
1

C
t
s
t
t
t
c
w

y
o

S

d
s
m
o
A
m
N
b

t

The threadcol package∗

Scott Pakin
scott+thrcl@pakin.org

January 6, 2013

Introduction

onsider the following situation: You have a two-column pdf file that you want
o read on your computer (or tablet or whatever). Because you have a relatively
mall screen—and/or less-than-perfect eyesight—you zoom in to more easily read
he text. You read the first column of the first page, then scroll back to the top of
he page and over to the right to read the second column, then scroll left to read
he first column of the second page, then scroll up and over to read the second
olumn, and so forth. With all this distracting scrolling, it’s easy to lose track of
here you were or what you were reading.

The threadcol package helps you avoid this situation for the LATEX documents
ou create. It puts every column into a pdf “article thread”. A user can then
pt to have his pdf reader automatically scroll through the document in proper

reading order. In Adobe Acrobat/Reader this is accomplished simply by clicking
any place in the document window where the mouse pointer is shown as a hand
with an arrow in it. The user can scroll forward by clicking in the document
window or pressing Enter and backward by shift-clicking or pressing Shift+Enter.

ee the Adobe Acrobat/Reader Help documents for more information.
Adobe Acrobat/Reader provide an Articles navigation panel that lists all of the

ocument’s article threads and lets the user jump to a specified thread. Figure 1
hows what the Articles panel looks like in Adobe Reader 9 on Linux. The panel
ay have to be displayed explicitly by the user. This can be done by right-clicking

n the navigation-panel button list and selecting Articles. Alternatively, in Adobe
crobat/Reader 9, one can also follow the View → Navigation Panels → Articles
enu path or in Adobe Acrobat/Reader X and XI the View → Show/Hide →
avigation Panels → Articles menu path. If Articles appears as a pop-up, it can
e docked simply by dragging the tab to the navigation panel.

I don’t know if any pdf readers other than Adobe’s provide special viewing of
hreads.

∗This document corresponds to threadcol v1.0, dated 2013/01/06.
1

i
w
“
d
d
E
t
“
u

i
t

2

O

Figure 1: The Articles button and navigation panel in Adobe Reader 9

Although threadcol is most beneficial to two-column documents, it nevertheless
also works with single-column documents—and even documents that switch be-
tween the two using \onecolumn and \twocolumn. In fact, although it is typeset
n a single column, this document is itself threaded using threadcol. Section 4,
hich presents the commented threadcol source code, lies in a thread entitled,
Developer documentation”. Sections 1–3 and 5 lie in a thread entitled, “User
ocumentation”. What this structure implies is that you can double-click “User
ocumentation” in the Articles navigation panel then repeatedly click (or press
nter) on the document’s text to read all of the user documentation while au-

omatically skipping the developer documentation. Likewise, double-clicking on
Developer documentation” takes you right to that, bypassing all of the user doc-
mentation.

Indexes are not normally read from start to finish so this document’s index
s omitted from both the “User documentation” and “Developer documentation”
hreads.

Usage

ne of the threadcol package’s goals is simplicity. All you have to do is include a

\usepackage{threadcol}
2

\setthreadname

t
i
t
\

p
F

W
p
t
t
c
i
d

s
a

3

t
i

in your document’s preamble for threadcol to do its work.

One bit of customization that threadcol does provide, however, is control over
he name of the article thread. By default, this is “Entire document”. However,
f you prefer a different name, you can write \setthreadname{〈name〉} to change
he name of the article thread to 〈name〉. It is in fact permissible to invoke
setthreadname multiple times and with different names. In this case, threadcol
roduces one thread per unique name. For example, the document shown in
igure 1 used two threads in the following manner:

\setthreadname{Some thread}

〈Text for the first thread〉
\setthreadname{Another thread}

〈Text for the second thread〉
\setthreadname{Some thread}

〈More text for the first thread〉

hen the user clicks on the “Some thread” thread, navigation automatically by-
asses all text in the “Another thread” thread and vice versa. One caveat is that in
he current version of threadcol, \setthreadname issues a \clearpage command
o ensure that text is assigned to the correct thread. Hence, threadcol cannot
urrently be used for sophisticated magazine- or newspaper-style documents with
ntertwined threads weaving through the pages. Still, it may be useful for coarsely
ivided units of text.

As a special case, specifying an empty thread name (i.e., \setthreadname{})
tops adding text to threads. This can be useful for a document’s front matter
nd back matter, which may not belong in any thread’s normal reading order.

Limitations

hreadcol is a fairly simple package. As such, it has a number of limitations,
ncluding the following:

1. threadcol requires pdfLATEX or LuaLATEX; it does nothing when used with
ordinary LATEX or X ELATEX. The package also relies on etoolbox, which
requires ε-TEX support, but this is provided by all modern TEX distributions.

2. threadcol is incompatible with the fixltx2e and cuted packages. These
packages redefine LATEX’s text-output routines in a manner that confuses
threadcol.

3. Marginal notes (\marginpar) are not included in threads. The same is true
for text that sticks out into the margin (e.g., using \llap or \rlap), such
as the macro names in Section 4.
3

4. As mentioned in Section 2, threads currently must begin on their own page.
Hence, \setthreadname forces a page break, which is often undesirable.

5. threadcol does not recognize columns created using the multicols environ-
ment from the multicol package. These appear to threadcol as a single col-
umn.

6. No attempt is made to preserve proper reading order beyond page and col-
umn order. For example, if a page ends with the first part of a sentence
and the next page begins with a top float, the thread will present the text
in that same order: the first part of the sentence, then the float, then the
second part of the sentence. Even worse, threadcol is oblivious to footnotes
that span columns; it will show the first column of text, including the first
part of a long footnote, then the second column of text, which ends with the
second part of the long footnote.

7. The package has not been tested thoroughly. Consequently, there are prob-
ably many more limitations than those listed above.
4

\thrcl@thread@name

\setthreadname

\thrcl@threaded@box T

\thrcl@box

\thrcl@orig@outputpage

\thrcl@patchcmd
4 Implementation

This section is intended for developers and advanced users to learn how threadcol
is implemented. Most readers can ignore this section.

We begin by loading a few helper packages upon which we rely: ifpdf to ensure
that we have access to \pdfstartthread and \pdfendthread and etoolbox for the
\patchcmd macro.

1 \RequirePackage{ifpdf}

2 \RequirePackage{etoolbox}

Define the name of the current thread. This is what shows up in the Articles
navigation panel in Adobe Acrobat and Adobe Reader.

3 \def\thrcl@thread@name{Entire document}

Let the author change the name of the current thread (i.e., \thrcl@thread@name).
The starred version suppresses the \clearpage.

4 \newcommand*{\setthreadname}{%

5 \@ifstar{\gdef\thrcl@thread@name}{\clearpage\gdef\thrcl@thread@name}%

6 }

his is a copy of the column box but surrounded by \pdfstartthread and
\pdfendthread.

7 \newbox\thrcl@threaded@box

Mimic TEX’s \box primitive but wrap the given box within a \pdfstartthread

and \pdfendthread. If \thrcl@thread@name is empty, however, invoke \box

directly.

8 \def\thrcl@box#1{%

9 \ifx\thrcl@thread@name\@empty

10 \box#1

11 \else

12 \setbox\thrcl@threaded@box=\vbox{%

13 \pdfstartthread name {\thrcl@thread@name}%

14 \copy#1

15 \pdfendthread

16 }%

17 \box\thrcl@threaded@box

18 \fi

19 }

We want \thrcl@outputdblcol to use the original \@outputpage but all other
invocations to use our modified \@outputpage.

20 \let\thrcl@orig@outputpage=\@outputpage

Wrap etoolbox’s 5-argument \patchcmd with a 3-argument version that uses hard-
wired success and failure operations. The whole command is executed only if all
of the previous \thrcl@patchcmd commands succeeded.
5

\thrcl@outputdblcol

\thrcl@outputpage

\thrcl@comdblflelt

\thrcl@patches@succeeded

o
t

2

2

2

2

3

W

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

A
\

21 \def\thrcl@patchcmd#1#2#3{%

22 \ifx\thrcl@patches@succeeded Y

23 \patchcmd{#1}{#2}{#3}{}{\let\thrcl@patches@succeeded=N}%

24 \fi

25 }

Replace \box with \thrcl@box in LATEX 2ε’s \@outputdblcol and \@outputpage

macros, which are used to output a column in, respectively, a two-
column document or a one-column document. To avoid nesting of
\pdfstartthread. . . \pdfendthread, we replace calls to \@outputpage with calls
to \thrcl@orig@outputpage in \@outputdblcol.

Because there we need to apply multiple patches, we attempt to patch copies
of \@outputdblcol, \@outputpage, and \@comdblflelt and replace the originals
nly if all changes are successful. We store “Y” in \thrcl@patches@succeeded if
his is the case, otherwise “N”.

6 \let\thrcl@outputdblcol=\@outputdblcol

7 \let\thrcl@outputpage=\@outputpage

8 \let\thrcl@comdblflelt=\@comdblflelt

9 \let\thrcl@patches@succeeded=Y

0 \ifpdf

e’re in pdf-generating mode. Apply all of our patches.

1 \thrcl@patchcmd

2 {\thrcl@outputdblcol}%

3 {\box\@leftcolumn\hss}%

4 {\thrcl@box\@leftcolumn\hss}%

5 \thrcl@patchcmd

6 {\thrcl@outputdblcol}%

7 {\box\@outputbox\hss}%

8 {\thrcl@box\@outputbox\hss}%

9 \thrcl@patchcmd

0 {\thrcl@outputdblcol}%

1 {\@outputpage}%

2 {\thrcl@orig@outputpage}%

3 \thrcl@patchcmd

4 {\thrcl@outputdblcol}%

5 {\@outputpage}%

6 {\thrcl@orig@outputpage}%

7 \thrcl@patchcmd

8 {\thrcl@outputpage}%

9 {\box\@outputbox}%

0 {\thrcl@box\@outputbox}%

1 \thrcl@patchcmd

2 {\thrcl@comdblflelt}%

3 {\box}%

4 {\thrcl@box}%

5 \ifx\thrcl@patches@succeeded Y

ll of our patches succeeded. We can finally redefine \@outputdblcol,
@outputpage, and \@comdblflelt for real.
6

56 \global\let\@outputdblcol=\thrcl@outputdblcol

57 \global\let\@outputpage=\thrcl@outputpage

58 \global\let\@comdblflelt=\thrcl@comdblflelt

59 \else

Issue a warning message if any patch failed. This should happen only if a class or
package redefines \@outputdblcol, \@outputpage, or \@comdblflelt in a man-
ner incompatible with LATEX 2ε’s default definition.

60 \PackageError{threadcol}{Failed to patch the output routine}{%

61 The threadcol package needs to modify LaTeX’s

62 \protect\@outputdblcol\space macro to\MessageBreak

63 incorporate support for PDF article threads. These

64 modifications failed,\MessageBreak

65 presumably due to a class or package that redefined

66 \protect\@outputdblcol\space in a\MessageBreak

67 form incompatible with what threadcol expects.%

68 }%

69 \fi

70 \else

We’re not in pdf-generating mode. Warn the author that the package will do
nothing.

71 \PackageWarningNoLine{threadcol}{%

72 This package has an effect only when running\MessageBreak

73 pdfLaTeX or LuaLaTeX and only when in\MessageBreak

74 PDF-generating mode%

75 }%

76 \fi
7

5 Future work

A future version of threadcol may address some of the limitations described in
Section 3. In addition, it would great if the package could integrate seamlessly
with the flowfram package, where pdf article threads would make a lot of sense.

One far more difficult change to implement would be to make threadcol cog-
nizant of the “true” reading order, perhaps with help from the author. For ex-
ample, the author could specify the point at which the thread should jump to a
floating figure before jumping back to the corresponding text.

In practice, LATEX 2ε’s output routines can be quite arcane, especially with
regards to the handling of inserts (e.g., floats and footnotes). Getting threadcol
to do more than what it currently does is likely beyond my current level of LATEX
expertise.
8

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@comdblflelt . . . 28, 58

\@ifstar 5

\@leftcolumn 33, 34

\@outputbox 37, 38, 49, 50

\@outputdblcol
. . . . 26, 56, 62, 66

\@outputpage
. 20, 27, 41, 45, 57

C

\clearpage 5

cuted 3

E

etoolbox 3, 5

F

fixltx2e 3

flowfram 8

I

ifpdf 5

\ifpdf 30

M

multicol 4

N

\newbox 7

P

\PackageError 60

\PackageWarningNoLine

. 71

\patchcmd 23

\pdfendthread 15

\pdfstartthread . . . 13

R

\RequirePackage . . 1, 2

S
\setthreadname 4

T
\thrcl@box

. . 8, 34, 38, 50, 54
\thrcl@comdblflelt . 26
\thrcl@orig@outputpage

. 20, 42, 46
\thrcl@outputdblcol 26
\thrcl@outputpage . 26
\thrcl@patchcmd . . .

. 21, 31,
35, 39, 43, 47, 51

\thrcl@patches@succeeded

. 22, 23, 26
\thrcl@thread@name .

. 3, 5, 9, 13
\thrcl@threaded@box

. 7, 12, 17
threadcol 1–5, 8

9

	Introduction
	Usage
	Limitations
	Implementation
	Future work
	Index

