Version 3.80
2022/09/17

Javier Bezos

Current maintainer

Johannes L. Braams
Original author

Babel

Localization and
internationalization

Unicode
TEX
PAfTEX
LuaTgX
XeTEX



Contents

I User guide

1

II

The user interface

1.1 Monolingual documents . . . . ... ... ... ...
1.2 Multilingual documents . . . . .. .. ... ... .. e
1.3 Mostly monolingual documents . . . . .. ... ... ... ... ... ...
1.4 Modifiers . . . . . . o oo
1.5 Troubleshooting . . . . . . . . . . i i
1.6 Plain . . .. .. e
1.7 Basiclanguageselectors . .. .. ... ... ... ... e
1.8 Auxiliarylanguageselectors . . . . . . .. .. ... ..
1.9 DMoreonselection . . .. ... ...
1.10 Shorthands . . . . . . . . . . o i
1.11 Packageoptions . . . . . . . ... i
1.12 Thebaseoption . . . . . . . . . . . ittt
113 inifiles. . . . oL
1.14 Selectingfonts . . . .. ... ... . ... e
1.15 Modifyingalanguage . . . . . . . . . .
1.16 Creatingalanguage . . . . . . .. ... i
1.17 Digitsand cCOUNters . . . . . . . . . v v v i i it e e e e e e
TI8 Dates . . . . o v e e
1.19 Accessinglanguageinfo . ... ... ... ... . ...
1.20 Hyphenation and line breaking . . . ... ... ... .. ... .......
1.21 Transforms . . . . . . . o o o i it
1.22 Selection basedonBCP47tags . . . . . . . . . . . .
1.23 Selecting scripts . . . . . . . . o o e e e
1.24 Selecting directions . . . . . . . . . .
1.25 Language attributes . . . . . .. .. ... L o
1.26 HOOKS . . . o o o e e e e e e e e e
1.27 Languages supported by babel with Idffiles . . . ... ... ... ... ..
1.28 Unicode character propertiesinluatex . . . ... ... ... ... .....
1.29 Tweaking some features . . . ... .. .. ... . ...
1.30 Tips, workarounds, known issues andnotes . . . . . ... ... ......
1.31 Currentand futurework . . . .. ... ... ... L
1.32 Tentative and experimentalcode . ... ... ... ... .. ........

Loading languages with language.dat
2.1 Format . . . .. . . e e

The interface between the core of babel and the language definition files

3.1  Guidelines for contributed languages . . . . . ... ... ... ... .. ..
3.2 BaSICIMACTOS . . . . v v v v e e e e e e e e e e e
33 Skeleton . . . ...
3.4  Support for active characters . . . .. ... ... ...
3.5  Support for saving macro definitions . . . . ... ... ...
3.6 Support for extending macros . . . . . .. ...
3.7 Macros common to a number of languages . . . . . ... ... ... ...
3.8 Encoding-dependentstrings . . .. ... ... .. ... ...
3.9 Executing code based ontheselector . ... .................

Source code
Identification and loading of required files

locale directory

© © 00 00 ~J D v W -~

G U D DB B B BB WWWWWWNNNR R RPBRB 2 2
OO WO JUIUILF OWONUTIWWRONWUIJuNOO

50
51

52
53
54
55
55
56
56
56
39

60
60

60



10

11

12

Tools

6.1 Multiplelanguages . ... ... ... ...
6.2  The Package File (BIgX, babel.sty) . .. ... ... ... ... .......
6.3  base . . . ...
6.4 key=value options and other generaloption . . . . ... ... .......
6.5 Conditional loading of shorthands . . . . . ... ... ... .........
6.6 InterludeforPlain. .. .. ... ... ... . ... . ... ...
Multiple languages
7.1  Selecting thelanguage . ... ... ... ... .. ... ... . . ...
7.2 EITOTS . . . o o v e e e e
7.3 HOOKS . . . oo e e e e e e
7.4  Settinguplanguagefiles . . ... ... ... .
7.5 Shorthands . . . . . ... ... .
7.6 Language attributes . . . . . . . .. ... e
7.7  Support for saving macro definitions . . . . ... .. ..o Lo
7.8 Shorttags. .. . . ... . i e
7.9 Hyphens . . . . . . . ..
7.10 Multiencoding Strings . . . . . . . . . ..
7.11 Macros common to a number of languages . . . . . . ... ... ...
7.12 Making glyphsavailable . .. ... ... ... ... . . . L
7.12.1 Quotationmarks . . . . .. ...
7122 Letters . . . . . . o e
7.12.3 Shorthands for quotationmarks . . . . . ... ... ... ... ..
7.124 Umlautsandtremas . . . . . . . . . ...ttt
713 Layout . . . . . .. e e e e e e
7.14 Load engine specificmacros . . . . . . ... ... ...
7.15 Creating and modifying languages . .. ... ... ... ... .......

Adjusting the Babel bahavior

8.1
8.2
8.3

8.4
8.5
8.6
8.7

Crossreferencingmacros. . . . . . ... ..o v it
Marks . . . . .
Preventing clashes with other packages . . ... ... ... ........
831 ifthen . ... ...
832 wvarioref ... ... .
833 hhline ... ... ... . ... .. .
Encodingandfonts . .. ... ... ... ... . ... oL
Basichidisupport . . . . . . . ..
Local Language Configuration . . . . .. ... ... ... .. ........
Language options . . . . . . . o o it e e e e e

The kernel of Babel (babel.def, common)

Loading hyphenation patterns

Font handling with fontspec

Hooks for XeTeX and LuaTeX

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

Layout . . . . . . . . e
LuaTeX . . . . . o e
Southeast Asian scripts . . . . . . . . . . e
CJKlinebreaking . ... ... ... ... . . .
Arabicjustification . . . . ... L L
Commonstuff . ... ... ...
Automatic fonts and ids switching . . . . ... ... ... ... ... ...
Bidi . . . . e
Layout . . .. . . . . e
Lua: transforms . . . . . . . . ..

61
65
66
67
67
69
70

70
73
81
83
85
87
96
97
99
99
100
107
107
107
109
109
110
111
112
112

134
136
139
140
140
140
141
141
143
146
146

150

150

154



13

14

15

16

17

18

19

20

21

12.12 Lua: Auto bidi with basic and basic-r. . ... ... ... ....

Data for CJK
The ‘nil’ language

Calendars

15.1 Islamic . . . . . . . e e e

Hebrew

Persian

Coptic and Ethiopic
Buddhist

Support for Plain TgX (plain.def)

20.1 Notrenaming hyphen.tex . ... ... ... ... ... ......
20.2 Emulating some KIpX features . . . . .. ... ... ...
20.3 Generaltools . . . ...... ... . . ... .
20.4 Encodingrelated macros . . . . . . . .. .. ...

Acknowledgements

Troubleshoooting

Paragraph ended before \UTFviii@three@octets was complete . . . . . .
No hyphenation patterns were preloaded for (babel) the language ‘LANG’ into the

format . . ... ... e
You are loading directly alanguage style . . . ... ... ... ......
Unknown language ‘LANG’ . . . . . . . . ..o i it ittt i i v ..
Argument of \language@active@arg” hasanextra} . . . . ... ... ..
Package fontspec Warning: ’Language 'LANG’ not available for font 'FONT’” with

script ’SCRIPT’ "Default’ language used instead’ . . . . . .. ... ..

Package babel Info: The following fonts are not babel standard families

204

204

205
205

207

211

212

212

212
212
213
214
217

220

o 0 U1

12

26
26



Part I
User guide

What is this document about? This user guide focuses on internationalization and
localization with KIpX and pdftex, xetex and luatex with the babel package. There are
also some notes on its use with e-Plain and pdf-Plain TgX. Part II describes the code, and
usually it can be ignored.

What if I'm interested only in the latest changes? Changes and new features with
relation to version 3.8 are highlighted with New X.XX , and there are some notes for
the latest versions in the babel site. The most recent features can be still unstable.

Can I help? Sure! If you are interested in the TgX multilingual support, please join the
kadingira mail list. You can follow the development of babel in GitHub and make
suggestions; feel free to fork it and make pull requests. If you are the author of a
package, send to me a few test files which I’ll add to mine, so that possible issues can be
caught in the development phase.

It doesn’t work for me! You can ask for help in some forums like tex.stackexchange, but if
you have found a bug, I strongly beg you to report it in GitHub, which is much better
than just complaining on an e-mail list or a web forum. Remember warnings are not
errors by themselves, they just warn about possible problems or incompatibilities.

How can I contribute a new language? See section 3.1 for contributing a language.

I only need learn the most basic features. The first subsections (1.1-1.3) describe the
traditional way of loading a language (with 1df files), which is usually all you need. The
alternative way based on ini files, which complements the previous one (it does not
replace it, although it is still necessary in some languages), is described below; go to
1.13.

I don’t like manuals. I prefer sample files. This manual contains lots of examples and
tips, but in GitHub there are many sample files.

1 The user interface

1.1 Monolingual documents

In most cases, a single language is required, and then all you need in ETgX is to load the
package using its standard mechanism for this purpose, namely, passing that language as
an optional argument. In addition, you may want to set the font and input encodings.
Another approach is making the language a global option in order to let other packages
detect and use it. This is the standard way in KTgX for an option - in this case a language —
to be recognized by several packages.

Many languages are compatible with xetex and luatex. With them you can use babel to
localize the documents. When these engines are used, the Latin script is covered by default
in current ETgX (provided the document encoding is UTF-8), because the font loader is
preloaded and the font is switched to lmroman. Other scripts require loading fontspec. You
may want to set the font attributes with fontspec, too.

EXAMPLE Here is a simple full example for “traditional” TgX engines (see below for xetex and luatex).
The packages fontenc and inputenc do not belong to babel, but they are included in the example
because typically you will need them. It assumes UTF-8, the default encoding:

\documentclass{article}

\usepackage[T1]{fontenc}


https://latex3.github.io/babel/
http://tug.org/mailman/listinfo/kadingira
https://github.com/latex3/babel
https://github.com/latex3/babel/issues
https://github.com/latex3/babel/tree/master/samples

\usepackage[french]{babel}
\begin{document}
Plus ca change, plus c'est la méme chose!

\end{document}

Now consider something like:

\documentclass[french]{article}
\usepackage{babel}
\usepackage{varioref}

With this setting, the package varioref will also see the option french and will be able to use it.

EXAMPLE And now a simple monolingual document in Russian (text from the Wikipedia) with xetex
or luatex. Note neither fontenc nor inputenc are necessary, but the document should be encoded
in UTF-8 and a so-called Unicode font must be loaded (in this example \babelfont is used,
described below).

I
\documentclass[russian]{article}

\usepackage{babel}

\babelfont{rm}{DejaVu Serif}

\begin{document}

Poccusi, HaxoAsawasca Ha nepeceyeHUr MHOXeCTBa KyNnbTyp, a Takxe

C YY4ETOM MHOrOHALMOHANbHOrO XapakTepa eé HacefeHusi, — OT/MYaeTCs

BbICOKOVi CTEMeHblo 3THOKYNbTYPHOrO MHOF006pasns U CMOCO6HOCTbI0 K
MEXKY/NbTYpPHOMY AManory.

\end{document}

TROUBLESHOOTING A common source of trouble is a wrong setting of the input encoding.
Depending on the KTgX version you can get the following somewhat cryptic error:

! Paragraph ended before \UTFviii@three@octets was complete.

Or the more explanatory:

| Package inputenc Error: Invalid UTF-8 byte ...

Make sure you set the encoding actually used by your editor.

NOTE Because of the way babel has evolved, “language” can refer to (1) a set of hyphenation
patterns as preloaded into the format, (2) a package option, (3) an 1df file, and (4) a name used in
the document to select a language or dialect. So, a package option refers to a language in a
generic way — sometimes it is the actual language name used to select it, sometimes it is a file
name loading a language with a different name, sometimes it is a file name loading several
languages. Please, read the documentation for specific languages for further info.

TROUBLESHOOTING The following warning is about hyphenation patterns, which are not under the
direct control of babel:



Package babel Warning: No hyphenation patterns were preloaded for

(babel) the language 'LANG' into the format.

(babel) Please, configure your TeX system to add them and
(babel) rebuild the format. Now I will use the patterns
(babel) preloaded for \language=0 instead on input line 57.

The document will be typeset, but very likely the text will not be correctly hyphenated. Some
languages may be raising this warning wrongly (because they are not hyphenated); it is a bug to
be fixed - just ignore it. See the manual of your distribution (MacTgX, MikTgX, TgXLive, etc.) for
further info about how to configure it.

NOTE With hyperref you may want to set the document language with something like:

\usepackage[pdflang=es-MX]{hyperref}

This is not currently done by babel and you must set it by hand.

NOTE Although it has been customary to recommend placing \title, \author and other elements
printed by \maketitle after \begin{document}, mainly because of shorthands, it is advisable to
keep them in the preamble. Currently there is no real need to use shorthands in those macros.

1.2 Multilingual documents

In multilingual documents, just use a list of the required languages as package or class
options. The last language is considered the main one, activated by default. Sometimes, the
main language changes the document layout (eg, spanish and french).

EXAMPLE In KIgX, the preamble of the document:

\documentclass{article}
\usepackage[dutch,english]{babel}

would tell KTgX that the document would be written in two languages, Dutch and English, and
that English would be the first language in use, and the main one.

You can also set the main language explicitly, but it is discouraged except if there is a real

reason to do so:

\documentclass{article}
\usepackage[main=english,dutch]{babel}

Examples of cases where main is useful are the following.

EXAMPLE Some classes load babel with a hardcoded language option. Sometimes, the main language
can be overridden with something like that before \documentclass:

\PassOptionsToPackage{main=english}{babel}

NOTE Languages may be set as global and as package option at the same time, but in such a case you
should set explicitly the main language with the package option main:

\documentclass[italian]{book}
\usepackage[ngerman,main=italian]{babel}

WARNING In the preamble the main language has not been selected, except hyphenation patterns
and the name assigned to \1anguagename (in particular, shorthands, captions and date are not
activated). If you need to define boxes and the like in the preamble, you might want to use some
of the language selectors described below.



To switch the language there are two basic macros, described below in detail:
\selectlanguage is used for blocks of text, while \foreignlanguage is for chunks of text
inside paragraphs.

EXAMPLE A full bilingual document with pdftex follows. The main language is french, which is
activated when the document begins. It assumes UTF-8:

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[english, french]{babel}
\begin{document}

Plus ¢a change, plus c'est la méme chose!
\selectlanguage{english}

And an English paragraph, with a short text in
\foreignlanguage{french}{francais}.

\end{document}

EXAMPLE With xetex and luatex, the following bilingual, single script document in UTF-8 encoding
just prints a couple of ‘captions’ and \today in Danish and Vietnamese. No additional packages
are required, because the default font supports both languages.

LUATEX/XETEX

\documentclass{article}
\usepackage[vietnamese,danish]{babel}
\begin{document}

\prefacename, \alsoname, \today.
\selectlanguage{vietnamese}
\prefacename, \alsoname, \today.

\end{document}

NOTE Once loaded a language, you can select it with the corresponding BCP47 tag. See section 1.22
for further details.

1.3 Mostly monolingual documents

New 3.39 Very often, multilingual documents consist of a main language with small
pieces of text in another languages (words, idioms, short sentences). Typically, all you need
is to set the line breaking rules and, perhaps, the font. In such a case, babel now does not
require declaring these secondary languages explicitly, because the basic settings are
loaded on the fly when the language is selected (and also when provided in the optional
argument of \babelfont, if used.)

This is particularly useful, too, when there are short texts of this kind coming from an
external source whose contents are not known on beforehand (for example, titles in a
bibliography). At this regard, it is worth remembering that \babelfont does not load any
font until required, so that it can be used just in case.

EXAMPLE A trivial document with the default font in English and Spanish, and FreeSerif in Russian
is:



LUATEX/XETEX

\documentclass[english]{article}
\usepackage{babel}

\babelfont[russian]{rm}{FreeSerif}
\begin{document}

English. \foreignlanguage{russian}{Pycckuii}.
\foreignlanguage{spanish}{Espafiol}.

\end{document}

NOTE Instead of its name, you may prefer to select the language with the corresponding BCP47 tag.
This alternative, however, must be activated explicitly, because a two- or tree-letter word is a
valid name for a language (eg, 1u can be the locale name with tag khb or the tag for
lubakatanga). See section 1.22 for further details.

1.4 Modifiers

New 3.9c The basic behavior of some languages can be modified when loading babel by
means of modifiers. They are set after the language name, and are prefixed with a dot (only
when the language is set as package option — neither global options nor the main key
accepts them). An example is (spaces are not significant and they can be added or
removed):!

\usepackage[latin.medieval, spanish.notilde.lcroman, danish]{babel}

Attributes (described below) are considered modifiers, ie, you can set an attribute by
including it in the list of modifiers. However, modifiers are a more general mechanism.

1.5 Troubleshooting

* Loading directly sty files in KIgX (ie, \usepackage{(language)}) is deprecated and you
will get the error:?

! Package babel Error: You are loading directly a language style.
(babel) This syntax is deprecated and you must use
(babel) \usepackage[language]{babel}.

+ Another typical error when using babel is the following:3

! Package babel Error: Unknown language “#1'. Either you have

(babel) misspelled its name, it has not been installed,
(babel) or you requested it in a previous run. Fix its name,
(babel) install it or just rerun the file, respectively. In
(babel) some cases, you may need to remove the aux file

The most frequent reason is, by far, the latest (for example, you included spanish, but
you realized this language is not used after all, and therefore you removed it from the
option list). In most cases, the error vanishes when the document is typeset again, but
in more severe ones you will need to remove the aux file.

1No predefined “axis” for modifiers are provided because languages and their scripts have quite different needs.
2In old versions the error read “You have used an old interface to call babel”, not very helpful.
3In old versions the error read “You haven’t loaded the language LANG yet”.



\selectlanguage

1.6 Plain

In e-Plain and pdf-Plain, load languages styles with \input and then use \begindocument
(the latter is defined by babel):

\input estonian.sty
\begindocument

WARNING Not all languages provide a sty file and some of them are not compatible with those
formats. Please, refer to Using babel with Plain for further details.

1.7 Basic language selectors

This section describes the commands to be used in the document to switch the language in
multilingual documents. In most cases, only the two basic macros \selectlanguage and
\foreignlanguage are necessary. The environments otherlanguage, otherlanguage*
and hyphenrules are auxiliary, and described in the next section.

The main language is selected automatically when the document environment begins.

{(language)}

When a user wants to switch from one language to another he can do so using the macro
\selectlanguage. This macro takes the language, defined previously by a language
definition file, as its argument. It calls several macros that should be defined in the
language definition files to activate the special definitions for the language chosen:

\selectlanguage{german}

This command can be used as environment, too.

NOTE For “historical reasons”, a macro name is converted to a language name without the leading \;
in other words, \selectlanguage{\german} is equivalent to \selectlanguage{german}. Using a
macro instead of a “real” name is deprecated. New 3.43 However, if the macro name does not
match any language, it will get expanded as expected.

NOTE Bear in mind \selectlanguage can be automatically executed, in some cases, in the auxiliary
files, at heads and foots, and after the environment otherlanguage*.

WARNING If used inside braces there might be some non-local changes, as this would be roughly
equivalent to:

{\selectlanguage{<inner-language>} ...}\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this code with an additional
grouping level.

WARNING There are a couple of issues related to the way the language information is written to the
auxiliary files:

* \selectlanguage should not be used inside some boxed environments (like floats or
minipage) to switch the language if you need the information written to the aux be correctly
synchronized. This rarely happens, but if it were the case, you must use otherlanguage
instead.

* In addition, this macro inserts a \write in vertical mode, which may break the vertical
spacing in some cases (for example, between lists). New 3.64 The behavior can be adjusted
with \babeladjust{select.write=(mode)}, where (mode) is shift (which shifts the skips
down and adds a \penalty); keep (the default — with it the \write and the skips are kept in
the order they are written), and omit (which may seem a too drastic solution, because nothing
is written, but more often than not this command is applied to more or less shorts texts with
no sectioning or similar commands and therefore no language synchronization is necessary).


https://latex3.github.io/babel/guides/using-babel-with-plain.html

\foreignlanguage

\begin{otherlanguage}

\begin{otherlanguage*}

\babeltags

[{option-list) 1{(language) }{ (text)}

The command \foreignlanguage takes two arguments; the second argument is a phrase
to be typeset according to the rules of the language named in its first one.
This command (1) only switches the extra definitions and the hyphenation rules for the
language, not the names and dates, (2) does not send information about the language to
auxiliary files (i.e., the surrounding language is still in force), and (3) it works even if the
language has not been set as package option (but in such a case it only sets the
hyphenation patterns and a warning is shown). With the bidi option, it also enters in
horizontal mode (this is not done always for backwards compatibility), and since it is
meant for phrases only the text direction (and not the paragraph one) is set.

New 3.44 As already said, captions and dates are not switched. However, with the
optional argument you can switch them, too. So, you can write:

\foreignlanguage[date]{polish}{\today}

In addition, captions can be switched with captions (or both, of course, with date,
captions). Until 3.43 you had to write something like {\selectlanguage{..} ..}, which
was not always the most convenient way.

1.8 Auxiliary language selectors

{(language)} ... \end{otherlanguage}

The environment otherlanguage does basically the same as \selectlanguage, except that
language change is (mostly) local to the environment.

Actually, there might be some non-local changes, as this environment is roughly equivalent
to:

\begingroup
\selectlanguage{<inner-language>}
\endgroup
\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this environment with an
additional grouping, like braces {}.
Spaces after the environment are ignored.

[{option-list)1{(language)} ... \end{otherlanguage*}

Same as \foreignlanguage but as environment. Spaces after the environment are not
ignored.

This environment was originally intended for intermixing left-to-right typesetting with
right-to-left typesetting in engines not supporting a change in the writing direction inside a
line. However, by default it never complied with the documented behavior and it is just a
version as environment of \foreignlanguage, except when the option bidi is set —in this
case, \foreignlanguage emits a \leavevmode, while otherlanguage* does not.

1.9 More on selection

{(tag1) = (languagel), (tag2) = (language2), ...}

New 3.91 In multilingual documents with many language-switches the commands above
can be cumbersome. With this tool shorter names can be defined. It adds nothing really
new - it is just syntactical sugar.

10



\babelensure

It defines \text(tagl){(text)} to be \foreignlanguage{(languagel)}{(text)}, and
\begin{(tag1)} to be \begin{otherlanguage*}{(languagel)}, and so on. Note \(tagl) is
also allowed, but remember to set it locally inside a group.

WARNING There is a clear drawback to this feature, namely, the ‘prefix’ \text. .. is heavily
overloaded in ETgX and conflicts with existing macros may arise (\textlatin, \textbar, \textit,
\textcolor and many others). The same applies to environments, because arabic conflicts with
\arabic. Furthermore, and because of this overloading, detecting the language of a chunk of text
by external tools can become unfeasible. Except if there is a reason for this ‘syntactical sugar’, the
best option is to stick to the default selectors or to define your own alternatives.

EXAMPLE With

\babeltags{de = german}

you can write

text \textde{German text} text

and

text

\begin{de}
German text

\end{de}

text

NOTE Something like \babeltags{finnish = finnish} islegitimate — it defines \textfinnish and
\finnish (and, of course, \begin{finnish}).

NOTE Actually, there may be another advantage in the ‘short’ syntax \text(tag), namely, it is not
affected by \MakeUppercase (while \foreignlanguage is).

[include=(commands),exclude={commands), fontenc={encoding)1{(language)}

New 3.9i Exceptin a few languages, like russian, captions and dates are just strings, and
do not switch the language. That means you should set it explicitly if you want to use them,
or hyphenation (and in some cases the text itself) will be wrong. For example:

\foreignlanguage{russian}{text \foreignlanguage{polish}{\seename} text}

Of course, TgX can do it for you. To avoid switching the language all the while,
\babelensure redefines the captions for a given language to wrap them with a selector:

\babelensure{polish}

By default only the basic captions and \today are redefined, but you can add further
macros with the key include in the optional argument (without commas). Macros not to
be modified are listed in exclude. You can also enforce a font encoding with the option
fontenc.* A couple of examples:

\babelensure[include=\Today]{spanish}
\babelensure[fontenc=T5]{vietnamese}

They are activated when the language is selected (at the afterextras event), and it makes
some assumptions which could not be fulfilled in some languages. Note also you should
include only macros defined by the language, not global macros (eg, \TeX of \dag).

With ini files (see below), captions are ensured by default.

4Wwith it, encoded strings may not work as expected.

11



1.10 Shorthands

A shorthand is a sequence of one or two characters that expands to arbitrary TgX code.
Shorthands can be used for different kinds of things; for example: (1) in some languages
shorthands such as "a are defined to be able to hyphenate the word if the encoding is 0T1;
(2) in some languages shorthands such as ! are used to insert the right amount of white
space; (3) several kinds of discretionaries and breaks can be inserted easily with "-, "=, etc.
The package inputenc as well as xetex and luatex have alleviated entering non-ASCII
characters, but minority languages and some kinds of text can still require characters not
directly available on the keyboards (and sometimes not even as separated or precomposed
Unicode characters). As to the point 2, now pdfTeX provides \knbccode, and luatex can
manipulate the glyph list. Tools for point 3 can be still very useful in general.

There are four levels of shorthands: user, language, system, and language user (by order of
precedence). In most cases, you will use only shorthands provided by languages.

NOTE Keep in mind the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing brace } and the
spaces following are gobbled. With one-char shorthands (eg, :), they are preserved.

2. If on a certain level (system, language, user, language user) there is a one-char shorthand,
two-char ones starting with that char and on the same level are ignored.

3. Since they are active, a shorthand cannot contain the same character in its definition (except
if deactivated with, eg, \string).

TROUBLESHOOTING A typical error when using shorthands is the following:

! Argument of \language@active@arg" has an extra }.

It means there is a closing brace just after a shorthand, which is not allowed (eg, "}). Just add {}
after (eg, "{}}).

\shorthandon {(shorthands-list)}
\shorthandoff *{(shorthands-list)}

It is sometimes necessary to switch a shorthand character off temporarily, because it must
be used in an entirely different way. For this purpose, the user commands \shorthandoff
and \shorthandon are provided. They each take a list of characters as their arguments.
The command \shorthandoff sets the \catcode for each of the characters in its argument
to other (12); the command \shorthandon sets the \catcode to active (13). Both commands
only work on ‘known’ shorthand characters.

New 3.9a However, \shorthandoff does not behave as you would expect with characters
like ~ or /A, because they usually are not “other”. For them \shorthandoff* is provided, so
that with

\shorthandoff*{~A}

~ is still active, very likely with the meaning of a non-breaking space, and A is the
superscript character. The catcodes used are those when the shorthands are defined,
usually when language files are loaded.

If you do not need shorthands, or prefer an alternative approach of your own, you may
want to switch them off with the package option shorthands=off, as described below.

WARNING It is worth emphasizing these macros are meant for temporary changes. Whenever

possible and if there are not conflicts with other packages, shorthands must be always enabled
(or disabled).

12



\useshorthands * {{char)}

The command \useshorthands initiates the definition of user-defined shorthand
sequences. It has one argument, the character that starts these personal shorthands.

New 3.9a User shorthands are not always alive, as they may be deactivated by languages
(for example, if you use " for your user shorthands and switch from german to french, they
stop working). Therefore, a starred version \useshorthands*{(char)} is provided, which
makes sure shorthands are always activated.

Currently, if the package option shorthands is used, you must include any character to be
activated with \useshorthands. This restriction will be lifted in a future release.

\defineshorthand [(language), (language),...1{(shorthand)}{(code)}

The command \defineshorthand takes two arguments: the first is a one- or two-character
shorthand sequence, and the second is the code the shorthand should expand to.

New 3.9a An optional argument allows to (re)define language and system shorthands
(some languages do not activate shorthands, so you may want to add
\languageshorthands{(lang)} to the corresponding \extras(lang), as explained below).
By default, user shorthands are (re)defined.

User shorthands override language ones, which in turn override system shorthands.
Language-dependent user shorthands (new in 3.9) take precedence over “normal” user
shorthands.

EXAMPLE Let’s assume you want a unified set of shorthand for discretionaries (languages do not
define shorthands consistently, and " -, \ -, "= have different meanings). You can start with, say:

\useshorthands*{"}
\defineshorthand{"*}{\babelhyphen{soft}}
\defineshorthand{"-}{\babelhyphen{hard}}

However, the behavior of hyphens is language-dependent. For example, in languages like Polish
and Portuguese, a hard hyphen inside compound words are repeated at the beginning of the next
line. You can then set:

\defineshorthand[*polish, *portuguese]{"-}{\babelhyphen{repeat}}

Here, options with * set a language-dependent user shorthand, which means the generic one
above only applies for the rest of languages; without * they would (re)define the language
shorthands instead, which are overridden by user ones.

Now, you have a single unified shorthand ("-), with a content-based meaning (‘compound word
hyphen’) whose visual behavior is that expected in each context.

\languageshorthands {(language)}

The command \languageshorthands can be used to switch the shorthands on the
language level. It takes one argument, the name of a language or none (the latter does what
its name suggests).> Note that for this to work the language should have been specified as
an option when loading the babel package. For example, you can use in english the
shorthands defined by ngerman with

\addto\extrasenglish{\languageshorthands{ngerman}}

(You may also need to activate them as user shorthands in the preamble with, for example,
\useshorthands or \useshorthands*.)

5 Actually, any name not corresponding to a language group does the same as none. However, follow this con-
vention because it might be enforced in future releases of babel to catch possible errors.

13



\babelshorthand

\ifbabelshorthand

\aliasshorthand

EXAMPLE Very often, this is a more convenient way to deactivate shorthands than \shorthandoff,
for example if you want to define a macro to easy typing phonetic characters with tipa:

\newcommand{\myipa}[1]{{\languageshorthands{none}\tipaencoding#1}}

{(shorthand)}

With this command you can use a shorthand even if (1) not activated in shorthands (in
this case only shorthands for the current language are taken into account, ie, not user
shorthands), (2) turned off with \shorthandoff or (3) deactivated with the internal
\bbl@deactivate; for example, \babelshorthand{"u} or \babelshorthand{:}. (You can
conveniently define your own macros, or even your own user shorthands provided they
do not overlap.)

EXAMPLE Since by default shorthands are not activated until \begin{document}, you may use this
macro when defining the \title in the preamble:

\title{Documento cientifico\babelshorthand{"-}técnico}

For your records, here is a list of shorthands, but you must double check them, as they may
change:5

Languages with no shorthands Croatian, English (any variety), Indonesian, Hebrew,
Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian, Scottish, Welsh

Languages with only " as defined shorthand character Albanian, Bulgarian, Danish,
Dutch, Finnish, German (old and new orthography, also Austrian), Icelandic, Italian,
Norwegian, Polish, Portuguese (also Brazilian), Russian, Serbian (with Latin script),
Slovene, Swedish, Ukrainian, Upper Sorbian

Basque " ' ~

Breton : ; ? !

Catalan " '

Czech " -

Esperanto *

Estonian " ~

French (all varieties) : ; ? !

Galician " . ' ~ < >

Greek ~

Hungarian °

Kurmanji

Latin " A =

Slovak " N ' -

Spanish " . < > ' ~

Turkish : ! =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the
standard ~, to a non breaking space.’

{(character)}{(true)}{(false)}

New 3.23 Tests if a character has been made a shorthand.

{(original)}{{alias)}

The command \aliasshorthand can be used to let another character perform the same
functions as the default shorthand character. If one prefers for example to use the

5Thanks to Enrico Gregorio
"This declaration serves to nothing, but it is preserved for backward compatibility.

14



KeepShorthandsActive

activeacute

activegrave

shorthands=

safe=

math=

character / over " in typing Polish texts, this can be achieved by entering
\aliasshorthand{"}{/}. For the reasons in the warning below, usage of this macro is not
recommended.

NOTE The substitute character must not have been declared before as shorthand (in such a case,
\aliashorthands is ignored).

EXAMPLE The following example shows how to replace a shorthand by another

\aliasshorthand{~}{A}
\AtBeginDocument{\shorthandoff*{~}}

WARNING Shorthands remember somehow the original character, and the fallback value is that of
the latter. So, in this example, if no shorthand if found, A expands to a non-breaking space,
because this is the value of ~ (internally, A still calls \active@char~ or \normal@char~).
Furthermore, if you change the system value of A with \defineshorthand nothing happens.

1.11 Package options

New 3.9a These package options are processed before language options, so that they are
taken into account irrespective of its order. The first three options have been available in
previous versions.

Tells babel not to deactivate shorthands after loading a language file, so that they are also
available in the preamble.

For some languages babel supports this options to set ' as a shorthand in case it is not done
by default.

Same for °.

(char)(char)... | of f

The only language shorthands activated are those given, like, eg:
\usepackage[esperanto, french, shorthands=:; !?]{babel}

If ' isincluded, activeacute is set; if * isincluded, activegrave is set. Active characters
(like ~) should be preceded by \string (otherwise they will be expanded by EIEX before
they are passed to the package and therefore they will not be recognized); however, t is
provided for the common case of ~ (as well as ¢ for not so common case of the comma).
With shorthands=off no language shorthands are defined, As some languages use this
mechanism for tools not available otherwise, a macro \babelshorthand is defined, which
allows using them; see above.

none | ref | bib

Some KTEX macros are redefined so that using shorthands is safe. With safe=bib only
\nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel, \ref and
\pageref are redefined (as well as a few macros from varioref and ifthen).
With safe=none no macro is redefined. This option is strongly recommended, because a
good deal of incompatibilities and errors are related to these redefinitions. As of

New 3.34 , in €TgX based engines (ie, almost every engine except the oldest ones)
shorthands can be used in these macros (formerly you could not).

active | normal

Shorthands are mainly intended for text, not for math. By setting this option with the
value normal they are deactivated in math mode (default is active) and things like ${a'}$
(a closing brace after a shorthand) are not a source of trouble anymore.

15



config=

main=

headfoot=

noconfigs

showlanguages

nocase

silent

strings=

hyphenmap=

(file)
Load (file) . cfg instead of the default config file bblopts.cfg (the file is loaded even with
noconfigs).

(language)
Sets the main language, as explained above, ie, this language is always loaded last. If it is
not given as package or global option, it is added to the list of requested languages.

(language)
By default, headlines and footlines are not touched (only marks), and if they contain

language-dependent macros (which is not usual) there may be unexpected results. With
this option you may set the language in heads and foots.

Global and language default config files are not loaded, so you can make sure your
document is not spoilt by an unexpected . cfg file. However, if the key config is set, this
file is loaded.

Prints to the log the list of languages loaded when the format was created: number
(remember dialects can share it), name, hyphenation file and exceptions file.

New 3.91 Language settings for uppercase and lowercase mapping (as set by \SetCase)
are ignored. Use only if there are incompatibilities with other packages.

New 3.91 No warnings and no infos are written to the log file.?

generic | unicode | encoded | (label) | {font encoding)

Selects the encoding of strings in languages supporting this feature. Predefined labels are
generic (for traditional TgX, LICR and ASCII strings), unicode (for engines like xetex and
luatex) and encoded (for special cases requiring mixed encodings). Other allowed values
are font encoding codes (T1, T2A, LGR, L7X...), but only in languages supporting them. Be
aware with encoded captions are protected, but they work in \MakeUppercase and the like
(this feature misuses some internal KIgX tools, so use it only as a last resort).

off | first | select | other | other*

New 3.9g Sets the behavior of case mapping for hyphenation, provided the language
defines it. It can take the following values:

off deactivates this feature and no case mapping is applied;

first sets it at the first switching commands in the current or parent scope (typically,
when the aux file is first read and at \begin{document}, but also the first
\selectlanguage in the preamble), and it’s the default if a single language option has
been stated;!°

select setsitonly at \selectlanguage;

other also sets it at otherlanguage;

other* also sets it at otherlanguage* as well as in heads and foots (if the option headfoot
is used) and in auxiliary files (ie, at \select@language), and it’s the default if several
language options have been stated. The option first can be regarded as an optimized
version of other* for monolingual documents.!!

8You can use alternatively the package silence.
9Turned off in plain.
10puplicated options count as several ones.
providing foreign is pointless, because the case mapping applied is that at the end of the paragraph, but if
either xetex or luatex change this behavior it might be added. On the other hand, other is provided even if I [JBL]
think it isn’t really useful, but who knows.

16



bidi=

layout=

provide=

\AfterBabellLanguage

default | basic | basic-r | bidi-1]|bidi-r

New 3.14 Selects the bidi algorithm to be used in luatex and xetex. See sec. 1.24.

New 3.16 Selects which layout elements are adapted in bidi documents. See sec. 1.24.

*

New 3.49 An alternative to \babelprovide for languages passed as options. See
section 1.13, which describes also the variants provide+= and provide*=.

1.12 The base option

With this package option babel just loads some basic macros (those in switch.def),
defines \AfterBabellLanguage and exits. It also selects the hyphenation patterns for the
last language passed as option (by its name in language.dat). There are two main uses:
classes and packages, and as a last resort in case there are, for some reason, incompatible
languages. It can be used if you just want to select the hyphenation patterns of a single
language, too.

{(option-name)}{{code)}

This command is currently the only provided by base. Executes (code) when the file loaded
by the corresponding package option is finished (at \1df@finish). The setting is global. So

\AfterBabellLanguage{french}{...}

does ... at the end of french.1df. It can be used in 1df files, too, but in such a case the code
is executed only if (option-name) is the same as \CurrentOption (which could not be the
same as the option name as set in \usepackage!).

EXAMPLE Consider two languages foo and bar defining the same \macro with \newcommand. An
error is raised if you attempt to load both. Here is a way to overcome this problem:

\usepackage[base]{babel}

\AfterBabellLanguage{foo}{%
\let\macroFoo\macro
\let\macro\relax}

\usepackage[foo,bar]{babel}

NOTE With a recent version of KTgX, an alternative method to execute some code just after an 1df
file is loaded is with \AddToHook and the hook file/<language>.1ldf/after. Babel does not
predeclare it, and you have to do it yourself with \ActivateGenericHook.

WARNING Currently this option is not compatible with languages loaded on the fly.

1.13 ini files

An alternative approach to define a language (or, more precisely, a locale) is by means of
an ini file. Currently babel provides about 250 of these files containing the basic data
required for a locale, plus basic templates for 500 about locales.

ini files are not meant only for babel, and they has been devised as a resource for other
packages. To easy interoperability between TgX and other systems, they are identified with
the BCP 47 codes as preferred by the Unicode Common Locale Data Repository, which was
used as source for most of the data provided by these files, too (the main exception being
the \...name strings).

Most of them set the date, and many also the captions (Unicode and LICR). They will be
evolving with the time to add more features (something to keep in mind if backward

17



compatibility is important). The following section shows how to make use of them by
means of \babelprovide. In other words, \babelprovide is mainly meant for auxiliary
tasks, and as alternative when the 1df, for some reason, does work as expected.

EXAMPLE Although Georgian has its own 1df file, here is how to declare this language with an ini
file in Unicode engines.

LUATEX/XETEX

\documentclass{book}

\usepackage{babel}
\babelprovide[import, main]{georgian}

\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}

\begin{document}

\tableofcontents

\chapter{boddohgyom o Lyshob HMoposogdo}

Johoyeo (hoposoyneo LodBohgyom ghw-ghmo PIpophgbod dmge dbmgeomdo.

\end{document}

New 3.49 Alternatively, you can tell babel to load all or some languages passed as options
with \babelprovide and not from the 1df file in a few few typical cases. Thus, provide=*
means ‘load the main language with the \babelprovide mechanism instead of the 1df file’
applying the basic features, which in this case means import, main. There are (currently)
three options:

* provide=* is the option just explained, for the main language;
* provide+=* is the same for additional languages (the main language is still the 1df file);

* provide*=* is the same for all languages, ie, main and additional.

EXAMPLE The preamble in the previous example can be more compactly written as:

\documentclass{book}
\usepackage[georgian, provide=*]{babel}
\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}

Or also:

\documentclass[georgian]{book}
\usepackage[provide=*]{babel}
\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}

NOTE The ini files just define and set some parameters, but the corresponding behavior is not
always implemented. Also, there are some limitations in the engines. A few remarks follow
(which could no longer be valid when you read this manual, if the packages involved han been
updated). The Harfbuzz renderer has still some issues, so as a rule of thumb prefer the default
renderer, and resort to Harfbuzz only if the former does not work for you. Fortunately, fonts can
be loaded twice with different renderers; for example:

\babelfont[spanish]{rm}{FreeSerif}
\babelfont[hindi]{rm}[Renderer=Harfbuzz]{FreeSerif}

18



Arabic Monolingual documents mostly work in luatex, but it must be fine tuned, particularly
math and graphical elements like picture. In xetex babel resorts to the bidi package, which
seems to work.

Hebrew Nigqud marks seem to work in both engines, but depending on the font cantillation
marks might be misplaced (xetex or luatex with Harfbuzz seems better).

Devanagari In luatex and the the default renderer many fonts work, but some others do not, the
main issue being the ‘ra’. You may need to set explicitly the script to either deva or dev2, eg:

\newfontscript{Devanagari}{deva}

Other Indic scripts are still under development in the default luatex renderer, but should
work with Renderer=Harfbuzz. They also work with xetex, although unlike with luatex fine
tuning the font behavior is not always possible.

Southeast scripts Thai works in both luatex and xetex, but line breaking differs (rules are
hard-coded in xetex, but they can be modified in luatex). Lao seems to work, too, but there are
no patterns for the latter in luatex. Khemer clusters are rendered wrongly with the default
renderer. The comment about Indic scripts and lualatex also applies here. Some quick
patterns can help, with something similar to:

\babelprovide[import, hyphenrules=+]{lao}
\babelpatterns[lao]l{ln lu 18 19 1n 1la} % Random

East Asia scripts Settings for either Simplified of Traditional should work out of the box, with
basic line breaking with any renderer. Although for a few words and shorts texts the ini files
should be fine, CJK texts are best set with a dedicated framework (CJK, luatexja, kotex, CTeX,
etc.). This is what the class 1tjbook does with luatex, which can be used in conjunction with
the 1df for japanese, because the following piece of code loads luatexja:

\documentclass[japanese]{1ltjbook}
\usepackage{babel}

Latin, Greek, Cyrillic Combining chars with the default luatex font renderer might be wrong;
on then other hand, with the Harfbuzz renderer diacritics are stacked correctly, but many
hyphenations points are discarded (this bug is related to kerning, so it depends on the font).
With xetex both combining characters and hyphenation work as expected (not quite, but in
most cases it works; the problem here are font clusters).

NOTE Wikipedia defines a locale as follows: “In computing, a locale is a set of parameters that defines
the user’s language, region and any special variant preferences that the user wants to see in their
user interface. Usually a locale identifier consists of at least a language code and a country/region
code.” Babel is moving gradually from the old and fuzzy concept of language to the more modern
of locale. Note each locale is by itself a separate “language”, which explains why there are so
many files. This is on purpose, so that possible variants can be created and/or redefined easily.

Here is the list (u means Unicode captions, and 1 means LICR captions):

af Afrikaans™ asa Asu

agq Aghem ast Asturian"!
ak Akan az-Cyrl Azerbaijani
am Ambharic"! az-Latn Azerbaijani
ar Arabic%! az Azerbaijani%!
ar-DZ Arabic®! bas Basaa

ar-EG Arabic®! be Belarusian“!
ar-1Q Arabic®! bem Bemba
ar-JO Arabic®! bez Bena

ar-LB Arabic®! bg Bulgarian®!
ar-MA Arabic®! bm Bambara
ar-PS Arabic%! bn Bangla®!
ar-SA Arabic%! bo Tibetan"
ar-SY Arabic®! brx Bodo

ar-TN Arabic%! bs-Cyrl Bosnian

as Assamese bs-Latn Bosnian"!

19



bs

ca

ce

cgg
chr
ckb
cop

cs

cu
cu-Cyrs
cu-Glag
cy

da
dav
de-AT
de-CH
de

dje
dsb
dua
dyo
dz
ebu
ee

el
el-polyton
en-AU
en-CA
en-GB
en-NZ
en-US
en

eo
es-MX
es

et

eu
ewo
fa

ff

fi

fil

fo

fr
fr-BE
fr-CA
fr-CH
fr-LU
fur

ga
gd
gl
gre
gsw
gu
guz

Bosnian"!
Catalan™!
Chechen

Chiga

Cherokee
Central Kurdish
Coptic

Czech!

Church Slavic
Church Slavic
Church Slavic
Welsh"!
Danish"!

Taita

German"!

Swiss High German"!
German"!
Zarma

Lower Sorbian!
Duala
Jola-Fonyi
Dzongkha
Embu

Ewe

Greek"!
Polytonic Greek™
English"!
English"!
English"!
English"!
English"!
English"!
Esperanto®!
Spanish™!
Spanish"!
Estonian®!
Basque™!
Ewondo
Persian®!

Fulah

Finnish"!
Filipino
Faroese
French®!
French®!
French®!
French®!
French®!
Friulian®!
Western Frisian
Irish"!

Scottish Gaelic*!
Galician"!
Ancient Greek"!
Swiss German
Gujarati

Gusii

Manx

ha-GH
ha-NE
ha
haw
he

hi

hr
hsb
hu

hy

ia

id

ig

ii

is

it

ja

jgo
jmce

kab
kam
kde
kea
khq
ki
kk
kKj

km
kmr
kn
ko
kok
ks
ksb
ksf
ksh
kw
ky
lag
1b
Ig
1kt
In
lo
Irc
It

lu
luo
luy
v
mas
mer
mfe
mg
mgh

20

Hausa

Hausa'

Hausa
Hawaiian
Hebrew!
Hindi"
Croatian®!
Upper Sorbian™!
Hungarian®!
Armenian"
Interlingua™!
Indonesian"!
Igbo

Sichuan Yi
Icelandic®!
Italian®!
Japanese"
Ngomba
Machame
Georgian®!
Kabyle
Kamba
Makonde
Kabuverdianu
Koyra Chiini
Kikuyu
Kazakh

Kako
Kalaallisut
Kalenjin
Khmer
Northern Kurdish"
Kannada™
Korean"
Konkani
Kashmiri
Shambala
Bafia
Colognian
Cornish
Kyrgyz

Langi
Luxembourgish™!
Ganda

Lakota
Lingala

Lao%
Northern Luri
Lithuanian™
Luba-Katanga
Luo

Luyia
Latvian™
Masai

Meru
Morisyen
Malagasy
Makhuwa-Meetto



mgo Meta’ shi-Tfng Tachelhit

mk Macedonian®! shi Tachelhit
ml Malayalam™! si Sinhala
mn Mongolian sk Slovak®!
mr Marathi"! sl Slovenian™!
ms-BN Malay' smn Inari Sami
ms-SG Malay' sn Shona

ms Malay"! so Somali

mt Maltese sq Albanian"!
mua Mundang sr-Cyrl-BA Serbian"!
my Burmese sr-Cyrl-ME Serbian™
mzn Mazanderani sr-Cyrl-XK Serbian“!
naq Nama sr-Cyrl Serbian"!
nb Norwegian Bokmal"! sr-Latn-BA  Serbian"!
nd North Ndebele sr-Latn-ME  Serbian™!
ne Nepali sr-Latn-XK  Serbian™
nl Dutch®! sr-Latn Serbian“!
nmg Kwasio ST Serbian“!
nn Norwegian Nynorsk®! sv Swedish"!
nnh Ngiemboon sw Swahili

no Norwegian ta Tamil"
nus Nuer te Telugu!
nyn Nyankole teo Teso

om Oromo th Thai!

or Odia ti Tigrinya
0s Ossetic tk Turkmen®!
pa-Arab Punjabi to Tongan
pa-Guru Punjabi tr Turkish"!
pa Punjabi twq Tasawaq
pl Polish! tzm Central Atlas Tamazight
pms Piedmontese®! ug Uyghur

ps Pashto uk Ukrainjan™
pt-BR Portuguese™ ur Urdu“!
pt-PT Portuguese™ uz-Arab Uzbek

pt Portuguese™ uz-Cyrl Uzbek

qu Quechua uz-Latn Uzbek

rm Romansh®! uz Uzbek

rn Rundi vai-Latn Vai

ro Romanian®! vai-Vaii Vai

ro-MD Moldavian"! vai Vai

rof Rombo Vi Vietnamese"!
ru Russian"! vun Vunjo

™w Kinyarwanda wae Walser
rwk Rwa X0g Soga
sa-Beng Sanskrit yav Yangben
sa-Deva Sanskrit yi Yiddish
sa-Gujr Sanskrit yo Yoruba
sa-Knda Sanskrit yue Cantonese
sa-Mlym Sanskrit zgh Standard Moroccan
sa-Telu Sanskrit Tamazight
sa Sanskrit zh-Hans-HK  Chinese"
sah Sakha zh-Hans-MO Chinese"
saq Samburu zh-Hans-SG  Chinese"
shp Sangu zh-Hans Chinese"
se Northern Sami*! zh-Hant-HK  Chinese"
seh Sena zh-Hant-MO Chinese"
ses Koyraboro Senni zh-Hant Chinese"
sg Sango zh Chinese"
shi-Latn Tachelhit zu Zulu

21



In some contexts (currently \babelfont) an ini file may be loaded by its name. Here is the
list of the names currently supported. With these languages, \babelfont loads (if not done
before) the language and script names (even if the language is defined as a package option
with an |df file). These are also the names recognized by \babelprovide with a valueless

import.

aghem chechen

akan cherokee

albanian chiga

american chinese-hans-hk

amharic chinese-hans-mo

ancientgreek chinese-hans-sg

arabic chinese-hans

arabic-algeria chinese-hant-hk

arabic-DZ chinese-hant-mo

arabic-morocco chinese-hant

arabic-MA chinese-simplified-hongkongsarchina
arabic-syria chinese-simplified-macausarchina
arabic-SY chinese-simplified-singapore
armenian chinese-simplified

assamese chinese-traditional-hongkongsarchina
asturian chinese-traditional-macausarchina
asu chinese-traditional

australian chinese

austrian churchslavic

azerbaijani-cyrillic
azerbaijani-cyrl
azerbaijani-latin
azerbaijani-latn
azerbaijani
bafia

bambara

basaa

basque
belarusian
bemba

bena

bangla

bodo
bosnian-cyrillic
bosnian-cyrl
bosnian-latin
bosnian-latn
bosnian
brazilian
breton

british
bulgarian
burmese
canadian
cantonese
catalan

centralatlastamazight

centralkurdish

churchslavic-cyrs
churchslavic-oldcyrillic'?
churchsslavic-glag
churchsslavic-glagolitic
colognian

cornish

croatian

czech

danish

duala

dutch

dzongkha

embu

english-au
english-australia
english-ca
english-canada
english-gh
english-newzealand
english-nz
english-unitedkingdom
english-unitedstates
english-us

english

esperanto

estonian

ewe

ewondo

faroese

12The name in the CLDR is Old Church Slavonic Cyrillic, but it has been shortened for practical reasons.

22



filipino

finnish
french-be
french-belgium
french-ca
french-canada
french-ch
french-lu
french-luxembourg
french-switzerland
french

friulian

fulah

galician

ganda
georgian
german-at
german-austria
german-ch
german-switzerland
german

greek

gujarati

gusii

hausa-gh
hausa-ghana
hausa-ne
hausa-niger
hausa
hawaiian
hebrew

hindi
hungarian
icelandic

igho

inarisami
indonesian
interlingua
irish

italian
japanese
jolafonyi
kabuverdianu
kabyle

kako
kalaallisut
kalenjin
kamba
kannada
kashmiri
kazakh

khmer

kikuyu
kinyarwanda
konkani
korean
koyraborosenni
koyrachiini

kwasio

kyrgyz

lakota

langi

lao

latvian

lingala
lithuanian
lowersorbian
Isorbian
lubakatanga
luo
luxembourgish
luyia
macedonian
machame
makhuwameetto
makonde
malagasy
malay-bn
malay-brunei
malay-sg
malay-singapore
malay
malayalam
maltese

manx

marathi
masai
mazanderani
meru

meta

mexican
mongolian
morisyen
mundang
nama

nepali
newzealand
ngiemboon
ngomba

norsk
northernluri
northernsami
northndebele
norwegianbokmal
norwegiannynorsk
nswissgerman
nuer
nyankole
nynorsk
occitan

oriya

oromo

ossetic

pashto
persian
piedmontese

23



polish
polytonicgreek
portuguese-br
portuguese-brazil
portuguese-portugal
portuguese-pt
portuguese
punjabi-arab
punjabi-arabic
punjabi-gurmukhi
punjabi-guru
punjabi

quechua

romanian

romansh

rombo

rundi

russian

rwa

sakha

samburu

samin

sango

sangu

sanskrit-beng
sanskrit-bengali
sanskrit-deva
sanskrit-devanagari
sanskrit-gujarati
sanskrit-gujr
sanskrit-kannada
sanskrit-knda
sanskrit-malayalam
sanskrit-mlym
sanskrit-telu
sanskrit-telugu
sanskrit
scottishgaelic

sena
serbian-cyrillic-bosniaherzegovina
serbian-cyrillic-kosovo
serbian-cyrillic-montenegro
serbian-cyrillic
serbian-cyrl-ba
serbian-cyrl-me
serbian-cyrl-xk
serbian-cyrl
serbian-latin-bosniaherzegovina
serbian-latin-kosovo
serbian-latin-montenegro
serbian-latin
serbian-latn-ba
serbian-latn-me
serbian-latn-xk
serbian-latn

serbian

shambala

shona

sichuanyi

24

sinhala

slovak

slovene
slovenian

soga

somali
spanish-mexico
spanish-mx
spanish

standardmoroccantamazight

swabhili
swedish
swissgerman
tachelhit-latin
tachelhit-latn
tachelhit-tfng

tachelhit-tifinagh

tachelhit
taita

tamil
tasawaq
telugu

teso

thai

tibetan
tigrinya
tongan
turkish
turkmen
ukenglish
ukrainian
uppersorbian
urdu
usenglish
usorbian
uyghur
uzbek-arab
uzbek-arabic
uzbek-cyrillic
uzbek-cyrl
uzbek-latin
uzbek-latn
uzbek
vai-latin
vai-latn
vai-vai
vai-vaii

vai

vietnam
vietnamese
vunjo

walser
welsh
westernfrisian
yangben
yiddish
yoruba
zarma

zulu afrikaans



\babelfont

LUATEX/XETEX

Modifying and adding values to ini files

New 3.39 There is a way to modify the values of ini files when they get loaded with
\babelprovide and import. To set, say, digits.native in the numbers section, use
something like numbers/digits.native=abcdefghij. Keys may be added, too. Without
import you may modify the identification keys.
This can be used to create private variants easily. All you need is to import the same ini
file with a different locale name and different parameters.

1.14 Selecting fonts

New 3.15 Babel provides a high level interface on top of fontspec to select fonts. There
is no need to load fontspec explicitly — babel does it for you with the first \babelfont.!3

[(language-list)]1{(font-family) } [ (font-options) 1{(font-name) }

NOTE See the note in the previous section about some issues in specific languages.

The main purpose of \babelfont is to define at once in a multilingual document the fonts
required by the different languages, with their corresponding language systems (script and
language). So, if you load, say, 4 languages, \babelfont{rm}{FreeSerif} defines 4 fonts
(with their variants, of course), which are switched with the language by babel. It is a tool
to make things easier and transparent to the user.

Here font-family is rm, sf or tt (or newly defined ones, as explained below), and font-name
is the same as in fontspec and the like.

If no language is given, then it is considered the default font for the family, activated when
a language is selected.

On the other hand, if there is one or more languages in the optional argument, the font will
be assigned to them, overriding the default one. Alternatively, you may set a font for a
script — just precede its name (lowercase) with a star (eg, *devanagari). With this optional
argument, the font is not yet defined, but just predeclared. This means you may define as
many fonts as you want ‘just in case’, because if the language is never selected, the
corresponding \babelfont declaration is just ignored.

Babel takes care of the font language and the font script when languages are selected (as
well as the writing direction); see the recognized languages above. In most cases, you will
not need font-options, which is the same as in fontspec, but you may add further key/value
pairs if necessary.

EXAMPLE Usage in most cases is very simple. Let us assume you are setting up a document in
Swedish, with some words in Hebrew, with a font suited for both languages.

\documentclass{article}

\usepackage[swedish, bidi=default]{babel}
\babelprovide[import]{hebrew}
\babelfont{rm}{FreeSerif}

\begin{document}

Svenska \foreignlanguage{hebrew}{n'12v} svenska.

\end{document}

If on the other hand you have to resort to different fonts, you can replace the red line above with,
say:

13gee also the package combofont for a complementary approach.

25



LUATEX/XETEX

\babelfont{rm}{Iwona}
\babelfont[hebrew]{rm}{FreeSerif}

\babelfont can be used to implicitly define a new font family. Just write its name instead
of rm, sf or tt. This is the preferred way to select fonts in addition to the three basic
families.

EXAMPLE Here is how to do it:

\babelfont{kai}{FandolKai}

Now, \kaifamily and \kaidefault, as well as \textkai are at your disposal.

NOTE You may load fontspec explicitly. For example:

LUATEX/XETEX
\usepackage{fontspec}

\newfontscript{Devanagari}{deva}
\babelfont[hindi]{rm}{Shobhika}

This makes sure the OpenType script for Devanagari is deva and not dev2, in case it is not
detected correctly. You may also pass some options to fontspec: with silent, the warnings about
unavailable scripts or languages are not shown (they are only really useful when the document
format is being set up).

NOTE Directionality is a property affecting margins, indentation, column order, etc., not just text.
Therefore, it is under the direct control of the language, which applies both the script and the
direction to the text. As a consequence, there is no need to set Script when declaring a font with
\babelfont (nor Language). In fact, it is even discouraged.

NOTE \fontspec is not touched at all, only the preset font families (rm, sf, tt, and the like). If a
language is switched when an ad hoc font is active, or you select the font with this command,
neither the script nor the language is passed. You must add them by hand. This is by design, for
several reasons —for example, each font has its own set of features and a generic setting for
several of them can be problematic, and also preserving a “lower-level” font selection is useful.

NOTE The keys Language and Script just pass these values to the font, and do not set the script for
the language (and therefore the writing direction). In other words, the ini file or \babelprovide
provides default values for \babelfont if omitted, but the opposite is not true. See the note ahove
for the reasons of this behavior.

WARNING Using \setxxxxfont and \babelfont at the same time is discouraged, but very often
works as expected. However, be aware with \setxxxxfont the language system will not be set by
babel and should be set with fontspec if necessary.

TROUBLESHOOTING Package fontspec Warning: ’Language ’LANG’ not available for font 'FONT’ with
script 'SCRIPT’ ’Default’ language used instead’.

This is not an error. This warning is shown by fontspec, not by babel. It can be irrelevant for
English, but not for many other languages, including Urdu and Turkish. This is a useful and
harmless warning, and if everything is fine with your document the best thing you can do is just
to ignore it altogether.

TROUBLESHOOTING Package babel Info: The following fonts are not babel standard families.

This is not an error. babel assumes that if you are using \babelfont for a family, very likely you
want to define the rest of them. If you don’t, you can find some inconsistencies between families.

This checking is done at the beginning of the document, at a point where we cannot know which

families will be used.

Actually, there is no real need to use \babelfont in a monolingual document, if you set the
language system in \setmainfont (or not, depending on what you want).

As the message explains, there is nothing intrinsically wrong with not defining all the families. In
fact, there is nothing intrinsically wrong with not using \babelfont at all. But you must be aware
that this may lead to some problems.

26



\setlocalecaption

NOTE \babelfont is a high level interface to fontspec, and therefore in xetex you can apply
Mappings. For example, there is a set of transliterations for Brahmic scripts by Davis M. Jones.
After installing them in you distribution, just set the map as you would do with fontspec.

1.15 Modifying a language

Modifying the behavior of a language (say, the chapter “caption”), is sometimes necessary,
but not always trivial. In the case of caption names a specific macro is provided, because
this is perhaps the most frequent change:

{(language-name) }{{caption-name) }{(string)}

New 3.51 Here caption-name is the name as string without the trailing name. An example,
which also shows caption names are often a stylistic choice, is:

\setlocalecaption{english}{contents}{Table of Contents}

This works not only with existing caption names, because it also serves to define new ones
by setting the caption-name to the name of your choice (name will be postpended). Captions
so defined or redefined behave with the ‘new way’ described in the following note.

NOTE There are a few alternative methods:

With data import’ed from ini files, you can modify the values of specific keys, like:

\babelprovide[import, captions/listtable = Lista de tablas]{spanish}

(In this particular case, instead of the captions group you may need to modify the
captions.licr one.)

» The ‘old way’, still valid for many languages, to redefine a caption is the following:

\addto\captionsenglish{%
\renewcommand\contentsname{Foo}%

}

As of 3.15, there is no need to hide spaces with % (babel removes them), but it is advisable to
do so. This redefinition is not activated until the language is selected.

* The ‘new way’, which is found in bulgarian, azerbaijani, spanish, french, turkish,
icelandic, vietnamese and a few more, as well as in languages created with \babelprovide
and its key import, is:

\renewcommand\spanishchaptername{Foo}

This redefinition is immediate.

NOTE Do not redefine a caption in the following way:

\AtBeginDocument{\renewcommand\contentsname{Foo}}

The changes may be discarded with a language selector, and the original value restored.

Macros to be run when a language is selected can be add to \extras(lang):
\addto\extrasrussian{\mymacro}

There is a counterpart for code to be run when a language is unselected: \noextras(lang).

NOTE These macros (\captions(lang), \extras(lang)) may be redefined, but must not be used as
such - they just pass information to babel, which executes them in the proper context.

27


https://github.com/davidmjones/brahmic-maps

\babelprovide

Another way to modify a language loaded as a package or class option is by means of
\babelprovide, described below in depth. So, something like:

\usepackage[danish]{babel}
\babelprovide[captions=da, hyphenrules=nohyphenation]{danish}

first loads danish.1df, and then redefines the captions for danish (as provided by the ini
file) and prevents hyphenation. The rest of the language definitions are not touched.
Without the optional argument it just loads some aditional tools if provided by the ini file,
like extra counters.

1.16 Creating a language

New 3.10 And what if there is no style for your language or none fits your needs? You
may then define quickly a language with the help of the following macro in the preamble
(which may be used to modify an existing language, too, as explained in the previous
subsection).

[{options)1{(language-name)}

If the language (language-name) has not been loaded as class or package option and there
are no (options), it creates an “empty” one with some defaults in its internal structure: the
hyphen rules, if not available, are set to the current ones, left and right hyphen mins are
set to 2 and 3. In either case, caption, date and language system are not defined.

If no ini file is imported with import, (language-name) is still relevant because in such a
case the hyphenation and like breaking rules (including those for South East Asian and
CJK) are based on it as provided in the ini file corresponding to that name; the same
applies to OpenType language and script.

Conveniently, some options allow to fill the language, and babel warns you about what to
do if there is a missing string. Very likely you will find alerts like that in the log file:

Package babel Warning: \chaptername not set for 'mylang'. Please,

(babel) define it after the language has been loaded
(babel) (typically in the preamble) with:

(babel) \setlocalecaption{mylang}{chapter}{..}
(babel) Reported on input line 26.

In most cases, you will only need to define a few macros. Note languages loaded on the fly
are not yet available in the preamble.

EXAMPLE If you need a language named arhinish:

\usepackage[danish]{babel}
\babelprovide{arhinish}
\setlocalecaption{arhinish}{chapter}{Chapitula}
\setlocalecaption{arhinish}{refname}{Refirenke}
\renewcommand\arhinishhyphenmins{22}

EXAMPLE Locales with names based on BCP 47 codes can be created with something like:

\babelprovide[import=en-US]{enUS}

Note, however, mixing ways to identify locales can lead to problems. For example, is yi the name
of the language spoken by the Yi people or is it the code for Yiddish?

The main language is not changed (danish in this example). So, you must add
\selectlanguage{arhinish} or other selectors where necessary.

If the language has been loaded as an argument in \documentclass or \usepackage, then
\babelprovide redefines the requested data.

28



import=

captions=

hyphenrules=

(language-tag)
New 3.13 Imports data from an ini file, including captions and date (also line breaking
rules in newly defined languages). For example:

\babelprovide[import=hu]{hungarian}

Unicode engines load the UTF-8 variants, while 8-bit engines load the LICR (ie, with macros
like \' or \ss) ones.

New 3.23 It may be used without a value. In such a case, the ini file set in the
corresponding babel-<language>.tex (where <language> is the last argument in
\babelprovide) is imported. See the list of recognized languages above. So, the previous
example can be written:

\babelprovide[import]{hungarian}

There are about 250 ini files, with data taken from the 1df files and the CLDR provided by
Unicode. Not all languages in the latter are complete, and therefore neither are the ini
files. A few languages may show a warning about the current lack of suitability of some
features.

Besides \today, this option defines an additional command for dates: \<language>date,
which takes three arguments, namely, year, month and day numbers. In fact, \today calls
\<language>today, which in turn calls
\<language>date{\the\year}{\the\month}{\the\day}. New 3.44 More convenient is
usually \localedate, with prints the date for the current locale.

(language-tag)
Loads only the strings. For example:

\babelprovide[captions=hu]{hungarian}

(language-list)

With this option, with a space-separated list of hyphenation rules, babel assigns to the
language the first valid hyphenation rules in the list. For example:

\babelprovide[hyphenrules=chavacano spanish italian]{chavacano}

If none of the listed hyphenrules exist, the default behavior applies. Note in this example
we set chavacano as first option — without it, it would select spanish even if chavacano
exists.

A special value is +, which allocates a new language (in the TgX sense). It only makes sense
as the last value (or the only one; the subsequent ones are silently ignored). It is mostly
useful with luatex, because you can add some patterns with \babelpatterns, as for
example:

\babelprovide[hyphenrules=+]{neo}
\babelpatterns[neo]{al el i1 o1 ul}

In other engines it just suppresses hyphenation (because the pattern list is empty).
New 3.58 Another special value is unhyphenated, which activates a line breking mode
that allows spaces to be stretched to arbitrary amounts.

29



main

script=

language=

alph=

Alph=

onchar=

This valueless option makes the language the main one (thus overriding that set when
babel is loaded). Only in newly defined languages.

EXAMPLE Let’s assume your document (xetex or luatex) is mainly in Polytonic Greek with but with
some sections in Italian. Then, the first attempt should be:

\usepackage[italian, greek.polutonic]{babel}

But if, say, accents in Greek are not shown correctly, you can try

\usepackage[italian, polytonicgreek, provide=*]{babel}

Remerber there is an alternative syntax for the latter:

\usepackage[italian]{babel}
\babelprovide[import, main]{polytonicgreek}

Finally, also remember you might not need to load italian at all if there are only a few word in
this language (see 1.3).

(script-name)

New 3.15 Sets the script name to be used by fontspec (eg, Devanagari). Overrides the
value in the ini file. If fontspec does not define it, then babel sets its tag to that provided
by the ini file. This value is particularly important because it sets the writing direction, so
you must use it if for some reason the default value is wrong.

(language-name)

New 3.15 Sets the language name to be used by fontspec (eg, Hindi). Overrides the value
in the ini file. If fontspec does not define it, then babel sets its tag to that provided by the
ini file. Not so important, but sometimes still relevant.

(counter-name)

Assigns to \alph that counter. See the next section.

(counter-name)

Same for \Alph.

A few options (only luatex) set some properties of the writing system used by the language.
These properties are always applied to the script, no matter which language is active.
Although somewhat inconsistent, this makes setting a language up easier in most typical
cases.

ids | fonts

New 3.38 This option is much like an ‘event’ called when a character belonging to the
script of this locale is found (as its name implies, it acts on characters, not on spaces). There
are currently two ‘actions’, which can be used at the same time (separated by a space):
with ids the \language and the \localeid are set to the values of this locale; with fonts,
the fonts are changed to those of this locale (as set with \babelfont). This option is not
compatible with mapfont. Characters can be added or modified with \babelcharproperty.

NOTE An alternative approach with luatex and Harfbuzz is the font option
RawFeature={multiscript=auto}. It does not switch the babel language and therefore the line
breaking rules, but in many cases it can be enough.

30



intraspace=

intrapenalty=

transforms=

justification=

linebreaking=

mapfont=

(base) (shrink) (stretch)

Sets the interword space for the writing system of the language, in em units (so,0 .1 0is
Oem plus .1em). Like \spaceskip, the em unit applied is that of the current text (more
precisely, the previous glyph). Currently used only in Southeast Asian scrips, like Thai, and
CJK.

(penalty)

Sets the interword penalty for the writing system of this language. Currently used only in
Southeast Asian scrips, like Thai. Ignored if 0 (which is the default value).

(transform-list)

See section 1.21.

kashida | elongated | unhyphenated

New 3.59 There are currently three options, mainly for the Arabic script. It sets the
linebreaking and justification method, which can be based on the the ARABIC TATWEEL
character or in the ustification alternatives’ OpenType table (jalt). For an explanation
see the babel site.

New 3.59 Just a synonymous for justification.

direction

Assigns the font for the writing direction of this language (only with bidi=basic).
Whenever possible, instead of this option use onchar, based on the script, which usually
makes more sense. More precisely, what mapfont=direction means is, ‘when a character
has the same direction as the script for the “provided” language, then change its font to
that set for this language’. There are 3 directions, following the bidi Unicode algorithm,
namely, Arabic-like, Hebrew-like and left to right. So, there should be at most 3 directives
of this kind.

NOTE (1) If you need shorthands, you can define them with \useshorthands and \defineshorthand
as described above. (2) Captions and \today are “ensured” with \babelensure (this is the default
in ini-based languages).

1.17 Digits and counters

New 3.20 About thirty ini files define a field named digits.native. When it is present,
two macros are created: \<language>digits and \<language>counter (only xetex and
luatex). With the first, a string of ‘Latin’ digits are converted to the native digits of that
language; the second takes a counter name as argument. With the option maparabic in
\babelprovide, \arabic is redefined to produce the native digits (this is done globally, to
avoid inconsistencies in, for example, page numbering, and note as well dates do not rely
on \arabic.)

For example:

\babelprovide[import]{telugu}

% Or also, if you want:

% \babelprovide[import, maparabic]{telugu}
\babelfont{rm}{Gautami} % With luatex, better with Harfbuzz
\begin{document}

\telugudigits{1234}
\telugucounter{section}
\end{document}

Languages providing native digits in all or some variants are:

31


https://latex3.github.io/babel/news/whats-new-in-babel-3.59.html

\localenumeral
\localecounterl

Arabic Persian Lao Odia Urdu

Assamese Gujarati Northern Luri Punjabi Uzbek
Bangla Hindi Malayalam Pashto Vai
Tibetar Khmer Marathi Tamil Cantonese
Bodo Kannada Burmese Telugu Chinese
Central Kurdish Konkani Mazanderani Thai

Dzongkha Kashmiri Nepali Uyghur

New 3.30 With luatex there is an alternative approach for mapping digits, namely,
mapdigits. Conversion is based on the language and it is applied to the typeset text (not
math, PDF bookmarks, etc.) before bidi and fonts are processed (ie, to the node list as
generated by the TgX code). This means the local digits have the correct bidirectional
behavior (unlike Numbers=Arabic in fontspec, which is not recommended).

NOTE With xetex you can use the option Mapping when defining a font.

{(style)}{(number)}
{(style)}{(counter)}

New 3.41 Many ‘ini‘ locale files has been extended with information about
non-positional numerical systems, based on those predefined in CSS. They only work with
xetex and luatex and are fully expendable (even inside an unprotected \edef). Currently,
they are limited to numbers below 10000.

There are several ways to use them (for the availabe styles in each language, see the list
below):

* \localenumeral{(style)}{(number)}, like \localenumeral{abjad}{15}
* \localecounter{(style)}{{counter)}, like \localecounter{lower}{section}

* In \babelprovide, as an argument to the keys alph and Alph, which redefine what
\alph and \Alph print. For example:

\babelprovide[alph=alphabetic]{thai}

The styles are:

Ancient Greek lower.ancient, upper.ancient

Ambharic afar, agaw, ari, blin, dizi, gedeo, gumuz, hadiyya, harari, kaffa, kebena,
kembata, konso, kunama, meen, oromo, saho, sidama, silti, tigre, wolaita, yemsa

Arabic abjad, maghrebi.abjad

Armenian lower.letter, upper.letter

Belarusan, Bulgarian, Church Slavic, Macedonian, Serbian lower, upper

Bangla alphabetic

Central Kurdish alphabetic

Chinese cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,
parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Church Slavic (Glagolitic) letters

Coptic epact, lower.letters

French date.day (mainly for internal use).

Georgian letters

Greek lower.modern, upper.modern, lower.ancient, upper.ancient (all with keraia)

Hebrew letters (neither geresh nor gershayim yet)

Hindi alphabetic

Italian lower.legal, upper.legal

Japanese hiragana, hiragana.iroha, katakana, katakana.iroha, circled.katakana,
informal, formal, cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,
parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

32



\localedate

\babelcalendar

\languagename

\iflanguage

Khmer consonant

Korean consonant, syllabe, hanja.informal, hanja.formal, hangul.formal,
cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,
parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Marathi alphabetic

Persian abjad, alphabetic

Russian lower, lower.full, upper, upper.full

Syriac letters

Tamil ancient

Thai alphabetic

Ukrainian lower, lower.full, upper, upper.full

New 3.45 In addition, native digits (in languages defining them) may be printed with the
numeral style digits.

1.18 Dates

New 3.45 When the data is taken from an ini file, you may print the date corresponding
to the Gregorian calendar and other lunisolar systems with the following command.

[{calendar=.., variant=.., convert)1{(year)}{(month)}{(day)}

By default the calendar is the Gregorian, but an ini file may define strings for other
calendars (currently ar, ar-* he, fa, hi). In the latter case, the three arguments are the
year, the month, and the day in those in the corresponding calendar. They are not the
Gregorian data to be converted (which means, say, 13 is a valid month number with
calendar=hebrew and calendar=coptic). However, with the option convert it’s
converted (using internally the following command).

Even with a certain calendar there may be variants. In Kurmanji the default variant prints
something like 30. Cileya Pésin 2019, but with variant=izafa it prints 31°é Cileya Pésiné
2019.

[{date)1{(calendar)}{(year-macro)}{month-macro) (day-macro)

New 3.76 Although calendars aren’t the primary concern of babel, the package should be
able to, at least, generate correctly the current date in the way users would expect in their
own culture. Currently, \localedate can print dates in a few calendars (provided the ini
locale file has been imported), but year, month and day had to be entered by hand, which
is very inconvenient. With this macro, the current date is converted and stored in the
three last arguments, which must be macros: allowed calendars are buddhist, coptic,
hebrew, islamic-civil, islamic-umalqura, persian. The optional argument converts the
given date, in the form ‘(year)-(month)-(day)’. Please, refer to the page on the news for
3.76 in the babel site for further details.

1.19 Accessing language info

The control sequence \languagename contains the name of the current language.

WARNING Due to some internal inconsistencies in catcodes, it should not be used to test its value.
Use iflang, by Heiko Oberdiek.

{(language) }{(true)}{(false) }

If more than one language is used, it might be necessary to know which language is active
at a specific time. This can be checked by a call to \iflanguage, but note here “language” is
used in the TgX sense, as a set of hyphenation patterns, and not as its babel name. This
macro takes three arguments. The first argument is the name of a language; the second and
third arguments are the actions to take if the result of the test is true or false respectively.

33



\localeinfo *{(field)}

\getlocaleproperty

\localeid

New 3.38 If an ini file has been loaded for the current language, you may access the
information stored in it. This macro is fully expandable, and the available fields are:

name.english as provided by the Unicode CLDR.

tag.ini is the tag of the ini file (the way this file is identified in its name).

tag.bcp47 isthe full BCP 47 tag (see the warning below). This is the value to be used for
the ‘real’ provided tag (babel may fill other fields if they are considered necessary).

language.tag.bcp47 isthe BCP 47 language tag.

tag.opentype is the tag used by OpenType (usually, but not always, the same as BCP 47).

script.name , as provided by the Unicode CLDR.

script.tag.bcp47 isthe BCP 47 tag of the script used by this locale. This is a required
field for the fonts to be correctly set up, and therefore it should be always defined.

script.tag.opentype isthe tag used by OpenType (usually, but not always, the same as
BCP 47).

region.tag.bcp47 is the BCP 47 tag of the region or territory. Defined only if the locale
loaded actually contains it (eg, es-MX does, but es doesn’t), which is how locales behave
in the CLDR. New 3.75

variant.tag.bcp47 isthe BCP 47 tag of the variant (in the BCP 47 sense, like 1901 for
German). New 3.75

extension.(s).tag.bcp47 isthe BCP 47 value of the extension whose singleton is (s)
(currently the recognized singletons are x, t and u). The internal syntax can be
somewhat complex, and this feature is still somewhat tentative. An example is
classiclatin which sets extension.x.tag.bcp47 to classic. New 3.75

WARNING New 3.46 As of version 3.46 tag.bcp47 returns the full BCP 47 tag. Formerly it returned
just the language subtag, which was clearly counterintuitive.

New 3.75 Sometimes, it comes in handy to be able to use \localeinfo in an expandable
way even if something went wrong (for example, the locale currently active is undefined).
For these cases, localeinfo* just returns an empty string instead of raising an error. Bear
in mind that babel, following the CLDR, may leave the region unset, which means
\getlanguageproperty*, described below, is the preferred command, so that the
existence of a field can be checked before. This also means building a string with the
language and the region with \localeinfo*{language.tab.bcp47}-
\localeinfo*{region.tab.bcp47} is not usually a good idea (because of the hyphen).

* {(macro)}{(locale)}{{property)}

New 3.42 The value of any locale property as set by the ini files (or added/modified with
\babelprovide) can be retrieved and stored in a macro with this command. For example,
after:

\getlocaleproperty\hechap{hebrew}{captions/chapter}

the macro \hechap will contain the string p1o.

If the key does not exist, the macro is set to \relax and an error is raised. New 3.47 With
the starred version no error is raised, so that you can take your own actions with
undefined properties.

Each language in the babel sense has its own unique numeric identifier; which can be
retrieved with \localeid.

The \localeid is not the same as the \language identifier, which refers to a set of
hyphenation patters (which, in turn, is just a component of the line breaking algorithm
described in the next section). The data about preloaded patterns are store in an internal
macro named \bbl@languages (see the code for further details), but note several locales
may share a single \language, so they are separated concepts. In luatex, the \localeid is
saved in each node (when it makes sense) as an attribute, too.

34



\LocaleForEach

ensureinfo=off

\babelhyphen
\babelhyphen

{(code)}

Babel remembers which ini files have been loaded. There is a loop named
\LocaleForEach to traverse the list, where #1 is the name of the current item, so that
\LocaleForEach{\message{ **#1** }} just shows the loaded ini’s.

New 3.75 Previously, ini files were loaded only with \babelprovide and also when
languages are selected if there is a \babelfont or they have not been explicitly declared.
Now the ini files are loaded (and therefore the corresponding data) even if these two
conditions are not met (in previous versions you had to enable it with \BabelEnsureInfo
in the preamble). Because of the way this feature works, problems are very unlikely, but
there is switch as a package option to turn the new behavior off (ensureinfo=off).

1.20 Hyphenation and line breaking

Babel deals with three kinds of line breaking rules: Western, typically the LGC group,
South East Asian, like Thai, and CJK, but support depends on the engine: pdftex only deals
with the former, xetex also with the second one (although in a limited way), while luatex
provides basic rules for the latter, too. With luatex there are also tools for non-standard
hyphenation rules, explained in the next section.

*{(type)}
* {(text)}

New 3.9a It is customary to classify hyphens in two types: (1) explicit or hard hyphens,
which in TgX are entered as -, and (2) optional or soft hyphens, which are entered as \-.
Strictly, a soft hyphen is not a hyphen, but just a breaking opportunity or, in TgX terms, a
“discretionary”; a hard hyphen is a hyphen with a breaking opportunity after it. A further
type is a non-breaking hyphen, a hyphen without a breaking opportunity.

In TgX, - and \ - forbid further breaking opportunities in the word. This is the desired
behavior very often, but not always, and therefore many languages provide shorthands for
these cases. Unfortunately, this has not been done consistently: for example, "- in Dutch,
Portuguese, Catalan or Danish is a hard hyphen, while in German, Spanish, Norwegian,
Slovak or Russian is a soft hyphen. Furthermore, some of them even redefine \ -, so that
you cannot insert a soft hyphen without breaking opportunities in the rest of the word.
Therefore, some macros are provided with a set of basic “hyphens” which can be used by
themselves, to define a user shorthand, or even in language files.

* \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.

* \babelhyphen{repeat} inserts a hard hyphen which is repeated at the beginning of the
next line, as done in languages like Polish, Portuguese and Spanish.

* \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even if a space
follows).

* \babelhyphen{empty} inserts a break opportunity without a hyphen at all.

¢ \babelhyphen{(text)} is a hard “hyphen” using (text) instead. A typical case is
\babelhyphen{/}.

With all of them, hyphenation in the rest of the word is enabled. If you don’t want to
enable it, there is a starred counterpart: \babelhyphen*{soft} (which in most cases is
equivalent to the original \-), \babelhyphen*{hard}, etc.

Note hard is also good for isolated prefixes (eg, anti-) and nobreak for isolated suffixes (eg,
-ism), but in both cases \babelhyphen*{nobreak} is usually better.

There are also some differences with KEIgX: (1) the character used is that set for the current
font, while in BTgX it is hardwired to - (a typical value); (2) the hyphen to be used in fonts
with a negative \hyphenchar is -, like in KTgX, but it can be changed to another value by
redefining \babelnullhyphen; (3) a break after the hyphen is forbidden if preceded by a
glue >0 pt (at the beginning of a word, provided it is not immediately preceded by, say, a
parenthesis).

35



\babelhyphenation

\begin{hyphenrules}

\babelpatterns

[ (language) , (language) , ...1{(exceptions)}

New 3.9a Sets hyphenation exceptions for the languages given or, without the optional
argument, for all languages (eg, proper nouns or common loan words, and of course
monolingual documents). Multiple declarations work much like \hyphenation (last wins),
but language exceptions take precedence over global ones.

It can be used only in the preamble, and exceptions are set when the language is first
selected, thus taking into account changes of \1ccodes’s done in \extras(lang) as well as
the language-specific encoding (not set in the preamble by default). Multiple

\babelhyphenation’s are allowed. For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it also
works without the LICR if the input and the font encodings are the same, like in Unicode
based engines.

NOTE Using \babelhyphenation with Southeast Asian scripts is mostly pointless. But with
\babelpatterns (below) you may fine-tune line breaking (only luatex). Even if there are no
patterns for the language, you can add at least some typical cases.

NOTE Use \babelhyphenation instead of \hyphenation to set hyphenation exceptions in the
preamble before any language is explicitly set with a selector. In the preamble the hyphenation
rules are not always fully set up and an error can be raised.

{(language)} ... \end{hyphenrules}

The environment hyphenrules can be used to select only the hyphenation rules to be used
(it can be used as command, too). This can for instance be used to select ‘nohyphenation’,
provided that in language.dat the ‘language’ nohyphenation is defined by loading
zerohyph. tex. It deactivates language shorthands, too (but not user shorthands).

Except for these simple uses, hyphenrules is deprecated and otherlanguage* (the starred
version) is preferred, because the former does not take into account possible changes in
encodings of characters like, say, ' done by some languages (eg, italian, french, ukraineb).

[(language), (language) ,...1{(patterns)}

New 3.9m In luatex only,* adds or replaces patterns for the languages given or, without
the optional argument, for all languages. If a pattern for a certain combination already
exists, it gets replaced by the new one.

It can be used only in the preamble, and patterns are added when the language is first
selected, thus taking into account changes of \1ccodes’s done in \extras(lang) as well as
the language-specific encoding (not set in the preamble by default). Multiple
\babelpatterns’s are allowed.

Listed patterns are saved expanded and therefore it relies on the LICR. Of course, it also
works without the LICR if the input and the font encodings are the same, like in Unicode
based engines.

New 3.31 (Only luatex.) With \babelprovide and imported CJK languages, a simple
generic line breaking algorithm (push-out-first) is applied, based on a selection of the
Unicode rules ( New 3.32 it is disabled in verbatim mode, or more precisely when the
hyphenrules are set to nohyphenation). It can be activated alternatively by setting
explicitly the intraspace.

New 3.27 Interword spacing for Thai, Lao and Khemer is activated automatically if a
language with one of those scripts are loaded with \babelprovide. See the sample on the
babel repository. With both Unicode engines, spacing is based on the “current” em unit (the
size of the previous char in luatex, and the font size set by the last \selectfont in xetex).

14With luatex exceptions and patterns can be modified almost freely. However, this is very likely a task for a
separate package and babel only provides the most basic tools.

36



1.21 Transforms

Transforms (only luatex) provide a way to process the text on the typesetting level in
several language-dependent ways, like non-standard hyphenation, special line breaking
rules, script to script conversion, spacing conventions and so on.

It currently embraces \babelprehyphenation and \babelposthyphenation.

New 3.57 Several ini files predefine some transforms. They are activated with the key
transforms in \babelprovide, either if the locale is being defined with this macro or the
languages has been previouly loaded as a class or package option, as the following
example illustrates:

\usepackage[magyar]{babel}
\babelprovide[transforms = digraphs.hyphen]{magyar}

New 3.67 Transforms predefined in the ini locale files can be made attribute-dependent,
too. When an attribute between parenthesis is inserted subsequent transforms will be
assigned to it (up to the list end or another attribute). For example, and provided an
attribute called \withsigmafinal has been declared:

transforms = transliteration.omega (\withsigmafinal) sigma.final

This applies transliteration.omega always, but sigma.final only when
\withsigmafinal is set.

Here are the transforms currently predefined. (A few may still require some fine-tuning.
More to follow in future releases.)

Arabic transliteration.dad Applies the transliteration system devised by
Yannis Haralambous for dad (simple and TgX-
friendly). Not yet complete, but sufficient for
most texts.

Croatian digraphs.ligatures Ligatures DZ, Dz, dzZ, L], Lj, lj, NJ, Nj, nj. It
assumes they exist. This is not the recom-
mended way to make these transformations
(the best way is with OTF features), but it can
get you out of a hurry.

Czech, Polish, hyphen.repeat Explicit hyphens behave like \babelhyphen

Portuguese, {repeat}.

Slovak,

Spanish

Czech, Polish, oneletter.nobreak Converts a space after a non-syllabic prepo-

Slovak sition or conjunction into a non-breaking
space.

Finnish prehyphen.nobreak Line breaks just after hyphens prepended to
words are prevented, like in “pakastekaapit
ja -arkut”.

Greek diaeresis.hyphen Removes the diaeresis above iota and upsilon

if hyphenated just before. It works with the
three variants.

Greek transliteration.omega  Although the provided combinations are not
the full set, this transform follows the syn-
tax of Omega: = for the circumflex, v for
digamma, and so on. For better compatibility
with Levy’s system, ~ (as ‘string’) is an alter-
native to =. ' is tonos in Monotonic Greek, but
oxia in Polytonic and Ancient Greek.

15They are similar in concept, but not the same, as those in Unicode. The main inspiration for this feature is the
Omega transformation processes.

37



\babelposthyphenation

Greek sigma.final The transliteration system above does not
convert the sigma at the end of a word (on
purpose). This transforms does it. To pre-
vent the conversion (an abbreviation, for ex-
ample), write "s.

Hindi, Sanskrit transliteration.hk The Harvard-Kyoto system to romanize De-
vanagari.
Hindji, Sanskrit punctuation.space Inserts a space before the following four

characters: !?:;.

Hungarian digraphs.hyphen Hyphenates the long digraphs ccs, ddz, ggy,
lly, nny, ssz, tty and zzs as cs-cs, dz-dz, etc.

Indic scripts ~ danda.nobreak Prevents a line break before a danda or dou-
ble danda if there is a space. For Assamese,
Bengali, Gujarati, Hindi, Kannada, Malay-
alam, Marathi, Oriya, Tamil, Telugu.

Latin digraphs.ligatures Replaces the groups ae, AE, oe, OF with e, £,
o, (E.

Latin letters.noj Replaces j, J with i, I.

Latin letters.uv Replaces v, U with u, V.

Sanskrit transliteration.iast The IAST system to romanize Devanagari.'®

Serbian transliteration.gajica (Note serbian with ini files refers to the

Cyrillic script, which is here the target.) The
standard system devised by Ljudevit Gaj.

Arabic, kashida.plain Experimental. A very simple and basic trans-

Persian form for ‘plain’ Arabic fonts, which attempts
to distribute the tatwil as evenly as possible
(starting at the end of the line). See the news
for version 3.59.

[{options)1{{hyphenrules-name)}{(lua-pattern)}{(replacement)}

New 3.37-3.39 With luatex it is possible to define non-standard hyphenation rules, like
f-f — ff-f, repeated hyphens, ranked ruled (or more precisely, ‘penalized’ hyphenation
points), and so on. A few rules are currently provided (see above), but they can be defined
as shown in the following example, where {1} is the first captured char (between () in the
pattern):

\babelposthyphenation{german}{([fmtrpl) | {1}}

{
{ no = {1}, pre = {1}{1}- }, % Replace first char with disc
remove, % Remove automatic disc (2nd node)
{} % Keep last char, untouched

b

In the replacements, a captured char may be mapped to another, too. For example, if the
first capture reads ([10]), the replacement could be {1] 10| (0}, which maps { to {, and U
to U, so that the diaeresis is removed.
This feature is activated with the first \babelposthyphenation or \babelprehyphenation.
New 3.67 With the optional argument you can associate a user defined transform to an
attribute, so that it’s active only when it’s set (currently its attribute value is ignored). With
this mechanism transforms can be set or unset even in the middle of paragraphs, and
applied to single words. To define, set and unset the attribute, the LaTeX kernel provides
the macros \newattribute, \setattribute and \unsetattribute. The following example
shows how to use it, provided an attribute named \latinnoj has been declared:

38



\babelprehyphenation

\babelprehyphenation[attribute=\latinnoj]l{latin}{ J }{ string =1 }

See the babel site for a more detailed description and some examples. It also describes a
few additional replacement types (string, penalty).

Although the main purpose of this command is non-standard hyphenation, it may actually
be used for other transformations (after hyphenation is applied, so you must take
discretionaries into account).

You are limited to substitutions as done by lua, although a future implementation may
alternatively accept Ipeg.

[{options)1{(locale-name)}{(lua-pattern)}{(replacement)}

New 3.44-3-52 It is similar to the latter, but (as its name implies) applied before
hyphenation, which is particularly useful in transliterations. There are other differences:
(1) the first argument is the locale instead of the name of the hyphenation patterns; (2) in
the search patterns = has no special meaning, while | stands for an ordinary space; (3) in
the replacement, discretionaries are not accepted.

See the description above for the optional argument.
This feature is activated with the first \babelposthyphenation or \babelprehyphenation.

EXAMPLE You can replace a character (or series of them) by another character (or series of them).
Thus, to enter Z as zh and s as sh in a newly created locale for transliterated Russian:

\babelprovide[hyphenrules=+]{russian-latin} % Create locale
\babelprehyphenation{russian-latin}{([sz])h} % Create rule
{

string = {1|sz|3Z},
remove

EXAMPLE The following rule prevent the word “a” from being at the end of a line:

\babelprehyphenation{english}{|a|}

{34 % Keep first space and a
{ insert, penalty = 10000 }, % Insert penalty
{} % Keep last space

¥

NOTE With luatex there is another approach to make text transformations, with the function
fonts.handlers.otf.addfeature, which adds new features to an OTF font (substitution and
positioning). These features can be made language-dependent, and babel by default recognizes
this setting if the font has been declared with \babelfont. The transforms mechanism
supplements rather than replaces OTF features.

With xetex, where transforms are not available, there is still another approach, with font

mappings, mainly meant to perform encoding conversions and transliterations. Mappings,
however, are linked to fonts, not to languages.

1.22 Selection based on BCP 47 tags

New 3.43 The recommended way to select languages is that described at the beginning of
this document. However, BCP 47 tags are becoming customary, particularly in documents
(or parts of documents) generated by external sources, and therefore babel will provide a
set of tools to select the locales in different situations, adapted to the particular needs of
each case. Currently, babel provides autoloading of locales as described in this section. In
these contexts autoloading is particularly important because we may not know on
beforehand which languages will be requested.

It must be activated explicitly, because it is primarily meant for special tasks. Mapping
from BCP 47 codes to locale names are not hardcoded in babel. Instead the data is taken

39


https://latex3.github.io/babel/guides/non-standard-hyphenation-with-luatex.html

from the ini files, which means currently about 250 tags are already recognized. Babel
performs a simple lookup in the following way: fr-Latn-FR — fr-Latn — fr-FR — fr.
Languages with the same resolved name are considered the same. Case is normalized
before, so that fr-latn-fr — fr-Latn-FR. If a tag and a name overlap, the tag takes
precedence.

Here is a minimal example:

\documentclass{article}
\usepackage[danish]{babel}

\babeladjust{
autoload.bcp4?7 = on,
autoload.bcp47.options = import

¥

\begin{document}

Chapter in Danish: \chaptername.
\selectlanguage{de-AT}
\localedate{2020}{1}{30}

\end{document}

Currently the locales loaded are based on the ini files and decoupled from the main 1df
files. This is by design, to ensure code generated externally produces the same result
regardless of the languages requested in the document, but an option to use the 1df
instead will be added in a future release, because both options make sense depending on
the particular needs of each document (there will be some restrictions, however).

The behaviour is adjusted with \babeladjust with the following parameters:

autoload.bcp47 with values on and off.

autoload.bcp47.options, which are passed to \babelprovide; empty by default, but
you may add import (features defined in the corresponding babel-. . . tex file might
not be available).

autoload.bcp47.prefix. Although the public name used in selectors is the tag, the
internal name will be different and generated by prepending a prefix, which by default
is bcp47-. You may change it with this key.

New 3.46 If an 1df file has been loaded, you can enable the corresponding language tags
as selector names with:

\babeladjust{ bcp47.toname = on }

(You can deactivate it with off.) So, if dutch is one of the package (or class) options, you
can write \selectlanguage{nl}. Note the language name does not change (in this
example is still dutch), but you can get it with \1localeinfo or \getlanguageproperty. It
must be turned on explicitly for similar reasons to those explained above.

1.23 Selecting scripts

Currently babel provides no standard interface to select scripts, because they are best
selected with either \fontencoding (low-level) or a language name (high-level). Even the

40



\ensureascii

bidi=

Latin script may require different encodings (ie, sets of glyphs) depending on the language,
and therefore such a switch would be in a sense incomplete.’

Some languages sharing the same script define macros to switch it (eg, \textcyrillic),
but be aware they may also set the language to a certain default. Even the babel core
defined \textlatin, butis was somewhat buggy because in some cases it messed up
encodings and fonts (for example, if the main Latin encoding was LY1), and therefore it has
been deprecated.'®

{(text)}

New 3.91 This macro makes sure (text) is typeset with a LICR-savvy encoding in the ASCII
range. It is used to redefine \TeX and \LaTeX so that they are correctly typeset even with
LGR or X2 (the complete list is stored in \BabelNonASCII, which by default is LGR, X2, 0T2,
0T3, 0T6, LHE, LWN, LMA, LMC, LMS, LMU, but you can modify it). So, in some sense it fixes the
bug described in the previous paragraph.

If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \TeX and
\LaTeX are not redefined); otherwise, \ensureascii switches to the encoding at the
beginning of the document if ASCII-savvy, or else the last ASCII-savvy encoding loaded. For
example, if you load LY1,LGR, then itis set to LY1, butif youload LY1,T2A itis set to T2A.
The symbol encodings TS1, T3, and TS3 are not taken into account, since they are not used
for “ordinary” text (they are stored in \BabelNonText, used in some special cases when no
Latin encoding is explicitly set).

The foregoing rules (which are applied “at begin document”) cover most of the cases. No
assumption is made on characters above 127, which may not follow the LICR conventions —
the goal is just to ensure most of the ASCII letters and symbols are the right ones.

1.24 Selecting directions

No macros to select the writing direction are provided, either — writing direction is
intrinsic to each script and therefore it is best set by the language (which can be a dummy
one). Furthermore, there are in fact two right-to-left modes, depending on the language,
which differ in the way ‘weak’ numeric characters are ordered (eg, Arabic %123 vs Hebrew
123%).

WARNING The current code for text in luatex should be considered essentially stable, but, of course,
it is not bug-free and there can be improvements in the future, because setting bidi text has many
subtleties (see for example <https://www.w3.org/TR/html-bidi/>). A basic stable version for other
engines must wait. This applies to text; there is a basic support for graphical elements, including
the picture environment (with pict2e) and pfg/tikz. Also, indexes and the like are under study, as
well as math (there are progresses in the latter, including amsmath and mathtools too, but for
example gathered may fail).

An effort is being made to avoid incompatibilities in the future (this one of the reason currently
bidi must be explicitly requested as a package option, with a certain bidi model, and also the
layout options described below).

WARNING If characters to be mirrored are shown without changes with luatex, try with the
following line:

\babeladjust{bidi.mirroring=off}

There are some package options controlling bidi writing.

default | basic|basic-r |bidi-1|bidi-r

17The so-called Unicode fonts do not improve the situation either. So, a font suited for Vietnamese is not neces-
sarily suited for, say, the romanization of Indic languages, and the fact it contains glyphs for Modern Greek does
not mean it includes them for Classic Greek.

18But still defined for backwards compatibility.

41



New 3.14 Selects the bidi algorithm to be used. With default the bidi mechanism is just
activated (by default it is not), but every change must be marked up. In xetex and pdftex
this is the only option.

In luatex, basic-r provides a simple and fast method for R text, which handles numbers
and unmarked L text within an R context many in typical cases. New 3.19 Finally, basic
supports both L and R text, and it is the preferred method (support for basic-r is
currently limited). (They are named basic mainly because they only consider the intrinsic
direction of scripts and weak directionality.)

New 3.29 In xetex, bidi-r and bidi-1 resort to the package bidi (by Vafa Khalighi).
Integration is still somewhat tentative, but it mostly works. For RL documents use the
former, and for LR ones use the latter.

There are samples on GitHub, under /required/babel/samples. See particularly
lua-bidibasic.tex and lua-secenum. tex.

EXAMPLE The following text comes from the Arabic Wikipedia (article about Arabia). Copy-pasting
some text from the Wikipedia is a good way to test this feature. Remember basic is available in
luatex only.

\documentclass{article}
\usepackage[bidi=basic]{babel}
\babelprovide[import, main]{arabic}
\babelfont{rm}{FreeSerif}

\begin{document}

— (i Y1) i lig Il sasdl alib ool 602 avi w8 aby

oW ool posiwl . (ApaBia aws, YL ) Aravia gl Arabia

Les I Y1 vam el 6,0 2]l avi go gblie &M ole “Arabia”—, oUsL
cosadl ande 6y lao ST oo IS Taaga>

\end{document}

EXAMPLE With bidi=basic both L and R text can be mixed without explicit markup (the latter will
be only necessary in some special cases where the Unicode algorithm fails). It is used much like
bidi=basic-r, but with R text inside L text you may want to map the font so that the correct
features are in force. This is accomplished with an option in \babelprovide, as illustrated:

\documentclass{book}
\usepackage[english, bidi=basic]{babel}
\babelprovide[onchar=ids fonts]{arabic}

\babelfont{rm}{Crimson}
\babelfont[*arabic]{rm}{FreeSerif}

\begin{document}

Most Arabic speakers consider the two varieties to be two registers
of one language, although the two registers can be referred to in
Arabic as _asJ| s=es \textit{fusha l-‘asr} (MSA) and

ol il e \textit{fusha t-turath} (CA).

\end{document}

In this example, and thanks to onchar=ids fonts, any Arabic letter (because the language is
arabic) changes its font to that set for this language (here defined via *arabic, because Crimson
does not provide Arabic letters).

42



NOTE Boxes are “black boxes”. Numbers inside an \hbox (for example in a \ref) do not know
anything about the surrounding chars. So, \ref{A}-\ref{B} are not rendered in the visual order
A-B, but in the wrong one B-A (because the hyphen does not “see” the digits inside the \hbox’es).
If you need \ref ranges, the best option is to define a dedicated macro like this (to avoid explicit
direction changes in the body; here \texthe must be defined to select the main language):

\newcommand\refrange[2]{\babelsublr{\texthe{\ref{#1}}-\texthe{\ref{#2}}}}

In the future a more complete method, reading recursively boxed text, may be added.

layout= sectioning | counters | lists | contents | footnotes | captions | columns | graphics |
extras

New 3.16 To be expanded. Selects which layout elements are adapted in bidi documents,
including some text elements (except with options loading the bidi package, which
provides its own mechanism to control these elements). You may use several options with
a dot-separated list (eg, layout=counters.contents.sectioning). This list will be
expanded in future releases. Note not all options are required by all engines.

sectioning makes sure the sectioning macros are typeset in the main language, but with
the title text in the current language (see below \BabelPatchSection for further
details).

counters required in all engines (except luatex with bidi=basic) to reorder section
numbers and the like (eg, (subsection).(section)); required in xetex and pdftex for
counters in general, as well as in luatex with bidi=default; required in luatex for
numeric footnote marks >9 with bidi=basic-r (but not with bidi=basic); note,
however, it can depend on the counter format.

With counters, \arabic is not only considered L text always (with \babelsublr, see
below), but also an “isolated” block which does not interact with the surrounding chars.
So, while 1.2 in R text is rendered in that order with bidi=basic (as a decimal
number), in \arabic{c1}.\arabic{c2} the visual order is c2.c1. Of course, you may
always adjust the order by changing the language, if necessary.'

lists required in xetex and pdftex, but only in bidirectional (with both R and L
paragraphs) documents in luatex.

WARNING As of April 2019 there is a bug with \parshape in luatex (a TgX primitive) which
makes lists to be horizontally misplaced if they are inside a \vbox (like minipage) and the
current direction is different from the main one. A workaround is to restore the main
language before the box and then set the local one inside.

contents required in xetex and pdftex; in luatex toc entries are R by default if the main
language is R.

columns required in xetex and pdftex to reverse the column order (currently only the
standard two-column mode); in luatex they are R by default if the main language is R
(including multicol).

footnotes not required in monolingual documents, but it may be useful in bidirectional
documents (with both R and L paragraphs) in all engines; you may use alternatively
\BabelFootnote described below (what this option does exactly is also explained
there).

captions issimilar to sectioning, but for \caption; not required in monolingual
documents with luatex, but may be required in xetex and pdftex in some styles (support
for the latter two engines is still experimental) New 3.18

tabular required in luatex for R tabular, so that the first column is the right one (it has
been tested only with simple tables, so expect some readjustments in the future);
ignored in pdftex or xetex (Which will not support a similar option in the short term). It
patches an internal command, so it might be ignored by some packages and classes (or
even raise an error). New 3.18

19Next on the roadmap are counters and numeral systems in general. Expect some minor readjustments.

43



\babelsublr

\BabelPatchSection

\BabelFootnote

graphics modifies the picture environment so that the whole figure is L but the text is R.
It does not work with the standard picture, and pict2e is required. It attempts to do the
same for pgf/tikz. Somewhat experimental. New 3.32

extras isused for miscellaneous readjustments which do not fit into the previous groups.
Currently redefines in luatex \underline and \LaTeX2e New 3.19

EXAMPLE Typically, in an Arabic document you would need:

\usepackage[bidi=basic,
layout=counters.tabular]{babel}

{(lr-text)}

Digits in pdftex must be marked up explicitly (unlike luatex with bidi=basic or
bidi=basic-r and, usually, xetex). This command is provided to set {(lr—text)} in L mode
if necessary. It’s intended for what Unicode calls weak characters, because words are best
set with the corresponding language. For this reason, there is no rl counterpart.

Any \babelsublr in explicit L mode is ignored. However, with bidi=basic and implicit L,
it first returns to R and then switches to explicit L. To clarify this point, consider, in an R
context:

RTL A 1tr text \thechapter{} and still 1ltr RTL B

There are three R blocks and two L blocks, and the order is RTL B and still ltr 1 ltr text RTL
A. This is by design to provide the proper behavior in the most usual cases — but if you
need to use \ref in an L text inside R, the L text must be marked up explictly; for example:

RTL A \foreignlanguage{english}{ltr text \thechapter{} and still ltr} RTL B

{(section-name)}

Mainly for bidi text, but it can be useful in other cases. \BabelPatchSection and the
corresponding option layout=sectioning takes a more logical approach (at least in many
cases) because it applies the global language to the section format (including the
\chaptername in \chapter), while the section text is still the current language. The latter
is passed to tocs and marks, too, and with sectioning in layout they both reset the
“global” language to the main one, while the text uses the “local” language.

With layout=sectioning all the standard sectioning commands are redefined (it also
“isolates” the page number in heads, for a proper bidi behavior), but with this command
you can set them individually if necessary (but note then tocs and marks are not touched).

{{cmd)}{(local-language) }{(before) }{{after) }
New 3.17 Something like:

\BabelFootnote{\parsfootnote}{\languagename}{(}{)}

defines \parsfootnote so that \parsfootnote{note} is equivalent to:
\footnote{(\foreignlanguage{\languagename}{note})}

but the footnote itself is typeset in the main language (to unify its direction). In addition,

\parsfootnotetext is defined. The option footnotes just does the following:

44



\languageattribute

\AddBabelHook

\BabelFootnote{\footnote}{\languagename}{}{}%
\BabelFootnote{\localfootnote}{\languagename}{}{}%
\BabelFootnote{\mainfootnote}{}{}{}

(which also redefine \footnotetext and define \localfootnotetext and
\mainfootnotetext). If the language argument is empty, then no language is selected
inside the argument of the footnote. Note this command is available always in bidi
documents, even without layout=footnotes.

EXAMPLE If you want to preserve directionality in footnotes and there are many footnotes entirely
in English, you can define:

\BabelFootnote{\enfootnote}{english}{}{.}

It adds a period outside the English part, so that it is placed at the left in the last line. This means
the dot the end of the footnote text should be omitted.

1.25 Language attributes

This is a user-level command, to be used in the preamble of a document (after
\usepackage[...]{babel}), that declares which attributes are to be used for a given
language. It takes two arguments: the first is the name of the language; the second, a (list
of) attribute(s) to be used. Attributes must be set in the preamble and only once - they
cannot be turned on and off. The command checks whether the language is known in this
document and whether the attribute(s) are known for this language.

Very often, using a modifier in a package option is better.

Several language definition files use their own methods to set options. For example, french
uses \frenchsetup, magyar (1.5) uses \magyarOptions; modifiers provided by spanish
have no attribute counterparts. Macros setting options are also used (eg,
\ProsodicMarksOn in latin).

1.26 Hooks

New 3.9a A hook is a piece of code to be executed at certain events. Some hooks are
predefined when luatex and xetex are used.

New 3.64 This is not the only way to inject code at those points. The events listed below
can be used as a hook name in \AddToHook in the form
babel/(language-name)/{event-name) (with * it’s applied to all languages), but there is a
limitation, because the parameters passed with the babel mechanism are not allowed. The
\AddToHook mechanism does not replace the current one in ‘babel‘. Its main advantage is
you can reconfigure ‘babel‘ even before loading it. See the example below.

[{lang)1{(name)}{{event)}{(code)}

The same name can be applied to several events. Hooks with a certain {(name)} may be
enabled and disabled for all defined events with \EnableBabelHook{(name)},
\DisableBabelHook{(name)}. Names containing the string babel are reserved (they are
used, for example, by \useshortands* to add a hook for the event afterextras).

New 3.33 They may be also applied to a specific language with the optional argument;
language-specific settings are executed after global ones.

Current events are the following; in some of them you can use one to three TgX parameters
(#1, #2, #3), with the meaning given:

adddialect (language name, dialect name) Used by luababel.def to load the patterns if
not preloaded.

45



patterns (language name, language with encoding) Executed just after the \language has
been set. The second argument has the patterns name actually selected (in the form of
either lang:ENC or lang).

hyphenation (language name, language with encoding) Executed locally just before
exceptions given in \babelhyphenation are actually set.

defaultcommands Used (locally) in \StartBabelCommands.

encodedcommands (input, font encodings) Used (locally) in \StartBabelCommands. Both
xetex and luatex make sure the encoded text is read correctly.

stopcommands Used to reset the above, if necessary.

write This event comes just after the switching commands are written to the aux file.

beforeextras Just before executing \extras(language). This event and the next one
should not contain language-dependent code (for that, add it to \extras(language)).

afterextras Just after executing \extras(language). For example, the following
deactivates shorthands in all languages:

\AddBabelHook{noshort}{afterextras}{\languageshorthands{none}}

stringprocess Instead of a parameter, you can manipulate the macro \BabelString
containing the string to be defined with \SetString. For example, to use an expanded
version of the string in the definition, write:

\AddBabelHook{myhook}{stringprocess}{%
\protected@edef\BabelString{\BabelString}}

initiateactive (char as active, char as other, original char) New 3.91 Executed just
after a shorthand has been ‘initiated’. The three parameters are the same character
with different catcodes: active, other (\string’ed) and the original one.

afterreset New 3.91 Executed when selecting a language just after \originalTeXis
run and reset to its base value, before executing \captions(language) and
\date(language).

Four events are used in hyphen. cfg, which are handled in a quite different way for
efficiency reasons — unlike the precedent ones, they only have a single hook and replace a
default definition.

everylanguage (language) Executed before every language patterns are loaded.

loadkernel (file) By default just defines a few basic commands. It can be used to define
different versions of them or to load a file.

loadpatterns (patterns file) Loads the patterns file. Used by luababel.def.

loadexceptions (exceptions file) Loads the exceptions file. Used by luababel.def.

EXAMPLE The generic unlocalized ETEX hooks are predefined, so that you can write:

\AddToHook{babel/*/afterextras}{\frenchspacing}

which is executed always after the extras for the language being selected (and just before the
non-localized hooks defined with \AddBabelHook).

In addition, locale-specific hooks in the form babel/(language-name)/ (event-name) are
recognized (executed just before the localized babel hooks), but they are not predefined. You have
to do it yourself. For example, to set \frenchspacing only in bengali:

\ActivateGenericHook{babel/bengali/afterextras}
\AddToHook{babel/bengali/afterextras}{\frenchspacing}

46



\BabelContentsFiles New 3.9a This macro contains a list of “toc” types requiring a command to switch the
language. Its default value is toc, lof, lot, but you may redefine it with \renewcommand
(it’s up to you to make sure no toc type is duplicated).

1.27 Languages supported by babel with Idf files

In the following table most of the languages supported by babel with and . 1df file are
listed, together with the names of the option which you can load babel with for each
language. Note this list is open and the current options may be different. It does not
include ini files.

Afrikaans afrikaans

Azerbaijani azerbaijani

Basque basque

Breton breton

Bulgarian bulgarian

Catalan catalan

Croatian croatian

Czech czech

Danish danish

Dutch dutch

English english, USenglish, american, UKenglish, british, canadian, australian, newzealand
Esperanto esperanto

Estonian estonian

Finnish finnish

French french, francais, canadien, acadian
Galician galician

German austrian, german, germanb, ngerman, naustrian
Greek greek, polutonikogreek

Hebrew hebrew

Icelandic icelandic

Indonesian indonesian (bahasa, indon, bahasai)
Interlingua interlingua

Irish Gaelic irish

Italian italian

Latin latin

Lower Sorbian lowersorbian

Malay malay, melayu (bahasam)

North Sami samin

Norwegian norsk, nynorsk

Polish polish

Portuguese portuguese, brazilian (portuges, brazil)*
Romanian romanian

Russian russian

Scottish Gaelic scottish

Spanish spanish

Slovakian slovak

Slovenian slovene

Swedish swedish

Serbian serbian

Turkish turkish

Ukrainian ukrainian

Upper Sorbian uppersorbian

Welsh welsh

There are more languages not listed above, including hindi, thai, thaicjk, latvian, turkmen,
magyar, mongolian, romansh, lithuanian, spanglish, viethamese, japanese, pinyin, arabic,
farsi, ibygreek, bgreek, serbianc, frenchle, ethiop and friulan.

20The two last name comes from the times when they had to be shortened to 8 characters

47



\babelcharproperty

\babeladjust

Most of them work out of the box, but some may require extra fonts, encoding files, a
preprocessor or even a complete framework (like CJK or luatexja). For example, if you have
got the velthuis/devnag package, you can create a file with extension . dn:

\documentclass{article}
\usepackage[hindi]{babel}
\begin{document}

{\dn devaanaa.m priya.h}
\end{document}

Then you preprocess it with devnag (file), which creates (file) . tex; you can then typeset
the latter with ETgX.

1.28 Unicode character properties in luatex

New 3.32 Part of the babel job is to apply Unicode rules to some script-specific features
based on some properties. Currently, they are 3, namely, direction (ie, bidi class), mirroring
glyphs, and line breaking for CJK scripts. These properties are stored in lua tables, which
you can modify with the following macro (for example, to set them for glyphs in the PUA).

{(char-code)} [(to-char-code)1{{property)}{(value)}

New 3.32 Here, {(char-code)} is a number (with TgX syntax). With the optional argument,
you can set a range of values. There are three properties (with a short name, taken from
Unicode): direction (bc), mirror (bmg), linebreak (1b). The settings are global, and this
command is allowed only in vertical mode (the preamble or between paragraphs).

For example:

\babelcharproperty{ ¢}{mirror}{ ?}
\babelcharproperty{ -}{direction}{1l} % or al, r, en, an, on, et, cs
\babelcharproperty{ )}{linebreak}{cl} % or id, op, cl, ns, ex, in, hy

New 3.39 Another property is locale, which adds characters to the list used by onchar in
\babelprovide, or, if the last argument is empty, removes them. The last argument is the
locale name:

\babelcharproperty{",}{locale}{english}

1.29 Tweaking some features

{(key-value-list) }

New 3.36 Sometimes you might need to disable some babel features. Currently this
macro understands the following keys (and only for luatex), with values on or off:
bidi.text,bidi.mirroring, bidi.mapdigits, layout.lists, layout.tabular,
linebreak.sea, linebreak.cjk, justify.arabic. For example, you can set
\babeladjust{bidi.text=off} if you are using an alternative algorithm or with large
sections not requiring it. Use with care, because these options do not deactivate other
related options (like paragraph direction with bidi. text).

1.30 Tips, workarounds, known issues and notes

* If you use the document class book and you use \ref inside the argument of \chapter
(or just use \ref inside \MakeUppercase), KTgX will keep complaining about an
undefined label. To prevent such problems, you can revert to using uppercase labels,
you can use \lowercase{\ref{foo}} inside the argument of \chapter, or, if you will
not use shorthands in labels, set the safe option to none or bib.

48



* Both ltxdoc and babel use \AtBeginDocument to change some catcodes, and babel
reloads hhline to make sure : has the right one, so if you want to change the catcode of
| it has to be done using the same method at the proper place, with

\AtBeginDocument{\DeleteShortVerb{\|}}

before loading babel. This way, when the document begins the sequence is (1) make |
active (Itxdoc); (2) make it unactive (your settings); (3) make babel shorthands active
(babel); (4) reload hhline (babel, now with the correct catcodes for | and :).

* Documents with several input encodings are not frequent, but sometimes are useful.
You can set different encodings for different languages as the following example shows:

\addto\extrasfrench{\inputencoding{latin1}}
\addto\extrasrussian{\inputencoding{koi8-r}}

* For the hyphenation to work correctly, lccodes cannot change, because TgX only takes
into account the values when the paragraph is hyphenated, i.e., when it has been
finished.?! So, if you write a chunk of French text with \foreignlanguage, the
apostrophes might not be taken into account. This is a limitation of TgX, not of babel.
Alternatively, you may use \useshorthands to activate ' and \defineshorthand, or
redefine \textquoteright (the latter is called by the non-ASCII right quote).

* \bibitemis out of sync with \selectlanguage in the .aux file. The reason is \bibitem
uses \immediate (and others, in fact), while \selectlanguage doesn’t. There is a
similar issue with floats, too. There is no known workaround.

» Babel does not take into account \normalsfcodes and (non-)French spacing is not
always properly (un)set by languages. However, problems are unlikely to happen and
therefore this part remains untouched in version 3.9 (but it is in the ‘to do’ list).

» Using a character mathematically active (ie, with math code "8000) as a shorthand can
make TgX enter in an infinite loop in some rare cases. (Another issue in the ‘to do’ list,
although there is a partial solution.)

The following packages can be useful, too (the list is still far from complete):

csquotes Logical markup for quotes.

iflang Tests correctly the current language.

hyphsubst Selects a different set of patterns for a language.

translator An open platform for packages that need to be localized.

siunitx Typesetting of numbers and physical quantities.

biblatex Programmable bibliographies and citations.

bicaption Bilingual captions.

babelbib Multilingual bibliographies.

microtype Adjusts the typesetting according to some languages (kerning and spacing).
Ligatures can be disabled.

substitutefont Combines fonts in several encodings.

mkpattern Generates hyphenation patterns.

tracklang Tracks which languages have been requested.

ucharclasses (xetex) Switches fonts when you switch from one Unicode block to another.

zhspacing Spacing for CJK documents in xetex.

21This explains why IgX assumes the lowercase mapping of T1 and does not provide a tool for multiple map-
pings. Unfortunately, \savinghyphcodes is not a solution either, because lccodes for hyphenation are frozen in the
format and cannot be changed.

49



1.31 Current and future work

The current work is focused on the so-called complex scripts in luatex. In 8-bit engines,
babel provided a basic support for bidi text as part of the style for Hebrew, but it is
somewhat unsatisfactory and internally replaces some hardwired commands by other
hardwired commands (generic changes would be much better).

Useful additions would be, for example, time, currency, addresses and personal names.?2.
But that is the easy part, because they don’t require modifying the KIgX internals.
Calendars (Arabic, Persian, Indic, etc.) are under study.

Also interesting are differences in the sentence structure or related to it. For example, in
Basque the number precedes the name (including chapters), in Hungarian “from (1)” is
“(1)-b&l”, but “from (3)” is “(3)-b6l”, in Spanish an item labelled “3.°” may be referred to as
either “item 3.°” or “3.*F item”, and so on.

An option to manage bidirectional document layout in luatex (lists, footnotes, etc.) is
almost finished, but xetex required more work. Unfortunately, proper support for xetex
requires patching somehow lots of macros and packages (and some issues related to
\specials remain, like color and hyperlinks), so babel resorts to the bidi package (by Vafa
Khalighi). See the babel repository for a small example (xe-bidi).

1.32 Tentative and experimental code

See the code section for \foreignlanguage* (a new starred version of \foreignlanguage).
For old an deprecated functions, see the babel site.

Options for locales loaded on the fly

New 3.51 \babeladjust{ autoload.options = ... } setsthe options when a language
is loaded on the fly (by default, no options). A typical value would be import, which
defines captions, date, numerals, etc., but ignores the code in the tex file (for example,
extended numerals in Greek).

Labels

New 3.48 There is some work in progress for babel to deal with labels, both with the
relation to captions (chapters, part), and how counters are used to define them. It is still
somewhat tentative because it is far from trivial — see the babel site for further details.

2 Loading languages with language.dat

TEX and most engines based on it (pdfTeX, xetex, e-TgX, the main exception being luatex)
require hyphenation patterns to be preloaded when a format is created (eg, KTpX, XeKIgX,
pAdfETEX). babel provides a tool which has become standard in many distributions and
based on a “configuration file” named language.dat. The exact way this file is used
depends on the distribution, so please, read the documentation for the latter (note also
some distributions generate the file with some tool).

New 3.9q With luatex, however, patterns are loaded on the fly when requested by the
language (except the “Oth” language, typically english, which is preloaded always).?® Until
3.9n, this task was delegated to the package luatex-hyphen, by Khaled Hosny, Elie Roux,
and Manuel Pégourié-Gonnard, and required an extra file named language.dat. lua, but
now a new mechanism has been devised based solely on language.dat. You must rebuild
the formats if upgrading from a previous version. You may want to have a local
language.dat for a particular project (for example, a book on Chemistry).?*

22gee for example POSIX, ISO 14652 and the Unicode Common Locale Data Repository (CLDR). Those systems,
however, have limited application to TgX because their aim is just to display information and not fine typesetting.

23This feature was added to 3.90, but it was buggy. Both 3.90 and 3.9p are deprecated.

24The loader for lua(e)tex is slightly different as it’s not based on babel but on etex. src. Until 3.9p it just didn’t
work, but thanks to the new code it works by reloading the data in the babel way, i.e., with language.dat.

50



2.1 Format

In that file the person who maintains a TgX environment has to record for which languages
he has hyphenation patterns and in which files these are stored?>. When hyphenation
exceptions are stored in a separate file this can be indicated by naming that file after the
file with the hyphenation patterns.

The file can contain empty lines and comments, as well as lines which start with an equals
(=) sign. Such a line will instruct KTgX that the hyphenation patterns just processed have to
be known under an alternative name. Here is an example:

% File : language.dat

% Purpose : tell iniTeX what files with patterns to load.
english english.hyphenations

=british

dutch hyphen.dutch exceptions.dutch % Nederlands
german hyphen.ger

You may also set the font encoding the patterns are intended for by following the language
name by a colon and the encoding code.?® For example:

german:T1 hyphenT1.ger
german hyphen.ger

With the previous settings, if the encoding when the language is selected is T1 then the
patterns in hyphenT1.ger are used, but otherwise use those in hyphen. ger (note the
encoding can be set in \extras(lang)).

A typical error when using babel is the following:

No hyphenation patterns were preloaded for

the language “<lang>' into the format.

Please, configure your TeX system to add them and
rebuild the format. Now I will use the patterns
preloaded for english instead}}

It simply means you must reconfigure language.dat, either by hand or with the tools
provided by your distribution.

3 The interface between the core of babel and the
language definition files

The language definition files (1df) must conform to a number of conventions, because these
files have to fill in the gaps left by the common code in babel.def, i.e., the definitions of
the macros that produce texts. Also the language-switching possibility which has been
built into the babel system has its implications.

The following assumptions are made:

+ Some of the language-specific definitions might be used by plain TgX users, so the files
have to be coded so that they can be read by both KTgX and plain TgX. The current
format can be checked by looking at the value of the macro \fmtname.

* The common part of the babel system redefines a number of macros and environments
(defined previously in the document style) to put in the names of macros that replace
the previously hard-wired texts. These macros have to be defined in the language
definition files.

25This is because different operating systems sometimes use very different file-naming conventions.
26This is not a new feature, but in former versions it didn’t work correctly.

51



* The language definition files must define five macros, used to activate and deactivate
the language-specific definitions. These macros are \{lang)hyphenmins,
\captions(lang), \date(lang), \extras(lang) and \noextras(lang)(the last two may
be left empty); where (lang) is either the name of the language definition file or the
name of the KIgX option that is to be used. These macros and their functions are
discussed below. You must define all or none for a language (or a dialect); defining, say,
\date(lang) but not \captions(lang) does not raise an error but can lead to
unexpected results.

« When a language definition file is loaded, it can define \1@(lang) to be a dialect of
\language0 when \1@(lang) is undefined.

* Language names must be all lowercase. If an unknown language is selected, babel will
attempt setting it after lowercasing its name.

» The semantics of modifiers is not defined (on purpose). In most cases, they will just be
simple separated options (eg, spanish), but a language might require, say, a set of
options organized as a tree with suboptions (in such a case, the recommended
separator is /).

Some recommendations:

* The preferred shorthand is ", which is not used in EIgX (quotes are entered as ** and
'*). Other good choices are characters which are not used in a certain context (eg, = in
an ancient language). Note however =, <, >, : and the like can be dangerous, because
they may be used as part of the syntax of some elements (numeric expressions,
key/value pairs, etc.).

 Captions should not contain shorthands or encoding-dependent commands (the latter is
not always possible, but should be clearly documented). They should be defined using
the LICR. You may also use the new tools for encoded strings, described below.

* Avoid adding things to \noextras(lang) except for umlauthigh and friends,
\bbl@deactivate, \bbl@(non)frenchspacing, and language-specific macros. Use
always, if possible, \bbl@save and \bbl@savevariable (except if you still want to have
access to the previous value). Do not reset a macro or a setting to a hardcoded value.
Never. Instead save its value in \extras(lang).

* Do not switch scripts. If you want to make sure a set of glyphs is used, switch either the
font encoding (low-level) or the language (high-level, which in turn may switch the font
encoding). Usage of things like \1atintext is deprecated.?’

* Please, for “private” internal macros do not use the \bb1@ prefix. It is used by babel and
it can lead to incompatibilities.

There are no special requirements for documenting your language files. Now they are not
included in the base babel manual, so provide a standalone document suited for your
needs, as well as other files you think can be useful. A PDF and a “readme” are strongly
recommended.

3.1 Guidelines for contributed languages

Currently, the easiest way to contribute a new language is by taking one the the 500 or so
ini templates available on GitHub as a basis. Just make a pull request o dowonload it and
then, after filling the fields, sent it to me. Fell free to ask for help or to make feature
requests.

As to 1df files, now language files are “outsourced” and are located in a separate directory
(/macros/latex/contrib/babel-contrib), so that they are contributed directly to CTAN
(please, do not send to me language styles just to upload them to CTAN).

Of course, placing your style files in this directory is not mandatory, but if you want to do
it, here are a few guidelines.

27But not removed, for backward compatibility.

52



\addlanguage

\adddialect

\<lang>hyphenmins

\providehyphenmins

\captions(lang)
\date(lang)

\extras(lang)

\noextras(lang)

\bbl@declare@ttribute

\main@language

* Do not hesitate stating on the file heads you are the author and the maintainer; if you
actually are. There is no need to state the babel maintainer(s) as authors if they have
not contributed significantly to your language files.

« Fonts are not strictly part of a language, so they are best placed in the corresponding
TeX tree. This includes not only tfm, vf, ps1, otf, mf files and the like, but also fd ones.

» Font and input encodings are usually best placed in the corresponding tree, too, but
sometimes they belong more naturally to the babel style. Note you may also need to
define a LICR.

* Babel 1df files may just interface a framework, as it happens often with Oriental
languages/scripts. This framework is best placed in its own directory.

The following page provides a starting point for 1df files:
http://www.texnia.com/incubator.html. See also
https://latex3.github.io/babel/guides/list-of-locale-templates.html.

If you need further assistance and technical advice in the development of language styles, I
am willing to help you. And of course, you can make any suggestion you like.

3.2 Basic macros

In the core of the babel system, several macros are defined for use in language definition
files. Their purpose is to make a new language known. The first two are related to
hyphenation patterns.

The macro \addlanguage is a non-outer version of the macro \newlanguage, defined in
plain.tex version 3.x. Here “language” is used in the TgX sense of set of hyphenation
patterns.

The macro \adddialect can be used when two languages can (or must) use the same
hyphenation patterns. This can also be useful for languages for which no patterns are
preloaded in the format. In such cases the default behavior of the babel system is to define
this language as a ‘dialect’ of the language for which the patterns were loaded as
\language0. Here “language” is used in the TgX sense of set of hyphenation patterns.
The macro \(lang)hyphenmins is used to store the values of the \1efthyphenmin and
\righthyphenmin. Redefine this macro to set your own values, with two numbers
corresponding to these two parameters. For example:

\renewcommand\spanishhyphenmins{34}

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras<lang>has no
effect.)

The macro \providehyphenmins should be used in the language definition files to set
\lefthyphenmin and \righthyphenmin. This macro will check whether these parameters
were provided by the hyphenation file before it takes any action. If these values have been
already set, this command is ignored (currently, default pattern files do not set them).

The macro \captions(lang) defines the macros that hold the texts to replace the original
hard-wired texts.

The macro \date(lang) defines \today.

The macro \extras(lang) contains all the extra definitions needed for a specific language.
This macro, like the following, is a hook - you can add things to it, but it must not be used
directly.

Because we want to let the user switch between languages, but we do not know what state
TeX might be in after the execution of \extras(lang), a macro that brings TgX into a
predefined state is needed. It will be no surprise that the name of this macro is
\noextras(lang).

This is a command to be used in the language definition files for declaring a language
attribute. It takes three arguments: the name of the language, the attribute to be defined,
and the code to be executed when the attribute is to be used.

To postpone the activation of the definitions needed for a language until the beginning of a

53



\ProvidesLanguage

\LdfInit

\ldf@quit

\ldf@finish

\loadlocalcfg

\substitutefontfamily

document, all language definition files should use \main@language instead of
\selectlanguage. This will just store the name of the language, and the proper language
will be activated at the start of the document.

The macro \ProvidesLanguage should be used to identify the language definition files. Its
syntax is similar to the syntax of the IKIgX command \ProvidesPackage

The macro \LdfInit performs a couple of standard checks that must be made at the
beginning of a language definition file, such as checking the category code of the @-sign,
preventing the . 1df file from being processed twice, etc.

The macro \1df@quit does work needed if a . 1df file was processed earlier. This includes
resetting the category code of the @-sign, preparing the language to be activated at
\begin{document} time, and ending the input stream.

The macro \1df@finish does work needed at the end of each . 1df file. This includes
resetting the category code of the @-sign, loading a local configuration file, and preparing
the language to be activated at \begin{document} time.

After processing a language definition file, IXTgX can be instructed to load a local
configuration file. This file can, for instance, be used to add strings to \captions(lang) to
support local document classes. The user will be informed that this configuration file has
been loaded. This macro is called by \1df@finish.

(Deprecated.) This command takes three arguments, a font encoding and two font family
names. It creates a font description file for the first font in the given encoding. This . fd file
will instruct KTEX to use a font from the second family when a font from the first family in
the given encoding seems to be needed.

3.3 Skeleton

Here is the basic structure of an 1df file, with a language, a dialect and an attribute.
Strings are best defined using the method explained in sec. 3.8 (babel 3.9 and later).

\ProvideslLanguage{<language>}
[2016/04/23 v0.0 <Language> support from the babel system]
\LdfInit{<language>}{captions<language>}

\ifx\undefined\1l@<language>
\@nopatterns{<Language>}
\adddialect\1l@<language>0

\fi

\adddialect\l@<dialect>\1@<language>

\bbl@declare@ttribute{<language>}{<attrib>}{%
\expandafter\addto\expandafter\extras<language>
\expandafter{\extras<attrib><language>}%
\let\captions<language>\captions<attrib><language>}

\providehyphenmins{<language>}{\tw@\thr@e}

\StartBabelCommands*{<language>}{captions}
\SetString\chaptername{<chapter name>}
% More strings

\StartBabelCommands*{<language>}{date}
\SetString\monthiname{<name of first month>}
% More strings

\StartBabelCommands*{<dialect>}{captions}
\SetString\chaptername{<chapter name>}

% More strings

\StartBabelCommands*{<dialect>}{date}
\SetString\monthiname{<name of first month>}

54



\initiate@active@char
\bbl@activate
\bbl@deactivate

\declare@shorthand

\bbl@add@special
\bbl@remove@special

\babel@save

\babel@savevariable

% More strings
\EndBabelCommands

\addto\extras<language>{}
\addto\noextras<language>{}
\let\extras<dialect>\extras<language>
\let\noextras<dialect>\noextras<language>

\ldf@finish{<language>}

NOTE If for some reason you want to load a package in your style, you should be aware it cannot be
done directly in the 1df file, but it can be delayed with \AtEndOfPackage. Macros from external
packages can be used inside definitions in the Idf itself (for example, \extras<language>), but if
executed directly, the code must be placed inside \AtEndOfPackage. A trivial example illustrating
these points is:

\AtEndOfPackage{%
\RequirePackage{dingbat}% Delay package
\savebox{\myeye}{\eye}}% And direct usage
\newsavebox{\myeye}
\newcommand\myanchor {\anchor}% But OK inside command

3.4 Support for active characters

In quite a number of language definition files, active characters are introduced. To
facilitate this, some support macros are provided.

The internal macro \initiate@active@char is used in language definition files to instruct
KTEX to give a character the category code ‘active’. When a character has been made active
it will remain that way until the end of the document. Its definition may vary.

The command \bbl@activate is used to change the way an active character expands.
\bbl@activate ‘switches on’ the active behavior of the character. \bbl@deactivate lets
the active character expand to its former (mostly) non-active self.

The macro \declare@shorthand is used to define the various shorthands. It takes three
arguments: the name for the collection of shorthands this definition belongs to; the
character (sequence) that makes up the shorthand, i.e. ~ or "a; and the code to be executed
when the shorthand is encountered. (It does not raise an error if the shorthand character
has not been “initiated”.)

The TgXbook states: “Plain TgX includes a macro called \dospecials that is essentially a set
macro, representing the set of all characters that have a special category code.” [4, p. 380]
It is used to set text ‘verbatim’. To make this work if more characters get a special category
code, you have to add this character to the macro \dospecial. KIgX adds another macro
called \@sanitize representing the same character set, but without the curly braces. The
macros \bbl@add@special(char) and \bbl@remove@special(char) add and remove the
character (char) to these two sets.

3.5 Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefore a
mechanism for saving (and restoring) the original definition of those macros is provided.
We provide two macros for this?®.

To save the current meaning of any control sequence, the macro \babel@save is provided.
It takes one argument, (csname), the control sequence for which the meaning has to be
saved.

A second macro is provided to save the current value of a variable. In this context,

28This mechanism was introduced by Bernd Raichle.

55



\addto

\bbl@allowhyphens

\allowhyphens

\set@low@box

\save@sf@q

\bbl@frenchspacing
\bbl@nonfrenchspacing

\StartBabelCommands

anything that is allowed after the \the primitive is considered to be a variable. The macro

takes one argument, the (variable).

The effect of the preceding macros is to append a piece of code to the current definition of

\originalTeX. When \originalTeX is expanded, this code restores the previous definition
of the control sequence or the previous value of the variable.

3.6 Support for extending macros

The macro \addto{{control sequence)}{(TgX code)} can be used to extend the definition of
a macro. The macro need not be defined (ie, it can be undefined or \relax). This macro
can, for instance, be used in adding instructions to a macro like \extrasenglish.

Be careful when using this macro, because depending on the case the assignment can be
either global (usually) or local (sometimes). That does not seem very consistent, but this
behavior is preserved for backward compatibility. If you are using etoolbox, by Philipp
Lehman, consider using the tools provided by this package instead of \addto.

3.7 Macros common to a number of languages

In several languages compound words are used. This means that when TgX has to
hyphenate such a compound word, it only does so at the ‘-’ that is used in such words. To
allow hyphenation in the rest of such a compound word, the macro \bbl@allowhyphens
can be used.

Same as \bbl@allowhyphens, but does nothing if the encoding is T1. It is intended mainly
for characters provided as real glyphs by this encoding but constructed with \accent in
0T1.

Note the previous command (\bbl@allowhyphens) has different applications (hyphens and
discretionaries) than this one (composite chars). Note also prior to version 3.7,
\allowhyphens had the behavior of \bbl@allowhyphens.

For some languages, quotes need to be lowered to the baseline. For this purpose the macro
\set@low@box is available. It takes one argument and puts that argument in an \hbox, at
the baseline. The result is available in \box0 for further processing.

Sometimes it is necessary to preserve the \spacefactor. For this purpose the macro
\save@sf@q is available. It takes one argument, saves the current spacefactor, executes the
argument, and restores the spacefactor.

The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be used to
properly switch French spacing on and off.

3.8 Encoding-dependent strings

New 3.9a Babel 3.9 provides a way of defining strings in several encodings, intended
mainly for luatex and xetex. This is the only new feature requiring changes in language
files if you want to make use of it.

Furthermore, it must be activated explicitly, with the package option strings. If there is
no strings, these blocks are ignored, except \SetCases (and except if forced as described
below). In other words, the old way of defining/switching strings still works and it’s used
by default.

It consist is a series of blocks started with \StartBabelCommands. The last block is closed
with \EndBabelCommands. Each block is a single group (ie, local declarations apply until
the next \StartBabelCommands or \EndBabelCommands). An 1df may contain several
series of this kind.

Thanks to this new feature, string values and string language switching are not mixed any
more. No need of \addto. If the language is french, just redefine \frenchchaptername.

{(language-list)}{{category)} [ (selector)]

The (language-list) specifies which languages the block is intended for. A block is taken
into account only if the \CurrentOption is listed here. Alternatively, you can define
\BabellLanguages to a comma-separated list of languages to be defined (if undefined,

56



\StartBabelCommands sets it to \CurrentOption). You may write \CurrentOption as the
language, but this is discouraged — a explicit name (or names) is much better and clearer.
A “selector” is a name to be used as value in package option strings, optionally followed
by extra info about the encodings to be used. The name unicode must be used for xetex
and luatex (the key strings has also other two special values: generic and encoded).

If a string is set several times (because several blocks are read), the first one takes
precedence (ie, it works much like \providecommand).

Encoding info is charset= followed by a charset, which if given sets how the strings should
be translated to the internal representation used by the engine, typically utf8, which is the
only value supported currently (default is no translations). Note charset is applied by
luatex and xetex when reading the file, not when the macro or string is used in the
document.

A list of font encodings which the strings are expected to work with can be given after
fontenc= (separated with spaces, if two or more) — recommended, but not mandatory,
although blocks without this key are not taken into account if you have requested
strings=encoded

Blocks without a selector are read always if the key strings has been used. They provide
fallback values, and therefore must be the last blocks; they should be provided always if
possible and all strings should be defined somehow inside it; they can be the only blocks
(mainly LGC scripts using the LICR). Blocks without a selector can be activated explicitly
with strings=generic (no block is taken into account except those). With
strings=encoded, strings in those blocks are set as default (internally, ?). With
strings=encoded strings are protected, but they are correctly expanded in
\MakeUppercase and the like. If there is no key strings, string definitions are ignored, but
\SetCases are still honored (in a encoded way).

The (category) is either captions, date or extras. You must stick to these three categories,
even if no error is raised when using other name.?° It may be empty, too, but in such a case
using \SetString is an error (but not \SetCase).

\StartBabelCommands{language}{captions}
[unicode, fontenc=TU EU1 EU2, charset=utf8]
\SetString{\chaptername}{utf8-string}

\StartBabelCommands{language}{captions}
\SetString{\chaptername}{ascii-maybe-LICR-string}

\EndBabelCommands
A real example is:

\StartBabelCommands{austrian}{date}
[unicode, fontenc=TU EU1 EU2, charset=utf8]
\SetString\monthiname{Janner}

\StartBabelCommands{german,austrian}{date}
[unicode, fontenc=TU EU1 EU2, charset=utf8]
\SetString\monthiiiname{Marz}

\StartBabelCommands{austrian}{date}
\SetString\monthiname{J\"{a}nner}

\StartBabelCommands{german}{date}
\SetString\monthiname{Januar}

\StartBabelCommands{german,austrian}{date}
\SetString\monthiiname{Februar}
\SetString\monthiiiname{M\"{a}rz}

291n future releases further categories may be added.

57



\StartBabelCommands

\EndBabelCommands

\AfterBabelCommands

\SetString

\SetStringlLoop

\SetCase

\SetString\monthivname{April}
\SetString\monthvname{Mai}
\SetString\monthviname{Juni}
\SetString\monthviiname{Juli}
\SetString\monthviiiname{August}
\SetString\monthixname{September}
\SetString\monthxname{Oktober}
\SetString\monthxiname{November}
\SetString\monthxiiname{Dezenber}
\SetString\today{\number\day.~%
\csname month\romannumeral\month name\endcsname\space
\number\year}

\StartBabelCommands{german,austrian}{captions}
\SetString\prefacename{Vorwort}
[etc.]

\EndBabelCommands

When used in 1df files, previous values of \{category)(language) are overridden, which
means the old way to define strings still works and used by default (to be precise, is first set
to undefined and then strings are added). However, when used in the preamble or in a
package, new settings are added to the previous ones, if the language exists (in the babel
sense, ie, if \date(language) exists).

* {(language-list) }{(category)} [ (selector)]

The starred version just forces strings to take a value - if not set as package option, then
the default for the engine is used. This is not done by default to prevent backward
incompatibilities, but if you are creating a new language this version is better. It’s up to the
maintainers of the current languages to decide if using it is appropriate.3

Marks the end of the series of blocks.

{{code)}
The code is delayed and executed at the global scope just after \EndBabelCommands.

{(macro-name)}{(string)}

Adds (macro-name) to the current category, and defines globally (lang-macro-name) to
(code) (after applying the transformation corresponding to the current charset or defined
with the hook stringprocess).

Use this command to define strings, without including any “logic” if possible, which should
be a separated macro. See the example above for the date.

{(macro-name) }{(string-list)}

A convenient way to define several ordered names at once. For example, to define
\abmoniname, \abmoniiname, etc. (and similarly with abday):

\SetStringlLoop{abmon#1name}{en, fb,mr,ab,my,jn,jl,ag,sp,oc,nv,dc}
\SetStringlLoop{abday#1name}{lu,ma,mi,ju,vi,sa,do}

#1 is replaced by the roman numeral.

[{map-list)1{(toupper-code)}{ (tolower-code)}

30This replaces in 3.9g a short-lived \UseStrings which has been removed because it did not work.

58



\SetHyphenMap

Sets globally code to be executed at \MakeUppercase and \MakeLowercase. The code
would typically be things like \1et\BB\bb and \uccode or \1ccode (although for the
reasons explained above, changes in 1c/uc codes may not work). A (map-list) is a series of
macros using the internal format of \@uclclist (eg, \bb\BB\cc\CC). The mandatory
arguments take precedence over the optional one. This command, unlike \SetString, is
executed always (even without strings), and it is intended for minor readjustments only.
For example, as T1 is the default case mapping in KIgX, we can set for Turkish:

\StartBabelCommands{turkish}{}[ot1enc, fontenc=0T1]
\SetCase

{\uccode"10="I\relax}

{\lccode I="10\relax}

\StartBabelCommands{turkish}{}[unicode, fontenc=TU EU1 EU2, charset=utf8]
\SetCase

{\uccode i="I\relax

\uccode "1="TI\relax}

{\lccode I="i\relax

\lccode ' I="1\relax}

\StartBabelCommands{turkish}{}
\SetCase
{\uccode "i="9D\relax
\uccode"19="I\relax}
{\1lccode"9D="i\relax
\lccode 'I="19\relax}

\EndBabelCommands
(Note the mapping for 0T1 is not complete.)

{(to-lower-macros)}

New 3.9g Case mapping serves in TgX for two unrelated purposes: case transforms
(upper/lower) and hyphenation. \SetCase handles the former, while hyphenation is
handled by \SetHyphenMap and controlled with the package option hyphenmap. So, even if
internally they are based on the same TgX primitive (\1ccode), babel sets them separately.
There are three helper macros to be used inside \SetHyphenMap:

* \BabellLower{({uccode)}{(lccode)} is similar to \1ccode but it’s ignored if the char has
been set and saves the original Iccode to restore it when switching the language (except
with hyphenmap=first).

* \BabelLowerMm{(uccode-from)}{(uccode-to)}{(step)}{(lccode-from)} loops though the
given uppercase codes, using the step, and assigns them the lccode, which is also
increased (MM stands for many-to-many).

* \BabelLowerM0{(uccode-from)}{{uccode-to)}{(step)}{{lccode)} loops though the given
uppercase codes, using the step, and assigns them the lccode, which is fixed (MO stands
for many-to-one).

An example is (which is redundant, because these assignments are done by both luatex
and xetex):

\SetHyphenMap{\BabelLowerMM{"100}{"11F}{2}{"101}}

This macro is not intended to fix wrong mappings done by Unicode (which are the default
in both xetex and luatex) — if an assignment is wrong, fix it directly.

3.9 Executing code based on the selector

59



\IfBabelSelectorTF {(selectors)}{(true)}{(false)}

New 3.67 Sometimes a different setup is desired depending on the selector used. Values
allowed in (selectors) are select, other, foreign, other* (and also foreign* for the
tentative starred version), and it can consist of a comma-separated list. For example:

\IfBabelSelectorTF{other, other*}{A}{B}

is true with these two environment selectors.
Its natural place of use is in hooks or in \extras(language).

Part 11
Source code

babel is being developed incrementally, which means parts of the code are under development and
therefore incomplete. Only documented features are considered complete. In other words, use babel
only as documented (except, of course, if you want to explore and test them — you can post
suggestions about multilingual issues to kadingira@tug.org on
http://tug.org/mailman/listinfo/kadingira).

4 Identification and loading of required files

Code documentation is still under revision.

The following description is no longer valid, because switch and plain have been merged into
babel.def.

The babel package after unpacking consists of the following files:

switch.def defines macros to set and switch languages.

babel.def defines the rest of macros. It has tow parts: a generic one and a second one only for
LaTeX.

babel.sty is the KTgX package, which set options and load language styles.

plain.def defines some ITEX macros required by babel . def and provides a few tools for Plain.

hyphen.cfg is the file to be used when generating the formats to load hyphenation patterns.

The babel installer extends docstrip with a few “pseudo-guards” to set “variables” used at installation
time. They are used with <@name@> at the appropiated places in the source code and shown below
with ((name)). That brings a little bit of literate programming.

5 locale directory

A required component of babel is a set of ini files with basic definitions for about 200 languages.
They are distributed as a separate zip file, not packed as dtx. With them, babel will fully support
Unicode engines.

Most of them are essentially finished (except bugs and mistakes, of course). Some of them are still
incomplete (but they will be usable), and there are some omissions (eg, Latin and polytonic Greek,
and there are no geographic areas in Spanish). Hindi, French, Occitan and Breton will show a
warning related to dates. Not all include LICR variants.

This is a preliminary documentation.

ini files contain the actual data; tex files are currently just proxies to the corresponding ini files.
Most keys are self-explanatory.

charset the encoding used in the ini file.

version of the ini file

level “version” of the ini specification . which keys are available (they may grow in a compatible
way) and how they should be read.

encodings a descriptive list of font encondings.

[captions] section of captions in the file charset

[captions.licr] same, but in pure ASCII using the LICR

60



date.long fields are as in the CLDR, but the syntax is different. Anything inside brackets is a date
field (eg, MMMM for the month name) and anything outside is text. In addition, [ ] is a non
breakable space and [ . ] is an abbreviation dot.

Keys may be further qualified in a particular language with a suffix starting with a uppercase letter.
It can be just a letter (eg, babel.name.A, babel.name.B) or a name (eg, date.long.Nominative,
date.long.Formal, but no language is currently using the latter). Multi-letter qualifiers are forward
compatible in the sense they won’t conflict with new “global” keys (which start always with a
lowercase case). There is an exception, however: the section counters has been devised to have
arbitrary keys, so you can add lowercased keys if you want.

6 Tools

1 ({version=3.80))
2 ((date=2022/09/17))

Do not use the following macros in 1df files. They may change in the future. This applies mainly
to those recently added for replacing, trimming and looping. The older ones, like \bbl@afterfi, will
not change.
We define some basic macros which just make the code cleaner. \bbl@add is now used internally
instead of \addto because of the unpredictable behavior of the latter. Used in babel.def and in
babel.sty, which means in KIgX is executed twice, but we need them when defining options and
babel.def cannot be load until options have been defined. This does not hurt, but should be fixed
somehow.
3 ((xBasic macros)) =
4\bbl@trace{Basic macros}
5\def\bbl@stripslash{\expandafter\@gobble\string}
6 \def\bbl@add#1#2{%
7 \bbl@ifunset{\bbl@stripslash#1}%
8 {\def#1{#2}}%
9 {\expandafter\def\expandafter#1\expandafter{#1#2}}}
10 \def\bbl@xin@{\@expandtwoargs\in@}
11 \def\bbl@csarg#1#2{\expandafter#1\csname bbl@#2\endcsname}%
12 \def\bbl@cs#1{\csname bbl@#1\endcsname}
13 \def\bbl@cl#1{\csname bbl@#1@\languagename\endcsname}
14 \def\bbl@loop#1#2#3{\bbl@@loop#1{#3}#2,\@nnil,}
15 \def\bbl@loopx#1#2{\expandafter\bbl@loop\expandafter#1\expandafter{#2}}
16 \def\bbl@@loop#1#2#3, {%
17 \ifx\@nnil#3\relax\else
18 \def#1{#3}#2\bbl@afterfi\bbl@@loop#1{#2}%
19 \fi}
20 \def\bbl@for#1#2#3{\bbl@loopx#1{#2} {\ifx#1\@empty\else#3\fi}}

\bbl@add@list This internal macro adds its second argument to a comma separated list in its first argument. When
the list is not defined yet (or empty), it will be initiated. It presumes expandable character strings.

21 \def\bbl@add@list#1#2{%
22 \edef#1{%
23 \bbl@ifunset{\bbl@stripslash#1}%

24 {}%
25 {\ifx#1\@empty\else#1,6\fi}%
26 #2}}

\bbl@afterelse Because the code that is used in the handling of active characters may need to look ahead, we take
\bbl@afterfi extra care to ‘throw’ it over the \else and \fi parts of an \if-statement®. These macros will break
if another \if...\fi statement appears in one of the arguments and it is not enclosed in braces.

27\long\def\bbl@afterelse#1\else#2\fi{\fi#1}
28 \long\def\bbl@afterfi#I\fi{\fi#1}

\bbl@exp Now, just syntactical sugar, but it makes partial expansion of some code a lot more simple and
readable. Here \\ stands for \noexpand, \<..> for \noexpand applied to a built macro name (which
does not define the macro if undefined to \relax, because it is created locally), and \[. . ] for

31This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion Power Lemma” by
Sonja Maus.

61



one-level expansion (where .. is the macro name without the backslash). The result may be
followed by extra arguments, if necessary.

29 \def\bbl@exp#1{%

30 \begingroup

31 \let\\\noexpand

32 \let\<\bbl@exp@en

33 \let\[\bbl@exp@ue

34 \edef\bbl@exp@aux{\endgroup#1}%

35  \bbl@exp@aux}

36 \def\bbl@exp@en#1>{\expandafter\noexpand\csname#1\endcsname}%

37 \def\bbl@exp@ue#11{%

38 \unexpanded\expandafter\expandafter\expandafter{\csname#1\endcsname}}%

\bbl@trim The following piece of code is stolen (with some changes) from keyval, by David Carlisle. It defines
two macros: \bbl@trim and \bbl@trim@def. The first one strips the leading and trailing spaces from
the second argument and then applies the first argument (a macro, \toks@ and the like). The second
one, as its name suggests, defines the first argument as the stripped second argument.

39 \def\bbl@tempa#1{%

40 \long\def\bbl@trim##1##2{%

41 \futurelet\bbl@trim@a\bbl@trim@c##2\@nil\@nil#1\@nil\relax{##1}}%
42  \def\bbl@trim@c{%

43 \ifx\bbl@trim@a\@sptoken

44 \expandafter\bbl@trim@b

45 \else

46 \expandafter\bbl@trim@b\expandafter#1%
47 \fi}%

48 \long\def\bbl@trim@b#1##1 \@nil{\bbl@trim@i##1}}
49 \bbl@tempa{ }

50 \long\def\bbl@trim@i#1\@nil#2\relax#3{#3{#1}}

51 \long\def\bbl@trim@def#1{\bbl@trim{\def#1}}

\bbl@ifunset To check if a macro is defined, we create a new macro, which does the same as \@ifundefined.
However; in an e-tex engine, it is based on \ifcsname, which is more efficient, and does not waste
memory.

52 \begingroup
53 \gdef\bbl@ifunset#1{%

54 \expandafter\ifx\csname#1\endcsname\relax

55 \expandafter\@firstoftwo

56 \else

57 \expandafter\@secondoftwo

58 \fi}

59 \bbl@ifunset{ifcsname}% TODO. A better test?

60 {}%

61 {\gdef\bbl@ifunset#1{%

62 \ifcsname#1\endcsname

63 \expandafter\ifx\csname#1\endcsname\relax
64 \bbl@afterelse\expandafter\@firstoftwo
65 \else

66 \bbl@afterfilexpandafter\@secondoftwo
67 \fi

68 \else

69 \expandafter\@firstoftwo

70 \fi}}

71 \endgroup

\bbl@ifblank A tool from url, by Donald Arseneau, which tests if a string is empty or space. The companion macros
tests if a macro is defined with some ‘real’ value, ie, not \relax and not empty,

72 \def\bbl@ifblank#1{%

73 \bbl@ifblank@i#1\@nil\@nil\@secondoftwo\@firstoftwo\@nil}
74 \long\def\bbl@ifblank@i#1#2\@nil#3#4#5\@nil{#4}

75 \def\bbl@ifset#1#2#3{%

76 \bbl@ifunset{#1}{#3}{\bbl@exp{\\\bbl@ifblank{#1}}{#3}{#2}}}

62



For each element in the comma separated <key>=<value> list, execute <code> with #1 and #2 as the
key and the value of current item (trimmed). In addition, the item is passed verbatim as #3. With the
<key> alone, it passes \@empty (ie, the macro thus named, not an empty argument, which is what you
get with <key>= and no value).

77 \def\bbl@forkv#1#2{%

78 \def\bbl@kvcmd##1##2##3{#2}%

79 \bbl@kvnext#1,\@nil,}

80 \def\bbl@kvnext#1,{%

81 \ifx\@nil#1\relax\else

82 \bbl@ifblank{#1}{}{\bbl@forkv@eg#1=\@empty=\@nil{#1}}%
83 \expandafter\bbl@kvnext

84 \fi}

85 \def\bbl@forkv@eq#1=#2=#3\@nil#4{%

86 \bbl@trim@def\bbl@forkv@a{#1}%

87 \bbl@trim{\expandafter\bbl@kvcmd\expandafter{\bbl@forkv@a}}{#2}{#4}}

A for loop. Each item (trimmed), is #1. It cannot be nested (it’s doable, but we don’t need it).

88 \def\bbl@vforeach#1#2{%

89 \def\bbl@forcmd##1{#2}%

90 \bbl@fornext#1,\@nil,}

91 \def\bbl@fornext#1, {%

92 \ifx\@nil#1\relax\else

93 \bbl@ifblank{#1}{}{\bbl@trim\bbl@forcmd{#1}}%

94 \expandafter\bbl@fornext

95 \fi}

96 \def\bbl@foreach#1{\expandafter\bbl@vforeach\expandafter{#1}}

\bbl@replace Returns implicitly \toks@ with the modified string.

97 \def\bbl@replace#1#2#3{% in #1 -> repl #2 by #3
98 \toks@{}%

99 \def\bbl@replace@aux##1#2##2#2{%

100 \ifx\bbl@nil##2%

101 \toks@\expandafter{\the\toks@##1}%
102 \else

103 \toks@\expandafter{\the\toks@##1#3}%
104 \bbl@afterfi

105 \bbl@replace@aux##2#2%

106 \fi}%
107 \expandafter\bbl@replace@aux#1#2\bbl@nil#2%
108 \edef#1{\the\toks@}}

An extensison to the previous macro. It takes into account the parameters, and it is string based (ie, if
you replace elax by ho, then \relax becomes \rho). No checking is done at all, because it is not a
general purpose macro, and it is used by babel only when it works (an example where it does not
work is in \bb1@TG@@date, and also fails if there are macros with spaces, because they are
retokenized). It may change! (or even merged with \bbl@replace; I'm not sure ckecking the
replacement is really necessary or just paranoia).

109 \ifx\detokenize\@undefined\else % Unused macros if old Plain TeX
110 \bbl@exp{\def\\\bbl@parsedef##1\detokenize{macro:}}#2->#3\relax{%
111 \def\bbl@tempa{#1}%

112 \def\bbl@tempb{#2}%

113 \def\bbl@tempe{#3}}

114 \def\bbl@sreplace#1#2#3{%

[

115 \begingroup

116 \expandafter\bbl@parsedef\meaning#1\relax

117 \def\bbl@tempc{#2}%

118 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%
119 \def\bbl@tempd{#3}%

120 \edef\bbl@tempd{\expandafter\strip@prefix\meaning\bbl@tempd}%
121 \bbl@xin@{\bbl@tempc}{\bbl@tempe}% If not in macro, do nothing
122 \ifin@

123 \bbl@exp{\\\bbl@replace\\\bbl@tempe{\bbl@tempc}{\bbl@tempd}}%
124 \def\bbl@tempc{% Expanded an executed below as 'uplevel'

63



125 \\\makeatletter % "internal" macros with @ are assumed

126 \\\scantokens{%

127 \bbl@tempa\\\@namedef{\bbl@stripslash#1}\bbl@tempb{\bbl@tempe}}%
128 \catcode64=\the\catcode64\relax}% Restore @

129 \else

130 \let\bbl@tempc\@empty % Not \relax

131 \fi

132 \bbl@exp{% For the 'uplevel' assignments

133 \endgroup

134 \bbl@tempc}} % empty or expand to set #1 with changes

135 \fi

Two further tools. \bbl@ifsamestring first expand its arguments and then compare their expansion
(sanitized, so that the catcodes do not matter). \bbl@engine takes the following values: 0 is pdfTgX, 1
is luatex, and 2 is xetex. You may use the latter it in your language style if you want.

136 \def\bbl@ifsamestring#1#2{%

137  \begingroup

138 \protected@edef\bbl@tempb{#1}%

139 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%
140 \protected@edef\bbl@tempc{#2}%

141 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%
142 \ifx\bbl@tempb\bbl@tempc

143 \aftergroup\@firstoftwo
144 \else

145 \aftergroup\@secondoftwo
146 \fi

147 \endgroup}
148 \chardef\bbl@engine=%
149 \ifx\directlua\@undefined

150 \ifx\XeTeXinputencoding\@undefined
151 \z@

152 \else

153 \tw@

154 \fi

155 \else

156 \@ne

157 \fi

A somewhat hackish tool (hence its name) to avoid spurious spaces in some contexts.

158 \def\bbl@bsphack{%

159 \ifhmode

160 \hskip\z@skip

161 \def\bbl@esphack{\loop\ifdim\lastskip>\z@\unskip\repeat\unskip}%
162 \else

163 \let\bbl@esphack\@empty

164 \fi}

Another hackish tool, to apply case changes inside a protected macros. It’s based on the internal
\let’s made by \MakeUppercase and \MakeLowercase between things like \oe and \OE.

165 \def\bbl@cased{%

166 \ifx\oe\OE

167 \expandafter\in@\expandafter

168 {\expandafter\OE\expandafter}\expandafter{\oe}%
169 \ifin@

170 \bbl@afterelse\expandafter\MakeUppercase
171 \else

172 \bbl@afterfilexpandafter\MakeLowercase
173 \fi

174 \else

175 \expandafter\@firstofone

176 \fi}

An alternative to \IfFormatAtLeastTF for old versions. Temporary.

64



\language

\last@language

\addlanguage

177 \ifx\IfFormatAtLeastTF\@undefined

178 \def\bbl@ifformatlater{\@ifl@t@r\fmtversion}
179 \else

180 \let\bbl@ifformatlater\IfFormatAtLeastTF
181 \fi

The following adds some code to \extras. .. both before and after; while avoiding doing it twice. It’s
somewhat convoluted, to deal with #s. Used to deal with alph, Alph and frenchspacing when there
are already changes (with \babel@save).

182 \def\bbl@extras@wrap#1#2#3{% 1:in-test, 2:before, 3:after
183 \toks@\expandafter\expandafter\expandafter{%

184 \csname extras\languagename\endcsname}%

185 \bbl@exp{\\\in@{#1}{\the\toks@}}%

186 \ifin@\else

187 \@temptokena{#2}%

188 \edef\bbl@tempc{\the\@temptokena\the\toks@}%

189 \toks@\expandafter{\bbl@tempc#3}%

190 \expandafter\edef\csname extras\languagename\endcsname{\the\toks@}%
191 \fi}

192 ((/Basic macros))

Some files identify themselves with a BTgX macro. The following code is placed before them to define
(and then undefine) if not in ETgX.

193 ((*Make sure ProvidesFile is defined)) =
194 \ifx\ProvidesFile\@undefined

195 \def\ProvidesFile#1[#2 #3 #41{%
196 \wlog{File: #1 #4 #3 <#2>}%

197 \let\ProvidesFile\@undefined}

198 \fi

199 ((/Make sure ProvidesFile is defined))

6.1 Multiple languages

Plain TgX version 3.0 provides the primitive \1anguage that is used to store the current language.
When used with a pre-3.0 version this function has to be implemented by allocating a counter. The
following block is used in switch.def and hyphen.cfg; the latter may seem redundant, but
remember babel doesn’t requires loading switch.def in the format.

200 ((xDefine core switching macros)) =

201 \ifx\language\@undefined

202 \csname newcount\endcsname\language
203 \fi

204 ((/Define core switching macros))

Another counter is used to keep track of the allocated languages. TgX and ETgX reserves for this
purpose the count 19.

This macro was introduced for TgX < 2. Preserved for compatibility.

205 ((*Define core switching macros)) =

206 \countdef\last@language=19

207 \def\addlanguage{\csname newlanguage\endcsname}
208 ((/Define core switching macros))

Now we make sure all required files are loaded. When the command \AtBeginDocument doesn’t
exist we assume that we are dealing with a plain-based format. In that case the file plain.def is
needed (which also defines \AtBeginDocument, and therefore it is not loaded twice). We need the
first part when the format is created, and \orig@dump is used as a flag. Otherwise, we need to use the
second part, so \orig@dump is not defined (plain.def undefines it).

Check if the current version of switch.def has been previously loaded (mainly, hyphen.cfg). If not,
load it now. We cannot load babel.def here because we first need to declare and process the
package options.

65



6.2 The Package File (ETgX, babel.sty)

209 (*package)
210 \NeedsTeXFormat{LaTeX2e}[2005/12/01]
211 \ProvidesPackage{babel}[((date)) ((version)) The Babel package]

Start with some “private” debugging tool, and then define macros for errors.
212 \@ifpackagewith{babel}{debug}
213 {\providecommand\bbl@trace[1]{\message{MJ[ #1 1}}%
214 \let\bbl@debug\@firstofone
215 \ifx\directlua\@undefined\else

216 \directlua{ Babel = Babel or {}
217 Babel.debug = true }%

218 \input{babel-debug.tex}%

219 \fi}

220 {\providecommand\bbl@trace[1]1{}%
221 \let\bbl@debug\@gobble
222 \ifx\directlua\@undefined\else

223 \directlua{ Babel = Babel or {}
224 Babel.debug = false }%
225 \fi}

226 \def\bbl@error#1#2{%

227 \begingroup

228 \def\\{\MessageBreak}%

229 \PackageError{babel}{#1}{#2}%
230 \endgroup}

231 \def\bbl@warning#1{%

232 \begingroup

233 \def\\{\MessageBreak}%

234 \PackageWarning{babel}{#1}%
235 \endgroup}

236 \def\bbl@infowarn#1{%

237 \begingroup

238 \def\\{\MessageBreak}%

239 \PackageNote{babel}{#1}%
240 \endgroup}

241 \def\bbl@info#1{%

242 \begingroup

243 \def\\{\MessageBreak}%

244 \PackageInfo{babel}{#1}%
245 \endgroup}

This file also takes care of a number of compatibility issues with other packages an defines a few
aditional package options. Apart from all the language options below we also have a few options that
influence the behavior of language definition files.
Many of the following options don’t do anything themselves, they are just defined in order to make it
possible for babel and language definition files to check if one of them was specified by the user.
But first, include here the Basic macros defined above.

246 ((Basic macros))

247 \@ifpackagewith{babel}{silent}

248 {\let\bbl@info\@gobble

249 \let\bbl@infowarn\@gobble

250 \let\bbl@warning\@gobble}

251 {}

252%

253 \def\AfterBabellLanguage#1{%

254 \global\expandafter\bbl@add\csname#1.1ldf-h@@k\endcsname}%

If the format created a list of loaded languages (in \bbl@languages), get the name of the 0-th to show
the actual language used. Also avaliable with base, because it just shows info.

255 \1fx\bbl@languages\@undefined\else

256 \begingroup

257 \catcode "\AI=12
258 \@ifpackagewith{babel}{showlanguages}{%
259 \begingroup

66



260 \def\bbl@elt#1#2#3#4{\wlog{#2 A T# 1A IH#3 N I#4}}%

261 \wlog{<*languages>}%
262 \bbl@languages

263 \wlog{</languages>}%
264 \endgroup}{}

265 \endgroup

266 \def\bbl@elt#1#2#3#4{%

267 \ifnum#2=\z@

268 \gdef\bbl@nulllanguage{#1}%
269 \def\bbl@elt##1##2##3##4{}%
270 \fi}%

271 \bbl@languages

272 \fi%

6.3 base

The first ‘real’ option to be processed is base, which set the hyphenation patterns then resets
ver@babel. sty so that ETgXforgets about the first loading. After a subset of babel.def has been
loaded (the old switch.def) and \AfterBabellLanguage defined, it exits.

Now the base option. With it we can define (and load, with luatex) hyphenation patterns, even if we
are not interesed in the rest of babel.

273 \bbl@trace{Defining option 'base'}

274 \@ifpackagewith{babel}{base}{%

275 \let\bbl@onlyswitch\@empty

276 \let\bbl@provide@locale\relax

277 \input babel.def

278 \let\bbl@onlyswitch\@undefined

279 \ifx\directlua\@undefined

280 \DeclareOption*{\bbl@patterns{\CurrentOption}}%

281 \else

282 \input luababel.def

283 \DeclareOption*{\bbl@patterns@lua{\CurrentOption}}%

284 \fi

285 \DeclareOption{base}{}%

286 \DeclareOption{showlanguages}{}%

287 \ProcessOptions

288 \global\expandafter\let\csname opt@babel.sty\endcsname\relax
289 \global\expandafter\let\csname ver@babel.sty\endcsname\relax
290 \global\let\@ifl@ter@@\@ifl@ter

291 \def\@ifl@ter#1#2#3#4#5{\global\let\@ifl@ter\@ifl@ter@@}%
292 \endinput}{}%

6.4 key=value options and other general option

The following macros extract language modifiers, and only real package options are kept in the
option list. Modifiers are saved and assigned to \BabelModifiers at \bbl@load@language; when no
modifiers have been given, the former is \relax. How modifiers are handled are left to language
styles; they can use \in@, loop them with \@for or load keyval, for example.

293 \bbl@trace{key=value and another general options}

294 \bbl@csarg\let{tempa\expandafter}\csname opt@babel.sty\endcsname
295 \def\bbl@tempb#1.#2{% Remove trailing dot

296  #1\ifx\@empty#2\else,\bbl@afterfi\bbl@tempb#2\fi}%

297 \def\bbl@tempd#1.#2\@nnil{% TODO. Refactor lists?

298 \ifx\@empty#2%

299 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc, \fi#1}%
300 \else

301 \in@{,provide=}{,#1}%

302 \ifin@

303 \edef\bbl@tempc{%

304 \ifx\bbl@tempc\@empty\else\bbl@tempc, \fi#1.\bbl@tempb#2}%
305 \else

306 \in@{=}{#1}%

307 \ifin@

67



308 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc, \fi#1.#2}%
309 \else

310 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc, \fi#1}%
311 \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}%

312 \fi

313 \fi

314 \fi}

315 \let\bbl@tempc\@empty
316 \bbl@foreach\bbl@tempa{\bbl@tempd#1.\@empty\@nnil}
317 \expandafter\let\csname opt@babel.sty\endcsname\bbl@tempc

The next option tells babel to leave shorthand characters active at the end of processing the package.
This is not the default as it can cause problems with other packages, but for those who want to use
the shorthand characters in the preamble of their documents this can help.

318 \DeclareOption{KeepShorthandsActive}{}

319 \DeclareOption{activeacute}{}

320 \DeclareOption{activegrave}{}

321 \DeclareOption{debug}{}

322 \DeclareOption{noconfigs}{}

323 \DeclareOption{showlanguages}{}

324 \DeclareOption{silent}{}

325% \DeclareOption{mono}{}

326 \DeclareOption{shorthands=off}{\bbl@tempa shorthands=\bbl@tempa}
327 \chardef\bbl@iniflag\z@

328 \DeclareOption{provide=*}{\chardef\bbl@iniflag\@ne} % main -> +1
329 \DeclareOption{provide+=*}{\chardef\bbl@iniflag\tw@} % add = 2
330 \DeclareOption{provide*=*}{\chardef\bbl@iniflag\thr@@} % add + main
331% A separate option

332 \let\bbl@autoload@options\@empty

333 \DeclareOption{provide@=*}{\def\bbl@autoload@options{import}}

334% Don't use. Experimental. TODO.

335 \newif\ifbbl@single

336 \DeclareOption{selectors=off}{\bbl@singletrue}

337 ((More package options))

Handling of package options is done in three passes. (I [JBL] am not very happy with the idea,
anyway.) The first one processes options which has been declared above or follow the syntax
<key>=<value>, the second one loads the requested languages, except the main one if set with the
key main, and the third one loads the latter. First, we “flag” valid keys with a nil value.

338 \let\bbl@opt@shorthands\@nnil
339 \let\bbl@opt@config\@nnil

340 \let\bbl@opt@main\@nnil

341 \let\bbl@opt@headfoot\@nnil
342 \let\bbl@opt@layout\@nnil

343 \let\bbl@opt@provide\@nnil

The following tool is defined temporarily to store the values of options.

344 \def\bbl@tempa#1=#2\bbl@tempa{%
345 \bbl@csarg\ifx{opt@#1}\@nnil
346 \bbl@csarg\edef{opt@#1}{#2}%

347 \else

348 \bbl@error

349 {Bad option '#1=#2'. Either you have misspelled the\\%
350 key or there is a previous setting of '#1'. Valid\\%

351 keys are, among others, 'shorthands', 'main', 'bidi',\\%
352 'strings', 'config', 'headfoot', 'safe', 'math'.}%

353 {See the manual for further details.}

354 \fi}

Now the option list is processed, taking into account only currently declared options (including those
declared with a =), and <key>=<value> options (the former take precedence). Unrecognized options
are saved in \bbl@language@opts, because they are language options.

355 \let\bbl@language@opts\@empty
356 \DeclareOption*{%

68



357 \bbl@xin@{\string=}{\CurrentOption}%
358 \ifin@
359 \expandafter\bbl@tempa\CurrentOption\bbl@tempa

360 \else
361 \bbl@add@list\bbl@language@opts{\CurrentOption}%
362 \fi}

Now we finish the first pass (and start over).
363 \ProcessOptions*

364 \1fx\bbl@opt@provide\@nnil

365 \let\bbl@opt@provide\@empty % %%% MOVE above

366 \else

367 \chardef\bbl@iniflag\@ne

368 \bbl@exp{\\\bbl@forkv{\@nameuse{@raw@opt@babel.sty}}}{%
369 \in@{,provide, }{,#1,}%

370 \ifin@

371 \def\bbl@opt@provide{#2}%

372 \bbl@replace\bbl@opt@provide{;}{,}%
373 \fi}

374 \fi

375%

6.5 Conditional loading of shorthands

If there is no shorthands=<chars>, the original babel macros are left untouched, but if there is, these
macros are wrapped (in babel. def) to define only those given.

A bit of optimization: if there is no shorthands=, then \bb1l@ifshorthand is always true, and it is
always false if shorthands is empty. Also, some code makes sense only with shorthands=....

376 \bbl@trace{Conditional loading of shorthands}
377 \def\bbl@sh@string#1{%

378 \ifx#1\@empty\else

379 \ifx#1t\string~%

380 \else\ifx#1c\string,%

381 \else\string#1%

382 \fi\fi

383 \expandafter\bbl@sh@string
384 \fi}

385 \1fx\bbl@opt@shorthands\@nnil

386 \def\bbl@ifshorthand#1#2#3{#2}%
387 \else\ifx\bbl@opt@shorthands\@empty
388 \def\bbl@ifshorthand#1#2#3{#3}%
389 \else

The following macro tests if a shorthand is one of the allowed ones.

390 \def\bbl@ifshorthand#1{%
391 \bbl@xin@{\string#1}{\bbl@opt@shorthands}%

392 \ifin@

393 \expandafter\@firstoftwo
394 \else

395 \expandafter\@secondoftwo
396 \fi}

We make sure all chars in the string are ‘other’, with the help of an auxiliary macro defined above
(which also zaps spaces).

397 \edef\bbl@opt@shorthands{%

398 \expandafter\bbl@sh@string\bbl@opt@shorthands\@empty}%
The following is ignored with shorthands=off, since it is intended to take some aditional actions for
certain chars.

399 \bbl@ifshorthand{'}%

400 {\PassOptionsToPackage{activeacute}{babel}}{}

401 \bbl@ifshorthand{ }%

402 {\PassOptionsToPackage{activegrave}{babel}}{}

403 \fi\fi

69



With headfoot=1ang we can set the language used in heads/foots. For example, in babel/3796 just
adds headfoot=english. It misuses \@resetactivechars but seems to work.

404 \ifx\bbl@opt@headfoot\@nnil\else

405 \g@addto@macro\@resetactivechars{%

406 \set@typeset@protect

407 \expandafter\select@language@x\expandafter{\bbl@opt@headfoot}%
408 \let\protect\noexpand}

409 \f1

For the option safe we use a different approach — \bbl@opt@safe says which macros are redefined (B
for bibs and R for refs). By default, both are currently set, but in a future release it will be set to none.

410 \ifx\bbl@opt@safe\@undefined

411 \def\bbl@opt@safe{BR}

412 % \let\bbl@opt@safe\@empty % Pending of \cite
413\ f1

For layout an auxiliary macro is provided, available for packages and language styles. Optimization:
if there is no layout, just do nothing.

414 \bbl@trace{Defining IfBabellayout}

415 \ifx\bbl@opt@layout\@nnil

416  \newcommand\IfBabellLayout[3]1{#3}%

417 \else

418 \newcommand\IfBabellLayout[1]1{%

419 \@expandtwoargs\in@{.#1.}{.\bbl@opt@layout.}%

420 \ifin@

421 \expandafter\@firstoftwo
422 \else

423 \expandafter\@secondoftwo
424 \fi}

425 \f1

426 (/package)
427 (xcore)

6.6 Interlude for Plain

Because of the way docstrip works, we need to insert some code for Plain here. However, the tools
provided by the babel installer for literate programming makes this section a short interlude,
because the actual code is below, tagged as Emulate LaTeX.

428 \ifx\1ldf@quit\@undefined\else

429 \endinput\fi % Same line!

430 ((Make sure ProvidesFile is defined))

431 \ProvidesFile{babel.def}[((date)) ((version)) Babel common definitions]
432 \ifx\AtBeginDocument\@undefined % TODO. change test.

433 ((Emulate LaTeX))

434 \fi

That is all for the moment. Now follows some common stuff, for both Plain and ETgX. After it, we will
resume the BIgX-only stuff.

435 (/core)
436 (xpackage | core)

7 Multiple languages

This is not a separate file (switch.def) anymore.
Plain TgX version 3.0 provides the primitive \1anguage that is used to store the current language.
When used with a pre-3.0 version this function has to be implemented by allocating a counter.

437 \def\bbl@version{((version))}
438 \def\bbl@date{((date))}
439 ((Define core switching macros))

70



\adddialect The macro \adddialect can be used to add the name of a dialect or variant language, for which an
already defined hyphenation table can be used.

440 \def\adddialect#1#2{%

441 \global\chardef#1#2\relax

442  \bbl@usehooks{adddialect}{{#1}{#2}}%
443 \begingroup

444 \count@#1\relax

445 \def\bbl@el t##1##2##3##4{%

446 \ifnum\count@=##2\relax

447 \edef\bbl@tempa{\expandafter\@gobbletwo\string#1}%

448 \bbl@info{Hyphen rules for '\expandafter\@gobble\bbl@tempa'
449 set to \expandafter\string\csname 1@##1\endcsname\\%
450 (\string\language\the\count@). Reported}%

451 \def\bbl@el t####1####2##H##3####4{}%

452 \fi}%

453 \bbl@cs{languages}%
454 \endgroup}

\bbl@iflanguage executes code only if the language 1@ exists. Otherwise raises an error.

The argument of \bb1@fixname has to be a macro name, as it may get “fixed” if casing (Ic/uc) is
wrong. It’s an attempt to fix a long-standing bug when \foreignlanguage and the like appear in a
\MakeXXXcase. However, a lowercase form is not imposed to improve backward compatibility
(perhaps you defined a language named MYLANG, but unfortunately mixed case names cannot be
trapped). Note 1@ is encapsulated, so that its case does not change.

455 \def\bbl@fixname#1{%

456 \begingroup

457 \def\bbl@tempe{1@}%

458 \edef\bbl@tempd{\noexpand\@ifundefined{\noexpand\bbl@tempe#1}}%
459 \bbl@tempd

460 {\lowercase\expandafter{\bbl@tempd}%

461 {\uppercase\expandafter{\bbl@tempd}%

462 \@empty

463 {\edef\bbl@tempd{\def\noexpand#1{#1}}%
464 \uppercase\expandafter{\bbl@tempd}}}%
465 {\edef\bbl@tempd{\def\noexpand#1{#1}}%
466 \lowercase\expandafter{\bbl@tempd}}}%
467 \@empty

468 \edef\bbl@tempd{\endgroup\def\noexpand#1{#1}}%

469 \bbl@tempd

470  \bbl@exp{\\\bbl@usehooks{languagename}{{\languagename}{#1}}}}
471 \def\bbl@iflanguage#1{%

472 \@ifundefined{l@#1}{\@nolanerr{#1}\@gobble}\@firstofone}

After a name has been ‘fixed’, the selectors will try to load the language. If even the fixed name is not
defined, will load it on the fly, either based on its name, or if activated, its BCP47 code.

We first need a couple of macros for a simple BCP 47 look up. It also makes sure, with \bbl@bcpcase,
casing is the correct one, so that sr-latn-ba becomes fr-Latn-BA. Note #4 may contain some \@empty’s,
but they are eventually removed. \bbl@bcplookup either returns the found ini or it is \relax.

473 \def\bbl@bcpcase#1#2#3#4\@@#5{%

474 \ifx\@empty#3%

475 \uppercase{\def#5{#1#2}}%

476 \else

477 \uppercase{\def#5{#1}}%

478 \lowercase{\edef#5{#5#2#3#4}}%

479 \fi}

480 \def\bbl@bcplookup#1-#2-#3-#4\@@{%

481 \let\bbl@bcp\relax

482  \lowercase{\def\bbl@tempa{#1}}%

483 \ifx\@empty#2%

484 \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%
485 \else\ifx\@empty#3%

486 \bbl@bcpcase#2\@empty\@empty\@@\bbl@tempb

487 \IfFileExists{babel-\bbl@tempa-\bbl@tempb.ini}%

71



488 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempb}}%

489 {}%

490 \ifx\bbl@bcp\relax

491 \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%
492 \fi

493  \else

494 \bbl@bcpcase#2\@empty\@empty\@@\bbl@tempb
495 \bbl@bcpcase#3\@empty\@empty\@@\bbl@tempc
496 \IfFileExists{babel-\bbl@tempa-\bbl@tempb-\bbl@tempc.ini}%

497 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempb-\bbl@tempc}}%
498 {}%

499 \ifx\bbl@bcp\relax

500 \IfFileExists{babel-\bbl@tempa-\bbl@tempc.ini}%
501 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempc}}%

502 {}%

503 \fi

504 \ifx\bbl@bcp\relax

505 \IfFileExists{babel-\bbl@tempa-\bbl@tempc.ini}%
506 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempc}}%

507 {}%

508 \fi

509 \ifx\bbl@bcp\relax

510 \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%
511 \fi

512 \fi\fi}

513 \let\bbl@initoload\relax

514 \def\bbl@provide@locale{%

515 \ifx\babelprovide\@undefined

516 \bbl@error{For a language to be defined on the fly 'base'\\%

517 is not enough, and the whole package must be\\%
518 loaded. Either delete the 'base' option or\\%
519 request the languages explicitly}%

520 {See the manual for further details.}%

521 \fi

522% TODO. Option to search if loaded, with \LocaleForEach

523 \let\bbl@auxname\languagename % Still necessary. TODO

524 \bbl@ifunset{bbl@bcp@map@\languagename}{}% Move uplevel??

525 {\edef\languagename{\@nameuse{bbl@bcp@map@\languagename}}}%
526 \ifbbl@bcpallowed

527 \expandafter\ifx\csname date\languagename\endcsname\relax

528 \expandafter

529 \bbl@bcplookup\languagename-\@empty-\@empty-\@empty\@@

530 \ifx\bbl@bcp\relax\else % Returned by \bbl@bcplookup

531 \edef\languagename{\bbl@bcp@prefix\bbl@bcp}%

532 \edef\localename{\bbl@bcp@prefix\bbl@bcp}%

533 \expandafter\ifx\csname date\languagename\endcsname\relax
534 \let\bbl@initoload\bbl@bcp

535 \bbl@exp{\\\babelprovide[\bbl@autoload@bcpoptions]{\languagename}}%
536 \let\bbl@initoload\relax

537 \fi

538 \bbl@csarg\xdef{bcp@map@\bbl@bcp}{\localename}%

539 \fi

540 \fi

541 \fi

542 \expandafter\ifx\csname date\languagename\endcsname\relax
543 \IfFileExists{babel-\languagename.tex}%

544 {\bbl@exp{\\\babelprovide[\bbl@autoload@options]{\languagename}}}%
545 {}%
546 \fi}

\iflanguage Users might want to test (in a private package for instance) which language is currently active. For
this we provide a test macro, \iflanguage, that has three arguments. It checks whether the first
argument is a known language. If so, it compares the first argument with the value of \language.

72



\selectlanguage

\bbl@pop@language

\bbl@language@stack

\bbl@push@language
\bbl@pop@language

Then, depending on the result of the comparison, it executes either the second or the third argument.

547 \def\iflanguage#1{%
548 \bbl@iflanguage{#1}{%

549 \ifnum\csname 1@#1\endcsname=\language
550 \expandafter\@firstoftwo

551 \else

552 \expandafter\@secondoftwo

553 \fi}}

7.1 Selecting the language

The macro \selectlanguage checks whether the language is already defined before it performs its
actual task, which is to update \language and activate language-specific definitions.

554 \let\bbl@select@type\z@

555 \edef\selectlanguage{%

556 \noexpand\protect

557 \expandafter\noexpand\csname selectlanguage \endcsname}

Because the command \selectlanguage could be used in a moving argument it expands to
\protect\selectlanguage_ . Therefore, we have to make sure that a macro \protect exists. If it
doesn’titis \let to \relax.

558 \ifx\@undefined\protect\let\protect\relax\fi

The following definition is preserved for backwards compatibility (eg, arabi, koma). It is related to a
trick for 2.09, now discarded.

559 \let\xstring\string

Since version 3.5 babel writes entries to the auxiliary files in order to typeset table of contents etc. in
the correct language environment.

But when the language change happens inside a group the end of the group doesn’t write anything to
the auxiliary files. Therefore we need TgX’s aftergroup mechanism to help us. The command
\aftergroup stores the token immediately following it to be executed when the current group is
closed. So we define a temporary control sequence \bbl@pop@language to be executed at the end of
the group. It calls \bbl@set@language with the name of the current language as its argument.

The previous solution works for one level of nesting groups, but as soon as more levels are used it is
no longer adequate. For that case we need to keep track of the nested languages using a stack
mechanism. This stack is called \bbl@language@stack and initially empty.

560 \def\bbl@language@stack{}
When using a stack we need a mechanism to push an element on the stack and to retrieve the
information afterwards.
The stack is simply a list of languagenames, separated with a ‘+’ sign; the push function can be simple:

561 \def\bbl@push@language{%
s62 \ifx\languagename\@undefined\else

563 \ifx\currentgrouplevel\@undefined

564 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}%
565 \else

566 \ifnum\currentgrouplevel=\z@

567 \xdef\bbl@language@stack{\languagename+}%

568 \else

569 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}%
570 \fi

571 \fi

572 \fi}

Retrieving information from the stack is a little bit less simple, as we need to remove the element
from the stack while storing it in the macro \languagename. For this we first define a helper
function.

73



\bbl@pop@lang This macro stores its first element (which is delimited by the ‘“+’-sign) in \1anguagename and stores

\bbl@set@language

the rest of the string in \bbl@language@stack.

573 \def\bbl@pop@lang#1+#2\@@{%
574 \edef\languagename{#1}%
575 \xdef\bbl@language@stack{#2}}

The reason for the somewhat weird arrangement of arguments to the helper function is the fact it is
called in the following way. This means that before \bbl@pop@lang is executed TgX first expands the
stack, stored in \bbl@language@stack. The result of that is that the argument string of
\bbl@pop@lang contains one or more language names, each followed by a ‘+’-sign (zero language
names won’t occur as this macro will only be called after something has been pushed on the stack).

576 \let\bbl@ifrestoring\@secondoftwo

577 \def\bbl@pop@language{%

578 \expandafter\bbl@pop@lang\bbl@language@stack\@@

579 \let\bbl@ifrestoring\@firstoftwo

580 \expandafter\bbl@set@language\expandafter{\languagename}%
581 \let\bbl@ifrestoring\@secondoftwo}

Once the name of the previous language is retrieved from the stack, it is fed to \bbl@set@language
to do the actual work of switching everything that needs switching.

An alternative way to identify languages (in the babel sense) with a numerical value is introduced in
3.30. This is one of the first steps for a new interface based on the concept of locale, which explains
the name of \localeid. This means \1@. . . will be reserved for hyphenation patterns (so that two
locales can share the same rules).

582 \chardef\localeid\z@

583 \def\bbl@id@last{0} % No real need for a new counter
584 \def\bbl@id@assign{%

585 \bbl@ifunset{bbl@id@@\languagename}%

586 {\count@\bbl@id@last\relax

587 \advance\count@\@ne

588 \bbl@csarg\chardef{id@@\languagename}\count@

589 \edef\bbl@id@last{\the\count@}%

590 \ifcase\bbl@engine\or

591 \directlua{

592 Babel = Babel or {}

593 Babel.locale_props = Babel.locale_props or {}
594 Babel.locale_props[\bbl@id@last] = {}

595 Babel.locale_props[\bbl@id@last].name = '\languagename'
596 }%

597 \fi}%

598 {}%

599 \chardef\localeid\bbl@cl{id@}}
The unprotected part of \selectlanguage.

600 \expandafter\def\csname selectlanguage \endcsname#1{%
601 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\tw@\fi
602 \bbl@push@language

603 \aftergroup\bbl@pop@language

604 \bbl@set@language{#1}}

The macro \bbl@set@language takes care of switching the language environment and of writing
entries on the auxiliary files. For historial reasons, language names can be either language of
\language. To catch either form a trick is used, but unfortunately as a side effect the catcodes of
letters in \languagename are messed up. This is a bug, but preserved for backwards compatibility.
The list of auxiliary files can be extended by redefining \BabelContentsFiles, but make sure they
are loaded inside a group (as aux, toc, lof, and lot do) or the last language of the document will
remain active afterwards.

We also write a command to change the current language in the auxiliary files.
\bbl@savelastskip is used to deal with skips before the write whatsit (as suggested by U Fischer).
Adapted from hyperref, but it might fail, so I’ll consider it a temporary hack, while I study other
options (the ideal, but very likely unfeasible except perhaps in luatex, is to avoid the \write
altogether when not needed).

74



605 \def\BabelContentsFiles{toc,lof,lot}

606 \def\bbl@set@language#1{% from selectlanguage, pop@
607 % The old buggy way. Preserved for compatibility.
608 \edef\languagename{%

609 \ifnum\escapechar=\expandafter "\string#1\@empty
610 \else\string#1\@empty\fi}%

611 \ifcat\relax\noexpand#1%

612 \expandafter\ifx\csname date\languagename\endcsname\relax

613 \edef\languagename{#1}%

614 \let\localename\languagename

615 \else

616 \bbl@info{Using '\string\language' instead of 'language' 1is\\%
617 deprecated. If what you want is to use a\\%

618 macro containing the actual locale, make\\%

619 sure it does not not match any language.\\%

620 Reported}%

621 \ifx\scantokens\@undefined

622 \def\localename{??}%

623 \else

624 \scantokens\expandafter{\expandafter

625 \def\expandafter\localename\expandafter{\languagename}}%
626 \fi

627 \fi

628 \else

629 \def\localename{#1}% This one has the correct catcodes

630 \fi

631 \select@language{\languagename}%

632 % write to auxs

633 \expandafter\ifx\csname date\languagename\endcsname\relax\else
634 \if@filesw

635 \ifx\babel@aux\@gobbletwo\else % Set if single in the first, redundant
636 \bbl@savelastskip

637 \protected@write\@auxout{}{\string\babel@aux{\bbl@auxname}{}}%

638 \bbl@restorelastskip

639 \fi

640 \bbl@usehooks{write}{}%

641 \fi

642 \fi}

643 %

644 \let\bbl@restorelastskip\relax

645 \let\bbl@savelastskip\relax

646 %

647 \newif\ifbbl@bcpallowed

648 \bbl@bcpallowedfalse

649 \def\select@language#1{% from set@, babel@aux
650 \ifx\bbl@selectorname\@empty

651 \def\bbl@selectorname{select}%

652 % set hymap

653 \fi

654 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi
655 % set name

656 \edef\languagename{#1}%

657 \bbl@fixname\languagename

658 % TODO. name@map must be here?

659 \bbl@provide@locale

660 \bbl@iflanguage\languagename{%

661 \expandafter\ifx\csname date\languagename\endcsname\relax
662 \bbl@error

663 {Unknown language '\languagename'. Either you have\\%
664 misspelled its name, it has not been installed,\\%

665 or you requested it in a previous run. Fix its name,\\%
666 install it or just rerun the file, respectively. In\\%
667 some cases, you may need to remove the aux file}%

75



668 {You may proceed, but expect wrong results}%

669 \else

670 % set type

671 \let\bbl@select@type\z@

672 \expandafter\bbl@switch\expandafter{\languagename}%
673 \fi}}

674 \def\babel@aux#1#2{%

675 \select@language{#1}%

676 \bbl@foreach\BabelContentsFiles{% \relax -> don't assume vertical mode
677 \@vritefile{##1}{\babel@toc{#1}{#2}\relax}}}% TODO - plain?

678 \def\babel@toc#1#2{%

679 \select@language{#1}}

First, check if the user asks for a known language. If so, update the value of \1language and call
\originalTeX to bring TgX in a certain pre-defined state.

The name of the language is stored in the control sequence \languagename.

Then we have to redefine \originalTeX to compensate for the things that have been activated. To
save memory space for the macro definition of \originalTeX, we construct the control sequence
name for the \noextras(lang) command at definition time by expanding the \csname primitive.
Now activate the language-specific definitions. This is done by constructing the names of three
macros by concatenating three words with the argument of \selectlanguage, and calling these
macros.

The switching of the values of \1efthyphenmin and \righthyphenmin is somewhat different. First
we save their current values, then we check if \(lang)hyphenmins is defined. If it is not, we set
default values (2 and 3), otherwise the values in \ (lang)hyphenmins will be used.

680 \newif\ifbbl@usedategroup

681 \def\bbl@switch#1{% from select@, foreign@

682 % make sure there is info for the language if so requested
683 \bbl@ensureinfo{#1}%

684 % restore

685 \originalTeX

686 \expandafter\def\expandafter\originalTeX\expandafter{%

687 \csname noextras#1\endcsname
688 \let\originalTeX\@empty
689 \babel@beginsave}%

690 \bbl@usehooks{afterreset}{}%

691 \languageshorthands{none}%

692 % set the locale id

693 \bbl@id@assign

694 % switch captions, date

695 % No text is supposed to be added here, so we remove any
696 % spurious spaces.

697 \bbl@bsphack

698 \ifcase\bbl@select@type

699 \csname captions#1\endcsname\relax

700 \csname date#1\endcsname\relax

701 \else

702 \bbl@xin@{,captions,}{,\bbl@select@opts,}%
703 \ifin@

704 \csname captions#1\endcsname\relax

705 \fi

706 \bbl@xin@{,date, }{, \bbl@select@opts, }%

707 \ifin@ % if \foreign... within \<lang>date
708 \csname date#1\endcsname\relax

709 \fi

710 \fi

711 \bbl@esphack

712 % switch extras

713 \bbl@usehooks{beforeextras}{}%
714 \csname extras#1\endcsname\relax
715 \bbl@usehooks{afterextras}{}%
716 % > babel-ensure

717 % > babel-sh-<short>

76



718 % > babel-bidi

719 % > babel-fontspec

720 % hyphenation - case mapping

721 \ifcase\bbl@opt@hyphenmap\or

722 \def\BabellLower##1##2{\1ccode##1=##2\relax}%
723 \ifnum\bbl@hymapsel>4\else

724 \csname\languagename @bbl@hyphenmap\endcsname
725 \fi

726 \chardef\bbl@opt@hyphenmap\z@

727 \else

728 \ifnum\bbl@hymapsel>\bbl@opt@hyphenmap\else

729 \csname\languagename @bbl@hyphenmap\endcsname
730 \fi

731 \fi

732 \let\bbl@hymapsel\@cclv

733 % hyphenation - select rules

734 \ifnum\csname 1@\languagename\endcsname=\1l@unhyphenated
735 \edef\bbl@tempa{u}%

736 \else
737 \edef\bbl@tempa{\bbl@cl{1lnbrk}}%
738 \fi

739 % linebreaking - handle u, e, k (v in the future)

740 \bbl@xin@{/u}{/\bbl@tempa}%

741 \ifin@\else\bbl@xin@{/e}{/\bbl@tempa}\fi % elongated forms
742 \ifin@\else\bbl@xin@{/k}{/\bbl@tempa}\fi % only kashida
743 \ifin@\else\bbl@xin@{/v}{/\bbl@tempa}\fi % variable font
744 \ifin@

745 % unhyphenated/kashida/elongated = allow stretching

746 \language\l@unhyphenated

747 \babel@savevariable\emergencystretch
748 \emergencystretch\maxdimen

749 \babel@savevariable\hbadness

750 \hbadness\@M

751  \else

752 % other = select patterns

753 \bbl@patterns{#1}%

754 \fi

755 % hyphenation - mins

756  \babel@savevariable\lefthyphenmin

757 \babel@savevariable\righthyphenmin

758 \expandafter\ifx\csname #7Thyphenmins\endcsname\relax
759 \set@hyphenmins\tw@\thr@@\relax

760 \else

761 \expandafter\expandafter\expandafter\set@hyphenmins
762 \csname #1hyphenmins\endcsname\relax

763 \fi

764 \let\bbl@selectorname\@empty}

otherlanguage (env.) The otherlanguage environment can be used as an alternative to using the \selectlanguage
declarative command. When you are typesetting a document which mixes left-to-right and
right-to-left typesetting you have to use this environment in order to let things work as you expect
them to.
The \ignorespaces command is necessary to hide the environment when it is entered in horizontal
mode.

765 \long\def\otherlanguage#1{%

766 \def\bbl@selectorname{other}%

767 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\thr@@\fi
768 \csname selectlanguage \endcsname{#1}%

769 \ignorespaces}

The \endotherlanguage part of the environment tries to hide itself when it is called in horizontal
mode.

770 \long\def\endotherlanguage{%

77



otherlanguage* (env.)

\foreignlanguage

771 \global\@ignoretrue\ignorespaces}

The otherlanguage environment is meant to be used when a large part of text from a different
language needs to be typeset, but without changing the translation of words such as ‘figure’. This
environment makes use of \foreign@language.

772 \expandafter\def\csname otherlanguage*\endcsname{%

773 \@ifnextchar[\bbl@otherlanguage@s{\bbl@otherlanguage@s[]}}
774 \def\bbl@otherlanguage@s [#1]#2{%

775  \def\bbl@selectorname{other*}%

776 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi
777 \def\bbl@select@opts{#1}%

778 \foreign@language{#2}}

At the end of the environment we need to switch off the extra definitions. The grouping mechanism
of the environment will take care of resetting the correct hyphenation rules and “extras”.

779 \expandafter\let\csname endotherlanguage*\endcsname\relax

The \foreignlanguage command is another substitute for the \selectlanguage command. This
command takes two arguments, the first argument is the name of the language to use for typesetting
the text specified in the second argument.

Unlike \selectlanguage this command doesn’t switch everything, it only switches the hyphenation
rules and the extra definitions for the language specified. It does this within a group and assumes the
\extras(lang) command doesn’t make any \global changes. The coding is very similar to part of
\selectlanguage.

\bbl@beforeforeignis a trick to fix a bug in bidi texts. \foreignlanguage is supposed to be a ‘text’
command, and therefore it must emit a \1eavevmode, but it does not, and therefore the indent is
placed on the opposite margin. For backward compatibility, however, it is done only if a right-to-left
script is requested; otherwise, it is no-op.

(3.11) \foreignlanguage* is a temporary, experimental macro for a few lines with a different script
direction, while preserving the paragraph format (thank the braces around \par, things like
\hangindent are not reset). Do not use it in production, because its semantics and its syntax may
change (and very likely will, or even it could be removed altogether). Currently it enters in vimode
and then selects the language (which in turn sets the paragraph direction).

(3.11) Also experimental are the hook foreign and foreign*. With them you can redefine
\BabelText which by default does nothing. Its behavior is not well defined yet. So, use it in
horizontal mode only if you do not want surprises.

In other words, at the beginning of a paragraph \foreignlanguage enters into hmode with the
surrounding lang, and with \foreignlanguage* with the new lang.

780 \providecommand\bbl@beforeforeign{}

781 \edef\foreignlanguage{%

782 \noexpand\protect

783 \expandafter\noexpand\csname foreignlanguage \endcsname}
784 \expandafter\def\csname foreignlanguage \endcsname{%
785 \@ifstar\bbl@foreign@s\bbl@foreign@x}

786 \providecommand\bbl@foreign@x[3][]1{%

787 \begingroup

788 \def\bbl@selectorname{foreign}%

789 \def\bbl@select@opts{#1}%

790 \let\BabelText\@firstofone

791 \bbl@beforeforeign

792 \foreign@language{#2}%

793 \bbl@usehooks{foreign}{}%

794 \BabelText{#3}% Now in horizontal mode!

795 \endgroup}

796 \def\bbl@foreign@s#1#2{% TODO - \shapemode, \@setpar, ?\@@par
797 \begingroup

798 {\par}%

799 \def\bbl@selectorname{foreign*}%

800 \let\bbl@select@opts\@empty

801 \let\BabelText\@firstofone

802 \foreign@language{#1}%

803 \bbl@usehooks{foreign*}{}%

804 \bbl@dirparastext

78



805 \BabelText{#2}% Still in vertical mode!
806 {\par}%
807 \endgroup}

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage* environment. First we
need to store the name of the language and check that it is a known language. Then it just calls
bbl@switch.

808 \def\foreign@language#1{%

809 % set name

810 \edef\languagename{#1}%

811 \ifbbl@usedategroup

812 \bbl@add\bbl@select@opts{,date,}%
813 \bbl@usedategroupfalse

814 \fi

815 \bbl@fixname\languagename

816 % TODO. name@map here?

817 \bbl@provide@locale

818 \bbl@iflanguage\languagename{%

819 \expandafter\ifx\csname date\languagename\endcsname\relax
820 \bbl@warning % TODO - why a warning, not an error?

821 {Unknown language '#1'. Either you have\\%

822 misspelled its name, it has not been installed,\\%

823 or you requested it in a previous run. Fix its name,\\%
824 install it or just rerun the file, respectively. In\\%
825 some cases, you may need to remove the aux file.\\%

826 I'11 proceed, but expect wrong results.\\%

827 Reported}%

828 \fi

829 % set type
830 \let\bbl@select@type\@ne
831 \expandafter\bbl@switch\expandafter{\languagename}}}

The following macro executes conditionally some code based on the selector being used.

832 \def\IfBabelSelector TF#1{%
833 \bbl@xin@{,\bbl@selectorname,}{,\zap@space#1 \@empty,}%
834 \ifin@

835 \expandafter\@firstoftwo
836 \else

837 \expandafter\@secondoftwo
838 \fi}

\bbl@patterns This macro selects the hyphenation patterns by changing the \language register. If special
hyphenation patterns are available specifically for the current font encoding, use them instead of the
default.

It also sets hyphenation exceptions, but only once, because they are global (here language \1ccode’s
has been set, too). \bbl@hyphenation@ is set to relax until the very first \babelhyphenation, so do
nothing with this value. If the exceptions for a language (by its number, not its name, so that : ENC is
taken into account) has been set, then use \hyphenation with both global and language exceptions
and empty the latter to mark they must not be set again.

839 \let\bbl@hyphlist\@empty

840 \let\bbl@hyphenation@\relax

841 \let\bbl@pttnlist\@empty

842 \let\bbl@patterns@\relax

843 \let\bbl@hymapsel=\@cclv

844 \def\bbl@patterns#1{%

845 \language=\expandafter\ifx\csname 1@#1:\f@encoding\endcsname\relax

846 \csname 1@#1\endcsname

847 \edef\bbl@tempa{#1}%

848 \else

849 \csname 1@#1:\f@encoding\endcsname
850 \edef\bbl@tempa{#1:\f@encoding}%
851 \fi

852 \@expandtwoargs\bbl@usehooks{patterns}{{#1}{\bbl@tempa}}%

79



853 % > luatex
854 \@ifundefined{bbl@hyphenation@}{}{% Can be \relax!

855 \begingroup

856 \bbl@xin@{, \number\language, }{,\bbl@hyphlist}%

857 \ifin@\else

858 \@expandtwoargs\bbl@usehooks{hyphenation}{{#1}{\bbl@tempa}}%
859 \hyphenation{%

860 \bbl@hyphenation@

861 \@ifundefined{bbl@hyphenation@#1}%

862 \@empty

863 {\space\csname bbl@hyphenation@#1\endcsname}}%
864 \xdef\bbl@hyphlist{\bbl@hyphlist\number\language, }%
865 \fi

866 \endgroup}}

hyphenrules (env.) The environment hyphenrules can be used to select just the hyphenation rules. This environment
does not change \languagename and when the hyphenation rules specified were not loaded it has no
effect. Note however, \1ccode’s and font encodings are not set at all, so in most cases you should use
otherlanguage*.

867 \def\hyphenrules#1{%

868 \edef\bbl@tempf{#1}%

869 \bbl@fixname\bbl@tempf

870 \bbl@iflanguage\bbl@tempf{%

871 \expandafter\bbl@patterns\expandafter{\bbl@tempf}%

872 \ifx\languageshorthands\@undefined\else

873 \languageshorthands{none}%

874 \fi

875 \expandafter\ifx\csname\bbl@tempf hyphenmins\endcsname\relax
876 \set@hyphenmins\tw@\thr@@\relax

877 \else

878 \expandafter\expandafter\expandafter\set@hyphenmins

879 \csname\bbl@tempf hyphenmins\endcsname\relax

880 \fi}}

881 \let\endhyphenrules\@empty

\providehyphenmins The macro \providehyphenmins should be used in the language definition files to provide a default
setting for the hyphenation parameters \lefthyphenmin and \righthyphenmin. If the macro
\(lang)hyphenmins is already defined this command has no effect.

882 \def\providehyphenmins#1#2{%

883 \expandafter\ifx\csname #1hyphenmins\endcsname\relax
884 \@namedef{#1hyphenmins}{#2}%

885 \fi}

\set@hyphenmins This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects two values as its
argument.

886 \def\set@hyphenmins#1#2{%
887 \lefthyphenmin#1\relax
888 \righthyphenmin#2\relax}

\ProvidesLanguage The identification code for each file is something that was introduced in KTgX 2. When the
command \ProvidesFile does not exist, a dummy definition is provided temporarily. For use in the
language definition file the command \ProvidesLanguage is defined by babel.

Depending on the format, ie, on if the former is defined, we use a similar definition or not.

889 \ifx\ProvidesFile\@undefined

890 \def\ProvidesLanguage#1[#2 #3 #41{%
891 \wlog{Language: #1 #4 #3 <#2>}%
892 }

893 \else

894 \def\ProvidesLanguage#1{%

895 \begingroup

896 \catcode™\ 10 %

897 \@makeother\/%

80



\originalTeX

\@nolanerr
\@nopatterns

\@noopterr

898 \@ifnextchar[%]

899 {\@provideslanguage{#1}}{\@provideslanguage{#1}[1}}
900 \def\@provideslanguage#1[#2]{%

901 \wlog{Language: #1 #2}%

902 \expandafter\xdef\csname ver@#1.ldf\endcsname{#2}%
903 \endgroup}
904 \fi

The macro\originalTeX should be known to TgX at this moment. As it has to be expandable we \let
it to \@empty instead of \relax.

905 \ifx\originalTeX\@undefined\let\originalTeX\@empty\fi

Because this part of the code can be included in a format, we make sure that the macro which
initializes the save mechanism, \babel@beginsave, is not considered to be undefined.

906 \1fx\babel@beginsave\@undefined\let\babel@beginsave\relax\fi

A few macro names are reserved for future releases of babel, which will use the concept of ‘locale’:

907 \providecommand\setlocale{%

908 \bbl@error

909 {Not yet available}%

910 {Find an armchair, sit down and wait}}
911 \let\uselocale\setlocale

912 \let\locale\setlocale

913 \let\selectlocale\setlocale

914 \let\textlocale\setlocale

915 \let\textlanguage\setlocale

916 \let\languagetext\setlocale

7.2 Errors

The babel package will signal an error when a documents tries to select a language that hasn’t been
defined earlier. When a user selects a language for which no hyphenation patterns were loaded into
the format he will be given a warning about that fact. We revert to the patterns for \language=0 in

that case. In most formats that will be (US)english, but it might also be empty.

When the package was loaded without options not everything will work as expected. An error
message is issued in that case.

When the format knows about \PackageError it must be ETgX 2¢, so we can safely use its error
handling interface. Otherwise we’ll have to ‘keep it simple’.

Infos are not written to the console, but on the other hand many people think warnings are errors, so
a further message type is defined: an important info which is sent to the console.

917 \edef\bbl@nulllanguage{\string\language=0}

918 \def\bbl@nocaption{\protect\bbl@nocaption@i}

919 \def\bbl@