
The wrapfig2 package
Claudio Beccari∗

Version v.6.0.0 – Last revised 2022-02-16.

Contents
1 Introduction 1

2 Environment syntax 3

3 Examples 4
3.1 A wrapped figure 4

3.2 A wrapped table 5
3.3 A wrapped text 6

4 Remarks 9

5 Other floating objects 12

6 The code 13

Abstract
This new package wrapfig2 is a fork that extends Donald Arseneau’s

package wrapfig (version 3.6, dated 2003) by adding some LATEX 3 definitions
that accept a final optional star; its presence changes the meaning of the
first optional argument so that it becomes a correction to the number of
lines that must be indented in order to receive the wrapped object. A
new environment is added to the original wrapfigure and wraptable, namely
wraptext; it may be used to wrap a small framed text block on a coloured
background; the philosophy of this new environment is similar to that of
the other two environments, but the syntax was different with version 4
of this package, and is very similar with version 5.0; a further important
enhancement is implemented in version 6. Fall back options are available for
backwards compatibility.

Caution This package requires a fairly recent LATEX kernel, otherwise it won’t
work; any LATEX kernel dated at least 2020 is OK.

Read carefully this document, because the are several pieces of information
concerning other packages that may be incompatible with this wrapfig2 version.
Special warnings are typeset in red as this one.

1 Introduction
The purpose of this package is manyfold. On one side it tries to upgrade the
original software by Donald Arseneau by using some parts of the LATEX 3 modern
language. On another it creates a new environment, with the same philosophy of
the original Arseneau’s ones, such that a document author can emphasise short
blocks of wrapped text by framing them while typesetting the text on a coloured
background.

∗E-mail: claudio dot beccari at gmail dot com

1

The original software had some idiosyncrasies; Donald Arseneau described them
in the documentation of his package; we are sorry to admit that such idiosyncrasies
might have been slightly reduced; but in any case in order to avoid such peculiar
anomalies, it is sufficient to wrap the inserted object with a reasonable number of
lines, i.e. by reasonably long paragraphs.

The above implies that no wrapped object code should be specified in the source
file close the end of a paragraph, unless it is followed by other paragraphs; again
no object code should be inserted within any list; not even close to the end or to
the beginning of a section. Arseneau’s code is capable of specifying the wrapping
number of lines such that two or more paragraphs can be indented so as to wrap
a longish insertion, but it is wise to avoid such risky situations. Moreover, if the
inserted object has a numbered caption, the number might not result in the correct
sequence with the normal corresponding floating objects.

Therefore the usefulness of the wrapping procedure depends very much on
the document authors’ ability to move around their code until a suitable position
is found. Certainly a good place is within a longish paragraph especially at the
beginning of a section; or at the beginning of a chapter that starts with plain text,
in particular just at the beginning of the first paragraph.

The code of this package does very little, if anything, to correct such idiosyn-
crasies. They are caused by the limitations of the \ShipOut LATEX 2ε kernel macro,
and very little we were able to do in addition to what Arseneau already did.

Another purpose of this package is to add another optional argument so that
the 〈number of indented lines〉 argument does not mean the total number, but the
correction number to add-to or subtract-from the value computed by the default
mechanism devised by Arseneau.

We assume that most users first use the software to insert an object to be
wrapped by the surrounding text without specifying any value with the specific
optional argument; then they evaluate the result, and if the space below the
wrapped object is too large, or if such space is too small they count the necessary
number of lines and specify it to be processed during another document compilation.
When the object to be wrapped is tall, it is very easy to miscount the necessary
number of lines, while is is very easy to evaluate the necessary small correction to
the computed value.

A further purpose of this package is to define a new environment, wraptext, to
wrap a framed text block typeset on a coloured background. On texstackexchange
a solution was suggested to a user who was asking for such an arrangement; the
solution resorted to a specific use of the wrapfigure environment and used the
tcolorbox environment.

We thought that an ad hoc solution would be a better one, since the parameters
to be used for a figure have nothing or little to do with a text, therefore most of
them would be useless with a wrapped text. Nevertheless the 〈location〉 of the
wrapped text and the optional correction of the indented lines number would still
be necessary. We added also the possibility of optionally specifying the measure of
the wrapped text, even if it should not be too different from a half of the wrapping
text measure. In facts, with a value too different from 0.5\linewidth either the
wrapped text has problems with inter word spaces and hyphenation because of the
small measure, or, on the opposite, the indented lines of the wrapping text would
have similar problems.

Notice that the first implementation of this package, version 4, achieved the
desired result but there were two drawbacks: (a) the syntax was rather different

2

from that of the other environments, and (b) any possible caption was typeset within
the same framing environment. In version 5 both drawbacks were eliminated, but
since the environment syntax is different, in oder to assure backwards compatibility
a package option was defined in order to fall back to the previous version 4
behaviour. In version 6.0 the wraptext environment was further enhanced so as to
accept several key=value settings concerned wit the text appearance, the colours,
and other details relative to the wrapping process. Again another fall back option
was defined in order to use the same functionalities of version 5.

2 Environment syntax
The new syntax for wrapfigure and wraptable is backwards compatible with the
original one: just a final optional star is added to the original list of arguments.

The optional star is available only for the standard wrapfigure and wraptable
environments because the backwards compatibility requires the first four optional
and mandatory arguments to be maintained identical. When the optional star
is specified, the 〈indented lines number〉 is interpreted as the correction to the
computed value.

Notice the different syntax in versions 4, 5, and 6 of the wraptext syntax.

\begin{wrapfigure}[〈indented lines number〉]{〈location〉}[〈overhang〉][〈width〉]〈⋆〉
〈figure〉

\end{wrapfigure}

\begin{wraptable}[〈indented lines number〉]{〈location〉}[〈overhang〉][〈width〉]〈⋆〉
〈table〉

\end{wraptable}

Package option 〈WFold〉 required for backwards compatibility with version 4.*.

\begin{wraptext}[〈location〉]|〈width〉|<〈indented line number correction〉>(〈caption label〉)
〈text to frame〉

\end{wraptext}

Package option 〈WFfive〉 required for backwards compatibility with version 5.*.

\begin{wraptext}[〈indented lines number correction〉] {〈location〉} [〈overhang〉] {〈width〉}
〈optional colour settings〉
\includeframedtext[〈insertion measure〉]{〈text to frame〉}[〈〈frame thickness〉,〈frame

separation〉〉][〈radius〉]
\end{wraptext}

No package option required for version 6.*.

\begin{wraptext}[〈indented lines number correction〉]{〈location〉}[〈overhang〉]{〈width〉}
〈optional style settings〉
\includeframedtext[〈insertion measure〉]{〈text to frame〉}[〈settings〉][〈radius〉]

\end{wraptext}

Please notice that all three syntaxes, thanks to differently delimited optional
arguments with peculiar default values, become very similar when such optional
arguments are reduced to a minimum; only the 〈location〉 argument is delimited
by brackets with the old version and with braces with the newer ones.

It may be useful to compare the \includeframedtext macro, used to insert a
framed test into a wraptext environment, with \includegraphics, used to insert

3

an external image into a figure environment. Their functions are similar even if they
refer to different objects to include. Their codes are obviously very different and the
latter is much more complex than the former. The solution for a framed text used
by version 4 was inspired by the information found on texstackexchange that used
the very elaborate tcolorbox environment; version 5 uses instead a much simpler
command \framedbox based on the curve2e package macro \Curve. Version 6.0
admits many settings, not just the 〈frame thickness〉 and the space around the
framed text, but several others ones collectively indicated with 〈settings〉; such
settings refer to colours, dimensions, styles, and so on, relative to the text and to
the frame; moreover they are set by means of the key=value syntax. As it can be
seen, the logic, not the code, behind these different macros are very similar.

3 Examples
We display some examples by using fake objects and suitably long paragraphs;
some fake-language long-paragraphs are obtained by means of the kantlipsum
package functionalities; they are emphasised with an italic font.

3.1 A wrapped figure

Figure 1: A rectangle with its
diagonals

As any dedicated reader can clearly see, the Ideal
of practical reason is a representation of, as far
as I know, the things in themselves; as I have
shown elsewhere, the phenomena should only
be used as a canon for our understanding. The
paralogisms of practical reason are what first
give rise to the architectonic of practical rea-
son. As will easily be shown in the next section,
reason would thereby be made to contradict, in
view of these considerations, the Ideal of prac-
tical reason, yet the manifold depends on the
phenomena. Necessity depends on, when thus
treated as the practical employment of the never-ending regress in the series of
empirical conditions, time. Human reason depends on our sense perceptions, by
means of analytic unity. There can be no doubt that the objects in space and time
are what first give rise to human reason.

The code used to type figure 1 is the following:

\begin{wrapfigure}{r}{50mm}
\centering\unitlength=1mm
\begin{picture}(40,30)
\polygon(0,0)(40,0)(40,30)(0,30)
\Line(0,0)(40,30)\Line(0,30)(40,0)
\end{picture}
\caption{A rectangle with its diagonals}\label{fig:figure}
\end{wrapfigure}
{\itshape \kant[1]}

No asterisk was used because the package succeeded to correctly compute the
necessary number of indented lines.

4

3.2 A wrapped table

First Second
Third Fourth

Table 1: A small ta-
ble

Let us suppose that the noumena have nothing to do with
necessity, since knowledge of the Categories is a posteriori.
Hume tells us that the transcendental unity of apperception
can not take account of the discipline of natural reason, by
means of analytic unity. As is proven in the ontological manu-
als, it is obvious that the transcendental unity of apperception

proves the validity of the Antinomies; what we have alone been able to show is
that, our understanding depends on the Categories. It remains a mystery why the
Ideal stands in need of reason. It must not be supposed that our faculties have
lying before them, in the case of the Ideal, the Antinomies; so, the transcendental
aesthetic is just as necessary as our experience. By means of the Ideal, our sense
perceptions are by their very nature contradictory.

The wrapped small table 1 has been typeset by means of the following code.

\begin{wraptable}[-1]{l}*
\centering
\begin{tabular}{cc}

\hline
First & Second\\
Third & Fourth\\
\hline

\end{tabular}
\caption{A small table}

\end{wraptable}
{\itshape \kant[2]}

Wrapping a small table is a little more difficult than wrapping a figure, because
the width of the inserted object is not known exactly in advance, and it is difficult
to estimate; therefore it might be necessary to execute several trial compilations.
In any case a \centering command might help to center the table within the
indention of the wrapping text. Nevertheless the software can compute the object
width if a zero value is specified, or if the 〈width〉 parameter is completely omitted
together with its braces; this second possibility is a feature of this package, that
uses a LATEX 3 property by which even a braced argument can be treated as an
optional argument with a predefined default value; see below more details about
this feature.

First Second
Third Fourth

Table 2: A small ta-
ble

Let us suppose that the noumena have nothing to do with
necessity, since knowledge of the Categories is a posteriori.
Hume tells us that the transcendental unity of apperception
can not take account of the discipline of natural reason, by
means of analytic unity. As is proven in the ontological

manuals, it is obvious that the transcendental unity of apperception proves the
validity of the Antinomies; what we have alone been able to show is that, our
understanding depends on the Categories. It remains a mystery why the Ideal
stands in need of reason. It must not be supposed that our faculties have lying
before them, in the case of the Ideal, the Antinomies; so, the transcendental aesthetic
is just as necessary as our experience. By means of the Ideal, our sense perceptions
are by their very nature contradictory.

5

Notice the absence of the braced width value; as said above, this braced value
is optional, and the software autonomously computes the width of the wrapped
object. This feature may be useful in many instances, although a smart use of this
width parameter might yield better looking results.

On the opposite if the user estimates that the table with its caption might
use 5 lines, and specified such a value as the first (optional) argument to the
environment, the result is shown in table 2, but it is a very poor one, with the last
caption line overlapping the wrapping text.

3.3 A wrapped text

Text, text, text, text, text, text, text,
text, text, text, text.

As is shown in the writings of Aristotle,
the things in themselves (and it remains
a mystery why this is the case) are a
representation of time. Our concepts
have lying before them the paralogisms

of natural reason, but our a posteriori concepts have lying before them the practical
employment of our experience. Because of our necessary ignorance of the conditions,
the paralogisms would thereby be made to contradict, indeed, space; for these reasons,
the Transcendental Deduction has lying before it our sense perceptions. (Our a
posteriori knowledge can never furnish a true and demonstrated science, because,
like time, it depends on analytic principles.) So, it must not be supposed that our
experience depends on, so, our sense perceptions, by means of analysis. Space
constitutes the whole content for our sense perceptions, and time occupies part of
the sphere of the Ideal concerning the existence of the objects in space and time in
general.

The above example was typeset with this simple code:

\begin{wraptext}{l}
\includeframedtext{Text, text, text, text, text, text, text, text,
text, text, text.}
\end{wraptext}
{\itshape \kant[3]}

The result is the same as that obtainable with version 4 of this package, but
the 〈location〉 argument specification is braced instead of bracketed.

If a caption is specified, version 4 would print it within the framed box, while
versions 5 and 6 print it outside the framed box.

Text, text, text, text, text, text, text,
text, text, text, text.

Text 1: A wrapped text

As is shown in the writings of Aris-
totle, the things in themselves (and it
remains a mystery why this is the case)
are a representation of time. Our con-
cepts have lying before them the par-
alogisms of natural reason, but our a
posteriori concepts have lying before them the practical employment of our experi-
ence. Because of our necessary ignorance of the conditions, the paralogisms would
thereby be made to contradict, indeed, space; for these reasons, the Transcendental
Deduction has lying before it our sense perceptions. (Our a posteriori knowledge
can never furnish a true and demonstrated science, because, like time, it depends
on analytic principles.) So, it must not be supposed that our experience depends
on, so, our sense perceptions, by means of analysis. Space constitutes the whole

6

Text Text

Text Text

Text Text

Text
Figure 2: Some framed text boxes with different dimension parameters, different
font size, and different colours

content for our sense perceptions, and time occupies part of the sphere of the Ideal
concerning the existence of the objects in space and time in general.

The further feature introduced by version 5 is the possibility of choosing the
colours for all three elements of the framed text; if within the environment wraptext
and before using \includeframedtext the following colours are set, it is possible
to set different colours from the default light grey for the background, the black
text, and the almost black frame:

\SetWFfrm{〈frame colour〉}
\SetWFbgd{〈background colour〉}
\SetWFtxt{〈text colour〉}

Such commands, in version 6, are already taken care by the relevant key=value
options. With version 5 these are user commands. See figure 2 typeset with various
version 6 options.

Figure 2 used the following code, where it is evident that the \includeframedtext
command is available even outside the wraptext environment.

\begin{figure}
\makebox[\textwidth]{\includeframedtext{Text}%

[insertionwidth=0.45\linewidth]
\hfill
\includeframedtext{Text}%
[insertionwidth=0.45\linewidth,fboxrule=3pt]}\\[2ex]

%
\makebox[\textwidth]{\includeframedtext{Text}%

[insertionwidth=0.45\linewidth,textcolor=red,fboxrule=2pt]
\hfill
\includeframedtext{Text}%

[insertionwidth=0.45\linewidth,fontstyle=\Large]}\\[2ex]
%
\makebox[\textwidth]\includeframedtext{Text}%

[insertionwidth=0.45\linewidth, backgroundcolor=yellow]
\hfill
\includeframedtext{Text}%

[insertionwidth=0.45\linewidth,framecolor=blue,
backgroundcolor=yellow,fboxrule=1mm]\\[2ex]

7

%
\makebox[\textwidth]\includeframedtext{Text}%

[insertionwidth=0.5\linewidth, fboxrule=0pt,%
backgroundcolor=cyan,textcolor=white,fontstyle=\Huge\bfseries]

\caption{Some framed text boxes ... different colours}
\label{fig:framed text}
\end{figure}

As it is possible to notice from figure 2, version 6 adds another facility; the
colours and dimensions of the elements of the wrapped objects are inserted as
key=value options to the \includeframedtext third argument 〈settings〉; its
default value is “empty”; the users can introduce as many options as they desire,
among the valid ones; if an option is misspelled or its value is not coherent with
its nature, either the option is ignored, or an error is raised. The valid options are
the following; they are listed in alphabetical order, because the options described
with the key=value syntax do not require either a specific order or their presence;
the users can therefore specify from zero to nine options.

backgroundcolor sets the background colour among those defined by the default
set provided by package xcolor. The default colour is a light grey.

fboxrule sets the thickness of the line around the frame; a zero value is allowed,
otherwise it should not be smaller than 0.4pt; on the opposite it should not
be set too large and 1mm appears as a thick enough line around the wrapped
text.

fboxsep sets the distance of the frame from the wrapped text; by default it is set
to 1ex; also in this case it is better to avoid exaggerations. Notice that the
default value depends on the wrapping text font x-height.

fontstyle sets any available declaration that changes the characteristics of a font:
size, series, shape; it is possible to use also the \usefont command with
all its four arguments, even the font encoding. This wrapfig2 has available
also the \setfontsize command that can select any size with any font that
has available at least a step wise continuous size set; for example the Latin
Modern fonts have a stepwise continuous size set, while Computer Modern
have available only a discrete size set.

framecolor sets the color of the frame; the colours available are those available
with package xcolor to which no options have been specified; see its doc-
umentation and in case load xcolor with the desired options before this
package wrapfig2. The default colour is a very dark grey.

insertionwidth sets the insertion width; as it was previously specified, if this
width is too small or too large it will be automatically reassigned a value
within the allowed range.

radius sets the optional radius of the frame rounded “corners”; if it is not specified,
such radius is equal to the default value of \fboxsep. Although it is possible
to use it, we suggest to abide from using it.

scalefactor sets the value that establishes a reasonable range of the insertion
width; users can specify any value in the range xy0 = ymin ≤ y ≤ ymax = y0/x

8

, where y0 is the default value, and x is the scaling factor that by default
equals 0.8; this means y0 equals half the current measure and the inserted
wrapped text produces an indentation of the wrapping lines approximately
between 60% and 40% the current measure; the wrapped text should never
have a too short measure and the wrapping indented lines never have a too
short measure. If users specify a different value to this key, they might get
problems with inter word spacing and of hyphenation.

textcolor sets the text colour among those available among those available with
the default set provided by package xcolor. The default colour is black.

This version 6 has a more flexible way compared to version 5 to specify the details
relative to the framed text, but they are relevant only for the \includeframedtext
command; the syntax for the wraptext environment opening command is identical.
As it was previously shown, the syntax of environment wraptext for version 6 and 5
is practically identical to the one used for the other two environments; actually, as
it can be seen below in the code description of version 6 and 5, it has a fairly longer
definition; it is required by the necessity of avoiding the \caption changes foreseen
in packagewrapfig when float is used to define another floating object, but in
effects the new definition of the wraptext environment uses the same \wrapfloat
and \endwrapfloat commands.

In all three cases the 〈width〉 parameter is a braced optional argument; for the
wraptext environment its preset value is half the column width, that in one column
typesetting mode coincides with the text width. The wrapped text is typeset in
justified mode within a \parbox argument; the measure of this text box should not
be too small (unless the text is less than one line long) otherwise the inter word
spacing might be too large; at the same time the measure of the mini paragraph
cannot be too large, otherwise the indented wrapping lines, generally justified,
might get a bad word spacing. As it was already explained, it is recoommended
to avoid specifying the optional 〈widh〉 outside the range of 40% to 60% the
column width. Actually specifying 0.2\textwidth or 0.4\columnwidth when
typesetting in two column mode produces approximately the same result, because
\columnwidth is a little less than half the \textwidth. In any case versions 6
and 5 of wrapfig2 reset any specified width outside the above range to the nearest
range bound.

4 Remarks
The syntax of the original environments 〈wrapfigure〉 and 〈wraptable〉 has not been
changed, except for a last optional star. The fact that the last braced argument is
optional does not change the backward compatibility with the original environments.

Therefore the optional 〈line number〉 argument maintains its meaning, unless
the optional star is specified; in such a case that number assumes the meaning of a
correction to the computed number of the indented lines.

The mandatory 〈location〉 maintains its meaning and the legal values are l
(left), r (right), L (floating left), R (floating right), i (inner margin), o (outer
margin), I (floating inner margin), O (floating outer margin).

We tested all of them, but as a (possibly questionable) personal choice we
prefer to place the wrapped object at the left of the text, without floating it and
irrespective of the folio parity.

9

Text 2: The Todi stela written in Gallic
and Latin. Gregorian Etruscan Museum
in Rome.

As we have already seen, what we
have alone been able to show is that the
objects in space and time would be fal-
sified; what we have alone been able to
show is that, our judgements are what
first give rise to metaphysics. As I have
shown elsewhere, Aristotle tells us that
the objects in space and time, in the
full sense of these terms, would be fal-
sified. Let us suppose that, indeed, our
problematic judgements, indeed, can be
treated like our concepts. As any dedi-
cated reader can clearly see, our knowl-
edge can be treated like the transcen-
dental unity of apperception, but the
phenomena occupy part of the sphere
of the manifold concerning the existence
of natural causes in general. Whence
comes the architectonic of natural rea-
son, the solution of which involves the

relation between necessity and the Categories? Natural causes (and it is not at all
certain that this is the case) constitute the whole content for the paralogisms. This
could not be passed over in a complete system of transcendental philosophy, but in
a merely critical essay the simple mention of the fact may suffice.

As in the previous examples, we prefer to specify the wrapping environment
just before a sufficiently long paragraph. Should the paragraph be too short to
completely wrap the object, all the environments are capable of counting the
number of used indented lines and to apply the remaining number (and the
\overhang amount) to the following paragraph(s); in these circumstances it might
be necessary to recourse to the optional star in order to correct the indention,
since the mechanism does not consider the inter paragraph spacing that LATEX
introduces only at ship out time.

We avoid also to enter the wrapping environment before paragraphs that are
close to a page break; this action would tickle the idiosyncrasies of the software,
and requires moving the wrapping environment some paragraphs before or after the
preferred one; but this can be done only while reviewing the document, because any
change in the previous source text might change the situation if this adjustment is
done while still editing the document.

Juan Luis Varona Malumbres, whom we thank very much, noticed that if the
space left at the bottom of a page is scarse, it may be that a section title falls
alone at the bottom of the page and the wrapping environment with its wrapping
text gets typeset on the next page; this of course is not acceptable. We found the
place to correct and versions 6 and 5 more often than not do not exhibit any more
this “feature”. Unfortunately in some rare cases this “feature” pops up again; a
\newpage command before the section title solves the problem. This rare feature
could be avoided if the sectioning commands are redefined; but this would imply
modifications to a large number of redefinitions due to the large varieties of classes
and packages that redefine such sectioning commands.

With the standard environments the optional parameter 〈overhang〉 does exactly
what its name implies: the wrapped object protrudes into the adjacent margin

10

exactly by the specified amount. This parameter is not available for the wraptext
environment, or better, it is still available in versions 6 and 5, but we recommend
to abide from using it; we believe that a wrapped text logically pairs the wrapping
text; of course this personal opinion might be wrong.

The 〈width〉 parameter has been already sufficiently described; we just remember
that for wraptext this parameter is optional and its default value amounts to half
the current measure; this insertion width can be specified but it should not be
too different from its default value y0, set to 50% of the current measure. For the
standard environments this parameter value appears to be mandatory; actually it is
a braced really optional argument only for the redefined environments 〈wrapfigure〉
and 〈wraptable〉.

Matter of facts, for the wraptext environment we defined a command in order
to specify a factor x so as to avoid getting the object width outside the range
xy0 ≤ y ≤ y0/x, where y0 is the preset default width; if the authors specified a
value outside this range, the above environment automatically resets the insertion
width y to the nearest bound. Of course authors have the possibility to change the
preset x value, if they redefine the \WFscalefactor macro, but such resetting is
strongly discouraged; the default value is 0.8.

Κα᾿γὼ σὲ πατάξας διαλύσω τὸ κρανὶον

Text 3: A sample text in Greek

As is evident upon close examina-
tion, to avoid all misapprehension, it is
necessary to explain that, on the con-
trary, the never-ending regress in the
series of empirical conditions is a rep-

resentation of our inductive judgements, yet the things in themselves prove the
validity of, on the contrary, the Categories. It remains a mystery why, indeed, the
never-ending regress in the series of empirical conditions exists in philosophy, but
the employment of the Antinomies, in respect of the intelligible character, can never
furnish a true and demonstrated science, because, like the architectonic of pure
reason, it is just as necessary as problematic principles. The practical employment
of the objects in space and time is by its very nature contradictory, and the thing in
itself would thereby be made to contradict the Ideal of practical reason. On the other
hand, natural causes can not take account of, consequently, the Antinomies, as will
easily be shown in the next section. Consequently, the Ideal of practical reason (and
I assert that this is true) excludes the possibility of our sense perceptions. Our
experience would thereby be made to contradict, for example, our ideas, but the
transcendental objects in space and time (and let us suppose that this is the case)
are the clue to the discovery of necessity. But the proof of this is a task from which
we can here be absolved.

If optional parameters are not used and the mandatory ones are reduced to a
minimum (remember the 〈width〉, in spite of being braced is optional) the three
environments produce the same results; the difference, in spite of the nature of
the wrapped object differs only with the environment name. Text 2 displays an
image that contains some text; it is reasonable to insert it with the wrapfigure
environment, but it is not absurd to insert it with the wraptext one as we did with
text 2.

The wrapped text may be written also in a foreign language, even if it uses a
differente alphabet. Evidently this language should be specified in the preamble of
the author’s document, either when using babel or polyglossia. The example
text 3 was typeset with the following code:

11

\begin{wraptext}{l}
\includeframedtext{%

\foreignlanguage{greek}{Κα᾿γὼ σὲ πατάξας διαλύσω τὸ κρανὶον}}
\caption{A sample text in Greek}\label{txt:greek}
\end{wraptext}

5 Other floating objects
Pictures and textual arrays may be floated by means of the standard 〈figure〉 and
〈table〉 environments. But other floating objects may be defined by means of other
packages, such as float, or classes, such as memoir. Besides floating, the main
difference is the name of the caption “label”: Figure, Table, Algorithm, Example,
and so on, and the lists of such objects.

If floating is not necessary, this package (as well as the original one) allows to
use the underlying environment wrapfloat that uses the same syntax as wrapfigure
plus the mandatory name of the new object: even a figure might be introduced
without using 〈wrapfigure〉, by using instead:

\begin{wrapfloat}{figure}[〈line number〉]{〈placement〉}[〈overhang〉]{〈width〉}〈⋆〉
〈image〉

\end{wrapfloat}

Another 〈object〉 might be wrapped by using:

\begin{wrapfloat}{〈object name〉}[〈line number〉]{〈location〉}%
[〈overhang〉]{〈width〉}〈⋆〉

〈object〉
\end{wrapfloat}

By reading the documentation of the original wrapfig package, it may be
assumed that, if the floating 〈location〉 codes have to be used, another floating
object with the desired 〈object name〉 has to be previously defined by means of
the functionalities of other packages or classes. But, if the non floating 〈location〉
codes are used, the presence of another 〈floating object〉 environment appears to
be unnecessary.

This is actually possible by “cheating” a little bit: it can be actually wrapped
any 〈object〉 by using the wrapfigure environment, while assigning a different name
to the caption label; something similar to typeset a small figure within a non
floating environment. The obvious draw back is that the caption is numbered as a
figure.

In order to avoid such drawbacks and to have a real floating 〈other object〉
environment it is necessary to procede by defining a new real floating environment
with that name. To do this task, wrapfig2 versions 5 and 6 use the float package.

As it is possible to verify by reading the section where the code is documented,
the operation is not that simple because float redefines several internal macros
that are incompatible with both wrapfig and wrapfig2. This is why, even with
wrapfig2 in versions 5 and 6, that load the float package, the code for this
environment redefines the \caption command so that Arseneau had to define
some adjusting macros in order to deal with something different from what it was
with the LATEX 2ε kernel. We did not modify what Arseneau defined, although

12

it did not work correctly with the new text floating environment. Therefore we
reinstated the LATEX 2ε kernel relevant definitions.

It is possible that such resetting of the original definition is necessary also with
floating objects defined by other means, for example by using the functionalities of
memoir. We admit we did not test this package functionality with class memoir;
feedback on this compatibility issue is very welcome.

Acknowledgements
We gratefully thank Donald Arseneau who gave the TEX community the original
wrapfig package. For what concerns wrapped text, we did not use Arseneau’s
framed package, because we wanted a frame with rounded corners. Nevertheless,
while developing our package, we experimented also with his package that yields
good results but with the ordinary right angle frame corners.

Thanks to Heinrich Fleck who submitted to our attention the texstackexchange
message where the problem of wrapping text was presented possibly for the first
time. The solution presented in texstackexchange appears to be oversimple,
almost trivial; especially it does not solve the problem of a caption if one is desired
to describe that wrapped text. Moreover the solution of texstackexchange used
in a very simple way the tcolorbox environment, that behind the scenes uses a very
heavy set of multifunctional macros that offer functionalities that are not required
for this problem.

Warm thanks also to Juan Luis Varona Malumbres for his precious feedback
and his suggestions.

6 The code
Here we describe and comment the code of this package; essentially only the
initial parts need some comments; because the final ones are almost identical to
Arseneau’s original code.

The usual specification of the format name and date, and the identification of
this specific package have been already specified by the .dtx file.

First of all we check if certain packages have already been loaded; some of these
packages, such as wrapfig, that might have been previously directly loaded, or
might have been loaded by other packages, are incompatible with this package
wrapfig2. wrapfig might have been loaded by other packages, such as caption
or subcaption, that redefine some internals that we did not want to replace so as
to avoid other possible incompatibilities. We first check if a specific macro with
the WF prefix has already been defined; if so, this package loading is aborted with a
very evident error message. In contrast the job is not aborted, because the presence
of the original wrapfig package might still be sufficient; evidently there will be
many errors if some new user commands or environments are used.

Caution besides the evident error message, that might be neglected by the user,
the job may continue but it may produce several errors difficult to interpret. Please,
in these cases read the .log file and look for error messages; there you are going
to discover what has gone wrong with your way of using this package.

1 \ifcsname c@WF@wrappedlines\endcsname

13

2 \PackageError{wrapfig2}{ \MessageBreak
3 **\MessageBreak
4 Package ‘wrapfig’ has already been loaded perhaps \MessageBreak
5 by other packages, for example caption or subcaption.\MessageBreak
6 Such packages are incompatible with wrapfig2 \MessageBreak
7 Loading of‘wrapfig2’ is aborted \MessageBreak
8 **\MessageBreak
9 }{You might type X <return> and might get along without\MessageBreak

10 this package if you don’t use the new environment \MessageBreak
11 ‘wraptext’ and the new commands; otherwise you get \MessageBreak
12 errors about such environment not being defined; \MessageBreak
13 you must kill your job!}
14 \expandafter\endinput\fi
15

We keep the original definition of the \WF@warning and the original definition of
the 〈verbose〉 option; but we add the new 〈WFold〉 and 〈WFfivw〉 options in order
to fall back to the functionalities of the previous version 4 or 5, at least for what
concerns the wraptext environment.
16 \def\WF@warning{\PackageWarning{wrapfig2}}
17 \DeclareOption{verbose}{\def\WF@info{\PackageInfo{wrapfig2}}}
18 \newif\ifWFnew \let\ifWFnew\iftrue
19 \newif\ifWFfive \let\ifWFfive\iffalse
20 \DeclareOption{WFold}{\let\ifWFnew\iffalse}
21 \DeclareOption{WFfive}{\let\ifWFnew\iffalse \let\ifWFfive\iftrue}
22 \ProcessOptions
23

We load the etoolbox package, in order to have available its powerful macros.
If is was not previously loaded, we load the xfp package, that allows us to

perform precise calculations. Loading the xparse package is necessary in order to
use one of its rare features that did not migrate to the LATEX kernel. From the
LATEX News Letter dated October 2020:

Most, but not all, of the argument types defined by xparse are now
supported at the kernel level. In particular, the types g/G, l and u,
are not provided by the kernel code; these are deprecated but still
available by explicitly loading xparse. All other argument types are
now available directly within the LATEX 2ε kernel.

Their availability eases the treatment of the backwards compatibility of this
software with the original wrapfig and wraptable functionality. It deals with the
mandatory 〈width〉 argument of the wrapfigure, wraptable, the new wraptext, and
wrapfloat environments, where it was possible to specify a zero value. Now it is
possible to omit it completely because it is a braced optional argument with a 0pt
default value.
24 \RequirePackage{xparse}
25 \@ifpackageloaded{xfp}{}{\RequirePackage{xfp}}
26 \@ifpackageloaded{etoolbox}{}{\RequirePackage{etoolbox}}
27 \@ifpackageloaded{float}{}{\RequirePackage{float}}
28 \@ifpackageloaded{color}{}{%
29 \@ifpackageloaded{xcolor}{}{\RequirePackage{xcolor}}%
30 }

14

31 \@ifpackageloaded{curve2e}{}{\RequirePackage{curve2e}}
32 \@ifpackageloaded{xkeyval}{}{\RequirePackage{xkeyval}}
33

Notice that we loaded the xcolor package without any option in order to avoid
option clash errors, and users who want to use xcolor with options should load it
before this package wrapfig2, version 5 and 6. Users are warned to pay attention
to this color package loading: they should load it neither before nor after loading
wrapfig2; if they do, they receive various warning or error messages because
xcolor redefines some color internal commands; everything is explained in the
xcolor documentation.

In order to define the new floating object text we have to load the package
float, but only if versions 5 or 6 ae used; in other words only if the \ifWFnew
switch is true.

If the \chapter command is or is not defined we have to load the float package
with different options; for example, if we are using the article class, the \chapter
command is undefined, and the last option might become 〈section〉 (although in
the standard article class, no floating object counter belongs to any other counter
reset list) so as to have the floating text environment correctly reset the right
counter with the right label before the object number.
34 \ifboolexpr{ bool{WFfive} or bool{WFnew} }%
35 {\floatstyle{plain}%
36 \ifcsname chapter\endcsname
37 \newfloat{text}{tbp}{lotx}[chapter]%
38 \else
39 \newfloat{text}{tbp}{lotx}%
40 \fi
41 \floatname{text}{Text}% come personalizzare con le diverse lingue?
42 \let\WF@text@caption\float@caption
43 }{}
44

If the users wanted to add the text counter to some sectioning command
counter reset list, they might use the \counterwithin command now available
with the recent updates of the LATEX kernel; see the LATEX newsletter 28 for details
(terminal command texdoc ltnews28). Its syntax is the following:

\counterwithin{〈counter〉}{〈main counter reset list〉}

Next we define some dimensions, boxes, token registers, TEX counters, and alias
names, plus some color and macro definitions. The \WF@correctlines@switch
TEX numeric register (not a LATEX counter) is going to be used as a boolean switch:
if its value is zero, il means “false”, otherwise it is “true”; in the other definitions
below, it will be set only to 0 or 1, depending on the presence of the optional star.
45 \newdimen\wrapoverhang \wrapoverhang\z@
46 \newdimen\WF@size
47 \newcount\c@WF@wrappedlines
48 \newbox\WF@box
49 \newbox\NWF@box
50 \newtoks\WF@everypar
51 \newif\ifWF@float
52 \newcount\WF@correctlines@switch
53 \let\@@parshape\parshape

15

54 \let\WF@@everypar\everypar
55
56 \newdimen\insertwidth
57 \newdimen\radius
58 \newdimen\WFinsertwidthL
59 \newdimen\WFinsertwidthH
60
61 \definecolor{WFbackground}{rgb}{0.95,0.95,0.95}
62 \definecolor{WFframe}{rgb}{0.1,0.1,0.1}
63 \colorlet{WFtext}{black}
64 \def\SetWFbgd#1{\colorlet{WFbackground}{#1}}
65 \def\SetWFfrm#1{\colorlet{WFframe}{#1}}
66 \def\SetWFtxt#1{\colorlet{WFtext}{#1}}
67
68
69 \def\WFsplitdimens#1,#2!{\fboxrule=#1\relax\fboxsep=#2\relax}
70
71 \providecommand\setfontsize{}
72 \RenewDocumentCommand\setfontsize{O{1.2} m}{%
73 \fontsize{#2}{\fpeval{#1*#2}}\selectfont}
74
75 \def\WFscalefactor{0.8}%
76 \newcommand*\WFscalewidth{%
77 \WFinsertwidthL=\fpeval{\WFscalefactor*0.5\columnwidth}\p@
78 \WFinsertwidthH=\fpeval{0.5\columnwidth/\WFscalefactor}\p@
79 \ifdim\insertwidth<\WFinsertwidthL
80 \insertwidth=\WFinsertwidthL
81 \else
82 \ifdim\insertwidth>\WFinsertwidthH
83 \insertwidth=\WFinsertwidthH
84 \fi
85 \fi
86 }%
87

We define several options that use the key=value syntax. Above we have already
loaded the xkeyval package that offers also some ‘X’ labeled macros that mimic
the corresponding LATEX 2ε kernel macros, but that are necessary for using the
xkeyval internal macros. We chose the wraptext option family name, because
such options are to be used mostly within the \includeframedtext macro. The
\ExecuteOptionX used here stands for a general initialisation of the listed options,
but it will be used also within the \includeframedtext command in order to set
the specified options for the specific use of this command.
88 \DeclareOptionX<wraptext>{scalefactor}[0.8]{\def\WFscalefactor{#1}}
89 \DeclareOptionX<wraptext>{fboxrule}[1pt]{\fboxrule=#1}
90 \DeclareOptionX<wraptext>{fboxsep}[1ex]{\fboxsep=#1}
91 \DeclareOptionX<wraptext>{framecolor}[WFframe]{\SetWFfrm{#1}}
92 \DeclareOptionX<wraptext>{backgroundcolor}[WFbackground]{\SetWFbgd{#1}}
93 \DeclareOptionX<wraptext>{textcolor}[WFtext]{\SetWFtxt{#1}}
94 \DeclareOptionX<wraptext>{fontstyle}[\normalfont]{#1}
95 \DeclareOptionX<wraptext>{radius}[\fboxsep]{\radius=#1}
96 \DeclareOptionX<wraptext>{insertionwidth}[0.5\columnwidth]{\insertwidth=#1}
97
98 \DeclareOptionX*{\PackageWarning{wrapfig2}{‘\CurrentOption’ ignored}}

16

99
100 \ExecuteOptionsX<wraptext>{scalefactor, fboxrule, fboxsep, framecolor,
101 backgroundcolor, textcolor, fontstyle, radius, insertionwidth}
102
103 \ProcessOptionsX*
104

Should the format file be not so up to date, a multitude of errors would be
produced, and the user should take care to load the xparse and xfp packages
before loading wrapfig2. Notice that most of the xparse package functionalities
are already included in the format file at the date required for this file. The xparse
package has been available since about 2018; should the users have available a
definitely older TEX system installation, either they upgrade it, or they must avoid
using this wrapfig2 package and should use the original wrapfig one; if they need
to wrap text, they should resort to some ingenious, not so trivial tricks to do it.

Originally version 4 used the tcolrbox package to frame the wrapped text; we
thought that loading that package was too heavy on memory, even if the modern
computers have large working memories. But in order to maintain and track
possible errors the traced .log file would become too large to be of any help;
therefore in oder to draw a framed box with rounded corners we thought it would
be much simpler to load the curve2e package, just a second level extension of
the original picture environment defined in the LATEX 2ε kernel; only some 30 lines
of code are sufficient to replace the extremely powerful tcolorbox functionalities
otherwise required to frame wrapped text with this wrapfig2 package.

The definitions of the wrapfigure and wraptable environments are very simple
by means of the underlaying wrapfloat environments.

105 \NewDocumentEnvironment{wrapfigure}{o m o G{0pt}}%
106 {\wrapfloat{figure}[#1]{#2}[#3]{#4}}%
107 {\endwrapfloat}
108
109 \NewDocumentEnvironment{wraptable}{o m o G{0pt}}%
110 {\wrapfloat{table}[#1]{#2}[#3]{#4}}%
111 {\endwrapfloat}
112

Notice that the argument descriptor s for the optional star is not present in
these definitions; if a star is being used, it will be read by successive macros or
environments.

In order to include the text to be wrapped the floating object text has already
been defined, but we need a suitable command to insert it with its frame into the
wraptext environment body. Here is the code of some extra macros and of the
wraptext environment.

We start with two different \includeframedtext, one for version 6, that accepts
key=velue options, and another one for version 5, that requires only a comma
separated list of dimensional values.

113 \ifbool{WFnew}{%
114 \NewDocumentCommand\includeframedtext{O{\insertwidth} m O{} o}{\bgroup%
115 \ExecuteOptionsX<wraptext>{#3}% executes possible key=value options
116 \insertwidth=#1\WFscalewidth
117 \framedbox{#2}{\fboxrule}{\fboxsep}[\radius]\egroup}
118 }{}
119

17

120 \ifbool{WFfive}{%
121 \NewDocumentCommand\includeframedtext{O{\insertwidth} m O{1pt,1ex} o}%
122 {\bgroup
123 \WFsplitdimens #3!\relax
124 \IfNoValueTF{#4}%
125 {\framedbox{#2}{\fboxrule}{\fboxsep}}%
126 {\framedbox{#2}{\fboxrule}{\fboxsep}[#4]}
127 \egroup}%
128 }{}
129

Their simple syntaxes are the following

% for version 6.0
\includeframedtext[〈text width〉]{〈text〉}[〈options〉][〈radius〉]
% for version 5.0
\includeframedtext[〈text width〉]{〈text〉}[〈dimensions〉][〈radius〉]

The optional 〈text width〉 is the (possibly scaled) width computed by the wraptext
environment; but if the authors use this command outside the wraptext environment,
they should specify a width; in any case the default value is half the current measure
\linewidth. The 〈text〉 is the unformatted text to be wrapped; it will be boxed
and framed by the service macro \framedbox; the 〈dimensions〉 are passed on to
\framedbox command; they are a comma separated list of dimensions, namely
the thickness of the frame and the necessary frame distance from the formatted
text. The 〈options〉 contains a comma separated list of zero to nine options with
the syntax key=vale that are going to be used by both the \includeframedtext
and \framedbox. The last optional 〈radius〉 is the curvature radius of the rounded
frame corners; the default value is going to be set to \fboxsep: in version 5
\framedbox by default sets it equal to the frame separation width, while with
version 6 its value is received with the option radius=〈dimension〉; the default
value is certainly the best one, but the users can specify a different value, of course
not too different from the default one. See some examples in figure 2.

The definition of the \framedbox command appears to be complicated; it is
just an apparent complication due to the fact that it uses the powerful \Curve
command that draws an arbitrary curved line or fills the area delimited by such
curved line; it suffices to specify the nodes and the tangents to each node; the
nodes are the points the line should pass through, their tangents may be specified
with arbitrary vector components along the horizontal and vertical axes. For a
rectangle such vector components are just 0 or ±1. The node coordinates of the
rounded corners, on the opposite, must be determined with accuracy; we used the
\fpeval function of package xfp, that performs precise computations on operands
in fractional decimal numbers; if the operands are dimensions, the operands are
their fractional decimal values in printer points, the results of such operations are
pure fractional decimal numbers without units; if the numerical result is to be
interpreted again as the measure of a dimensional entity, pt must be appended
to the assignments to a dimension register; within the picture environment, any
coordinate is expressed in multiples of \unitlength, therefore no unit of measure
is necessary, once \unitlength has been specified.

For a rectangle with curved corners of a given radius \R we have four quarter
circles joined by straight lines; therefore we need eight nodes.

18

The shaded background and the coloured frame have the same contour; but
the former is filled, while the latter is stroked; we have to draw the same curve
two times; first the shaded background, then we superimpose the frame

This shaded framed curved corners rectangle is at the center of the coordinate
system of a piture environment, and has the correct dimensions to receive the
boxed text; it is trivial to center the text by means of a zero dimensioned box,
typical of the picture environment.

The code of this long but simple code is the following.
130 \NewDocumentCommand\framedbox{ m m m O{#3}}{\bgroup
131 \fboxrule=#2\fboxsep=#3\relax
132 \setbox0\hbox{\fboxrule=\z@\fboxsep=#3\relax
133 \framebox{\parbox{% draw a framed box without the frame
134 \fpeval{\insertwidth-2\fboxrule-2\fboxsep}\p@}{\textcolor{WFtext}{#1}}}}
135
136 \unitlength=\fpeval{\wd0/100}\p@ % set the picture \unitlength
137 % determine the picture coordinates and displacement of the axes origin
138 \edef\x{100}%
139 \edef\y{\fpeval{(\ht0 +\dp0)/\unitlength}}%
140 \edef\xc{50}%
141 \edef\yc{\fpeval{\y/2}}\edef\R{\fpeval{#4/\unitlength}}%
142 \edef\R{\fpeval{#4/\unitlength}}% radius in unit lengths
143 % compute the horizontal and vertical shifts of the corner extrema
144 \edef\WFXds{\fpeval{-\xc+\R}}\edef\WFXsd{-\WFXds}%
145 \edef\WFYuo{\fpeval{\yc-\R}}\edef\WFYou{-\WFYuo}%
146 % compute the coordinates of the curved corners frame contour
147 \edef\PSEl{\WFXsd,-\yc}\edef\PSEu{\xc,\WFYou}\edef\PNEd{\xc,\WFYuo}%
148 \edef\PNEl{\WFXsd,\yc}\edef\PNWr{\WFXds,\yc}\edef\PNWd{-\xc,\WFYuo}%
149 \edef\PSWu{-\xc,\WFYou}\edef\PSWr{\WFXds,-\yc}%
150
151 \def\WFrectangle{% define the contour as the argument of \Curve
152 (\WFXsd,-\yc)<1,0>(\xc,\WFYou)<0,1>(\xc,\WFYuo)<0,1>%
153 (\WFXsd,\yc)<-1,0>(\WFXds,\yc)<-1,0>(-\xc,\WFYuo)<0,-1>%
154 (-\xc,\WFYou)<0,-1>(\WFXds,-\yc)<1,0>(\WFXsd,-\yc)<1,0>}%
155 \def\CurveStar{\Curve*}% define a macro for adding the asterisk
156
157 \begin{picture}(\x,\y)(-\xc,-\yc)
158 {\color{WFbackground}\expandafter\CurveStar\WFrectangle}% draw background
159 \ifdim\fboxrule>\z@% draw the frame if its thickness is not zero
160 {\color{WFframe}\linethickness{#2}\expandafter\Curve\WFrectangle}%
161 \fi
162 % put the text block in a null box at the coordinates origin
163 \put(0,0){\makebox(0,0)[cc]{\box0}}%
164 \end{picture}
165 \egroup}
166

Its syntax is the following.

\framedbox{〈text to be wrapped〉}{〈frame thickness〉}{〈frame separation〉}[〈corner radius〉]

The default value of the 〈corner radius〉 is assigned to equal argument number 3,
that is the 〈frame separation〉 and both have a default value of 1ex; therefore they
vary with the current font size. See figure 2. The frame thickness is given a default
value of 1pt if the command is used within the body of the \includeframedtext;

19

but if this command received a different value the frame may be thicker, or even
vanish; we discourage values higher than 3pt (about 1mm) and lower than 1pt
unless is zero.

The definition of the wraptext environment is more detailed, because most
of the computations must be done on the actual text to be wrapped, that does
not have a specific width; moreover the inserted text must not be too wide, nor
too short in order to avoid problems with its justification or the justification of
the wrapping lines. The framed box width is preset to 50% of the normal text
measure, but it can be optionally specified to a different value (not too different
from 50%); as with the other wrapping environments, with versions 6 and 5 the
inserted material width is a braced optional argument; with version 6.0 the default
value of the radius option is equal to \fboxsep.

For what concerns wraptext, the opening statement argument description list
does not contain any descriptor for an optional star. There is no need because
the computation of the insertion block height is pretty precise and at most the
user might desire one line more or less depending on the measure of the whole
text, and that of the inserted block and/or the measure of the indented wrapping
lines; sometimes it might be necessary to get rid of the space below the inserted
block when it gets typeset at the bottom of a page. The asterisk is not needed
because for this environment the optional first argument is always interpreted as
the indented lines number correction.

It is true that some of the input parameters specified to the opening command
of any environment with LATEX 3 are available also to the closing commands; see
the last paragraph of section 2 in the xparse documentation.

But the following definition uses the separate opening and closing macros of
the wrapfloat environment; such procedure breaks this second availability of the
input parameters, therefore it is necessary to save them into local macros or count
registers (assignments to TEX count registers are local, while assignment to LATEX
named counters, through the \setcounter macro and its siblings, are global) so
that we can use their values within the closing commands.

The \NWF@box box register has been allocated at the code beginning; remember
that LATEX 3 registers of any kind are not limited in number as they were some
years ago with LATEX 2ε.

The last opening commands are conceived to box the object to be wrapped,
typeset within a coloured box with the default of specified width; compared to
version 4, these new versions 5 and 6 do not use anymore the functionalities provided
by package tcolorbox; instead they use the curve2e package functionalities to
draw similar framed and shaded boxes; this implies much less memory used by
the almost unlimited, but unused, functionalities of the tikz package on which
tcolorbox relies. Notice that the plain picture environment extended with the
pict2e package can draw “ovals”, that is rectangles with rounded corners, but as
far as we know they have the frame but cannot be filled.

Notice the wraptext has two or three definitions depending on the logical
switches WFnew and WFfive; if one of these switches is true the definitions apply
to either version 5 or 6 of this package; otherwise the last definition is a fall back
to the functionality and the syntax of the previous version 4 of this package; in
this case, in spite of the fact the the previous version used package tcolorbox,
the new code relies on the curve2e functionalities in oder to get the same results
without using the memory heavy tcolorbox package.

With version 6.0, the frame that surrounds the wrapped text has the desired

20

rounded corners; it is possible to easily specify the background and the frame
colours, that by default are maintained to light grey and almost black respectively;
this flexibility allows to set also the frame thickness and the separation width of the
frame from its contents; by default they are 1pt for the frame thickness, and 1ex
for the separation width, that changes with the font size. The number of indented
lines is computed by means of the \fpeval LATEX 3 function; among the operands
of this function there is the number 2 used to take into account the vertical space
above and below the framed box. It is possible that a value of 3 might reduce the
probability of using the 〈line number correction〉. But it is not always true and we
found that the chosen value is a better choice.

Eventually the opening wrapfloat statement is created by expanding the whole
line complete of its arguments, by means of the usual trick of defining a dummy
macro within a group that contains among its expansion the group closing command,
so that while it is being executed, it deletes itself from memory.

Notice that the syntax of the new wraptext environment is absolutely identical
to that of the other two wrapping environments in terms of 〈line number correction〉,
mandatory 〈location〉, optional 〈overhang〉 and braced optional 〈width〉. See below
for the very different syntax of the fall back version 4 opening wraptext statement;
they become almost identical when no optional parameters are specified, the only
little difference being that the 〈location〉 argument is mandatory for versions 5
and 6, while it is optional for version 4.

167 \ifboolexpr{bool{WFnew} or bool{WFfive}}{% definition for versions 5 and 6
168 \NewDocumentEnvironment{wraptext}{O{0} m O{0pt} G{0.5\columnwidth}}{%
169 \insertwidth=#4\WFscalewidth
170 \def\textplacement{#2}%
171 \def\textcorrection{#1}%
172 \def\textoverhang{#3}%
173 \bgroup\edef\x{\egroup\noexpand\wrapfloat{text}%
174 [\textcorrection]{\textplacement}[\textoverhang]{\insertwidth}*}\x%
175 \def\caption{\unskip
176 \refstepcounter\@captype
177 \let\@tempf\@caption
178 \unless\ifcsname @float@c@\@captype\endcsname
179 \expandafter\expandafter\let
180 \expandafter\@tempf\csname @float@c@\@captype\endcsname
181 \fi
182 \@dblarg{\@caption\@captype}%
183 }%
184 }{\endwrapfloat\ignorespaces}%

For the fallback to version!4 definition of this wraptext environment we have to
start with the old list of specifically delimited optional arguments. We remember
that this opening statement receives in order a bracket delimited optional 〈location〉
parameter, a vertical bar delimited optional 〈width〉, an angle bracket delimited
optional 〈line number correction〉, a round parenthesis delimited optional 〈caption
label〉; the different delimiters allow to specify any optional argument without
regard with the other ones, provided they are in the same logical order when more
than one optional argument is specified.

Notice that the third optional argument contains the 〈line number correction〉,
therefore the star used with the other environments is useless; if an asterisk is
indadvertedly specified, it is typeset as the first token of the wrapped test.

The text to be wrapped, that forms the body of the environment, must be first

21

boxed into a correct width vertical box; this is easily obtained with a minipage
environment, of which the internal commands are used; this insures that the text
is typeset with the correct measure; with the closing commands this boxed text
is fed to the \framedbox command, in order to be framed and assigned a default
background color. There is no possibility of specifying the colours unless the whole
wraptext environment, preceded by explicit color settings, is confined within a
group delimited, for example, by the \begingroup and \endgroup commands.

185 }{% definition for version 4 fall back
186 %
187 \NewDocumentEnvironment{wraptext}%
188 {O{l} D||{0.5\columnwidth} D<>{0} D(){text} }%
189 {% Open environment
190 \insertwidth=#2
191 \def\textplacement{#1}%
192 \def\textcorrection{#3}%
193 \def\WF@caption@label{#4}%
194 \setbox0\hbox\bgroup
195 \minipage{\dimexpr\insertwidth-2pt-6ex}%
196 }{% Close environment
197 \endminipage\egroup
198 \begin{lrbox}{\NWF@box}%
199 \framedbox{\box0}{1pt}{1ex}%
200 \end{lrbox}
201 \edef\NWF@wli]{\fpeval{%
202 round((\ht\NWF@box+\dp\NWF@box)/\baselineskip,0)+2+\textcorrection}%
203 }%
204 \unles\ifhmode
205 \leavevmode\noindent
206 \fi
207 \bgroup\edef\x{\egroup\noexpand\wrapfloat{\WF@caption@label}[\NWF@wli]%
208 {\textplacement}{\the\insertwidth}}\x
209 \box\NWF@box
210 \endwrapfloat
211 \ignorespaces
212 }
213 }
214

The opening command of the wrapfloat environment receives the mandatory
and optional arguments plus the name of the particular object to be wrapped. It
is used to define the prefix label of the caption number in case that the object is
described with a caption. The optional star is not explicit, because it is going to
be read by the \WF@wr macro.

The closing command of wrapfloat performs most of the work necessary to wrap
the box that contains the object to be wrapped, but certain tasks are demanded
to other service macros.

It is possible to set the width of the box if the 〈width〉 parameter is specified;
otherwise it closes the \hbox that was used; then it closes the main vertical box
\WF@box. After executing \WF@floatstyhook, necessary when package float.sty
has been used, it saves the 〈overhang〉 value to be used when wrapping is actually
performed; then it verifies if the box height is too high to fit, or is too short;
possibly re-boxes this box in the same box register with a negative initial vertical
skip that raises the box contents.

22

Now comes the new actual definition of the fundamental environment wrapfloat;
compared to the original Arseneau’s definition it is much longer, but it contains
the code that Arseneau, who used the LATEX 2ε language, and had to split it in
several macros in order to handle the multitude of interspersed mandatory and
optional arguments.

The main function of this environment is to handle the box that contains the
figure, or the table, or the framed text, or what else, so that the inserted box is
preceded and followed by suitable vertical spaces, and it is possible to compute
the number of lines to be indented; often this computed number is correct; but in
certain cases, when the code is used too close or within prohibited wrapping text,
such number might need to be corrected. As it can be seen the optional star is not
among the argument descriptors of the opening commands; it will be the following
macro \WR@wr responsible of taking care of the list of arguments and see if a star
has been specified but is still in the input flow.

In order to handle any kind of wrapped object, this environment first argument
is the 〈caption label〉. It may remain blank; but for wrapping figures or tables
their respective definitions specify the name of the floating object they belong to;
it is necessary that there exists a floating environment with the same name of
the wrapped object, even when its wrapping environment is not specified with a
floating 〈location〉 argument.

215 \NewDocumentEnvironment{wrapfloat}{m o m o G{\z@}}%
216 {% open environment code
217 \def\@captype{#1}\WF@wr[#2]{#3}[#4]{#5}%
218 }{% close environment code
219 \ifdim\hsize>\z@
220 \par\hrule\@width\hsize\@height\z@ % force width with invisible rule
221 \else
222 % \unskip % is the \unskip necessary?
223 \egroup \box\z@ % or close hbox
224 \fi
225 \egroup % close the vtop box; its width now is known
226 \WF@floatstyhook % support for float.sty
227 \def\width{\wd\WF@box}%
228 \setlength\wrapoverhang{\WF@ovh}%
229 \xdef\WF@ovh{\the\wrapoverhang}% save until wrapping
230 \ifdim\ht\WF@box>\topskip \ht\WF@box\z@ \fi% too high, set flag
231 \ifdim\ht\WF@box<.5\p@ % too short, move up
232 \global\setbox\WF@box\vtop{\vskip-1.4ex\unvbox\WF@box}%
233 \fi
234 \global\WF@size=% compute total box hight with \fpeval
235 \fpeval{\ht\WF@box+\dp\WF@box+1.5\baselineskip+\tw@\intextsep}\p@
236 \aftergroup\WF@startfloating % use even when not really floating
237 \unless\ifWF@float
238 \ifhmode
239 {\unskip \parfillskip\z@skip \par \vskip-\parskip}%
240 \aftergroup\noindent
241 \fi
242 \fi
243 \global\@ignoretrue
244 }
245

The working macro \WF@wr is defined with the LATEX 3 language; it grabs all

23

the optional and mandatory arguments in a single step, contrary to LATEX 2ε
that requires to split the various steps in separate macros. In the definition code
we use also some commands, such as \unless, originally defined by the εTEX
typesetting program extensions, that have been included in the pdfLATEX, X ELATEX
and LuaLATEX kernels several years ago.

Notice that the optional first (optional) argument, that represents the number
of indented lines or their correction number, is saved into the macro \WF@wli, but
if this argument is not specified, \WF@wli is assigned the value zero. The same
happens for the 〈overhang〉 optional argument.

After these adjustments, the software computes the box total height plus some
fixed amounts needed mostly to set the wrapped material below the wrapping text
first line. Here is where the LATEX 3 \fpeval computing function comes into play
so as to assign such height to \WF@size. Afterwards some unusual macros are
executed; they were devised by Arseneau to deal with possibly floating wrapped
objects. The optional star is not accepted by this macro; if the user specified it, it
is still in the input flow; notice that the wraptext environment does not accept the
optional star; if the user indadvertedly specifies it for this environment, an asterisk
appears at the beginning of the wrapped text with version 4; with versions 5 and 6
the asterisk appears at the left of the framed text. In all three cases, in facts, the
first optional parameter is always interpreted as the 〈line number correction〉.

The braced 〈width〉 fourth parameter (actually a braced optional parameter)
may be specified to be 0pt; in any case 0pt is the default parameter value; if so,
the object is treated at its natural width, by boxing it into an hbox and using
this box width as the working width of course this works only with wrapfigure and
wraptable, because what is being wrapped has its own natural width; with text
the natural width is the default setting made with the braced optional argument
described with the G descriptor.

246 \NewDocumentCommand\WF@wr{o m o m s}{%
247 \xdef\WF@wfname{wrap\@captype\space}%
248 \unless\ifvoid\WF@box
249 \WFclear \WF@collision
250 \fi
251 \xdef\WF@place{\string‘\@car#2r\@nil}%
252 \ifnum\lccode\WF@place=\WF@place
253 \global\WF@floatfalse
254 \else
255 \global\WF@floattrue
256 \fi
257 \ifx\parshape\WF@fudgeparshape
258 \unless\ifWF@float\\WF@collision\fi
259 \else
260 \ifx\par\@@par
261 \ifnum\@@parshape>\z@\WF@conflict\fi
262 \else
263 \WF@conflict
264 \fi
265 \fi
266 \IfValueTF{#1}% save optional line number or correction
267 {\gdef\WF@wli{#1}}%
268 {\gdef\WF@wli{0}}%
269 %

24

270 \IfValueTF{#3}% save optional overhang
271 {\gdef\WF@ovh{#3}}%
272 {\gdef\WF@ovh{\z@}}%
273 %
274 \global\setbox\WF@box\vtop\bgroup \setlength\hsize{#4}% set width
275 \ifdim\hsize>\z@
276 \@parboxrestore
277 \else
278 \setbox\z@\hbox\bgroup
279 \let\wf@@caption\caption
280 \let\caption\wf@caption
281 \ignorespaces
282 \fi
283 \IfBooleanTF{#5}% if the asterisk is present set the numerical switch
284 {\global\WF@correctlines@switch=\@ne}%
285 {\global\WF@correctlines@switch=\z@}%
286
287 }

At this point the main box \WF@box is opened in order to store the object to
be wrapped; with this box height the software is going to compute the number
of lines to be indented, unless such a number has been specified and no star was
added to the input parameters.

Also the 〈wraptext〉 environment uses a box to collect the framed text; the
name of this second box must be different from \WF@box otherwise interference of
the various tasks produces unrecoverable errors. This is why at the beginning of
this package we defined two different boxes: \WF@box and \NWF@box.

The trick of creating an alias for the \caption macro is used by Arseneau to
redefine one of the two macros according to certain conditions. Here \wf@caption
is actually redefined if the 〈width〉 parameter has been specified.

288 \def\wf@caption{\relax% redefine \wf@caption in case \hsize is zero
289 \ifdim\hsize>\z@
290 \let\caption\wf@@caption
291 \else
292 \unskip \egroup \hsize\wd\z@ \@parboxrestore \box\z@% empty \box0
293 \fi
294 \caption
295 }
296

One of these unusual macros was introduced by Arseneau to deal with paragraph
parameters and possibly to float the object to be wrapped.

297 \def\WF@startfloating{%
298 \WF@everypar\expandafter{\the\everypar}\let\everypar\WF@everypar
299 \WF@@everypar{\ifvoid\WF@box\else\WF@floathand\fi \the\everypar
300 \WF@wraphand
301 }}
302

The following macro is for floating wrapping environments.
303 \def\WF@floathand{%
304 \ifx\parshape\WF@fudgeparshape
305 \WF@fltmes
306 \else

25

307 \ifx\par\@@par
308 \ifnum\@@parshape=\z@
309 \ifdim\hangindent=\z@
310 \setbox\z@\lastbox \begingroup
311 \@@par \WF@@everypar{}\WF@putfigmaybe
312 \endgroup % after this group start wrapping
313 \unless\ifvoid\z@ % replace indentation
314 \box\z@
315 \fi
316 \else
317 \WF@fltmes
318 \fi
319 \else
320 \WF@fltmes
321 \fi
322 \else
323 \WF@fltmes
324 \fi
325 \fi}
326

On the contrary if there is enough space or if the wrapped object cannot float,
it gets output here.

327 \def\WF@putfigmaybe{%
328 \ifinner
329 \vskip-\parskip \global\WF@floatfalse
330 \let\pagetotal\maxdimen % kludge flag for "not top of page"
331 \else % outer page
332 {\advance\parskip\@tempdima\vskip-\parskip}% back up to base line
333 \penalty\interlinepenalty % update page parameters
334 \@tempdimb\dimexpr\pagegoal - \pagetotal \relax% room left on page
335 \ifdim \@tempdimb<\z@ % page already full
336 \global\WF@floatfalse
337 \unless\ifdim-\@tempdimb>\pageshrink \pagebreak \fi
338 \else
339 \ifdim\WF@size>\@tempdimb% box too high does not fit in \@tempdimb
340 \ifWF@float
341 \dimen@ 0.5\baselineskip
342 \else
343 \dimen@ 2\baselineskip
344 \fi
345 \ifdim\pagestretch>\dimen@ \dimen@\pagestretch \fi
346 \ifdim\pagefilstretch>\z@ \dimen@\@tempdimb \fi
347 \ifdim\pagefillstretch>\z@ \dimen@\@tempdimb \fi
348 \advance\dimen@ 0.5\baselineskip
349 \ifdim\dimen@>\@tempdimb % stretch page contents
350 \global\WF@floatfalse \pagebreak
351 \fi
352 \else % box fits in \@tempdimb
353 \global\WF@floatfalse
354 \fi
355 \fi
356 \vskip\@tempdima% return erased page depth
357 \fi

26

358 \noindent
359 \ifWF@float
360 \WF@fltmes
361 \else % place insertion here
362 \WF@info{Put \WF@wfname here:}%
363 {\ifodd
364 \if@twoside\c@page\else\@ne\fi % assign l/r to i/o placement
365 \lccode‘i‘l\lccode‘o‘r\else \lccode‘i‘r\lccode‘o‘l%
366 \fi
367 \xdef\WF@place{\the\lccode\lccode\WF@place}%
368 }% twice to get only l or r
369 \hbox to\z@{% llap o rlap depending on l or r; determine effective width
370 \@tempdima\wd\WF@box \@tempdimb\WF@ovh
371 \advance\@tempdima-\@tempdimb \advance\@tempdima\columnsep
372 \@tempdimb\hsize \advance\@tempdimb-\@tempdima
373 \xdef\WF@adjlw{\the\@tempdima}%
374 \ifnum ‘l=\WF@place % object on left
375 \hss
376 \def\@tempa{\kern\columnsep}% take right gap into action
377 \else % object on right
378 \@tempdima\z@ % no left indentation
379 \kern\@tempdimb \kern\columnsep
380 \def\@tempa{\hss}% object overlaps space to the right
381 \fi
382 \ifdim\@tempdimb<\hsize
383 \xdef\WF@wrapil{\the\@tempdima \the\@tempdimb}% indent.n and length
384 \xdef\WF@adjtlm{\the\@tempdima}%
385 \else
386 \xdef\WF@wrapil{\z@ \the\hsize}%
387 \xdef\WF@adjlw{\z@}\xdef\WF@adjtlm{\z@}%
388 \fi
389 \ifdim\pagetotal=\z@ % put object at top of page \thepage
390 \global\advance\WF@size-\intextsep
391 \else % put object in middle of the page
392 \setbox\WF@box\hbox{\lower\intextsep\box\WF@box}%
393 \fi
394 \dp\WF@box\z@
395 \box\WF@box
396 \@tempa
397 }% end \hbox to 0pt
398 \aftergroup\WF@startwrapping
399 \fi
400 }
401

Here comes the very important macro that counts the indented wrapping lines,
so that wrapping is correct; of course the limitations of the LATEX processing
(needed to ship out a complete page) forbid to take into account the spaces inserted
between paragraphs and/or those inserted between entries of various listings. The
idiosyncrasies of this package arise from the fact that this macro cannot preview
actions that have not yet taken place when this macro is executed.

This macro counts the lines to be indented by rounding the division of the box
height by the current base line skip. Notice that WF@wrappedlines is the name
of a LATEX named counter, not of a TEX numeric register; therefore special LATEX

27

commands, such as \setcounter or \value, have to be used in order to set or
access the numerical value stored within the TEX register associated to the LATEX
counter name.

402 \def\WF@startwrapping{%
403 \ifnum\WF@wli=\z@ % no number was specified
404 \setcounter{WF@wrappedlines}%
405 {\fpeval{round(\WF@size/\baselineskip,0)}}%
406 \xdef\WF@wli{\value{WF@wrappedlines}}%
407 \else
408 \ifnum\WF@correctlines@switch>\z@ % line number correction
409 \setcounter{WF@wrappedlines}
410 {\fpeval{round((\WF@size)/\baselineskip,0)+\WF@wli}}%
411 \xdef\WF@wli{\the\c@WF@wrappedlines}%
412 \else
413 \setcounter{WF@wrappedlines}{\WF@wli}% absolute number of lines
414 \stepcounter{WF@wrappedlines}%
415 \fi
416 \fi
417 \ifnum\c@WF@wrappedlines>\@ne % fine tuning
418 \let\parshape\WF@fudgeparshape \let\WF@pspars\@empty \let\WF@@par\par
419 \def\@setpar##1{\def\WF@@par{##1}}\def\par{\@par}\let\@par\WF@mypar
420 \xdef\WF@restoretol{\tolerance\the\tolerance}\tolerance9999\relax
421 \advance\linewidth-\WF@adjlw \advance\@totalleftmargin\WF@adjtlm
422 \fi
423 }
424

The next macro is the one that actually indents the wrapping text lines and
keeps track of the number of such processed lines. It can work on more than a
single paragraph. It resorts to service macros that reiterate as long as the number
of indented lines is lower than the computed number of lines. Possibly this process
could be defined by means od the dowhile or whiledo LATEX 3 functions. By now
we did not afford this task, because first we would like to see if the overall software
is reliable.

425 \def\WF@wraphand{% for indenting one or more paragraphs
426 \ifnum\c@WF@wrappedlines<\tw@
427 \WF@finale
428 \else \begingroup % create a parshape command
429 \@tempcnta\@ne \let\WF@wrapil\relax \gdef\WF@ps{}%
430 \@whilenum
431 \@tempcnta<\c@WF@wrappedlines\do{% repeated indentation
432 \xdef\WF@ps{\WF@ps\WF@wrapil}\advance\@tempcnta\@ne
433 }%
434 \endgroup
435 \ifx\WF@pspars\@empty
436 \@@parshape\c@WF@wrappedlines \WF@ps \WF@noil
437 \else % use external ‘parshape’ values to modify my parshape
438 \WF@modps
439 \fi
440 \fi
441 }
442

This macro resets the paragraph properties and terminates the job.

28

443 \def\WF@mypar{\relax
444 \WF@@par
445 \ifnum\@@parshape=\z@
446 \let\WF@pspars\@empty % reset parshape
447 \fi
448 \global\advance\c@WF@wrappedlines-\prevgraf \prevgraf\z@
449 \ifnum\c@WF@wrappedlines<\tw@
450 \WF@finale
451 \fi
452 }
453

These macros modify the paragraph settings.
454 \def\WF@modps{\begingroup
455 \afterassignment\@tempdimb \@tempdima\WF@pspars % a=indent.num, b=width
456 \advance\@tempdima-\WF@adjtlm \advance\@tempdimb\WF@adjlw
457 \let\WF@wrapil\WF@pspars
458 \edef\@tempb{\@@parshape\c@WF@wrappedlines
459 \WF@ps \the\@tempdima \the\@tempdimb}%
460 \expandafter\endgroup\@tempb
461 }
462
463 \let\@@setpar\@setpar
464 \def\WF@noil{\z@ \hsize}
465 \let\WF@pspars\@empty
466
467 \def\WF@fudgeparshape{\relax
468 \ifnum\c@WF@wrappedlines<\tw@
469 \WF@finale
470 \else
471 \afterassignment\WF@fudgeparshapee \fam
472 \fi
473 }
474
475 \def\WF@fudgeparshapee{%
476 \ifnum\fam=\@ne \expandafter
477 \WF@parshapeee
478 \else
479 \WF@conflict \@@parshape\fam
480 \fi
481 }
482
483 \def\WF@parshapeee#1#2{%
484 \begingroup\delimitershortfall#1%
485 \nulldelimiterspace#2% \advance \nulldelimiterspace by \WF@adjlw
486 \edef\@tempa{\def\noexpand\WF@pspars{%
487 \the\delimitershortfall \the\nulldelimiterspace}}%
488 \expandafter\endgroup\@tempa \WF@wraphand
489 }
490

The following macro is the one that actually ends the single wrapping job.
491 \def\WF@finale{%
492 \ifx\parshape\WF@fudgeparshape
493 \WF@restoretol \let\@setpar\@@setpar \let\par\WF@@par

29

494 \advance\linewidth\WF@adjlw \advance\@totalleftmargin-\WF@adjtlm
495 \WF@info{Finish wrapping text}%
496 \ifx\par\@@par
497 \def\@par{\let\par\@@par\par}%
498 \else
499 \let\@par\WF@@par
500 \fi
501 \let\parshape\@@parshape
502 \parshape=\ifx\WF@pspars\@empty
503 \z@
504 \else
505 \@ne \WF@pspars
506 \fi
507 \fi
508 \ifvoid\WF@box
509 \ifx\everypar\WF@everypar
510 \let\everypar\WF@@everypar \everypar\expandafter{\the\WF@everypar}%
511 \fi
512 \fi
513 }
514

At the very end everything is restored, and the used boxes are emptied.
515 \newcommand{\WFclear}{\par
516 \unless\ifvoid\WF@box
517 \vskip\bigskipamount \box\WF@box
518 \let\everypar\WF@@everypar \everypar\expandafter{\the\WF@everypar}%
519 \fi
520 \global\c@WF@wrappedlines\z@ \WF@finale
521 \global\WF@correctlines@switch\z@
522 }
523

The following code is one of those “dirty tricks” by which a macro defined within
a group is executed with the help of an \expandafter command that bypasses
an \endgroup; by so doing, after execution nothing local to the group remains in
memory.

524 \begingroup
525 \toks0={\let\everypar\WF@@everypar
526 \everypar\expandafter{\the\WF@everypar}%
527 \let\parshape\@@parshape
528 \let\@setpar\@@setpar
529 }
530 \toks1=\expandafter{\@arrayparboxrestore}%
531 \toks2=\expandafter{\clearpage}%
532 \edef\@tempa{%
533 \def\noexpand\@arrayparboxrestore{\the\toks0 \the\toks1}%
534 \def\noexpand\clearpage
535 {\noexpand\protect\noexpand\WFclear \the\toks2}}%
536 \expandafter
537 \endgroup\@tempa
538

Donald Arseneau classifies the following macro as the one that “pampers the
RevTeX’s stupidity”.

30

539 \@ifundefined{@capwidth}{\let\@capwidth\hsize}{}%
540

This one, instead, issues a warning if a specific name conflicts with another.
541 \def\WF@conflict{\WF@warning
542 {\WF@wfname used inside a conflicting environment}}%
543

While this one issues a warning when a wrapping environment is too close to
another one.

544 \def\WF@collision{\WF@warning{Collision between wrapping environments}}%
545

And this one is when two wrapping environments are too close to one another
so that the second one is forced to move.

546 \def\WF@fltmes{% message for floats
547 \ifWF@float
548 \WF@info{\WF@wfname floats}%
549 \else
550 \WF@warning{Stationary \WF@wfname forced to float}%
551 \fi
552 }
553

These two aliases are just service macros for this package; in particular, the
second one is used to insert info of any kind within a source file.

554 \let\WF@warning\@warning
555 \let\WF@info\@gobble
556

Arseneau says that his wrapfig package is already compatible with package
float.sty, since, after defining a new float 〈foo〉, it suffices to define the new
environment wrap〈foo〉. This fork version of his package should do the same: it
suffices to mimic the definitions of environments wrapfigure or wraptable.

Here there is some Arseneau’s code that renders his wrapfig code compatible
with \newfloat of class memoir, and with \newfloatlist of package ccaption.
We keep his code, but we did not test it with this package.

557 \let\WF@floatstyhook\relax
558
559 \@ifundefined{newfloat}{}{% \newfloat comes from somewhere besides
560 % float.sty
561 \@ifundefined{restylefloat}{%
562 \@ifclassloaded{memoir}{%
563 \toks@=\expandafter\expandafter\expandafter
564 {\csname\string\newfloat\endcsname [{#1}]{#2}{#3}{#4}%
565 \newenvironment{wrap#2}{\wrapfloat{#2}}{\endwrapfloat}%
566 }% Mmmm; this might be wrong. Not tested
567 \edef\@tempa{\def\expandafter\noexpand\csname\string\newfloat\endcsname
568 [##1]##2##3##4{\the\toks@}}%
569 \@tempa
570 }% end memoir support
571 {}% other origins of \newfloat here?
572 }{% float.sty handler. Ops: Two versions for different versions
573 % Changing \floatstyle or \restylefloat changes also \newfloat.
574 \@ifundefined{float@restyle}%

31

575 {% older float.sty
576
577 \toks@=\expandafter{\restylefloat{##1}% env. might be undefined
578 \@namedef{wrap#1}{%
579 \def\@captype{#1}\@nameuse{fst@#1}%
580 \def\WF@floatstyhook{\let\@currbox\WF@box \columnwidth\wd\WF@box
581 \global\setbox\WF@box\float@makebox}%
582 \@ifnextchar[\WF@wr{\WF@wr[]}}%
583 \expandafter\let\csname endwrap#1\endcsname \endwrapfigure
584 }%
585 \edef\@tempa{\def\noexpand\restylefloat##1{\the\toks@}}%
586 }{% newer float.sty: uses \float@restyle, and \float@makebox
587 % takes width arg
588 \toks@=\expandafter{\float@restyle{#1}% env. might be undefined
589 \@namedef{wrap#1}{\def\@captype{#1}\@nameuse{fst@#1}%
590 \def\WF@floatstyhook{\let\@currbox\WF@box
591 \global\setbox\WF@box\float@makebox{\wd\WF@box}}%
592 \@ifnextchar[\WF@wr{\WF@wr[]}}%
593 \expandafter\let\csname endwrap#1\endcsname \endwrapfigure
594 }%
595 \edef\@tempa{\def\noexpand\float@restyle##1{\the\toks@}}%
596 }%
597 \@tempa % perform redefinitions
598 %
599 }% end float.sty handler
600 }% end redefinitions of \newfloat
601
602 \ifcsname newfloatlist\endcsname% support ccaption.sty
603 \toks@=\expandafter\expandafter\expandafter
604 {\csname\string\newfloatlist\endcsname [{#1}]{#2}{#3}{#4}{#5}%
605 \@namedef{wrap#2}{\wrapfloat{#2}}%
606 \expandafter\let\csname endwrap#2\endcsname \endwrapfloat
607 }%
608 \edef\@tempa{%
609 \def\expandafter\noexpand\csname\string\newfloatlist\endcsname
610 [##1]##2##3##4##5{\the\toks@}}%
611 \@tempa
612 \fi
613

32

