
Unicode algorithms for LuaTEX
Marcel Krüger∗

May 14, 2020

Dealing with general Unicode encoded data comes with many challenges
because it has to respect individual concerns of many different scripts and lan-
guages. The Unicode consortium maintains multiple useful algorithms which
can sometimes make this task much easier.

lua-uni-algos tries to make the most fundamental algorithms available for
authors of Lua-based packages to aid in handling Unicode data.

Currently this package implements:

Unicode normalization Normalize a given Lua string into any of the normal-
ization forms NFC, NFD, NFKC, or NFKD as specified in the Unicode
standard, section 2.12.

Case folding Fold Unicode codepoints into a form which eliminates all case
distinctions. This can be used for case-independent matching of strings.
Not to be confused with case mapping which maps all characters to
lower/upper/titlecase: In contrast to case mapping, case folding is mostly
locale independent but does not give results which should be shown to
users.

Grapheme cluster segmentation Identify a grapheme cluster, a unit of text
which is perceived as a single character by typical users, according to the
rules in UAX #29, section 3.

1 Normalization
Unicode normalization is handled by the Lua module lua-uni-normalize. You
can either load it directly with

local normalize = require'lua-uni-normalize'

or if you need access to all implemented algorithms you can use

local uni_algos = require'lua-uni-algos'
local normalize = uni_algos.normalize

∗E-Mail: tex@2krueger.de

1

mailto:tex@2krueger.de


Then, four functions are available: normalize.NFC, normalize.NFD, normalize.NFKC,
and normalize.NFKD. If you do not know which of these you need, then you
should probably normalize.NFC. All functions are used in the same way:

local str = "Äpfel…"
print("Original:", str)
print("NFC:", normalize.NFC(str))
print("NFD:", normalize.NFD(str))
print("NFKC:", normalize.NFKC(str))
print("NFKD:", normalize.NFKD(str))

This results in

Original: Äpfel…
NFC: Äpfel…
NFD: Äpfel…
NFKC: Äpfel...
NFKD: Äpfel...

(This example is shown in Latin Modern Mono which has the (for this purpose)
very useful property of not handling combining character very well. In a well-
behaving font, the ‘...C‘ and ‘...D‘ lines should look the same.)

2 Case folding
For case folding load the Lua module lua-uni-case. You can either load it
directly with

local uni_case = require'lua-uni-case'

or if you need access to all implemented algorithms you can use

local uni_algos = require'lua-uni-algos'
local uni_case = uni_algos.case

The main function is uni_case.casefold(str, full, special). It ac-
cepts three parameters: A Lua string str to be case folded, a boolean full to
specify if the number of codepoints is allowed to change in the progress (This
should normally be set to true.) and a boolean special which enables special
handling for Turkish languages (In most cases, this should be set to false.)
The function returns the case-folded string:

local str = "Straße…"
print("Original:", str)
print("Case folded (full=false):", uni_case.casefold(str, false, false))
print("Case folded (full=true):", uni_case.casefold(str, true, false))

This results in
Original:Straße…
Case folded (full=false):straße…

2



Case folded (full=true):strasse…

In most cases, you will want to normalize the string after casefolding.
For cases where you want to casefold something which is not given as a Lua

string, you can use the function uni_case.casefold_lookup(cp, full, special).
Instead of a string, it accepts a codepoint as first parameter and returns a ta-
ble of codepoints. A string can be casefolded by replacing every codepoints
with the sequence of codepoints returned by uni_case.casefold_lookup. If
casefold_lookup returns false or nil, the codepoint should not be changed.

3 Grapheme clusters
Grapheme cluster handling is handled by the Lua module lua-uni-graphemes.
You can either load it directly with

local graphemes = require'lua-uni-graphemes'

or if you need access to all implemented algorithms you can use

local uni_algos = require'lua-uni-algos'
local graphemes = uni_algos.graphemes

Sometimes we want to look at a single character of a string, but identify-
ing what a character is is not that easy in Unicode. A simple example is the
character from the previous section: “Ä” The NFD form is certainly a single
character, but is encoded using two codepoints: U+0041 (LATIN CAPITAL
LETTER A) and U+0308 (COMBINING DIAERESIS). Or the Tamil letter
Ni which is encoded as U+0BA8 (TAMIL LETTER NA) followed by U+0BBF
(TAMIL VOWEL SIGN I). But sometimes it can be useful to identify charac-
ters, e.g. for letterspacing or letterines.

There are two main interfaces for this: One iterator for iterating over
grapheme clusters and one direct interface to the underlying state machine:

for final, first, grapheme in graphemes.graphemes'Äpfel' do
print(grapheme)

end

Ä
p
f
e
l

The more powerful state machine interface graphemes.read_codepoint
takes two parameters: A new codepoint and a state. At the beginning, the
state can be omitted. For every codepoint in your input, call the function with
the new codepoint and the last state. Then there are two return values: The

3



first one is a boolean telling you if the current codepoint is the beginning of a
new cluster, the second is a new state you have to pass with the next codepoint.

So e.g. to find cluster boundaries in the Unicode codepoint sequence U+0041
U+0308 U+0BA8 U+0BBF you could use

local graphemes = require'lua-uni-graphemes'
local new_cluster, state
new_cluster, state = graphemes.read_codepoint(0x0041, state)
print(new_cluster)
new_cluster, state = graphemes.read_codepoint(0x0308, state)
print(new_cluster)
new_cluster, state = graphemes.read_codepoint(0x0BA8, state)
print(new_cluster)
new_cluster, state = graphemes.read_codepoint(0x0BBF, state)
print(new_cluster)

resulting in
true
nil
true
nil
meaning the first and third codepoint start a new cluster.

Do not try to interpret the state, it has no defined values and might change
at any point.

4


	Normalization
	Case folding
	Grapheme clusters

