page by stretching any vertical spaces.

https://texdoc.org/serve/texbytopic/0##page=227

4

However, some objects have penalties attached. These penalties make TEX
treat the object as if it is longer or shorter for the sake of page breaking. By default,
TEX assigns a penalties to the first and last lines of a paragraph (widows and or­
phans). This makes TEX treat them as if they are larger or smaller than their actual
size such that TEX tends not to break them up.

One important note: once TEX begins breaking a page, it never goes back and
modifies any content on the page. Page breaking is a localized algorithm, without
any backtracking.

Behavior Of course, this algorithm doesn’t allow us to intuitively understand how TEX deals
with widows and orphans.

Due to the penalties attached to widows and orphans, TEX treats them as if
they are longer than they actually are. Widows and orphans with small penalties
attached—like LATEX’s default values of 150—are only treated as slightly taller than
1 line, while widows and orphans with large penalties—values near 10 000—are
treated as if they are 2 lines tall. Because potential widow and orphan lines are
broken as if they are taller than they actually are, TEX will tend to group them
together on the same pages.

However, when these lines are moved as a group, TEX will have to make a page
or column with less lines. “Demonstration” goes into further detail about how TEX
deals with these too-short pages or columns. The main takeaway is that for a page
exclusively filled with text, all of TEX’s builtin solutions come with compromises.

o t h e r s o l u t i o n s
There have been a few previous attempts to improve upon TEX’s previously-dis­
cussed widow and orphan-handling abilities; however, none of these have been
able to automatically remove widows and orphans without stretching any glue or
shortening any pages.

Strategies against widows3 and Managing forlorn paragraph lines in LATEX4 both
begin with comprehensive discussions of the methods of preventing widows and
orphans. They both agree that widows and orphans are bad and ought to be avoided;
however, they each differ in solutions. Strategies3 proposes an output routine that
reduces the length of facing pages by 1 line when necessary to remove widows and
orphans while Managing4 proposes that the author manually rewrites or adjusts the
\looseness when needed.

5

Paragraph callback to help with widows/orphans hand tuning5 contains a file
widow-assist.lua that automatically detects which paragraphs can be safely short­
ened or lengthened by 1 line. The widows-and-orphans package6 alerts the author
to the pages that contain widows or orphans. Combined, these packages make it
very simple for the author to quickly remove widows and orphans by adjusting
the \looseness values; however, it still requires the author to make manual source
changes after each revision.

Lua-widow-control is essentially just a combination of widow-assist.lua5

and widows-and-orphans:6 when the \outputpenalty shows that a widow or or­
phan occurred, Lua is used to find a stretchable paragraph. What lua-widow-control
adds on top of these packages is automation: lua-widow-control eliminates the
requirement for any manual adjustments.

Ignore Shorten Stretch Lua-widow-control

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen­
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX's
paragraph is output to the page, but lua-
widow-control's paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX's paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.
This removes the widow or the orphan with­

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen­
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX's
paragraph is output to the page, but lua-
widow-control's paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX's paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen­
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX's
paragraph is output to the page, but lua-
widow-control's paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX's paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically length­
ening a paragraph on a page where a
widow or orphan would otherwise occur.
While TEX breaks paragraphs into their
natural length, lua-widow-control is break­
ing the paragraph 1 line longer than its
natural length. TEX's paragraph is out­
put to the page, but lua-widow-control's
paragraph is just stored for later. When a
widow or orphan occurs, lua-widow-control
can take over. It selects the previously-
saved paragraph with the least badness;
then, it replaces TEX's paragraph with
its saved paragraph. This increases the
text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

out creating any additional work. This removes the widow or the orphan with­
out creating any additional work.

This removes the widow or the orphan with­
out creating any additional work.

This removes the widow or the orphan with­
out creating any additional work.

\parskip=0pt

\clubpenalty=0
\widowpenalty=0

\parskip=0pt

\clubpenalty=10000
\widowpenalty=10000

\parskip=0pt plus 1fill

\clubpenalty=10000
\widowpenalty=10000

\usepackage{lua-widow-control}

Table 1 A visual comparison of various automated widow handling techniques.

6

d e m o n s t r a t i o n
Although TEX’s page breaking algorithm is quite simple, it can lead to some fairly
complex behaviors when widows and orphans are involved. The usual choices are
to either ignore them, stretch some glue, or shorten the page. Table 1 has a visual
demonstration of some of these behaviors and how lua-widow-control differs from
the defaults.

Ignore As you can see, the last line of the page is on a separate page from the rest of its
paragraph, creating a widow. This is usually pretty distracting for the reader, so it
is best avoided wherever possible.

Shorten This page did not leave any widows, but it did shorten the previous page by 1 line.
Sometimes this is acceptable, but usually it looks bad because each page will have
different text-block heights. This can make the pages look quite uneven, especially
when typesetting with columns or in a book with facing pages.

Stretch This page also has no widows and it has a flushed bottom margin. However, the
space between each paragraph had to be stretched.

If this page had many equations, headings, and other elements with natural
space between them, the stretched out space would be much less noticeable. TEX
was designed for mathematical typesetting, so it makes sense that this is its default
behavior. However, in a page with mostly text, these paragraph gaps can look
unsightly.

In addition, this method is incompatible with typesetting on a grid since all
glue stretch must be quantized to the height of a line.

lua-widow-
control

Lua-widow-control has none of these issues: it eliminates the widows in a document
while keeping a flushed bottom margin and constant paragraph spacing.

To do so, lua-widow-control lengthened the second paragraph by one line. If
you look closely, you can see that this stretched the interword spaces. This stretch­
ing is noticeable when typesetting in a narrow text block, but it becomes nearly
imperceptible with larger widths.

Lua-widow-control automatically finds the “best” paragraph to stretch, so
the increase in interword spaces should almost always be minimal.

7

i n s t a l l a t i o n
Most up-to-date TEX Live and MikTEX systems should already have lua-widow-
control installed. However, a manual installation may occasionally be required.

TEX Live Run tlmgr install lua-widow-control in a terminal, or install using the “TEX Live
Manager” gui.

MikTEX Run mpm --install=lua-widow-control in a terminal, or install using the “MikTEX
Maintenance” gui.

ConTEXt MKIV
Standalone

Run first-setup.sh --modules="lua-widow-control" in a terminal or install
manually.

Manual Currently, ConTEXt mkxl (luametaTEX) users must manually install the package.
Most other users will be better served by using the lua-widow-control supplied by
TEX Live and MikTEX; however, all users may manually install the package if desired.
The procedure should be fairly similar regardless of your os, TEX distribution, or
format.

Steps 1. Download lua-widow-control.tds.zip from ctan or GitHub.
2. Unzip the release into your TEXMFLOCAL/ directory. (You can find its location by

running kpsewhich --var-value TEXMFHOME in a terminal)
3. Refresh the filename database:

• ConTEXt: mtxrun --generate
• TEX Live: mktexlsr
• MikTEX: initexmf --update-fndb

d e p e n d e n c i e s
Lua-widow-control does have a few dependencies; however, these will almost cer­
tainly be met by all but the most minimal of TEX installations.

Plain TEX Lua-widow-control requires LuaTEX (≥ 0.85) and the most recent version of lua­
texbase (2015/10/04). Any version of TEX Live ≥ 2016 will meet these requirements.

LATEX Lua-widow-control requires LuaTEX (≥ 0.85), LATEX (≥ 2015/01/01), microtype (any
version), and etoolbox (any version). Any version of TEX Live ≥ 2016 will meet
these requirements.

https://www.ctan.org/pkg/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest

8

ConTEXt Lua-widow-control supports both ConTEXt mkxl (luametaTEX) and ConTEXt mkiv
(LuaTEX).

OpTEX Lua-widow-control works with any version of OpTEX and has no dependencies.

l o a d i n g t h e p a c k a g e
Plain TEX \input lua-widow-control

LATEX \usepackage{lua-widow-control}

ConTEXt \usemodule[lua-widow-control]

OpTEX \load[lua-widow-control]

c o l u m n s
Since TEX implements column breaking and page breaking through the same inter­
nal mechanisms, lua-widow-control should remove widows and orphans between
columns just as well as it does with widows and orphans between pages. This has
been tested with the standard LATEX class option twocolumn and the two-column
output routine from Chapter 23 of The TEXBook.1 Lua-widow-control should pre­
sumably work with any other multi-column implementation; however, due to the
diversity and complexity of output routines, this cannot be guaranteed.

a d v a n c e d u s a g e
Lua-widow-control is automatically enabled with the default settings as soon as you
load it. Most users should not need to configure lua-widow-control; however, the
packages does provide a few commands.

Plain TEX Enable (default) \lwcenable

Disable \lwcdisable

\emergencystretch \lwcemergencystretch=3em

Selectively Disable \lwcdisablecmd{\cmd}

9

LATEX Enable (default) \lwcenable

Disable \lwcdisable

\emergencystretch \setlength{\lwcemergencystretch}{3em}

Selectively Disable \lwcdisablecmd{\cmd}

ConTEXt Enable (default) \setuplwc[state = start]

Disable \setuplwc[state = stop]

\emergencystretch \setuplwc[emergencystretch = 3em]

Selectively Disable \prependtoks\lwc@patch@pre \to\everybeforefoo

\prependtoks\lwc@patch@post\to\everyafterfoo

OpTEX Enable (default) \lwcenable

Disable \lwcdisable

\emergencystretch \lwcemergencystretch=3em

Selectively Disable Not Implemented

\emergency
stretch

You can configure the \emergencystretch used when stretching a paragraph. The
default value is 3 em.

Lua-widow-control will only use use the \emergencystretch when it cannot
lengthen a paragraph in any other way, so it is fairly safe to set this to a large value.
TEX still accumulates badness when \emergencystretch is used, so its pretty rare
that a paragraph that requires any \emergencystretch will actually be used on the
page.

Selectively
Disabling

Sometimes, you may want to disable lua-widow-control for certain commands where
stretching is undesirable. For example, you typically wouldn’t want section headings
to be stretched.

You could just disable then reenable lua-widow-control every time that you
use the command; however, lua-widow-control provides a convenience macro that
will do this automatically for you. Place \lwcdisablecmd{\cmd} in the preamble,
and lua-widow-control will not expand any arguments of \cmd in the document.

Lua-widow-control automatically patches the default LATEX, ConTEXt, and
Plain TEX section commands, so you shouldn’t need to patch these yourself; however,
lua-widow-control does not patch the non-standard section commands provided by
memoir, koma-script, titlesec, and others. You’ll need to patch these yourself.

10

Under ConTEXt, you need to use a different method to selectively disable
lua-widow-control. Instead of using \lwcdisablecmd, you should use one of the
preexisting \everyfoo hooks as shown in the table above since patching commands
is rarely advisable in ConTEXt

No commands are provided for selectively disabling lua-widow-control with
OpTEX. Users must implement this functionality themselves.

k n o w n i s s u e s
• Lua-widow-control will not expand the first paragraph of a document.
• Lua-widow-control will rarely fail to correctly move the last line on an expanded

page to the next page in documents with very small paper sizes.
• When a 3-line paragraph is at the end of a page forming a widow, lua-widow-

control will remove the widow; however, it will leave an orphan. This issue
is inherent to any process that removes widows through paragraph expansion
and is thus unavoidable. Orphans are better than widows, so this is still an
improvement.

• Sometimes a widow or orphan cannot be eliminated because no paragraph has
enough “stretch”. This can sometimes be remediated by increasing lua-widow-
control’s \emergencystretch; however, some pages just don’t have enough
“stretchy” paragraphs. Long paragraphs with short words tend to be “stretchier”
than short paragraphs with long words since these long paragraphs will have
more interword glue. Narrow columns also stretch easier than wide columns
since you need to expand a paragraph by less to make a new line.

• When running under luametaTEX, the log may be filled with lines like “luatex
warning > tex: left parfill skip is gone”. This is harmless and can be
ignored.

• Lua-widow-control will rarely raise a “Circular node list detected!” warn­
ing. This occurs when the replacement paragraph node list loops back on itself.
Since there is no “end” to the paragraph, lua-widow-control cannot splice the
paragraph into the page. The only reasonable option in this scenario is to stop
processing the page, without removing the widow or orphan.

t h e a l g o r i t h m

11

Lua-widow-control uses a fairly simple algorithm to eliminate widows and orphans.
It is pretty basic, but there are a few subtleties. Please see “Implementation” for a
full listing of the source code.

Paragraph
Breaking

First, lua-widow-control hooks into the paragraph breaking process.
Before a paragraph is broken by TEX, lua-widow-control grabs the unbro­

ken paragraph. Lua-widow-control then breaks the paragraph 1 line longer than
its natural length and stores it for later, without interfering with how TEX breaks
paragraphs into their natural length.

After TEX has broken its paragraph into its natural length, lua-widow-control
appears once again. Before the broken paragraph is added to the main vertical list,
lua-widow-control tags the first and last nodes of the paragraph. These tags create a
relationship between the previously-saved lengthened paragraph and the start/end
of the naturally-typeset paragraph on the page.

Page Breaking Lua-widow-control intercepts \box255 immediately before the output routine.
First, lua-widow-control analyzes the \outputpenalty of the page or column.

If the page was broken at a widow or orphan, the \outputpenalty will equal either
\widowpenalty or \orphanpenalty. If the \outputpenalty is not indicative of a
widow or orphan, lua-widow-control will stop and return \box255 unmodified.

At this point, we know that we have a widow or orphan on the page, so we
must lengthen the page by 1 line. We iterate through the list of saved paragraphs
to find the lengthened paragraph with the least demerits. Once we’ve selected a
paragraph to replace, we can now traverse through the page to find the original
version of this paragraph that TEX originally typeset. Once we find the original
paragraph, we “splice” the lengthened paragraph in the place of the original.

Since the page is now 1 line longer than it was before, we pull the last line off
of the page to bring it back to its original length. We place the line onto the top of
the recent contributions list so that it is added to the start of the next page. Now, we
can return the new, widow-free page to the output routine.

c o n t r i b u t i o n s
If you have any issues with lua-widow-control, please create an issue at the project’s
GitHub page. Or, if you think that you can solve any of the “Known Issues” or add
any new features, submit a pr. Thanks!

https://github.com/gucci-on-fleek/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control

12

l i c e n s e
Lua-widow-control is licensed under the Mozilla Public License, version 2.0 or
greater. The documentation is licensed under cc-by-sa, version 4.0 or greater as
well as the mpl.

Please note that a compiled document is not considered to be an “Executable
Form” as defined by the mpl. The mpl and cc-by-sa licenses only apply to you if
you distribute the lua-widow-control source code or documentation.

r e f e r e n c e s
1. Knuth, DE (2020). The TEXBook. Addison–Wesley. ctan.org/pkg/texbook
2. Eijkhout, V (2007). TEXby Topic. Author. texdoc.org/serve/texbytopic/0
3. Isambert, P (2010). Strategies against widows. TUGboat, 31(1), 12–17. tug.org

/TUGboat/tb31-1/tb97isambert.pdf

4. Mittelbach, F (2018). Managing forlorn paragraph lines in LATEX. TUGboat,
39(3), 246–251. tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf

5. jeremie (2017, August). Paragraph callback to help with widows/orphans hand tun­
ing. tex.stackexchange.com/q/372062

6. Mittelbach, F (2021, March). The widows-and-orphans package. Author. ctan
.org/pkg/widows-and-orphans

https://www.mozilla.org/en-US/MPL/2.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://ctan.org/pkg/texbook
https://texdoc.org/serve/texbytopic/0
https://www.tug.org/TUGboat/tb31-1/tb97isambert.pdf
https://www.tug.org/TUGboat/tb31-1/tb97isambert.pdf
https://www.tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf
https://tex.stackexchange.com/q/372062
https://www.ctan.org/pkg/widows-and-orphans
https://www.ctan.org/pkg/widows-and-orphans

13

i m p l e m e n t a t i o n
lua-widow-control.lua
--[[
 lua-widow-control
 https://github.com/gucci-on-fleek/lua-widow-control
 SPDX-License-Identifier: MPL-2.0+
 SPDX-FileCopyrightText: 2022 Max Chernoff
]]

lwc = {}
lwc.name = "lua-widow-control"

--[[
 lua-widow-control is intended to be format-agonistic. It only runs on LuaTEX,
 but there are still some slight differences between formats. Here, we
 detect the format name then set some flags for later processing.
]]
local format = tex.formatname
local context, latex, plain, optex, lmtx

if format:find('cont') then -- cont-en, cont-fr, cont-nl, ...
 context = true
 if status.luatex_engine == "luametatex" then
 lmtx = true
 end
elseif format:find('latex') then -- lualatex, lualatex-dev, ...
 latex = true
elseif format == 'luatex' then -- Plain
 plain = true
elseif format == 'optex' then -- OpTeX
 optex = true
end

--[[
 Save some local copies of the node library to reduce table lookups.
 This is probably a useless micro-optimization, but it can't hurt.
]]
local last = node.slide
local copy = node.copy_list
local par_id = node.id("par") or node.id("local_par")
local glue_id = node.id("glue")
local set_attribute = node.set_attribute

14

local has_attribute = node.has_attribute
local flush_list = node.flush_list or node.flushlist
local free = node.free
local min_col_width = tex.sp("25em")
local maxdimen = 1073741823 -- \maxdimen in sp

--[[
 Package/module initialization
]]
local warning, info, attribute, contrib_head, stretch_order, pagenum

if context and lmtx then
 warning = logs.reporter("module", lwc.name)
 info = logs.reporter("module", lwc.name)
 attribute = attributes.public(lwc.name)
 contrib_head = 'contributehead' -- For luametaTEX
 stretch_order = "stretchorder"
 pagenum = function() return tex.count["realpageno"] end
elseif context and not lmtx then
 warning = logs.reporter("module", lwc.name)
 info = logs.reporter("module", lwc.name)
 attribute = attributes.public(lwc.name)
 contrib_head = 'contrib_head'
 stretch_order = "stretch_order"
 pagenum = function() return tex.count["realpageno"] end
elseif plain or latex then
 luatexbase.provides_module {
 name = lwc.name,
 date = "2022/02/22", --%%date
 version = "1.1.6", --%%version
 description = [[

 This module provides a LuaTeX-based solution to prevent
 widows and orphans from appearing in a document. It does
 so by increasing or decreasing the lengths of previous
 paragraphs.
]],
 }
 warning = function(str) luatexbase.module_warning(lwc.name, str) end
 info = function(str) luatexbase.module_info(lwc.name, str) end
 attribute = luatexbase.new_attribute(lwc.name)
 contrib_head = 'contrib_head' -- For LuaTEX
 stretch_order = "stretch_order"
 pagenum = function() return tex.count[0] end

15

elseif optex then
 local write_nl = texio.write_nl
 warning = function(str) write_nl(lwc.name .. " Warning: " .. str) end
 info = function(str) write_nl("log", lwc.name .. " Info: " .. str) end
 attribute = alloc.new_attribute(lwc.name)
 contrib_head = 'contrib_head'
 stretch_order = "stretch_order"
 pagenum = function() return tex.count[0] end
else -- uh oh
 error [[
 Unsupported format.

 Please use (Lua)LaTeX, Plain (Lua)TeX, ConTeXt (MKXL/LMTX),
 or OpTeX.
]]
end

local paragraphs = {} -- List to hold the alternate paragraph versions

--[[
 Function definitions
]]

--- Create a table of functions to enable or disable a given callback
--- @param t table Parameters of the callback to create
--- callback: str = The LuaTEX callback name
--- func: function = The function to call
--- name: str = The name/ID of the callback
--- category: str = The category for a ConTEXt "Action"
--- position: str = The "position" for a ConTEXt "Action"
--- lowlevel: bool = If we should use a lowlevel LuaTEX callback instead of a
--- ConTEXt "Action"
--- @return table t Enablers/Disablers for the callback
--- enable: function = Enable the callback
--- disable: function = Disable the callback
local function register_callback(t)
 if plain or latex then -- Both use LuaTEXBase for callbacks
 return {
 enable = function()
 luatexbase.add_to_callback(t.callback, t.func, t.name)
 end,
 disable = function()
 luatexbase.remove_from_callback(t.callback, t.name)

16

 end,
 }
 elseif context and not t.lowlevel then
 return {
 -- Register the callback when the table is created,
 -- but activate it when `enable()` is called.
 enable = nodes.tasks.appendaction(t.category, t.position, "lwc." .. t.name)
 or function()
 nodes.tasks.enableaction(t.category, "lwc." .. t.name)
 end,
 disable = function()
 nodes.tasks.disableaction(t.category, "lwc." .. t.name)
 end,
 }
 elseif context and t.lowlevel then
 --[[
 Some of the callbacks in ConTEXt have no associated "actions". Unlike
 with LuaTEXbase, ConTEXt leaves some LuaTEX callbacks unregistered
 and unfrozen. Because of this, we need to register some callbacks at the
 engine level. This is fragile though, because a future ConTEXt update
 may decide to register one of these functions, in which case
 lua-widow-control will crash with a cryptic error message.
]]
 return {
 enable = function() callback.register(t.callback, t.func) end,
 disable = function() callback.register(t.callback, nil) end,
 }
 elseif optex then
 return {
 enable = function()
 callback.add_to_callback(t.callback, t.func, t.name)
 end,
 disable = function()
 callback.remove_from_callback(t.callback, t.name)
 end,
 }
 end
end

--- Saves each paragraph, but lengthened by 1 line
function lwc.save_paragraphs(head)
 -- Prevent the "underfull hbox" warnings when we store a potential paragraph
 local renable_box_warnings
 if (latex or plain) and

17

 #luatexbase.callback_descriptions("hpack_quality") == 0
 then -- See #18 and michal-h21/linebreaker#3
 renable_box_warnings = true
 lwc.callbacks.disable_box_warnings.enable()
 end

 -- Ensure that we were actually given a par (only under ConTEXt for some reason)
 if head.id ~= par_id and context then
 return head
 end

 -- We need to return the unmodified head at the end, so we make a copy here
 local new_head = copy(head)

 -- Prevent ultra-short last lines (TEXBook p. 104), except with narrow columns
 local parfillskip = last(new_head)
 if parfillskip.id == glue_id and tex.hsize > min_col_width then
 parfillskip[stretch_order] = 0
 parfillskip.stretch = 0.8 * tex.hsize -- Last line must be at least 20% long
 end

 -- Break the paragraph 1 line longer than natural
 local long_node, long_info = tex.linebreak(new_head, {
 looseness = 1,
 emergencystretch = tex.dimen.lwcemergencystretch,
 })

 -- Break the natural paragraph so we know how long it was
 local natural_node, natural_info = tex.linebreak(copy(head))
 flush_list(natural_node)

 if renable_box_warnings then
 lwc.callbacks.disable_box_warnings.disable()
 end

 -- If we can't lengthen the paragraph, assign a very large demerit value
 local long_demerits
 if long_info.prevgraf == natural_info.prevgraf then
 long_demerits = maxdimen
 else
 long_demerits = long_info.demerits
 end

 -- Offset the accumulated \prevdepth

18

 local prevdepth = node.new("glue")
 prevdepth.width = natural_info.prevdepth - long_info.prevdepth
 last(long_node).next = prevdepth

 table.insert(paragraphs, { demerits = long_demerits, node = long_node })

 -- luametaTEX crashes if we return `true`
 return head
end

--- Tags the beginning and the end of each paragraph as it is added to the page.

--- We add an attribute to the first and last node of each paragraph. The ID is
--- some arbitrary number for lua-widow-control, and the value corresponds to the
--- paragraphs index, which is negated for the end of the paragraph.
function lwc.mark_paragraphs(head)
 set_attribute(head, attribute, #paragraphs)
 set_attribute(last(head), attribute, -1 * #paragraphs)

 return head
end

--- A "safe" version of the last/slide function.

--- Sometimes the node list can form a loop. Since there is no last element
--- of a looped linked-list, the `last()` function will never terminate. This
--- function provides a "safe" version of the `last()` function that will break
--- the loop at the end if the list is circular.
local function safe_last(head)
 local ids = {}
 local prev

 while head.next do
 local id = node.is_node(head) -- Returns the internal node id

 if ids[id] then
 warning [[Circular node list detected!
This should never happen. I'll try and recover, but your output may be
corrupted. As a workaround, disable lua-widow-control for the
affected paragraph or change the page breaks in your document.]]

 prev.next = nil
 return prev
 end

19

 ids[id] = true
 head.prev = prev
 prev = head
 head = head.next
 end

 return head
end

--- Remove the widows and orphans from the page, just after the output routine.

--- This function holds the "meat" of the module. It is called just after the
--- end of the output routine, before the page is shipped out. If the output
--- penalty indicates that the page was broken at a widow or an orphan, we
--- replace one paragraph with the same paragraph, but lengthened by one line.
--- Then, we can push the bottom line of the page to the next page.
function lwc.remove_widows(head)
 local penalty = tex.outputpenalty - tex.interlinepenalty
 local widowpenalty = tex.widowpenalty
 local clubpenalty = tex.clubpenalty
 local displaywidowpenalty = tex.displaywidowpenalty
 local brokenpenalty = tex.brokenpenalty

 --[[
 We only need to process pages that have orphans or widows. If `paragraphs`
 is empty, then there is nothing that we can do.

 The list of penalties is from:
 https://tug.org/TUGboat/tb39-3/tb123mitt-widows-code.pdf#subsection.0.2.1
]]
 if (penalty == widowpenalty or
 penalty == displaywidowpenalty or
 penalty == clubpenalty or
 penalty == clubpenalty + widowpenalty or
 penalty == clubpenalty + displaywidowpenalty or
 penalty == brokenpenalty or
 penalty == brokenpenalty + widowpenalty or
 penalty == brokenpenalty + displaywidowpenalty or
 penalty == brokenpenalty + clubpenalty or
 penalty == brokenpenalty + clubpenalty + widowpenalty or
 penalty == brokenpenalty + clubpenalty + displaywidowpenalty) and
 #paragraphs >= 1 then
 else

20

 return head
 end

 info("Widow/orphan detected. Attempting to remove.")

 local head_save = head -- Save the start of the `head` linked-list

 --[[
 Find the paragraph on the page with the minimum penalty.

 This would be a 1-liner in Python or JavaScript, but Lua is pretty low-level,
 so there's quite a bit of code here.
]]
 local paragraph_index = 1
 local minimum_demerits = paragraphs[paragraph_index].demerits

 -- We find the current "best" replacement, then free the unused ones
 for i, paragraph in pairs(paragraphs) do
 if paragraph.demerits < minimum_demerits and i <= #paragraphs - 1 then
 flush_list(paragraphs[paragraph_index].node)
 paragraphs[paragraph_index].node = nil
 paragraph_index, minimum_demerits = i, paragraph.demerits
 elseif i > 1 then
 -- Not sure why `i > 1` is required?
 flush_list(paragraph.node)
 paragraph.node = nil
 end
 end

 local target_node = paragraphs[paragraph_index].node
 local clear_flag = false

 -- Loop through all of the nodes on the page
 while head do
 -- Insert the start of the replacement paragraph
 if has_attribute(head, attribute, paragraph_index) then
 safe_last(target_node) -- Remove any loops

 head.prev.next = target_node
 clear_flag = true
 end

 -- Insert the end of the replacement paragraph
 if has_attribute(head, attribute, -1 * paragraph_index) then

21

 safe_last(target_node).next = head.next
 clear_flag = false
 end

 -- Start of final paragraph
 if has_attribute(head, attribute, #paragraphs) then
 local last_line = copy(last(head))

 last(last_line).next = copy(tex.lists[contrib_head])

 last(head).prev.prev.next = nil
 -- Move the last line to the next page
 tex.lists[contrib_head] = last_line
 info(
 "Widow/orphan successfully removed at paragraph "
 .. paragraph_index
 .. " on page "
 .. pagenum()
 .. "."
)
 end

 if clear_flag then
 head = free(head)
 else
 head = head.next
 end
 end

 paragraphs = {} -- Clear paragraphs array at the end of the page

 return head_save
end

-- Add all of the callbacks
lwc.callbacks = {
 disable_box_warnings = register_callback({
 callback = "hpack_quality",
 func = function() end,
 name = "disable_box_warnings",
 lowlevel = true,
 }),
 remove_widows = register_callback({
 callback = "pre_output_filter",

22

 func = lwc.remove_widows,
 name = "remove_widows",
 lowlevel = true,
 }),
 save_paragraphs = register_callback({
 callback = "pre_linebreak_filter",
 func = lwc.save_paragraphs,
 name = "save_paragraphs",
 category = "processors",
 position = "after",
 }),
 mark_paragraphs = register_callback({
 callback = "post_linebreak_filter",
 func = lwc.mark_paragraphs,
 name = "mark_paragraphs",
 category = "finalizers",
 position = "after",
 }),
}

local enabled = false
function lwc.enable_callbacks()
 if not enabled then
 lwc.callbacks.remove_widows.enable()
 lwc.callbacks.save_paragraphs.enable()
 lwc.callbacks.mark_paragraphs.enable()

 enabled = true
 else
 warning("Already enabled")
 end
end

function lwc.disable_callbacks()
 if enabled then
 lwc.callbacks.save_paragraphs.disable()
 lwc.callbacks.mark_paragraphs.disable()
 --[[
 We do not disable `remove_widows` callback, since we still want
 to expand any of the previously-saved paragraphs if we hit an orphan
 or a widow.
]]

23

 enabled = false
 else
 warning("Already disabled")
 end
end

function lwc.if_lwc_enabled()
 if enabled then
 tex.sprint("\\iftrue")
 else
 tex.sprint("\\iffalse")
 end
end

return lwc

lua-widow-control.tex
% lua-widow-control
% https://github.com/gucci-on-fleek/lua-widow-control
% SPDX-License-Identifier: MPL-2.0+
% SPDX-FileCopyrightText: 2022 Max Chernoff

\wlog{lua-widow-control v1.1.6} %%version

\ifx\directlua\undefined
 \errmessage{%
 LuaTeX is required for this package.
 Make sure to compile with `luatex'%
 }
\fi

\input ltluatex % LuaTEXBase

\clubpenalty=1
\widowpenalty=1
\displaywidowpenalty=0
\interlinepenalty=0
\brokenpenalty=0

\newdimen\lwcemergencystretch
\lwcemergencystretch=3em

\directlua{require "lua-widow-control"}

24

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% lua-widow-control's functionality; however, it is required for the
% lengthened paragraphs to not have terrible spacing.
\expandglyphsinfont\the\font 20 20 5
\adjustspacing=2

% Define TEX wrappers for Lua functions
\def\lwcenable{\directlua{lwc.enable_callbacks()}}
\def\lwcdisable{\directlua{lwc.disable_callbacks()}}
\def\iflwc{\directlua{lwc.if_lwc_enabled()}}

% Enable lua-widow-control by default when the package is loaded.
\lwcenable

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable lua-widow-control for certain commands.
\catcode`@=11

% We should only reenable lua-widow-control at the end if it was already enabled.
\newif\iflwc@should@reenable

\def\lwc@patch@pre{%
 \iflwc%
 \lwc@should@reenabletrue%
 \lwcdisable%
 \else%
 \lwc@should@reenablefalse%
 \fi%
}

\def\lwc@patch@post{\iflwc@should@reenable%
 \lwcenable%
\fi}

\def\lwcdisablecmd#1{%
 \ifdefined#1
 \expandafter\def\expandafter#1\expandafter{\lwc@patch@pre #1\lwc@patch@post}
 \fi
}
\catcode`@=12

\begingroup
 \suppressoutererror=1
 \lwcdisablecmd{\beginsection} % Sectioning

25

\endgroup

\endinput

lua-widow-control.sty
% lua-widow-control
% https://github.com/gucci-on-fleek/lua-widow-control
% SPDX-License-Identifier: MPL-2.0+
% SPDX-FileCopyrightText: 2022 Max Chernoff

\NeedsTeXFormat{LaTeX2e}[2015/01/01] % Formats built after 2015 include LuaTEXBase
\ProvidesPackage{lua-widow-control}%
 [2022/02/22 v1.1.6] %%version %%date

\ifdefined\directlua\else
 \PackageError{lua-widow-control}{%
 LuaTeX is required for this package.\MessageBreak
 Make sure to compile with `lualatex'%
 }{}
\fi

\clubpenalty=1
\widowpenalty=1
\displaywidowpenalty=0
\interlinepenalty=0
\brokenpenalty=0

% We can't use \newlength since that makes a TEX "skip", not a "dimen"
\newdimen\lwcemergencystretch
\lwcemergencystretch=3em

\directlua{require "lua-widow-control"}

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% lua-widow-control's functionality; however, it is required for the
% lengthened paragraphs to not have terrible spacing.
\RequirePackage{etoolbox}
\AtEndPreamble{
 \@ifpackageloaded{microtype}{}{ % Only load if not already loaded
 \RequirePackage[
 final,
 activate={true,nocompatibility}
]{microtype}
 }

26

}

% Define TEX wrappers for Lua functions
\newcommand{\lwcenable}{\directlua{lwc.enable_callbacks()}}
\newcommand{\lwcdisable}{\directlua{lwc.disable_callbacks()}}
\newcommand{\iflwc}{\directlua{lwc.if_lwc_enabled()}}

% Enable lua-widow-control by default when the package is loaded.
\lwcenable

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable lua-widow-control for certain commands.
\newcommand{\lwc@patch@warning}[1]{\PackageWarning{lua-widow-control}{%
 Patching the \protect#1 command failed%
}}

% We should only reenable lua-widow-control at the end if it was already enabled.
\newif\iflwc@should@reenable

\newcommand{\lwc@patch@pre}{%
 \iflwc%
 \lwc@should@reenabletrue%
 \lwcdisable%
 \else%
 \lwc@should@reenablefalse%
 \fi%
}

\newcommand{\lwc@patch@post}{%
 \iflwc@should@reenable%
 \lwcenable%
 \fi%
}

\newcommand{\lwcdisablecmd}[1]{%
 \ifdefined#1
 \pretocmd{#1}{\lwc@patch@pre}{}{\lwc@patch@warning{#1}}%
 \apptocmd{#1}{\lwc@patch@post}{}{\lwc@patch@warning{#1}}%
 \fi
}

\lwcdisablecmd{\@sect} % Sectioning

27

\endinput

t-lua-widow-control.mkxl
%D \module
%D [file=t-lua-widow-control,
%D version=1.1.6, %%version
%D title=lua-widow-control,
%D subtitle=ConTEXt module for lua-widow-control,
%D author=Max Chernoff,
%D date=2022-02-22, %%date
%D copyright=Max Chernoff,
%D license=MPL-2.0+,
%D url=https://github.com/gucci-on-fleek/lua-widow-control]
\startmodule[lua-widow-control]
\unprotect

\installnamespace{lwc}

\installcommandhandler \????lwc {lwc} \????lwc

\newdimen\lwcemergencystretch
\appendtoks
 \lwcemergencystretch=\lwcparameter{emergencystretch}
\to\everysetuplwc

\appendtoks
 \doifelse{\lwcparameter{\c!state}}\v!start{
 \ctxlua{lwc.enable_callbacks()}
 }{
 \ctxlua{lwc.disable_callbacks()}
 }
\to\everysetuplwc

\define\iflwc{\ctxlua{lwc.if_lwc_enabled()}}

\ctxloadluafile{lua-widow-control}

\setuplwc[emergencystretch=3em, \c!state=\v!start]

% We can't just set the penalties because they will be reset automatically
% at \starttext.
\startsetups[*default]
 \clubpenalty=1
 \widowpenalty=1

28

 \displaywidowpenalty=0
 \interlinepenalty=0
 \brokenpenalty=0
\stopsetups

\setups[*default]

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% lua-widow-control's functionality; however, it is required for the
% lengthened paragraphs to not have terrible spacing.
\definefontfeature[default][default][expansion=quality]
\setupalign[hz]

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable lua-widow-control for certain commands.
% We should only reenable lua-widow-control at the end if it was already enabled.
\newif\iflwc@should@reenable

\define\lwc@patch@pre{%
 \iflwc%
 \lwc@should@reenabletrue%
 \setuplwc[state=stop]%
 \else%
 \lwc@should@reenablefalse
 \fi%
}

\define\lwc@patch@post{\iflwc@should@reenable%
 \setuplwc[state=start]%
\fi}

\prependtoks\lwc@patch@pre\to\everybeforesectionheadhandle % Sectioning
\prependtoks\lwc@patch@post\to\everyaftersectionheadhandle

\protect
\stopmodule

t-lua-widow-control.mkiv
%D \module
%D [file=t-lua-widow-control,
%D version=1.1.6, %%version
%D title=lua-widow-control,
%D subtitle=ConTEXt module for lua-widow-control,
%D author=Max Chernoff,

29

%D date=2022-02-22, %%date
%D copyright=Max Chernoff,
%D license=MPL-2.0+,
%D url=https://github.com/gucci-on-fleek/lua-widow-control]
\startmodule[lua-widow-control]
\unprotect

\installnamespace{lwc}

\installcommandhandler \????lwc {lwc} \????lwc

\newdimen\lwcemergencystretch
\appendtoks
 \lwcemergencystretch=\lwcparameter{emergencystretch}
\to\everysetuplwc

\appendtoks
 \doifelse{\lwcparameter{\c!state}}\v!start{
 \ctxlua{lwc.enable_callbacks()}
 }{
 \ctxlua{lwc.disable_callbacks()}
 }
\to\everysetuplwc

\define\iflwc{\ctxlua{lwc.if_lwc_enabled()}}

\ctxloadluafile{lua-widow-control}

\setuplwc[emergencystretch=3em, \c!state=\v!start]

% We can't just set the penalties because they will be reset automatically
% at \starttext.
\startsetups[*default]
 \clubpenalty=1
 \widowpenalty=1
 \displaywidowpenalty=0
 \interlinepenalty=0
 \brokenpenalty=0
\stopsetups

\setups[*default]

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% lua-widow-control's functionality; however, it is required for the

30

% lengthened paragraphs to not have terrible spacing.
\definefontfeature[default][default][expansion=quality]
\setupalign[hz]

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable lua-widow-control for certain commands.
% We should only reenable lua-widow-control at the end if it was already enabled.
\newif\iflwc@should@reenable

\define\lwc@patch@pre{%
 \iflwc%
 \lwc@should@reenabletrue%
 \setuplwc[state=stop]%
 \else%
 \lwc@should@reenablefalse
 \fi%
}

\define\lwc@patch@post{\iflwc@should@reenable%
 \setuplwc[state=start]%
\fi}

\prependtoks\lwc@patch@pre\to\everybeforesectionheadhandle % Sectioning
\prependtoks\lwc@patch@post\to\everyaftersectionheadhandle

\protect
\stopmodule

lua-widow-control.opm
% lua-widow-control
% https://github.com/gucci-on-fleek/lua-widow-control
% SPDX-License-Identifier: MPL-2.0+
% SPDX-FileCopyrightText: 2022 Max Chernoff

_codedecl\lwcenable{lua-widow-control <v1.1.6>} %%version

_clubpenalty=1
_widowpenalty=1
_displaywidowpenalty=0
_interlinepenalty=0
_brokenpenalty=0

_newdimen\lwcemergencystretch
\lwcemergencystretch=3em

31

_directlua{require "lua-widow-control"}

% Define TEX wrappers for Lua functions
_def\lwcenable{_directlua{lwc.enable_callbacks()}}
_def\lwcdisable{_directlua{lwc.disable_callbacks()}}
_def\iflwc{_directlua{lwc.if_lwc_enabled()}}

% Enable lua-widow-control by default when the package is loaded.
\lwcenable

_endcode

Demo from Table 1
\definepapersize[smallpaper][
 width=6cm,
 height=8.3cm
]\setuppapersize[smallpaper]

\setuplayout[
 topspace=0.1cm,
 backspace=0.1cm,
 width=middle,
 height=middle,
 header=0pt,
 footer=0pt,
]

\def\lwc/{\sans{lua-\allowbreak widow-\allowbreak control}}
\def\Lwc/{\sans{Lua-\allowbreak widow-\allowbreak control}}

\setupbodyfont[9pt]
\setupindenting[yes, 2em]

\definepalet[layout][grid=middlegray]
\showgrid[nonumber, none, lines]

\definefontfeature[default][default][expansion=quality,protrusion=quality]

\usetypescript[modern-base]
\setupbodyfont[reset,modern]

\setupalign[hz,hanging,tolerant]

32

\setuplanguage[en][spacing=packed]

\starttext
 \Lwc/ can remove most widows and orphans from a document, \emph{without} stretching
any glue or shortening any pages.

 It does so by automatically lengthening a paragraph on a page where a widow or
orphan would otherwise occur. While \TeX{} breaks paragraphs into their natural
length, \lwc/ is breaking the paragraph 1~line longer than its natural length. \TeX{}'s
paragraph is output to the page, but \lwc/'s paragraph is just stored for later. When a
widow or orphan occurs, \lwc/ can take over. It selects the previously-saved paragraph
with the least badness; then, it replaces \TeX{}'s paragraph with its saved paragraph.
This increases the text block height of the page by 1~line.

 Now, the last line of the current page can be pushed to the top of the next page.
This removes the widow or the orphan without creating any additional work.
\stoptext

	Quick Start
	Motivation
	Widows and Orphans
	Widows
	Orphans

	TEX’s Pagination
	Algorithm
	Behavior

	Other Solutions
	Demonstration
	Ignore
	Shorten
	Stretch
	lua-widow-control

	Installation
	TEX Live
	MikTEX
	ConTEXt mkiv Standalone
	Manual
	Steps

	Dependencies
	Plain TEX
	LATEX
	ConTEXt
	OpTEX

	Loading the Package
	Plain TEX
	LATEX
	ConTEXt
	OpTEX

	Columns
	Advanced Usage
	Plain TEX
	LATEX
	ConTEXt
	OpTEX
	\emergencystretch
	Selectively Disabling

	Known Issues
	The Algorithm
	Paragraph Breaking
	Page Breaking

	Contributions
	License
	References
	Implementation
	lua-widow-control.lua
	lua-widow-control.tex
	lua-widow-control.sty
	t-lua-widow-control.mkxl
	t-lua-widow-control.mkiv
	lua-widow-control.opm
	Demo from Table 1

