
A New Implementation of LATEX’s

verbatim and verbatim* Environments.

Rainer Schöpf Bernd Raichle Chris Rowley

2001/03/12

This file is maintained by the LATEX Project team.
Bug reports can be opened (category tools) at
https://latex-project.org/bugs.html.

Abstract

This package reimplements the LATEX verbatim and verbatim* envi-
ronments. In addition it provides a comment environment that skips any
commands or text between \begin{comment} and the next \end{comment}.
It also defines the command verbatiminput to input a whole file verbatim.

1 Usage notes

LATEX’s verbatim and verbatim* environments have a few features that may give
rise to problems. These are:

• Due to the method used to detect the closing \end{verbatim} (i.e. macro
parameter delimiting) you cannot leave spaces between the \end token and
{verbatim}.

• Since TEX has to read all the text between the \begin{verbatim} and the
\end{verbatim} before it can output anything, long verbatim listings may
overflow TEX’s memory.

Whereas the first of these points can be considered only a minor nuisance the
other one is a real limitation.

This package file contains a reimplementation of the verbatim and verbatim*

environments which overcomes these restrictions. There is, however, one incom-
patibility between the old and the new implementations of these environments: the
old version would treat text on the same line as the \end{verbatim} command
as if it were on a line by itself.

This new version will simply ignore it.

(This is the price one has to pay for the removal of the old verbatim environment’s
size limitations.) It will, however, issue a warning message of the form

LaTeX warning: Characters dropped after \end{verbatim*}!

1

https://latex-project.org/bugs.html

Verbatim style option 2

This is not a real problem since this text can easily be put on the next line without
affecting the output.

This new implementation also solves the second problem mentioned above: it
is possible to leave spaces (but not begin a new line) between the \end and the
{verbatim} or {verbatim*}:

\begin {verbatim*}

test

test

\end {verbatim*}

Additionally we introduce a comment environment, with the effect that the
text between \begin{comment} and \end{comment} is simply ignored, regardless
of what it looks like. At first sight this seems to be quite different from the purpose
of verbatim listing, but actually the implementation of these two concepts turns
out to be very similar. Both rely on the fact that the text between \begin{...}

and \end{...} is read by TEX without interpreting any commands or special
characters. The remaining difference between verbatim and comment is only that
the text is to be typeset in the first case and to be thrown away in the latter. Note
that these environments cannot be nested.

\verbatiminput is a command with one argument that inputs a file verbatim,
i.e. the command verbatiminput{xx.yy} has the same effect as

\begin{verbatim}

〈Contents of the file xx.yy 〉
\end{verbatim}

This command has also a *-variant that prints spaces as .

2 Interfaces for package writers

The verbatim environment of LATEX 2ε does not offer a good interface to pro-
grammers. In contrast, this package provides a simple mechanism to implement
similar features, the comment environment implemented here being an example of
what can be done and how.

2.1 Simple examples

It is now possible to use the verbatim environment to define environments of your
own. E.g.,

\newenvironment{myverbatim}%

{\endgraf\noindent MYVERBATIM:%

\endgraf\verbatim}%

{\endverbatim}

can be used afterwards like the verbatim environment, i.e.

\begin {myverbatim}

test

test

\end {myverbatim}

Verbatim style option 3

Another way to use it is to write

\let\foo=\comment

\let\endfoo=\endcomment

and from that point on environment foo is the same as the comment environment,
i.e. everything inside its body is ignored.

You may also add special commands after the \verbatim macro is invoked,
e.g.

\newenvironment{myverbatim}%

{\verbatim\myspecialverbatimsetup}%

{\endverbatim}

though you may want to learn about the hook \every@verbatim at this point.
However, there are still a number of restrictions:

1. You must not use the \begin or the \end command inside a definition,
e.g. the following two examples will not work:

\newenvironment{myverbatim}%

{\endgraf\noindent MYVERBATIM:%

 \endgraf\begin{verbatim}}%

{\end{verbatim}}

\newenvironment{fred}

{\begin{minipage}{30mm}\verbatim}

{\endverbatim\end{minipage}}

If you try these examples, TEX will report a “runaway argument” error. More
generally, it is not possible to use \begin. . . \end or the related environments
in the definition of the new environment. Instead, the correct way to define
this environment would be

\newenvironment{fred}

{\minipage{30mm}\verbatim}

{\endverbatim\endminipage}

2. You cannot use the verbatim environment inside user defined commands;
e.g.,

\newcommand{\verbatimfile}[1]%

 {\begin{verbatim}\input{#1}\end{verbatim}}

does not work; nor does

\newcommand{\verbatimfile}[1]{\verbatim\input{#1}\endverbatim}

3. The name of the newly defined environment must not contain characters
with category code other than 11 (letter) or 12 (other), or this will not
work.

Verbatim style option 4

2.2 The interfaces

Let us start with the simple things. Sometimes it may be necessary to use a special
typeface for your verbatim text, or perhaps the usual computer modern typewriter
shape in a reduced size.

You may select this by redefining the macro \verbatim@font. This macro is
executed at the beginning of every verbatim text to select the font shape. Do not
use it for other purposes; if you find yourself abusing this you may want to read
about the \every@verbatim hook below.

By default, \verbatim@font switches to the typewriter font and disables the
ligatures contained therein.

There is a hook (i.e. a token register) called \every@verbatim whose contents
are inserted into TEX’s mouth just before every verbatim text. Please use the
\addto@hook macro to add something to this hook. It is used as follows:

\addto@hook〈name of the hook〉{〈commands to be added〉}
After all specific setup, like switching of category codes, has been done, the

\verbatim@start macro is called. This starts the main loop of the scanning
mechanism implemented here. Any other environment that wants to make use of
this feature should execute this macro as its last action.

These are the things that concern the start of a verbatim environment. Once
this (and other) setup has been done, the code in this package reads and processes
characters from the input stream in the following way:

1. Before the first character of an input line is read, it executes the macro
\verbatim@startline.

2. After some characters have been read, the macro \verbatim@addtoline is
called with these characters as its only argument. This may happen several
times per line (when an \end command is present on the line in question).

3. When the end of the line is reached, the macro \verbatim@processline

is called to process the characters that \verbatim@addtoline has accumu-
lated.

4. Finally, there is the macro \verbatim@finish that is called just before the
environment is ended by a call to the \end macro.

To make this clear let us consider the standard verbatim environment. In this
case the three macros above are defined as follows:

1. \verbatim@startline clears the character buffer (a token register).

2. \verbatim@addtoline adds its argument to the character buffer.

3. \verbatim@processline typesets the characters accumulated in the buffer.

With this it is very simple to implement the comment environment: in this case
\verbatim@startline and \verbatim@processline are defined to be no-ops
whereas \verbatim@addtoline discards its argument.

Let’s use this to define a variant of the verbatim environment that prints
line numbers in the left margin. Assume that this would be done by a counter
called VerbatimLineNo. Assuming that this counter was initialized properly by
the environment, \verbatim@processline would be defined in this case as

Verbatim style option 5

\def\verbatim@processline{%

\addtocounter{VerbatimLineNo}{1}%

\leavevmode

\llap{\theVerbatimLineNo\ \hskip\@totalleftmargin}%

\the\verbatim@line\par}

A further possibility is to define a variant of the verbatim environment that
boxes and centers the whole verbatim text. Note that the boxed text should be
less than a page otherwise you have to change this example.

\def\verbatimboxed#1{\begingroup

\def\verbatim@processline{%

{\setbox0=\hbox{\the\verbatim@line}%

\hsize=\wd0

\the\verbatim@line\par}}%

\setbox0=\vbox{\parskip=0pt\topsep=0pt\partopsep=0pt

\verbatiminput{#1}}%

\begin{center}\fbox{\box0}\end{center}%

\endgroup}

As a final nontrivial example we describe the definition of an environment
called verbatimwrite. It writes all text in its body to a file whose name is given
as an argument. We assume that a stream number called \verbatim@out has
already been reserved by means of the \newwrite macro.

Let’s begin with the definition of the macro \verbatimwrite.

\def\verbatimwrite#1{%

First we call \@bsphack so that this environment does not influence the spacing.
Then we open the file and set the category codes of all special characters:

\@bsphack

\immediate\openout \verbatim@out #1

\let\do\@makeother\dospecials

\catcode‘\^^M\active

The default definitions of the macros

\verbatim@startline

\verbatim@addtoline

\verbatim@finish

are also used in this environment. Only the macro \verbatim@processline has
to be changed before \verbatim@start is called:

\def\verbatim@processline{%

\immediate\write\verbatim@out{\the\verbatim@line}}%

\verbatim@start}

The definition of \endverbatimwrite is very simple: we close the stream and call
\@esphack to get the spacing right.

\def\endverbatimwrite{\immediate\closeout\verbatim@out\@esphack}

Verbatim style option 6

3 The implementation

The very first thing we do is to ensure that this file is not read in twice. To this
end we check whether the macro \verbatim@@@ is defined. If so, we just stop
reading this file. The ‘package’ guard here allows most of the code to be excluded
when extracting the driver file for testing this package.

1 〈*package〉
2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesPackage{verbatim}

4 [2019/11/10 v1.5r LaTeX2e package for verbatim enhancements]

5 \@ifundefined{verbatim@@@}{}{\endinput}

We use a mechanism similar to the one implemented for the \comment. . .
\endcomment macro in AMS-TEX: We input one line at a time and check if it
contains the \end{...} tokens. Then we can decide whether we have reached the
end of the verbatim text, or must continue.

3.1 Preliminaries

\every@verbatim The hook (i.e. token register) \every@verbatim is initialized to 〈empty〉.
6 \newtoks\every@verbatim

7 \every@verbatim={}

\@makeother \@makeother takes as argument a character and changes its category code to 12
(other).

8 \def\@makeother#1{\catcode‘#112\relax}

\@vobeyspaces The macro \@vobeyspaces causes spaces in the input to be printed as spaces in
the output.

9 \begingroup

10 \catcode‘\ =\active%

11 \def\x{\def\@vobeyspaces{\catcode‘\ \active\let \@xobeysp}}

12 \expandafter\endgroup\x

\@xobeysp The macro \@xobeysp produces exactly one space in the output, protected against
breaking just before it. (\@M is an abbreviation for the number 10000.)

13 \def\@xobeysp{\leavevmode\penalty\@M\ }

\verbatim@line We use a newly defined token register called \verbatim@line that will be used as
the character buffer.

14 \newtoks\verbatim@line

The following four macros are defined globally in a way suitable for the
verbatim and verbatim* environments.

\verbatim@startline

\verbatim@addtoline

\verbatim@processline

\verbatim@startline initializes processing of a line by emptying the character
buffer (\verbatim@line).

15 \def\verbatim@startline{\verbatim@line{}}

\verbatim@addtoline adds the tokens in its argument to our buffer register
\verbatim@line without expanding them.

16 \def\verbatim@addtoline#1{%

17 \verbatim@line\expandafter{\the\verbatim@line#1}}

Verbatim style option 7

Processing a line inside a verbatim or verbatim* environment means printing
it. Ending the line means that we have to begin a new paragraph. We use \par

for this purpose. Note that \par is redefined in \@verbatim to force TEX into
horizontal mode and to insert an empty box so that empty lines in the input do
appear in the output.

18 \def\verbatim@processline{\the\verbatim@line\par}

\verbatim@finish As a default, \verbatim@finish processes the remaining characters. When this
macro is called we are facing the following problem: when the \end{verbatim}

command is encountered \verbatim@processline is called to process the char-
acters preceding the command on the same line. If there are none, an empty line
would be output if we did not check for this case.

If the line is empty \the\verbatim@line expands to nothing. To test this we
use a trick similar to that on p. 376 of the TEXbook, but with $. . . $ instead of the
! tokens. These $ tokens can never have the same category code as a $ token that
might possibly appear in the token register \verbatim@line, as such a token will
always have been read with category code 12 (other). Note that \ifcat expands
the following tokens so that \the\verbatim@line is replaced by the accumulated
characters

19 \def\verbatim@finish{\ifcat$\the\verbatim@line$\else

20 \verbatim@processline\fi}

3.2 The verbatim and verbatim* environments

\verbatim@font We start by defining the macro \verbatim@font that is to select the font and to set
font-dependent parameters. Then we expand \@noligs (defined in the LATEX 2ε
kernel). Among possibly other things, it will go through \verbatim@nolig@list

to avoid certain ligatures. \verbatim@nolig@list is a macro defined in the
LATEX 2ε kernel to expand to

\do\‘\do\<\do\>\do\,\do\’\do\-

All the characters in this list can be part of a ligature in some font or other.

21 \def\verbatim@font{\normalfont\ttfamily

22 \hyphenchar\font\m@ne

23 \@noligs}

\@verbatim The macro \@verbatim sets up things properly. First of all, the tokens of the
\every@verbatim hook are inserted. Then a trivlist environment is started
and its first \item command inserted. Each line of the verbatim or verbatim*

environment will be treated as a separate paragraph.

24 \def\@verbatim{\the\every@verbatim

25 \trivlist \item \relax

The following extra vertical space is for compatibility with the LATEXkernel: oth-
erwise, using the verbatim package changes the vertical spacing of a verbatim

environment nested within a quote environment.

26 \if@minipage\else\vskip\parskip\fi

The paragraph parameters are set appropriately: the penalty at the beginning of
the environment, left and right margins, paragraph indentation, the glue to fill

Verbatim style option 8

the last line, and the vertical space between paragraphs. The latter space has to
be zero since we do not want to add extra space between lines.

27 \@beginparpenalty \predisplaypenalty

28 \leftskip\@totalleftmargin\rightskip\z@

29 \parindent\z@\parfillskip\@flushglue\parskip\z@

There’s one point to make here: the list environment uses TEX’s \parshape

primitive to get a special indentation for the first line of the list. If the list begins
with a verbatim environment this \parshape is still in effect. Therefore we have
to reset this internal parameter explicitly. We could do this by assigning 0 to
\parshape. However, there is a simpler way to achieve this: we simply tell TEX
to start a new paragraph. As is explained on p. 103 of the TEXbook, this resets
\parshape to zero.

30 \@@par

We now ensure that \par has the correct definition, namely to force TEX into
horizontal mode and to include an empty box. This is to ensure that empty
lines do appear in the output. Afterwards, we insert the \interlinepenalty

since TEX does not add a penalty between paragraphs (here: lines) by its own
initiative. Otherwise a verbatim environment could be broken across pages even
if a \samepage declaration were present.

However, in a top-aligned minipage, this will result in an extra empty line
added at the top. Therefore, a slightly more complicated construct is necessary.
One of the important things here is the inclusion of \leavevmode as the first macro
in the first line, for example, a blank verbatim line is the first thing in a list item.

31 \def\par{%

32 \if@tempswa

33 \leavevmode\null\@@par\penalty\interlinepenalty

34 \else

35 \@tempswatrue

36 \ifhmode\@@par\penalty\interlinepenalty\fi

37 \fi}%

But to avoid an error message when the environment doesn’t contain any text, we
redefine \@noitemerr which will in this case be called by \endtrivlist.

38 \def\@noitemerr{\@warning{No verbatim text}}%

Now we call \obeylines to make the end of line character active,

39 \obeylines

change the category code of all special characters, to 12 (other).

40 \let\do\@makeother \dospecials

and switch to the font to be used.

41 \verbatim@font

To avoid a breakpoint after the labels box, we remove the penalty put there by
the list macros: another use of \unpenalty!

42 \everypar \expandafter{\the\everypar \unpenalty}}

\verbatim

\verbatim*

Now we define the toplevel macros. \verbatim is slightly changed: after setting
up things properly it calls \verbatim@start. This is done inside a group, so that
\verbatim can be used directly, without \begin.

43 \def\verbatim{\begingroup\@verbatim \frenchspacing\@vobeyspaces

44 \verbatim@start}

Verbatim style option 9

\verbatim* is defined accordingly.

45 \@namedef{verbatim*}{\begingroup\@verbatim

46 \@setupverbvisiblespace\@vobeyspaces

47 \verbatim@start}

\endverbatim

\endverbatim*

To end the verbatim and verbatim* environments it is only necessary to finish
the trivlist environment started in \@verbatim and close the corresponding
group.

48 \def\endverbatim{\endtrivlist\endgroup\@doendpe}

49 \expandafter\let\csname endverbatim*\endcsname =\endverbatim

3.3 The comment environment

\comment

\endcomment

The \comment macro is similar to \verbatim*. However, we do not need to switch
fonts or set special formatting parameters such as \parindent or \parskip. We
need only set the category code of all special characters to 12 (other) and that
of ^^M (the end of line character) to 13 (active). The latter is needed for macro
parameter delimiter matching in the internal macros defined below. In contrast to
the default definitions used by the \verbatim and \verbatim* macros, we define
\verbatim@addtoline to throw away its argument and \verbatim@processline,
\verbatim@startline, and \verbatim@finish to act as no-ops. Then we call
\verbatim@. But the first thing we do is to call \@bsphack so that this environ-
ment has no influence whatsoever upon the spacing.

50 \def\comment{\@bsphack

51 \let\do\@makeother\dospecials\catcode‘\^^M\active

52 \let\verbatim@startline\relax

53 \let\verbatim@addtoline\@gobble

54 \let\verbatim@processline\relax

55 \let\verbatim@finish\relax

56 \verbatim@}

\endcomment is very simple: it only calls \@esphack to take care of the spacing.
The \end macro closes the group and therefore takes care of restoring everything
we changed.

57 \let\endcomment=\@esphack

3.4 The main loop

Here comes the tricky part: During the definition of the macros we need to use
the special characters \, {, and } not only with their normal category codes, but
also with category code 12 (other). We achieve this by the following trick: first
we tell TEX that \, {, and } are the lowercase versions of !, [, and]. Then we
replace every occurrence of \, {, and } that should be read with category code
12 by !, [, and], respectively, and give the whole list of tokens to \lowercase,
knowing that category codes are not altered by this primitive!

But first we have ensure that !, [, and] themselves have the correct category
code! To allow special settings of these codes we hide their setting in the macro
\vrb@catcodes. If it is already defined our new definition is skipped.

58 \@ifundefined{vrb@catcodes}%

59 {\def\vrb@catcodes{%

60 \catcode‘\!12\catcode‘\[12\catcode‘\]12}}{}

Verbatim style option 10

This trick allows us to use this code for applications where other category codes
are in effect.

We start a group to keep the category code changes local.

61 \begingroup

62 \vrb@catcodes

63 \lccode‘\!=‘\\ \lccode‘\[=‘\{ \lccode‘\]=‘\}

We also need the end-of-line character ^^M, as an active character. If we were
to simply write \catcode‘\^^M=\active then we would get an unwanted active
end of line character at the end of every line of the following macro definitions.
Therefore we use the same trick as above: we write a tilde ~ instead of ^^M and
pretend that the latter is the lowercase variant of the former. Thus we have to
ensure now that the tilde character has category code 13 (active).

64 \catcode‘\~=\active \lccode‘\~=‘\^^M

The use of the \lowercase primitive leads to one problem: the uppercase character
‘C’ needs to be used in the code below and its case must be preserved. So we add
the command:

65 \lccode‘\C=‘\C

Now we start the token list passed to \lowercase. We use the following little
trick (proposed by Bernd Raichle): The very first token in the token list we give
to \lowercase is the \endgroup primitive. This means that it is processed by TEX
immediately after \lowercase has finished its operation, thus ending the group
started by \begingroup above. This avoids the global definition of all macros.

66 \lowercase{\endgroup

\verbatim@start The purpose of \verbatim@start is to check whether there are any characters on
the same line as the \begin{verbatim} and to pretend that they were on a line
by themselves. On the other hand, if there are no characters remaining on the
current line we shall just find an end of line character. \verbatim@start performs
its task by first grabbing the following character (its argument). This argument
is then compared to an active ^^M, the end of line character.

67 \def\verbatim@start#1{%

68 \verbatim@startline

69 \if\noexpand#1\noexpand~%

If this is true we transfer control to \verbatim@ to process the next line. We use
\next as the macro which will continue the work.

70 \let\next\verbatim@

Otherwise, we define \next to expand to a call to \verbatim@ followed by the
character just read so that it is reinserted into the text. This means that those
characters remaining on this line are handled as if they formed a line by themselves.

71 \else \def\next{\verbatim@#1}\fi

Finally we call \next.

72 \next}%

\verbatim@ The three macros \verbatim@, \verbatim@@, and \verbatim@@@ form the “main
loop” of the verbatim environment. The purpose of \verbatim@ is to read exactly
one line of input. \verbatim@@ and \verbatim@@@ work together to find out
whether the four characters \end (all with category code 12 (other)) occur in that
line. If so, \verbatim@@@ will call \verbatim@test to check whether this \end

Verbatim style option 11

is part of \end{verbatim} and will terminate the environment if this is the case.
Otherwise we continue as if nothing had happened. So let’s have a look at the
definition of \verbatim@:

73 \def\verbatim@#1~{\verbatim@@#1!end\@nil}%

Note that the ! character will have been replaced by a \ with category code 12
(other) by the \lowercase primitive governing this code before the definition of
this macro actually takes place. That means that it takes the line, puts \end (four
character tokens) and \@nil (one control sequence token) as a delimiter behind
it, and then calls \verbatim@@.

\verbatim@@ \verbatim@@ takes everything up to the next occurrence of the four characters
\end as its argument.

74 \def\verbatim@@#1!end{%

That means: if they do not occur in the original line, then argument #1 is the
whole input line, and \@nil is the next token to be processed. However, if the
four characters \end are part of the original line, then #1 consists of the characters
in front of \end, and the next token is the following character (always remember
that the line was lengthened by five tokens). Whatever #1 may be, it is verbatim
text, so #1 is added to the line currently built.

75 \verbatim@addtoline{#1}%

The next token in the input stream is of special interest to us. Therefore
\futurelet defines \next to be equal to it before calling \verbatim@@@.

76 \futurelet\next\verbatim@@@}%

\verbatim@@@ \verbatim@@@ will now read the rest of the tokens on the current line, up to the
final \@nil token.

77 \def\verbatim@@@#1\@nil{%

If the first of the above two cases occurred, i.e. no \end characters were on that
line, #1 is empty and \next is equal to \@nil. This is easily checked.

78 \ifx\next\@nil

If so, this was a simple line. We finish it by processing the line we accumulated so
far. Then we prepare to read the next line.

79 \verbatim@processline

80 \verbatim@startline

81 \let\next\verbatim@

Otherwise we have to check what follows these \end tokens.

82 \else

Before we continue, it’s a good idea to stop for a moment and remember where we
are: We have just read the four character tokens \end and must now check whether
the name of the environment (surrounded by braces) follows. To this end we define
a macro called \@tempa that reads exactly one character and decides what to do
next. This macro should do the following: skip spaces until it encounters either a
left brace or the end of the line. But it is important to remember which characters
are skipped. The \end〈optional spaces〉{ characters may be part of the verbatim
text, i.e. these characters must be printed.

Assume for example that the current line contains

 \end {AVeryLongEnvironmentName}

Verbatim style option 12

As we shall soon see, the scanning mechanism implemented here will not find out
that this is text to be printed until it has read the right brace. Therefore we need
a way to accumulate the characters read so that we can reinsert them if necessary.
The token register \@temptokena is used for this purpose.

Before we do this we have to get rid of the superfluous \end tokens at the end
of the line. To this end we define a temporary macro whose argument is delimited
by \end\@nil (four character tokens and one control sequence token) to be used
below on the rest of the line, after appending a \@nil token to it. (Note that this
token can never appear in #1.) We use the following definition of \@tempa to get
the rest of the line (after the first \end).

83 \def\@tempa##1!end\@nil{##1}%

We mentioned already that we use token register \@temptokena to remember the
characters we skip, in case we need them again. We initialize this with the \end

we have thrown away in the call to \@tempa.

84 \@temptokena{!end}%

We shall now call \verbatim@test to process the characters remaining on the
current line. But wait a moment: we cannot simply call this macro since we
have already read the whole line. Therefore we have to first expand the macro
\@tempa to insert them again after the \verbatim@test token. A ^^M character
is appended to denote the end of the line. (Remember that this character comes
disguised as a tilde.)

85 \def\next{\expandafter\verbatim@test\@tempa#1\@nil~}%

That’s almost all, but we still have to now call \next to do the work.

86 \fi \next}%

\verbatim@test We define \verbatim@test to investigate every token in turn.

87 \def\verbatim@test#1{%

First of all we set \next equal to \verbatim@test in case this macro must call
itself recursively in order to skip spaces.

88 \let\next\verbatim@test

We have to distinguish four cases:

1. The next token is a ^^M, i.e. we reached the end of the line. That means
that nothing special was found. Note that we use \if for the following
comparisons so that the category code of the characters is irrelevant.

89 \if\noexpand#1\noexpand~%

We add the characters accumulated in token register \@temptokena to the
current line. Since \verbatim@addtoline does not expand its argument,
we have to do the expansion at this point. Then we \let \next equal to
\verbatim@ to prepare to read the next line.

90 \expandafter\verbatim@addtoline

91 \expandafter{\the\@temptokena}%

92 \verbatim@processline

93 \verbatim@startline

94 \let\next\verbatim@

Verbatim style option 13

2. A space character follows. This is allowed, so we add it to \@temptokena

and continue.

95 \else \if\noexpand#1

96 \@temptokena\expandafter{\the\@temptokena#1}%

3. An open brace follows. This is the most interesting case. We must now
collect characters until we read the closing brace and check whether they
form the environment name. This will be done by \verbatim@testend,
so here we let \next equal this macro. Again we will process the rest of
the line, character by character. The characters forming the name of the
environment will be accumulated in \@tempc. We initialize this macro to
expand to nothing.

97 \else \if\noexpand#1\noexpand[%

98 \let\@tempc\@empty

99 \let\next\verbatim@testend

Note that the [character will be a { when this macro is defined.

4. Any other character means that the \end was part of the verbatim text.
Add the characters to the current line and prepare to call \verbatim@ to
process the rest of the line.

100 \else

101 \expandafter\verbatim@addtoline

102 \expandafter{\the\@temptokena}%

103 \def\next{\verbatim@#1}%

104 \fi\fi\fi

The last thing this macro does is to call \next to continue processing.

105 \next}%

\verbatim@testend \verbatim@testend is called when \end〈optional spaces〉{ was seen. Its task is to
scan everything up to the next } and to call \verbatim@@testend. If no } is found
it must reinsert the characters it read and return to \verbatim@. The following
definition is similar to that of \verbatim@test: it takes the next character and
decides what to do.

106 \def\verbatim@testend#1{%

Again, we have four cases:

1. ^^M: As no } is found in the current line, add the characters to the buffer. To
avoid a complicated construction for expanding \@temptokena and \@tempc

we do it in two steps. Then we continue with \verbatim@ to process the
next line.

107 \if\noexpand#1\noexpand~%

108 \expandafter\verbatim@addtoline

109 \expandafter{\the\@temptokena[}%

110 \expandafter\verbatim@addtoline

111 \expandafter{\@tempc}%

112 \verbatim@processline

113 \verbatim@startline

114 \let\next\verbatim@

Verbatim style option 14

2. }: Call \verbatim@@testend to check if this is the right environment name.

115 \else\if\noexpand#1\noexpand]%

116 \let\next\verbatim@@testend

3. \: This character must not occur in the name of an environment. Thus we
stop collecting characters. In principle, the same argument would apply to
other characters as well, e.g., {. However, \ is a special case, since it may
be the first character of \end. This means that we have to look again for
\end{〈environment name〉}. Note that we prefixed the ! by a \noexpand

primitive, to protect ourselves against it being an active character.

117 \else\if\noexpand#1\noexpand!%

118 \expandafter\verbatim@addtoline

119 \expandafter{\the\@temptokena[}%

120 \expandafter\verbatim@addtoline

121 \expandafter{\@tempc}%

122 \def\next{\verbatim@!}%

4. Any other character: collect it and continue. We cannot use \edef to define
\@tempc since its replacement text might contain active character tokens.

123 \else \expandafter\def\expandafter\@tempc\expandafter

124 {\@tempc#1}\fi\fi\fi

As before, the macro ends by calling itself, to process the next character if appro-
priate.

125 \next}%

\verbatim@@testend Unlike the previous macros \verbatim@@testend is simple: it has only to check
if the \end{. . . } matches the corresponding \begin{. . . }.

126 \def\verbatim@@testend{%

We use \next again to define the things that are to be done. Remember that
the name of the current environment is held in \@currenvir, the characters ac-
cumulated by \verbatim@testend are in \@tempc. So we simply compare these
and prepare to execute \end{〈current environment〉} macro if they match. Before
we do this we call \verbatim@finish to process the last line. We define \next

via \edef so that \@currenvir is replaced by its expansion. Therefore we need
\noexpand to inhibit the expansion of \end at this point.

127 \ifx\@tempc\@currenvir

128 \verbatim@finish

129 \edef\next{\noexpand\end{\@currenvir}%

Without this trick the \end command would not be able to correctly check whether
its argument matches the name of the current environment and you’d get an
interesting LATEX error message such as:

! \begin{verbatim*} ended by \end{verbatim*}.

But what do we do with the rest of the characters, those that remain on that line?
We call \verbatim@rescan to take care of that. Its first argument is the name of
the environment just ended, in case we need it again. \verbatim@rescan takes
the list of characters to be reprocessed as its second argument. (This token list
was inserted after the current macro by \verbatim@@@.) Since we are still in an
\edef we protect it by means of\noexpand.

130 \noexpand\verbatim@rescan{\@currenvir}}%

Verbatim style option 15

If the names do not match, we reinsert everything read up to now and prepare to
call \verbatim@ to process the rest of the line.

131 \else

132 \expandafter\verbatim@addtoline

133 \expandafter{\the\@temptokena[}%

134 \expandafter\verbatim@addtoline

135 \expandafter{\@tempc]}%

136 \let\next\verbatim@

137 \fi

Finally we call \next.

138 \next}%

\verbatim@rescan In principle \verbatim@rescan could be used to analyse the characters remain-
ing after the \end{...} command and pretend that these were read “properly”,
assuming “standard” category codes are in force.1 But this is not always possible
(when there are unmatched curly braces in the rest of the line). Besides, we think
that this is not worth the effort: After a verbatim or verbatim* environment
a new line in the output is begun anyway, and an \end{comment} can easily be
put on a line by itself. So there is no reason why there should be any text here.
For the benefit of the user who did put something there (a comment, perhaps)
we simply issue a warning and drop them. The method of testing is explained
in Appendix D, p. 376 of the TEXbook. We use ^^M instead of the ! character
used there since this is a character that cannot appear in #1. The two \noexpand

primitives are necessary to avoid expansion of active characters and macros.
One extra subtlety should be noted here: remember that the token list we are

currently building will first be processed by the \lowercase primitive before TEX
carries out the definitions. This means that the ‘C’ character in the argument to
the \@warning macro must be protected against being changed to ‘c’. That’s the
reason why we added the \lccode‘\C=‘\C assignment above. We can now finish
the argument to \lowercase as well as the group in which the category codes
were changed.

139 \def\verbatim@rescan#1#2~{\if\noexpand~\noexpand#2~\else

140 \@warning{Characters dropped after ‘\string\end{#1}’}\fi}}

3.5 The \verbatiminput command

\verbatim@in@stream We begin by allocating an input stream (out of the 16 available input streams).

141 \newread\verbatim@in@stream

\verbatim@readfile The macro \verbatim@readfile encloses the main loop by calls to the macros
\verbatim@startline and \verbatim@finish, respectively. This makes sure
that the user can initialize and finish the command when the file is empty or
doesn’t exist. The verbatim environment has a similar behaviour when called
with an empty text.

142 \def\verbatim@readfile#1{%

143 \verbatim@startline

1Remember that they were all read with category codes 11 (letter) and 12 (other) so that
control sequences are not recognized as such.

Verbatim style option 16

When the file is not found we issue a warning.

144 \openin\verbatim@in@stream #1\relax

145 \ifeof\verbatim@in@stream

146 \typeout{No file #1.}%

147 \else

At this point we pass the name of the file to \@addtofilelist so that its appears
in the output of a \listfiles command. In addition, we use \ProvidesFile

to make a log entry in the transcript file and to distinguish files read in via
\verbatiminput from others.

148 \@addtofilelist{#1}%

149 \ProvidesFile{#1}[(verbatim)]%

While reading from the file it is useful to switch off the recognition of the end-of-
line character. This saves us stripping off spaces from the contents of the line.

150 \expandafter\endlinechar\expandafter\m@ne

151 \expandafter\verbatim@read@file

152 \expandafter\endlinechar\the\endlinechar\relax

153 \closein\verbatim@in@stream

154 \fi

155 \verbatim@finish

156 }

\verbatim@read@file All the work is done in \verbatim@read@file. It reads the input file line by line
and recursively calls itself until the end of the file.

157 \def\verbatim@read@file{%

158 \read\verbatim@in@stream to\next

159 \ifeof\verbatim@in@stream

160 \else

For each line we call \verbatim@addtoline with the contents of the line.
\verbatim@processline is called next.

161 \expandafter\verbatim@addtoline\expandafter{\next}%

162 \verbatim@processline

After processing the line we call \verbatim@startline to initialize all before we
read the next line.

163 \verbatim@startline

Without \expandafter each call of \verbatim@read@file uses space in TEX’s
input stack.2

164 \expandafter\verbatim@read@file

165 \fi

166 }

\verbatiminput \verbatiminput first starts a group to keep font and category changes local.
Then it calls the macro \verbatim@input with additional arguments, depending
on whether an asterisk follows.

167 \def\verbatiminput{\begingroup

168 \@ifstar{\verbatim@input\relax}%

169 {\verbatim@input{\frenchspacing\@vobeyspaces}}}

2A standard TEX would report an overflow error if you try to read a file with more than
ca. 200 lines. The same error occurs if the first line of code in §390 of “TeX: The Program” is
missing.

Verbatim style option 17

\verbatim@input \verbatim@input first checks whether the file exists, using the standard macro
\IfFileExists which leaves the name of the file found in \@filef@und. Then
everything is set up as in the \verbatim macro.

170 \def\verbatim@input#1#2{%

171 \IfFileExists {#2}{\@verbatim #1\relax

Then it reads in the file, finishes off the trivlist environment started by
\@verbatim and closes the group. This restores everything to its normal settings.

172 \verbatim@readfile{\@filef@und}\endtrivlist\endgroup\@doendpe}%

If the file is not found a more or less helpful message is printed. The final
\endgroup is needed to close the group started in \verbatiminput above.

173 {\typeout {No file #2.}\endgroup}}

174 〈/package〉

3.6 Getting verbatim text into arguments.

One way of achieving this is to define a macro (command) whose expansion is
the required verbatim text. This command can then be used anywhere that the
verbatim text is required. It can be used in arguments, even moving ones, but it
is fragile (at least, the version here is).

Here is some code which claims to provide this. It is a much revised version of
something I (Chris) did about 2 years ago. Maybe it needs further revision.

It is only intended as an extension to \verb, not to the verbatim environment.
It should therefore, perhaps, treat line-ends similarly to whatever is best for \verb.

\newverbtext This is the command to produce a new macro whose expansion is verbatim text.
This command itself cannot be used in arguments, of course! It is used as follows:

\newverbtext{\myverb}"^%{ &~_\}}@ #"

The rules for delimiting the verbatim text are the same as those for \verb.

175 〈*verbtext〉
176 \def \newverbtext {%

177 \@ifstar {\@tempswatrue \@verbtext }{\@tempswafalse \@verbtext *}%

178 }

I think that a temporary switch is safe here: if not, then suitable \lets can be
used.

179 \def \@verbtext *#1#2{%

180 \begingroup

181 \let\do\@makeother \dospecials

182 \let\do\do@noligs \verbatim@nolig@list

183 \@vobeyspaces

184 \catcode‘#2\active

185 \catcode‘~\active

186 \lccode‘\~‘#2%

187 \lowercase

We use a temporary macro here and a trick so that the definition of the command
itself can be done inside the group and be a local definition (there may be better
ways to achieve this).

188 {\def \@tempa ##1~%

189 {\whitespaces

Verbatim style option 18

If these \noexpands were \noexpand\protect\noexpand, would this make these
things robust?

190 \edef #1{\noexpand \@verbtextmcheck

191 \bgroup

192 \if@tempswa

193 \noexpand \visiblespaces

194 \fi

195 \noexpand \@verbtextsetup

196 ##1%

197 \egroup}%

198 }%

199 \expandafter\endgroup\@tempa

200 }

201 }

This sets up the correct type of group for the mode: it must not be expanded at
define time!

202 \def \@verbtextmcheck {%

203 \relax\ifmmode

204 \hbox

205 \else

206 \leavevmode

207 \null

208 \fi

209 }

This contains other things which should not be expanded during the definition.

210 \def \@verbtextsetup {%

211 \frenchspacing

212 \verbatim@font

213 \verbtextstyle

214 }

The command \verbtextstyle is a document-level hook which can be used
to override the predefined typographic treatment of commands defined with
\newverbtext commands.

\visiblespaces and \whitespaces are examples of possible values of this
hook.

215 \let \verbtextstyle \relax

216 \def \visiblespaces {\chardef \ 32\relax}

217 \def \whitespaces {\let \ \@@space}

218 \let \@@space \ %

219 〈/verbtext〉

4 Testing the implementation

For testing the implementation and for demonstration we provide an extra file. It
can be extracted by using the conditional ‘testdriver’. It uses a small input file
called ‘verbtest.tst’ that is distributed separately. Again, we use individual ‘+’
guards.

220 〈*testdriver〉
221 \documentclass{article}

222

Verbatim style option 19

223 \usepackage{verbatim}

224

225 \newenvironment{myverbatim}%

226 {\endgraf\noindent MYVERBATIM:\endgraf\verbatim}%

227 {\endverbatim}

228

229 \makeatletter

230

231 \newenvironment{verbatimlisting}[1]%

232 {\def\verbatim@startline{\input{#1}%

233 \def\verbatim@startline{\verbatim@line{}}%

234 \verbatim@startline}%

235 \verbatim}{\endverbatim}

236

237 \newwrite\verbatim@out

238

239 \newenvironment{verbatimwrite}[1]%

240 {\@bsphack

241 \immediate\openout \verbatim@out #1

242 \let\do\@makeother\dospecials\catcode‘\^^M\active

243 \def\verbatim@processline{%

244 \immediate\write\verbatim@out{\the\verbatim@line}}%

245 \verbatim@start}%

246 {\immediate\closeout\verbatim@out\@esphack}

247

248 \makeatother

249

250 \addtolength{\textwidth}{30pt}

251

252 \begin{document}

253

254 \typeout{}

255 \typeout{===> Expect ‘‘characters dropped’’

256 warning messages in this test! <====}

257 \typeout{}

258

259 Text Text Text Text Text Text Text Text Text Text Text

260 Text Text Text Text Text Text Text Text Text Text Text

261 Text Text Text Text Text Text Text Text Text Text Text

262 \begin{verbatim}

263 test

264 \end{verbatim*}

265 test

266 \end{verbatim

267 test of ligatures: <‘!‘?‘>

268 \endverbatim

269 test

270 \end verbatim

271 test

272 test of end of line:

273 \end

274 {verbatim}

275 \end{verbatim} Further text to be typeset: α.

276 Text Text Text Text Text Text Text Text Text Text Text

Verbatim style option 20

277 Text Text Text Text Text Text Text Text Text Text Text

278 Text Text Text Text Text Text Text Text Text Text Text

279 \begin{verbatim*}

280 test

281 test

282 \end {verbatim*}

283 Text Text Text Text Text Text Text Text Text Text Text

284 Text Text Text Text Text Text Text Text Text Text Text

285 Text Text Text Text Text Text Text Text Text Text Text

286 \begin{verbatim*} bla bla

287 test

288 test

289 \end {verbatim*}

290 Text Text Text Text Text Text Text Text Text Text Text

291 Text Text Text Text Text Text Text Text Text Text Text

292 Text Text Text Text Text Text Text Text Text Text Text

293 Text Text Text Text Text Text Text Text Text Text Text

294

295 First of Chris Rowley’s fiendish tests:

296 \begin{verbatim}

297 the double end test<text>

298 \end\end{verbatim} or even \end \end{verbatim}

299 %

300 %not \end\ended??

301 %\end{verbatim}

302

303 Another of Chris’ devils:

304 \begin{verbatim}

305 the single brace test<text>

306 \end{not the end\end{verbatim}

307 %

308 %not \end}ed??

309 %\end{verbatim}

310 Back to my own tests:

311 \begin{myverbatim}

312 test

313 test

314 \end {myverbatim} rest of line

315 Text Text Text Text Text Text Text Text Text Text Text

316 Text Text Text Text Text Text Text Text Text Text Text

317 Text Text Text Text Text Text Text Text Text Text Text

318

319 Test of empty verbatim:

320 \begin{verbatim}

321 \end{verbatim}

322 Text Text Text Text Text Text Text Text Text Text Text

323 Text Text Text Text Text Text Text Text Text Text Text

324 Text Text Text Text Text Text Text Text Text Text Text

325 \begin {verbatimlisting}{verbtest.tex}

326 Additional verbatim text

327 ...

328 \end{verbatimlisting}

329 And here for listing a file:

330 \verbatiminput{verbtest.tex}

Verbatim style option 21

331 And again, with explicit spaces:

332 \verbatiminput*{verbtest.tex}

333 Text Text Text Text Text Text Text Text Text Text Text

334 Text Text Text Text Text Text Text Text Text Text Text

335 Text Text Text Text Text Text Text Text Text Text Text

336 \begin{comment}

337 test

338 \end{verbatim*}

339 test

340 \end {comment

341 test

342 \endverbatim

343 test

344 \end verbatim

345 test

346 \end {comment} Further text to be typeset: α.

347 Text Text Text Text Text Text Text Text Text Text Text

348 Text Text Text Text Text Text Text Text Text Text Text

349 Text Text Text Text Text Text Text Text Text Text Text

350 \begin{comment} bla bla

351 test

352 test

353 \end {comment}

354 Text Text Text Text Text Text Text Text Text Text Text

355 Text Text Text Text Text Text Text Text Text Text Text

356 Text Text Text Text Text Text Text Text Text Text Text

357 Text Text Text Text Text Text Text Text Text Text Text

358

359 \begin{verbatimwrite}{verbtest.txt}

360 asfa<fa<df

361 sdfsdfasd

362 asdfa<fsa

363 \end{verbatimwrite}

364

365 \end{document}

366 〈/testdriver〉

	1 Usage notes
	2 Interfaces for package writers
	2.1 Simple examples
	2.2 The interfaces

	3 The implementation
	3.1 Preliminaries
	3.2 The verbatim and verbatim* environments
	3.3 The comment environment
	3.4 The main loop
	3.5 The \verbatiminput command
	3.6 Getting verbatim text into arguments.

	4 Testing the implementation

