
The wrapfig2 package
Claudio Beccari∗

Version v.4.0 – Last revised 2021-12-21.

Contents
1 Introduction 1

2 Environment syntax 3

3 Examples 3
3.1 A wrapped figure 3

3.2 A wrapped table 4
3.3 A wrapped text 5

4 Remarks 6

5 Other floating objects 7

6 The code 8

Abstract
This new package wrapfig2 is a fork that upgrades Donald Arseneau’s

package wrapfig (version 2.6, dated 2003) by adding some LATEX 3 defini-
tions that accept a final optional star; its presence changes the meaning of
the first optional argument so that it becomes a correction to the number of
lines that must be indented in order to receive the wrapped object. A new
environment is added to the traditional wrapfigure and wraptable, namely
wraptext; it may be used to wrap a small framed text block on a grey back-
ground; the philosophy of this new environment is similar to that of the
other two environments, but the syntax is different.

Caution This package requires a fairly recent LATEX kernel, otherwise it won’t
work; any LATEX kernel dated at least 2020 is OK.

1 Introduction
The purpose of this package is twofold. On one side it tries to modernise the
original software by Donald Arseneau by upgrading it to the LATEX 3 modern
language. On the other it creates a new environment, with the same philosophy
of the original Arseneau’s ones, such that a document author can emphasise short
blocks of text by framing them while typesetting the text on a coloured background
by means of the tcolorbox functionalities, and wrapping this inserted text with
the surrounding main text.

∗E-mail: claudio dot beccari at gmail dot com

1

The original software had some idiosyncrasies; Donald Arseneau described
them in the documentation of his package; I am sorry to say that such idiosyn-
crasies have not been reduced; but in any case the solution is to wrap the inserted
object with a sufficient number of lines, i.e. by a sufficiently long paragraph.

The above implies that no wrapped object code should be inserted by the
end of a paragraph; again no object code should be inserted within any list; not
even close to the end or to the beginning of section. Arseneau’s code is capable
of specifying the wrapping number of lines such that two or more paragraphs
can be indented so as to wrap a longish insertion, but it is wise to avoid such
risky situations. Moreover, if the inserted figure or table has a numbered caption,
the number might not result in the correct order with the normal corresponding
floating objects.

Therefore the usefulness of the wrapping procedure depends very much from
the document author ability to move around his/her code until a suitable position
is found. Certainly a good place is within a longish first section at the beginning
of a new chapter.

The code of this package does not do anything to correct such idiosyncrasies.
They are caused by the limitations of the \ShipOut native TEX/LATEX 2ε macro,
and very little can be done in addition to what Arseneau already did.

Another purpose of this package is to add an option so that the 〈number of
indented lines〉 argument does not mean the total number, but the correction num-
ber to add-to or subtract-from to the value computed by the default mechanism
devised by Arseneau. We assume that any user first uses the software to insert an
object to be wrapped by the surrounding text without specifying any value with
the specific optional argument; then evaluates the result, and if the space below
the wrapped object is too large, or if such space is too small s/he counts the nec-
essary number of lines and specifies it to be processed during another document
compilation. When the object to be wrapped is tall, it is very easy to miscount
the necessary number of lines, while is is very easy to evaluate the necessary small
correction to the default computed value.

A third purpose of this package is to define a new environment, wraptext, to
wrap a framed text block typeset on a grey background as if it were a figure. On
texstackexchange a solution was suggested to a user who was asking for such an
arrangement; the solution resorted to a specific use of the wrapfigure environment.
We thought that an ad hoc solution would be a better one, since the parameters
to be used for a figure have nothing or little to do with a text, therefore most of
them would be useless with a wrapped text. Nevertheless the 〈location〉 of the
wrapped text and the optional correction of the indented lines number would still
be necessary. We added also the possibility of optionally specifying the measure
of the wrapped text, even if this measure should not be too different from a half of
the wrapping text measure: with a value too different from 0.5\linewidth either
the wrapped text has problems with inter word spaces and hyphenation because
of the small measure, or, on the opposite, the indented lines of the wrapping text
have similar problems.

2

2 Environment syntax
The new syntax for wrapfigure and wraptable is backwards compatible with the
original one: just a final optional star is added to the original list of arguments.
As the list of arguments shows, the wraptext environment has similar features, but
all its arguments are optional, so that they may be specified independently from
one another, provided that, when they are more than one, they are specified in
the order shown in the syntax table.

The optional star is available only for the standard wrapfigure and wraptable
environments because the backwards compatibility requires the first four optional
and mandatory arguments. When the optional star is specified, the 〈indented lines
number〉 is interpreted as the correction to the computed number.

\begin{wrapfigure}[〈indented lines number〉]{〈location〉}[〈overhang〉][〈width〉]〈⋆〉
〈figure〉

\end{wrapfigure}

\begin{wraptable}[〈indented lines number〉]{〈location〉}[〈overhang〉][〈width〉]〈⋆〉
〈table〉

\end{wraptable}

\begin{wraptext}[〈location〉]|〈width〉|<〈indented line number correction〉>(〈caption label〉)
〈wrapped framed text〉

\end{wraptext}

3 Examples
We display some examples by using fake objects such that suitably long paragraphs
are available; some fake language long paragraphs are obtained by means of the
kantlipsum package functionalities. They contain paragraphs that look as Kant’s
sentences, but we doubt that Immanuel Kant ever wrote such texts. . .

3.1 A wrapped figure

Figure 1: A rectangle

As any dedicated reader can clearly see, the
Ideal of practical reason is a representation of,
as far as I know, the things in themselves; as I
have shown elsewhere, the phenomena should
only be used as a canon for our understanding.
The paralogisms of practical reason are what
first give rise to the architectonic of practical
reason. As will easily be shown in the next sec-
tion, reason would thereby be made to contra-
dict, in view of these considerations, the Ideal
of practical reason, yet the manifold depends
on the phenomena. Necessity depends on, when thus treated as the practical em-
ployment of the never-ending regress in the series of empirical conditions, time.
Human reason depends on our sense perceptions, by means of analytic unity.

3

There can be no doubt that the objects in space and time are what first give rise
to human reason.

The code used to type the above figure is the following:

\begin{wrapfigure}{r}{50mm}
\centering\unitlength=1mm
\begin{picture}(40,30)
\polygon(0,0)(40,0)(40,30)(0,30)
\Line(0,0)(40,30)\Line(0,30)(40,0)
\end{picture}
\caption{A rectangle with its diagonals}
\end{wrapfigure}

\kant[1]

No asterisk was used because the package succeeded to correctly compute the
necessary number of indented lines.

3.2 A wrapped table
Wrapping a small table is a little more difficult than wrapping a figure, because
the width of the inserted object is not known exactly in advance and is difficult
to estimate; therefore it is possible that several trial compilations are necessary.
In any case a \centering command might help to center the table within the
indention of the wrapping text. Nevertheless the software can compute the ob-
ject width if a zero value is specified or if the mandatory 〈width〉 parameter is
completely omitted; this second possibility is a feature of this package, that uses
a LATEX 3 property by which even a braced argument can be treated as an op-
tional argument with a predefined default value; see below more details about this
feature.

First Second
Third Fourth

Table 1: A small
table

Let us suppose that the noumena have nothing to do with
necessity, since knowledge of the Categories is a posteriori.
Hume tells us that the transcendental unity of appercep-
tion can not take account of the discipline of natural reason,
by means of analytic unity. As is proven in the ontological
manuals, it is obvious that the transcendental unity of apper-
ception proves the validity of the Antinomies; what we have

alone been able to show is that, our understanding depends on the Categories. It
remains a mystery why the Ideal stands in need of reason. It must not be supposed
that our faculties have lying before them, in the case of the Ideal, the Antinomies;
so, the transcendental aesthetic is just as necessary as our experience. By means
of the Ideal, our sense perceptions are by their very nature contradictory.

The above wrapped small table has been typeset by means of the following
code.

\begin{wraptable}{l}
\centering

4

\begin{tabular}{cc}
\hline
First & Second\\
Third & Fourth\\
\hline

\end{tabular}
\caption{A small table}

\end{wraptable}
\kant[2]

You notice the absence of the braced width value; as said above, this braced
value is optional, and the software autonomously computes the width of the
wrapped object. This feature may be useful in many instances, although we think
that a smart use of this width parameter might yield better looking results.

On the opposite if the user estimates that the table with its caption might use
5 lines, and specified such a value as the first (optional) argument to the environ-
ment, the result would be this poor one, with the last caption line overlapping the
wrapping text.

First Second
Third Fourth

Table 2: A small
table

Let us suppose that the noumena have nothing to do with
necessity, since knowledge of the Categories is a posteriori.
Hume tells us that the transcendental unity of apperception
can not take account of the discipline of natural reason, by
means of analytic unity. As is proven in the ontological man-

uals, it is obvious that the transcendental unity of apperception proves the validity
of the Antinomies; what we have alone been able to show is that, our understand-
ing depends on the Categories. It remains a mystery why the Ideal stands in need
of reason. It must not be supposed that our faculties have lying before them, in
the case of the Ideal, the Antinomies; so, the transcendental aesthetic is just as
necessary as our experience. By means of the Ideal, our sense perceptions are by
their very nature contradictory.

If

3.3 A wrapped text

Text, text, text, text, text, text,
text, text, text, text, text.

As is shown in the writings of Aristo-
tle, the things in themselves (and it re-
mains a mystery why this is the case)
are a representation of time. Our con-
cepts have lying before them the par-
alogisms of natural reason, but our a

posteriori concepts have lying before them the practical employment of our ex-
perience. Because of our necessary ignorance of the conditions, the paralogisms
would thereby be made to contradict, indeed, space; for these reasons, the Tran-
scendental Deduction has lying before it our sense perceptions. (Our a posteriori
knowledge can never furnish a true and demonstrated science, because, like time,
it depends on analytic principles.) So, it must not be supposed that our experience

5

depends on, so, our sense perceptions, by means of analysis. Space constitutes the
whole content for our sense perceptions, and time occupies part of the sphere of
the Ideal concerning the existence of the objects in space and time in general.

The above example was typeset with this simple code:

\begin{wraptext}
Text, text, text, text, text, text, text, text, text, text, text.
\end{wraptext}
\kant[3]

As it was previously shown, the syntax for the wraptext environment is a
little different from that of the other two environments. The logic behind it is
substantially the same; the 〈width〉 parameter is optional; its preset value is half the
column width, that in one column typesetting mode coincides with the text width.
The wrapped text is typeset in justified mode within a minipage environment; the
measure of this mini page should not be too small (unless the text is less than
one line long) otherwise the inter word spacing might be too large; at the same
time the measure of the mini page cannot be too large, otherwise the indented
wrapping lines, generally justified, might get a bad word spacing. Therefore it
is suggested to avoid specifying the optional 〈widh〉 outside the range of 40% to
60% the column width. Actually specifying 0.2\textwidth or 0.4\columnwidth
when typesetting in two column mode produces approximately the same result,
because \columnwidth is a little less than half the \textwidth.

A warning is necessary: if a caption is entered within the environment, such
caption gets typeset within the background coloured frame. We think that a
framed text does not require any caption; if such caption were necessary, then the
user should resort to other means, for example, to a standalone small PDF file
containing the framed shaded text to be imported as a figure with the 〈wrapfigure〉
environment.

4 Remarks
The syntax of the original environments 〈wrapfigure〉 and 〈wraptable〉 has not been
changed, except for a last optional star. The fact that the last braced argument
is optional does not change the backward compatibility with the original environ-
ments.

Therefore the optional 〈line number〉 argument maintains its meaning, unless
the optional star is specified; in such a case that number assumes the meaning of
a correction to the computed number of the indented lines.

The mandatory 〈placement〉 maintains its meaning and the legal values are
l (left), r (right), L (floating left), R (floating right), i (inner margin), o (outer
margin), I (floating inner margin), O (floating outer margin).

We tested all of them, but as a personal choice we prefer to place the wrapped
object at the left of the text, without floating it and irrespective of the page

6

number parity.
As in the previous examples, we prefer to specify the wrapping environment

before a sufficiently long paragraph. Should the paragraph be too short to com-
pletely wrap the object, all the environments are capable of counting the number
of indented lines and to apply the \overhang command with the remaining line
number to the following paragraph(s); in these circumstances it might be neces-
sary to recourse to the optional star in order to correct the indention, since the
mechanism does not consider the inter paragraph spacing that TEX introduces
only at ship out time.

We avoid also to enter the wrapping environment before paragraphs that are
close to a page break; this action would tickle the idiosyncrasies of the software,
and requires moving the wrapping environment some paragraphs before or after
the preferred one; but this can be done only while reviewing the document, be-
cause any change in the previous source text might change the situation if this
adjustment is done while still editing the document.

With the standard environments the optional parameter 〈overhang〉 does ex-
actly what its name implies: the wrapped object protrudes into the adjacent
margin exactly by the specified amount. This parameter is not available for the
wraptext environment; we believe that a wrapped text logically pairs the wrapping
text; of course this opinion might be wrong and in future upgrades we might add
this functionality.

The 〈width〉 parameter has been already sufficiently described; we just remem-
ber that for wraptext this parameter is optional and its default value amounts to
half the current measure; it can be specified but it should not be too different
from 50% the current measure. For the standard environments this parameter
value is mandatory, but, we recall, for the redefined environments 〈wrapfigure〉
and 〈wraptable〉, this braced argument is optional.

5 Other floating objects
Pictures and textual arrays may be floated by means of the standard 〈figure〉 and
〈table〉 environments. But other floating objects may be defined by means of the
float package, just to name one, or classes. Besides floating, the main difference
is the name of the caption “label”: Figure, Table, Algorithm, Example, and so on.

If floating is not necessary, this package (as well as the original one) allows to
use the underlying environment wrapfloat that uses the same syntax as wrapfigure
plus the mandatory name of the new object: even a figure might be introduced
without using 〈wrapfigure〉, by using instead:

\begin{wrapfloat}{figure}[〈line number〉]{〈placement〉}%
[〈overhang〉]{〈width〉}〈⋆〉

〈image〉
\end{wrapfloat}

Another 〈object〉 may be wrapped by using:

7

\begin{wrapfloat}{〈object name〉}[〈line number〉]{〈placement〉}%
[〈overhang〉]{〈width〉}〈⋆〉

〈object〉
\end{wrapfloat}

If the floating 〈placement〉 codes have to be used, another floating object with
the desired 〈object name〉 has to be previously defined by means of the function-
alities of other packages or classes.

6 The code
Here we describe and comment the code of this package; essentially only the
initial parts need some comments; because the final ones are almost identical to
the original Arseneau’s code.

We start with the usual specification of the format name and date, and the
identification of this specific package. We possibly load the etoolbox package,
because we immediately need a test on the existence of an @-protected macro;
should this macro already been defined by the class or other packages (including
a previous loading of this package or the previous Arseneau’s one) the loading is
immediately aborted. If is was not previously loaded, we load the xfp package,
that allows us to perform precise calculations. Loading the xparse package is
necessary in order to use one of its rare features that did not migrate to the LATEX
kernel. From the LATEX News Letter dated October 2020:

Most, but not all, of the argument types defined by xparse are now
supported at the kernel level. In particular, the types g/G, l and u
are not provided by the kernel code; these are deprecated but still
available by explicitly loading xparse. All other argument types are
now available directly within the LATEX 2ε kernel.

For now their availability eases the treatment of the backwards compatibility of
this software with the original wrapfig functionality. It deals with the mandatory
〈width〉 argument of the wrapfigure, wraptable, and wrapfloat environments,
where it was possible to specify a zero value. Now it is possible to omit it com-
pletely because it is a braced optional argument.

1 \NeedsTeXFormat{LaTeX2e}[2020-01-01]
2 \ProvidesPackage{wrapfig2}%
3 [2021-11-30 v.4.0 Wrap text around figures, tables, framed text blocks]
4 \@ifpackageloaded{etoolbox}{}{\RequirePackage{etoolbox}}
5 \ifcsdef{c@WF@wrappedlines}{\endinput}{}
6 \ifcsdef{fpeval}{}{\RequirePackage{xfp}}
7 \RequirePackage{xparse}
8

Next we define some dimensions, boxes, token registers, TEX counters, and
alias names. The \WF@correctlines@switch TEX numeric register (not a LATEX
counter) is going to be used a boolean switch; if its value is zero, il means “false”,

8

otherwise is “true”; in the other definitions below, it will be set only to 0 or 1,
depending on the presence of the optional star.

9 \newdimen\wrapoverhang \wrapoverhang\z@
10 \newdimen\WF@size
11 \newcounter{WF@wrappedlines}
12 \newbox\WF@box
13 \newbox\NWF@box
14 \newtoks\WF@everypar
15 \newif\ifWF@float
16 \newcount\WF@correctlines@switch
17 \newdimen\insertwidth
18 \let\@@parshape\parshape
19 \let\WF@@everypar\everypar
20

In what follows we are going to use very often the functionalities of the xparse
package that are mostly already included into the LATEX kernel; but, since we use
one of this functionalities that have not migrated to the LATEX kernel, we load
it, as they remain available with that package; nevertheless we specified a LATEX
format date insuring that the LATEX 3 syntax is available.

Should the format file be an older one, a multitude of errors would be produced,
and the user should take care to load the xparse and xfp packages before loading
wrapfig2. Notice that most of the xparse package functionalities at the date
required for the format file are already included. The xparse package has been
available about in 2018; should the user have available a definitely older TEX
system installation, s/he should upgrade it, or must avoid using this wrapfig2
package and use the original one; if s/he needs to wrap text, s/he should resort to
some ingenious tricks to do it.

The opening command of the wrapfloat environment receives the mandatory
and optional arguments plus the name of the particular object to be wrapped. It
is used to define the prefix label of the caption number in case that the object is
described with a caption. The optional star is not explicit, because it is going to
be read by the \WF@wr macro.

The closing command of wrapfloat performs most of the work necessary to wrap
the box that contains the object to be wrapped, but certain tasks are demanded
to other service macros.

It may set the width of the box if the 〈width〉 parameter is specified; otherwise
it closes the \hbox that was used; then it closes the main vertical box \WF@box.
After executing \WF@floatstyhook, necessary when package float.sty has been
used, it saves the 〈overhang〉 value to be used when wrapping is actually performed;
then it verifies if the box height is too high to fit, or is too short; possibly re-boxes
this box in the same box register with a negative initial vertical skip that raises
the box contents.

The definitions of the wrapfigure and wraptable environments are very simple
by means of the underlaying wrapfloat environments.
21 \NewDocumentEnvironment{wrapfigure}{o m o G{0pt}}%
22 {\wrapfloat{figure}[#1]{#2}[#3]{#4}}%

9

23 {\endwrapfloat}
24
25 \NewDocumentEnvironment{wraptable}{o m o G{0pt}}%
26 {\wrapfloat{table}[#1]{#2}[#3]{#4}}%
27 {\endwrapfloat}
28

The definition of the wraptext environment is more detailed, because most
of the computations must be done on the actual text to be wrapped, that does
not have a specific width; moreover the inserted text must not be too wide, nor
too short in order to avoid problems for its justification or the justification of the
wrapping text. The framed box width is preset to 50% of the normal text measure,
but it can be optionally specified to a different value (not too different from 50%),
while for the other environments the wrapped material width is an optional braced
parameter.

For what concerns the wraptext environment, see below, because the code is a
little more complicated and requires some explanation. In facts the first statement
argument description list does not contain any descriptor for an optional star.
There is no need because the computation of the insertion block height is pretty
precise and at most the user might desire one line more or less depending on the
measure of the whole text, and that of the inserted block and/or the measure of
the indented wrapped lines.

It is true that some of the input parameters specified to the opening command
with LATEX 3 are available also to the closing commands; see the last paragraph
of section 2 in the xparse documentation. But the following definition, besides
using special delimiters for optional parameters, uses the separate opening and
closing macros of the wrapfloat environment; such procedure apparently breaks
this second availability of the input parameters, therefore it is necessary to save
them into local macros or count registers (assignments of TEX count registers are
local, while assignment of the LATEX named counters, through the \setcounter
macro and its siblings, are global) so that we can use their values within the closing
commands.

The \NWF@box has been assigned at the beginning; remember that LATEX 3
registers of any kind are not limited in number as they were some years ago even
with LATEX 2ε. The last opening commands are conceived to box the object to be
wrapped, typeset within a minipage with the default or specified width; such box,
and the tcolorbox and minipage environments are closed at the beginning of the
closing commands, so that what is necessary in order to place the wrapped boxed
text is easy to be executed.

The number of indented lines is computed by means of the \fpeval LATEX 3
function; among the operands of this function there is the value 2 used to take
into account the vertical space used by tcolorbox to separate the frame from its
contents. It is possible that a value of 3 might reduce the probability of using the
〈line number correction〉. But it is not always true and we found that the chosen
value is a better choice.

Eventually the opening wrapfloat statement is created by expanding the whole
line complete of arguments, by means of the usual trick of defining a dummy macro

10

within a group that contains among its expansion the group closing command, so
that while it is being executed, it deletes itself from memory.
29 \NewDocumentEnvironment{wraptext}%
30 {O{l} D||{0.5\columnwidth} D<>{0} D(){figure}}%
31 {% Open environment
32 \insertwidth=#2\relax
33 \def\textplacement{#1}%
34 \def\textcorrection{#3}%
35 \def\WF@caption@label{#4}%
36 \begin{lrbox}\NWF@box% This box is to contain the framed text
37 \minipage{\insertwidth}%
38 \tcolorbox
39 }{% Close environment
40 \endtcolorbox\endminipage\end{lrbox}%
41 \edef\NWF@wli% \NWF@wli is a macro, not a counter
42 {%
43 \fpeval{%
44 round((\ht\NWF@box+\dp\NWF@box)/\baselineskip,0)+2+\textcorrection
45 }%
46 }%
47 \ifhmode\unskip\else\leavevmode\noindent\fi
48 \bgroup\edef\x{\egroup\noexpand\wrapfloat{\WF@caption@label}[\NWF@wli]%
49 {\textplacement}{\the\insertwidth}}\x
50 \box\NWF@box % Output framed box containing text
51 \endwrapfloat
52 \ignorespaces
53 }
54

Now comes the definition of the fundamental environment wrapfloat; compared
to the original Arseneau’s definition it is much longer, but it contains the code
that Arseneau, who wrote the code in LATEX 2ε language, had to split in several
macros in order to handle the multitude of interspersed mandatory and optional
arguments.

The main function of this environment is to handle the box that contains the
figure, or the table, or the framed test, or what else, so that the inserted box is
preceded and followed by the suitable vertical spaces, and it is possible to compute
the number of lines to be indented; often this computed number is correct; but
in certain cases, when the code is used too close or within prohibited wrapping
text, such number might need to be corrected. As it can be seen the optional star
is not among the argument descriptors of the opening commands; it will be the
following macro \WR@wr to take care of examining the list of arguments and see if
a star has been specified and not yet read by the preceding commands.

In order to handle any kind of wrapped object, this environment first argument
is the 〈caption label〉. It may remain blank; but for wrapping figures or tables their
respective definitions specify the name of the floating object they belong to; it is
not necessary that there exists a floating environment with the same name of the
wrapped object, when its wrapping environment is not specified with a floating

11

〈placement〉 argument.
55
56 \NewDocumentEnvironment{wrapfloat}{m o m o G{\z@}}%
57 {\def\@captype{#1}\WF@wr[#2]{#3}[#4]{#5}}%
58 {\ifdim\hsize>\z@
59 \par\hrule\@width\hsize\@height\z@ % force width with invisible rule
60 \else
61 \unskip \egroup \box\z@ % or close hbox
62 \fi
63 \egroup % close the vtop box; its width now is known
64 \WF@floatstyhook % support for float.sty
65 \def\width{\wd\WF@box}%
66 \setlength\wrapoverhang{\WF@ovh}%
67 \xdef\WF@ovh{\the\wrapoverhang}% save until wrapping
68 \ifdim\ht\WF@box>\topskip \ht\WF@box\z@ \fi% too high, set flag
69 \ifdim\ht\WF@box<.5\p@ % too short, move up
70 \global\setbox\WF@box\vtop{\vskip-1.4ex\unvbox\WF@box}%
71 \fi
72 \global\WF@size=% compute total box hight with \fpeval
73 \fpeval{\ht\WF@box+\dp\WF@box+1.5\baselineskip+\tw@\intextsep}\p@
74 \aftergroup\WF@startfloating % use even when not really floating
75 \unless\ifWF@float
76 \ifhmode
77 {\unskip \parfillskip\z@skip \par \vskip-\parskip}%
78 \aftergroup\noindent
79 \fi
80 \fi
81 \global\@ignoretrue
82 }
83

The working macro \WF@wr is defined with the LATEX 3 language; it grabs
all the optional and mandatory arguments in a single step, contrary to LATEX 2ε
that requires to split the various steps in separate macros. In the definition code
we use also some commands, such as \unless, originally defined by the εTEX
typesetting program extensions, that have been included in the pdfLATEX, X ELATEX
and LuaLATEX kernels several years ago.

Notice that the optional first (optional) argument, that represents the number
of indented lines or their correction number, is saved into the macro \WF@wli, but
if this argument is not specified, \WF@wli is assigned the value zero. The same
happens for the 〈overhang〉 optional argument.

After these adjustments, it computes the box total height plus some fixed
amounts needed mostly to set the wrapped material below the first wrapping text
first line. Here is where the LATEX 3 \fpeval computing macro comes into play
so as to assign such height to \WF@size. Some unusual macros are executed; they
were devised by Arseneau to deal with possibly floating wrapped objects. The
optional star is not accepted by this macro; if the user specified it, it is still in the
input flux; notice that the wraptext environment does not accept the optional star;

12

if the user specifies it for this environment, an asterisk appears at the beginning
of the wrapped text.

The mandatory #4 〈width〉 parameter (actually a 〈optional braced parameter〉)
may be specified to be 0pt; in any case 0pt is the default parameter value; if so,
the object is treated at its natural width, by boxing it into an hbox and using this
hbox width as the working width
84 \NewDocumentCommand\WF@wr{o m o m s}{%
85 \xdef\WF@wfname{wrap\@captype\space}%
86 \unless\ifvoid\WF@box
87 \WFclear \WF@collision
88 \fi
89 \xdef\WF@place{\string‘\@car#2r\@nil}%
90 \ifnum\lccode\WF@place=\WF@place
91 \global\WF@floatfalse
92 \else
93 \global\WF@floattrue
94 \fi
95 \ifx\parshape\WF@fudgeparshape
96 \unless\ifWF@float\\WF@collision\fi
97 \else
98 \ifx\par\@@par
99 \ifnum\@@parshape>\z@\WF@conflict\fi

100 \else
101 \WF@conflict
102 \fi
103 \fi
104 \IfValueTF{#1}% save optional line number or correction
105 {\gdef\WF@wli{#1}}%
106 {\gdef\WF@wli{0}}%
107 %
108 \IfValueTF{#3}% save optional overhang
109 {\gdef\WF@ovh{#3}}%
110 {\gdef\WF@ovh{\z@}}%
111 %
112 \global\setbox\WF@box\vtop\bgroup \setlength\hsize{#4}% set width
113 \ifdim\hsize>\z@
114 \@parboxrestore
115 \else
116 \setbox\z@\hbox\bgroup
117 \let\wf@@caption\caption
118 \let\caption\wf@caption
119 \ignorespaces
120 \fi
121 \IfBooleanTF{#5}% if the asterisk is present set the numerical switch
122 {\global\WF@correctlines@switch=\@ne}%
123 {\global\WF@correctlines@switch=\z@}%
124 \global\@ignoretrue
125 }
126

13

At this point the main box \WF@box is opened in order to store the object to
be wrapped; with this box height the software is going to compute the number
of lines to be indented, unless such a number has been specified and no star was
added to the input parameters.

Also the 〈wraptext〉 environment uses a box to collect the framed text; the
name of this second box must be different from \WF@box otherwise interference of
the various tasks produces unrecoverable errors. This is why at the beginning of
this package we defined two different boxes: \WF@box and \NWF@box.

The trick of creating an alias for the \caption macro is used by Arseneau to
redefine one of the two macros according to certain conditions. Here \wf@caption
is actually redefined if the 〈width〉 parameter has been specified.

127 \def\wf@caption{\relax% redefine \wf@caption in case \hsize is zero
128 \ifdim\hsize>\z@
129 \let\caption\wf@@caption
130 \else
131 \unskip \egroup \hsize\wd\z@ \@parboxrestore \box\z@% empty \box0
132 \fi
133 \caption
134 }
135

One of these unusual macros was introduced by Arseneau to deal with para-
graph parameters and possibly to float the object to be wrapped.

136 \def\WF@startfloating{%
137 \WF@everypar\expandafter{\the\everypar}\let\everypar\WF@everypar
138 \WF@@everypar{\ifvoid\WF@box\else\WF@floathand\fi \the\everypar
139 \WF@wraphand
140 }}
141

The following macro is for floating wrapping environments.
142 \def\WF@floathand{%
143 \ifx\parshape\WF@fudgeparshape
144 \WF@fltmes
145 \else
146 \ifx\par\@@par
147 \ifnum\@@parshape=\z@
148 \ifdim\hangindent=\z@
149 \setbox\z@\lastbox \begingroup
150 \@@par \WF@@everypar{}\WF@putfigmaybe
151 \endgroup % after this group start wrapping
152 \unless\ifvoid\z@ % replace indentation
153 \box\z@
154 \fi
155 \else
156 \WF@fltmes
157 \fi
158 \else
159 \WF@fltmes

14

160 \fi
161 \else
162 \WF@fltmes
163 \fi
164 \fi}
165

On the contrary if there is enough space or if the wrapped object cannot float,
it gets output here.

166 \def\WF@putfigmaybe{%
167 \ifinner
168 \vskip-\parskip \global\WF@floatfalse
169 \let\pagetotal\maxdimen % kludge flag for "not top of page"
170 \else % outer page
171 \@tempdima\pagedepth % save page depth
172 {\advance\parskip\@tempdima\vskip-\parskip}% back up to base line
173 \penalty\interlinepenalty % update page parameters
174 \@tempdimb\pagegoal \advance\@tempdimb-\pagetotal % room left on page
175 \ifdim \@tempdimb<\z@ % page already full
176 \global\WF@floatfalse
177 \unless\ifdim-\@tempdimb>\pageshrink
178 \pagebreak
179 \fi
180 \else
181 \ifdim\WF@size>\@tempdimb% box too high does not fit in \@tempdimb
182 \ifWF@float
183 \dimen@.5\baselineskip
184 \else
185 \dimen@ 2\baselineskip
186 \fi
187 \ifdim\pagestretch>\dimen@ \dimen@\pagestretch \fi
188 \ifdim\pagefilstretch>\z@ \dimen@\@tempdimb \fi
189 \ifdim\pagefillstretch>\z@ \dimen@\@tempdimb \fi
190 \advance\dimen@.5\baselineskip
191 \ifdim\dimen@>\@tempdimb % stretch page contents
192 \global\WF@floatfalse \pagebreak
193 \fi
194 \else % box fits in \@tempdimb
195 \global\WF@floatfalse
196 \fi
197 \fi
198 \vskip\@tempdima\relax % return erased page depth
199 \fi
200 \noindent
201 \ifWF@float
202 \WF@fltmes
203 \else % place insertion here
204 \WF@info{Put \WF@wfname here:}%
205 {\ifodd
206 \if@twoside\c@page\else\@ne\fi % assign l/r to i/o placement

15

207 \lccode‘i‘l\lccode‘o‘r\else \lccode‘i‘r\lccode‘o‘l%
208 \fi
209 \xdef\WF@place{\the\lccode\lccode\WF@place}%
210 }% twice to get only l or r
211 \hbox to\z@{% llap o rlap depending on lor r; calc effective width
212 \@tempdima\wd\WF@box \@tempdimb\WF@ovh
213 \advance\@tempdima-\@tempdimb \advance\@tempdima\columnsep
214 \@tempdimb\hsize \advance\@tempdimb-\@tempdima
215 \xdef\WF@adjlw{\the\@tempdima}%
216 \ifnum ‘l=\WF@place % object on left
217 \hss
218 \def\@tempa{\kern\columnsep}% take right gap into action
219 \else % insert on light
220 \@tempdima\z@ % no left indentation
221 \kern\@tempdimb \kern\columnsep
222 \def\@tempa{\hss}% object overlaps space to the right
223 \fi
224 \ifdim\@tempdimb<\hsize
225 \xdef\WF@wrapil{\the\@tempdima \the\@tempdimb}% indent.n and length
226 \xdef\WF@adjtlm{\the\@tempdima}%
227 \else
228 \xdef\WF@wrapil{\z@ \the\hsize}%
229 \xdef\WF@adjlw{\z@}\xdef\WF@adjtlm{\z@}%
230 \fi
231 \ifdim\pagetotal=\z@ % put object at top of page \thepage
232 \global\advance\WF@size-\intextsep
233 \else % put object in middle of the page
234 \setbox\WF@box\hbox{\lower\intextsep\box\WF@box}%
235 \fi
236 \dp\WF@box\z@
237 \box\WF@box
238 \@tempa
239 }% end \hbox to 0pt
240 \aftergroup\WF@startwrapping
241 \fi
242 }
243

Here comes the very important macro that counts the wrapping indented lines,
so that wrapping is correct; of course the limitations of the TEX and LATEX pro-
cessing (needed to ship out a complete page) forbid to take into account the spaces
inserted between paragraphs and/or those inserted between entries of various list-
ings. The idiosyncrasies of this package arise from the fact that this macro cannot
preview actions that have not yet taken place when this macro is executed.

This macro is the one that counts the lines to be indented by rounding the divi-
sion of the box height by the current base line skip. Notice that WF@wrappedlines
is the name of a LATEX named counter, not of a TEX numeric register; therefore
special LaTeX commands, such as \setocounter or \value, have to be used in
order to set or access the numerical value stored within the TEX register associated

16

to the LATEX counter name.
244 \def\WF@startwrapping{%
245 \ifnum\WF@wli=\z@ % no number was specified
246 \setcounter{WF@wrappedlines}%
247 {\fpeval{round(\WF@size/\baselineskip,0)}}%
248 \xdef\WF@wli{\value{WF@wrappedlines}}%
249 \else
250 \ifnum\WF@correctlines@switch>\z@ % line number correction
251 \setcounter{WF@wrappedlines}
252 {\fpeval{round((\WF@size)/\baselineskip,0)+\WF@wli}}%
253 \xdef\WF@wli{\value{WF@wrappedlines}}%
254 \else
255 \setcounter{WF@wrappedlines}{\WF@wli}% absolute number of lines
256 \global\advance\c@WF@wrappedlines\@ne
257 \fi
258 \fi
259 \ifnum\c@WF@wrappedlines>\@ne % fine tuning
260 \let\parshape\WF@fudgeparshape \let\WF@pspars\@empty \let\WF@@par\par
261 \def\@setpar##1{\def\WF@@par{##1}}\def\par{\@par}\let\@par\WF@mypar
262 \xdef\WF@restoretol{\tolerance\the\tolerance}\tolerance9999
263 \advance\linewidth-\WF@adjlw \advance\@totalleftmargin\WF@adjtlm
264 \fi}
265

The next macro is the one that actually indents the wrapping text lines and
keeps track of the number of such processed lines. It can work on more than a
single paragraph. It resorts to service macros that reiterate as long as the number
of indented lines is lower than the computed number of lines. Possibly this process
could be defined by means od the dowhile or whiledo LATEX 3 functions. By now
we did not afford this task, because first we would like to see if the overall software
is reliable.

266 \def\WF@wraphand{% for indenting one or more paragraphs
267 \ifnum\c@WF@wrappedlines<\tw@
268 \WF@finale
269 \else \begingroup % create a parshape command
270 \@tempcnta\@ne \let\WF@wrapil\relax \gdef\WF@ps{}%
271 \@whilenum
272 \@tempcnta<\c@WF@wrappedlines\do{% repeated indentation
273 \xdef\WF@ps{\WF@ps\WF@wrapil}\advance\@tempcnta\@ne
274 }%
275 \endgroup
276 \ifx\WF@pspars\@empty
277 \@@parshape\c@WF@wrappedlines \WF@ps \WF@noil
278 \else % use external ‘parshape’ values to modify my parshape
279 \WF@modps
280 \fi
281 \fi
282 }
283

17

This macro resets the paragraph properties and terminates the job.
284 \def\WF@mypar{\relax
285 \WF@@par
286 \ifnum\@@parshape=\z@
287 \let\WF@pspars\@empty % reset parshape
288 \fi
289 \global\advance\c@WF@wrappedlines-\prevgraf \prevgraf\z@
290 \ifnum\c@WF@wrappedlines<\tw@
291 \WF@finale
292 \fi
293 }
294

These macros are to modify the paragraph settings.
295 \def\WF@modps{\begingroup
296 \afterassignment\@tempdimb \@tempdima\WF@pspars % a=indent.num, b= width
297 \advance\@tempdima-\WF@adjtlm \advance\@tempdimb\WF@adjlw
298 \let\WF@wrapil\WF@pspars
299 \edef\@tempb{\@@parshape\c@WF@wrappedlines
300 \WF@ps \the\@tempdima \the\@tempdimb}%
301 \expandafter\endgroup\@tempb
302 }
303
304 \let\@@setpar\@setpar
305 \def\WF@noil{\z@ \hsize}
306 \let\WF@pspars\@empty
307
308 \def\WF@fudgeparshape{\relax
309 \ifnum\c@WF@wrappedlines<\tw@
310 \WF@finale
311 \else
312 \afterassignment\WF@fudgeparshapee \fam
313 \fi
314 }
315
316 \def\WF@fudgeparshapee{%
317 \ifnum\fam=\@ne \expandafter
318 \WF@parshapeee
319 \else
320 \WF@conflict \@@parshape\fam
321 \fi
322 }
323
324 \def\WF@parshapeee#1#2{%
325 \begingroup\delimitershortfall#1%
326 \nulldelimiterspace#2% \advance \nulldelimiterspace by \WF@adjlw
327 \edef\@tempa{\def\noexpand\WF@pspars{%
328 \the\delimitershortfall \the\nulldelimiterspace}}%
329 \expandafter\endgroup\@tempa \WF@wraphand
330 }

18

331

The following macro is the one that actually ends the single wrapping job.
332 \def\WF@finale{%
333 \ifx\parshape\WF@fudgeparshape
334 \WF@restoretol \let\@setpar\@@setpar \let\par\WF@@par
335 \advance\linewidth\WF@adjlw \advance\@totalleftmargin-\WF@adjtlm
336 \WF@info{Finish wrapping text}%
337 \ifx\par\@@par
338 \def\@par{\let\par\@@par\par}%
339 \else
340 \let\@par\WF@@par
341 \fi
342 \let\parshape\@@parshape
343 \parshape=\ifx\WF@pspars\@empty
344 \z@
345 \else
346 \@ne \WF@pspars
347 \fi
348 \fi
349 \ifvoid\WF@box
350 \ifx\everypar\WF@everypar
351 \let\everypar\WF@@everypar \everypar\expandafter{\the\WF@everypar}%
352 \fi
353 \fi
354 }
355

At the very end everything is restored, and the used boxes are emptied.
356 \newcommand{\WFclear}{\par
357 \unless\ifvoid\WF@box
358 \vskip\bigskipamount \box\WF@box
359 \let\everypar\WF@@everypar \everypar\expandafter{\the\WF@everypar}%
360 \fi
361 \global\c@WF@wrappedlines\z@ \WF@finale
362 \global\WF@correctlines@switch\z@
363 }
364

The following code is one of those “dirty tricks” by which a macro defined
within a group is executed with the help of an \expandafter command that
bypasses an \endgroup; by so doing nothing local to the group remains in memory.

365 \begingroup
366 \toks0={\let\everypar\WF@@everypar
367 \everypar\expandafter{\the\WF@everypar}%
368 \let\parshape\@@parshape
369 \let\@setpar\@@setpar
370 }
371 \toks1=\expandafter{\@arrayparboxrestore}%
372 \toks2=\expandafter{\clearpage}%
373 \edef\@tempa{%

19

374 \def\noexpand\@arrayparboxrestore{\the\toks0 \the\toks1}%
375 \def\noexpand\clearpage
376 {\noexpand\protect\noexpand\WFclear \the\toks2}}%
377 \expandafter
378 \endgroup\@tempa
379

Donald Arseneau classifies the following macro as the one that “pampers the
RevTeX’s stupidity”.

380 \@ifundefined{@capwidth}{\let\@capwidth\hsize}{}%
381

This one, instead, issues a warning if a specific name conflicts with another.
382 \def\WF@conflict{\WF@warning
383 {\WF@wfname used inside a conflicting environment}}%
384

While this one issues a warning when a wrapping environment is too close to
another one.

385 \def\WF@collision{\WF@warning{Collision between wrapping environments}}%
386

And this one is when two wrapping environments are too close to one another
so that the second one is forced to float.

387 \def\WF@fltmes{% message for floats
388 \ifWF@float
389 \WF@info{\WF@wfname floats}%
390 \else
391 \WF@warning{Stationary \WF@wfname forced to float}%
392 \fi
393 }
394

These two aliases are just service macros for this package; in particular, the
second one is used to insert info of any kind within a source file.

395 \let\WF@warning\@warning
396 \let\WF@info\@gobble
397

Arseneau says that his wrapfig package is already compatible with package
float.sty, since, after defining a new float 〈foo〉, it suffices to define the new
environment wrap〈foo〉. This fork version of his package should do the same: is
suffices to mimic the definitions of environments wrapfigure or wraptable.

Here there is some Arseneau’s code that renders his wrapfig code compatible
with \newfloat of class memoir, and with \newfoatlist of package ccaption.
We leave his code hereafter; but we did not test it with this package.

398 \let\WF@floatstyhook\relax
399 %
400 \@ifundefined{newfloat}{}{% \newfloat comes from somewhere besides
401 % float.sty
402 \@ifundefined{restylefloat}{%

20

403 \@ifclassloaded{memoir}{%
404 \toks@=\expandafter\expandafter\expandafter
405 {\csname\string\newfloat\endcsname [{#1}]{#2}{#3}{#4}%
406 \newenvironment{wrap#2}{\wrapfloat{#2}}{\endwrapfloat}%
407 }% Mmmm; this might be wrong. Not tested
408 \edef\@tempa{\def\expandafter\noexpand\csname\string\newfloat\endcsname
409 [##1]##2##3##4{\the\toks@}}%
410 \@tempa
411 }% end memoir support
412 {}% other origins of \newfloat here?
413 }{% float.sty handler. Ops: Two versions for different versions
414 % Changing \floatstyle or \restylefloat changes \newfloat too.
415 \@ifundefined{float@restyle}%
416 {% older float.sty
417 \toks@=\expandafter{\restylefloat{#1}% env. might be undefined
418 \@namedef{wrap#1}{%
419 \def\@captype{#1}\@nameuse{fst@#1}%
420 \def\WF@floatstyhook{\let\@currbox\WF@box \columnwidth\wd\WF@box
421 \global\setbox\WF@box\float@makebox}%
422 \@ifnextchar[\WF@wr{\WF@wr[]}}%
423 \expandafter\let\csname endwrap#1\endcsname \endwrapfigure
424 }%
425 \edef\@tempa{\def\noexpand\restylefloat##1{\the\toks@}}%
426 }{% newer float.sty: uses \float@restyle, and \float@makebox
427 % takes width arg
428 \toks@=\expandafter{\float@restyle{#1}% env. might be undefined
429 \@namedef{wrap#1}{\def\@captype{#1}\@nameuse{fst@#1}%
430 \def\WF@floatstyhook{\let\@currbox\WF@box
431 \global\setbox\WF@box\float@makebox{\wd\WF@box}}%
432 \@ifnextchar[\WF@wr{\WF@wr[]}}%
433 \expandafter\let\csname endwrap#1\endcsname \endwrapfigure
434 }%
435 \edef\@tempa{\def\noexpand\float@restyle##1{\the\toks@}}%
436 }%
437 \@tempa % perform redefinitions
438 %
439 }% end float.sty handler
440 }% end redefinitions of \newfloat
441
442 \ifcsname newfloatlist\endcsname% support ccaption.sty
443 \toks@=\expandafter\expandafter\expandafter
444 {\csname\string\newfloatlist\endcsname [{#1}]{#2}{#3}{#4}{#5}%
445 \@namedef{wrap#2}{\wrapfloat{#2}}%
446 \expandafter\let\csname endwrap#2\endcsname \endwrapfloat
447 }%
448 \edef\@tempa{%
449 \def\expandafter\noexpand\csname\string\newfloatlist\endcsname
450 [##1]##2##3##4##5{\the\toks@}}%
451 \@tempa
452 \fi

21

453

We never described the package options; this code was present in Arseneau’s code
and ve leave it here, with the necessary package name change. We think that
this verbose option was and remains useless, since the instances of command
\WF@info were mostly commented out in the original code; in any case, input of
this code is stopped if the \DeclareOption command is not defined; this com-
mand was defined with LATEX 2ε; therefore this is a residual of the old times when
LATEX 2.09 was still in use, more than 25 years ago. . .

454 \@ifundefined{DeclareOption}{\endinput}{%
455 \def\WF@warning{\PackageWarning{wrapfig2}}%
456 \DeclareOption{verbose}{\def\WF@info{\PackageInfo{wrapfig2}}}%
457 \ProcessOptions
458 \AtEndDocument{\WFclear}}%
459
460 \endinput

22

