
The teubner package
Extensions for Greek philology

Claudio Beccari — claudio dot beccari at gmail dot com

Version v.5.2 last revised 2021/01/21

Contents
1 Introduction 2

2 Environments 4

3 Commands and symbols 5

4 Acknowledgements 6

5 Code 7
5.1 Preliminaries 7
5.2 Compatibility with Latin

fonts 11
5.3 Service macros 17
5.4 Extended accent definitions 20

6 Avoiding conflicts 21
6.1 Special accent macros . . 21
6.2 Some text commands . . . 27
6.3 Accent macros and glyph

names 27

6.4 Text philological symbols
and macros 32

6.5 Greek, English, and Ger-
man quotes 35

6.6 Other philological sym-
bols and macros 36

6.7 Ancient Greek monetary
unit symbols 41

6.8 Another set of philologi-
cal symbols and macros . 41

6.9 Poetry environments and
macros 43

6.10 Metrics symbols, macros
and environments 48

6.11 Debugging commands . . 51
6.12 Classical Greek numerals . 52
6.13 Attic numerals 53

7 Accessing the CBgreek fonts
when the TX fonts are se-
lected 55

Abstract
This extension package complements the greek option of the babel pack-

age so as to enable the use of the Lipsian1 fonts and to use several macros
for inserting special annotations in the written text, as well as to typeset
verses with special layout. Metric sequences may be defined and typeset by
means of a companion font gmtr???? that follows the same conventions as
the CB fonts that are normally used when the babel greek option is in force.

Examples and lists of commands are available in the file teubner-doc.pdf
which, as a regular pdf file, embeds all the necessary fonts and may be read

1What here are called Lipsian fonts are a family of fonts that in Greece are called “Lipsiakos”;
they are similar to the ones that were being used in the Teubner Printing Company of Lipsia
from mid XIX century on.

1

on screen as well as printed on paper; beware, though, that the PostScript
fonts that are being used in teubner-doc.pdf are not installed by default if
a basic installation is sought.

This version 4.0 tries to adapt to the new handling of the Greek language
by babel, since now this language script is based on the LICR (LATEX Internal
Character Representation), and source files now can include Greek glyphs,
besides the usual transliteration with Latin letters.

1 Introduction
Philologists in general have the necessity of using special alphabets and several
special symbols in order to mark up their texts and to typeset them in a special
way. Greek philology makes no exception, therefore I prepared this file and some
extra fonts in order to complement what is already available with the greek option
of the babel package.

I must warmly thank Paolo Ciacchi of the University of Trieste who invited me
in this “adventure”, since I know nothing about philology; he assisted me with all
his competence, so that I could learn so many new things and I could appreciate
the world of philologists.

Paolo Ciacchi’s “invitation” arrived when I was almost finished with the design
of the Lipsian font family; I was working on this new typeface after a kind request
by Dimitri Filippou, with whom I already collaborated for other questions related
to Greek typesetting. I warmly thank also Dimitri Filippou for the patience with
which he revised every single glyph of the new typeface. Paolo Ciacchi added
his constructive criticism to the typeface, especially for what concerns diacritical
marks. At the end I think that the new typeface turned out pretty well thanks to
both my friends.

The Lipsian font, also called Leipzig, or Lipsiakos in Greece, is one of the
oblique fonts that used to be employed by the typesetters working in the German
city of Leipzig, among which the Teubner Printing Company. This Company’s
classical works of ancient Greek poetry are considered among the best ever pub-
lished. The name of this file and this extension package is in honour of that
printing company.

This package documentation does not contain any example written in Greek,
because when you process this file it is very likely that you don’t have the suit-
able Greek fonts and you must still download all or some of them. Therefore a
companion file teubner-doc.pdf is included in this bundle where most, if not all,
new commands are documented and suitably shown.

This package contains new environments and new commands; it presumes the
user invokes it after declaring the greek option to the babel package; should he
forget, this package will complain. But once the greek option is properly declared,
this package verifies that the polutonikogreek dialect (deprecated) is selected,
or that the polutoniko attribute or modifier is set; if no attribute is set this
package will set polutoniko or ancient depending on the presence of an updated
Greek support to the babel package. This choice depends on the particular version

2

of the babel package, but should not concern the user; switching back and forth
between classical Greek and some modern western language is performed in a
transparent way; possibly there might be some problem switching from classical
to modern spelling in Greek itself, but since in modern spelling the multiplicity of
Greek diacritical marks is not forbidden, it’s the author choice to select classical
or modern words, Lipsian or Didot fonts, polytonic or monotonic accentuation.
The worst it can happen is that babel uses just one hyphenation pattern set, so
that in one of the three Greek versions some words might turn out with the wrong
hyphens points.

The CB Greek fonts, which have been available for some years now on ctan
in the directory /fonts/greek/cb have been completed with the new files for the
Lipsian fonts, and the metric symbols font gmtr????.*; the latter does not need
a formal font definition file, because the necessary definitions are included in this
package. All fonts are available also as Type 1 scalable fonts. In general, recent
distributions of the TEX system already contain the necessary configuration to use
the Type 1 font in one size, 10 pt, but, thanks to scaling, these can be used at any
size; this version of teubner is compatible with this reduced set. If optical sizes
are desired for a more professional typesetting, the ctan archives contain also
the cbgreek-full package, which includes also all the Type 1 fonts at the various
standard (EC) sizes, plus other facilities that allow to use the CB fonts also in
conjunction with the Latin Modern ones. Complete installations of the TEX system
include the full CB fonts installation.

The CB Greek fonts allow to input Greek text with a Latin keyboard and by
employing the prefix notation; with a Greek keyboard and file iso-8859-7.def it
is possible to directly input Greek text with the monotonic spelling; if polytonic
spelling is required I fear that the above file is of little help and that a Latin
keyboard does the job without an excessive burden. The recent modifications to
the babel package and of the Greek language description file allow to enter also
polytonic Greek text, keyboard permitting, with no effort; it is necessary to use the
utf8 input encoding. It’s important to notice the Apple computers have available
a virtual keyboard (called keyboard viewer) that is susable with the mouse and,
just by selecting the Greek Polytonic keyboard driver, the author can enter Greek
text directly in the source file. Computers with a touch screen virtual keyboard
allow to switch from the national to the Greek keyboard just by a single sweep
of the finger. Some platforms have the possibility of switching keyboard but they
don’t show the new keyboard layout on the screen, but the user can generally
build a personal table that describes the correspondence between the keyboard
and the physical keyboard layout. Windows operating system Win8 and later has
available a virtual keyboard similar to the Mac’s.

Nevertheless there is a little point to observe; Lipsian fonts are very nice but
show some kerning errors with more evidence than the traditional Didot Greek
fonts. With the prefix notation in force, kerning programs may result disabled and
some diphthongs and some consonant-vowel combinations appear poorly matched
when the second letter caries any diacritical mark. In order to avoid this “feature”,
the accented vowels may be input by means of macros, that directly translate to
the accented glyph, rather than invoking the ligature programs that are implied

3

by the prefix notation; reading a Greek text on the screen while editing the input
.tex file when a Latin keyboard and such macros are used may be very strange,
but authors get used to it, and agree that the effort is worth the result. The direct
input of Greek glyphs, evidently is the real solution, even if it may be difficult
to enter Greek glyphs without a suitable virtual keyboard or a suitable keyboard
map.

2 Environments
I apologise if I chose Italian names for verse environments; I wanted to use names
very different from the corresponding English ones, but at the same time eas-
ily recognisable; after all versi is the plural of verso and therefore is the exact
Italian translation of verses. If you feel more comfortable with Latin, the alias
environment names in Latin, versus, Versus, and VERSUS, are also available.

The environment versi (versus) is used to typeset verses in line, without anversi
\verso implicit end of line at the end of each verse; a vertical bar with a number on top of

it marks the verse limit while allowing a numeric reference to a specific verse; the
opening environment statement requires a string, a short text, in order to indent
the verse lines the amount of this string width; the syntax is the following

\begin{versi}{〈string〉}
〈verse〉\verso[〈starting number〉]{〈verse〉}
\verso {〈verse〉}
\verso{〈verse〉}
...
\end{versi}

where, of course, 〈starting number〉 is required only for the first instance of \verso
or when numbering must be restarted, for example after an ellipsis.

The environment Versi (Versus) is similar to the standard LATEX environmentVersi
verse, except verse lines are numbered on multiples of 5; the opening statement
requires the 〈starting number〉 as an optional argument; if this optional argument
is not specified, the starting number is assumed to be 1.

\begin{Versi}[〈starting number〉]
〈verse〉*[〈vertical space〉]
〈verse〉\\
...
\end{Versi}

The environment VERSI (VERSUS) allows for two verse-enumerations; the mainVERSI
\SubVerso

\NoSubVerso
enumeration is identical to the one performed by the previous environment Versi,
while the secondary enumeration is typeset with smaller digits and normally num-
bers consecutive verses, except that it can be turned on and off; the verses that
have the secondary enumeration are indented by moving them to the right.

\begin{VERSI}[〈starting principal number〉]
〈verse〉*[〈vertical space〉]

4

\SubVerso[〈starting secondary number〉]
〈verse〉*[〈vertical space〉]
...
\NoSubVerso
〈verse〉*[〈vertical space〉]
...
\end{VERSI}

where if 〈starting principal number〉 is missing, 1 is assumed, while if 〈starting sec-
ondary number〉 is missing, the enumeration is continued from the next available
integer. Of course 〈starting secondary number〉 is used again when the secondary
enumeration must be restarted; there are no means to restart the principal enu-
meration.

The previous environments accept 〈verses〉 in any language and in any alpha-bracedmetrics
bet, the one that is in force before opening the environment; the language and,
even less, the alphabet cannot be globally changed within the above environments;
if such a change is performed, it is valid only for one verse, or for the remaining
fraction of the verse after the language or font change. This means, among the
other things, that if the default “alphabet” is the one that shows the metric sym-
bols, the above environments may be used to display “metric verses”, that is the
pattern of long, short or ancipital symbols, together with any other metric symbol
so as to display the metrics without disturbing the written text; when doing this
metric typesetting, it may happen that some verse patterns exhibit some variants;
in this case the bracedmetrics environment comes handy, because it can display
such variants in separate lines but grouped with a large right brace; some com-
mands allow to roughly align these variants, so as to allow to nest several such
environments as if they were single blocks of metric symbols. The argument of
the opening statement specifies the width of the block so as to properly align all
the symbols even in nested environments.

\beginbracedmetrics{〈length〉}
〈metric pattern〉\\
〈metric pattern〉\\
...
\endbracedmetrics

Within the 〈metric pattern〉 it is possible to flush right the symbols by prefixing\verseskip
\Hfill the whole string with a \Hfill command; the 〈length〉 may be specified as an

integer multiple of a “long” symbol by means of
\verseskip{〈number〉}

The macro \verseskip can be used also within 〈metric pattern〉 in order to space
out metric symbols.

3 Commands and symbols
This package defines a lot of commands for inserting special signs in the middle
of regular text, for marking zeugmas and synizeses, for putting unusual accents

5

on any symbol, for inserting special “parentheses” that are used by philologists
for marking blocks of letters or blocks of text. I suggest that the user reads
the documentation file teubner-doc.pdf for a complete list of commands and
symbols.

Here it might be useful to describe a command for defining metric sequences,\newmetrics
so as to shorten the definition of metric verses; this new command is \newmetrics
and may be used for the definition of new commands whose name may start with
one digit: precisely this digit may be one of 2, 3, 4. Even if LATEX does not allow
macros to contain both digits and letters, other service macros have been defined
so as to handle these special control sequences even if they start with one digit
strictly lower than 5. The syntax is:

\newmetricsl{〈control sequence〉}{〈definition〉}

where 〈definition〉 consists in general of a sequence of metric commands such as
\longa, \brevis, \anceps, etc.

4 Acknowledgements
I must thank with gratitude Paolo Ciacchi that urged me to prepare this extension
file in order to help him typeset his master thesis of philological kind in classical
Greek.

I am pleased to thank Günter Milde who wrote a definition file for accessing
the LGR encoded fonts in order to fetch the accented glyphs; he kindly gave me
permission to use his macros, that I adapted to the conventions used within this
file. These macros were saved into the definition file LGRaccent-glyph.def, so
that it could be used also without the teubner package, for example for typeset-
ting without setting the polutoniko language attribute. But since he became the
maintainer of the Greek language support for the babel package, he extended this
support to the point that the extended macros are already part of the new Greek
support files.

I thank also Werner Lemberg who wrote a paper published on Eutypon, the
magazine of the Hellenic Friends of TEX, where he discussed in a constructive
critical way the problems connected with the LGR encoded fonts and the Unicode
encoding; I got some ideas also from that paper in order to get around some of
his critical observations; I could get around all points he commented, and some
progress was achieved.

Now the new Greek support for the babel package, thanks to Günter Milde,
includes also the support for Unicode input in the source file, in spite of using LGR
encoded output fonts. The actual support is partially useful also with XeLaTeX
and LuaLaTeX.

This package is far from perfect, but it allows to do a loto of things that is
difficult to find elsewhere. I did my best, but I had to cope with the limitations
of the Type 1 256 glyph fonts; with XeLaTeX or LuaLaTeX it might be possible
to have more functionalities, but, as Werner Lemberg described, in order to type
accented Greek letters, these programs deal with two different approaches: one

6

directly accesses the Unicode page containing such glyphs, and the other relies
on self combining diacritics; the latter approach appears to be more flexible in
order to get the multitude of diacritics the philology sometimes requires over or
under the same letter, but this forbids proper kerning; the former approach takes
care of the correct kerning, but has a limited number of diacritic combinations.
These approaches are mutually exclusive, therefore the philologist must get to
compromises; at the same time any program must follow either approach, possibly
choosing which one with suitable options, but it cannot switch back and forth
continually and automatically.

5 Code
5.1 Preliminaries
In order to use the PostScript pfb fonts (CM, CM-Super, and CB) it is necessary
to know if we are dealing with LATEX or pdfLATEX; this was necessary because
apparently the pfb math scalable fonts derived from the METAFONT counterparts
and do not have exactly the same effective dimensions; this is why the “zeugma”
and the “synizesis” signs have to be corrected when the pfb fonts are used; with
these, in facts, the black leader that joins the curved extremities appeared a little
too fat and did not join exactly the left mark. Recently, apparently, the fonts have
been corrected and this trick is not necessary any more. Nevertheless we define
a new boolean that copes with the fact that, at least since 2007, the TEX engine
is pdftex even when DVI output is sought; the package iftex creates three \ifs
that allow to diagnose if the typesetting engine is pdftex in PDF mode, XeTeX
or Luatex; since at the moment this package teubner is usable only with pdftex in
PDF mode, we equate the \ifPDF switch (defined in previous versions of teubner)
with the switch defined by package iftex:

1 \RequirePackage{iftex}
2 \let\ifPDF\ifPDFTeX

When teubner.sty is input the language Greek must have been already defined;
otherwise an error message is issued and processing is terminated.

3 \ifx\captionsgreek\undefined
4 \PackageError{teubner}{Greek language unknown!\MessageBreak
5 I am not going to use Lipsian fonts and Scholars’ signs\MessageBreak
6 if Greek is unknown.\MessageBreak
7 Use the babel package greek option.\MessageBreak
8 Type X <return> to exit.}%
9 {Type X <return> to exit.}

10 \fi
11

If this test is passed, this means that not only the greek option to the babel package
is set, but also that all the babel machinery is available.

Since teubner.sty accepts some options it is necessary to provide their def-
initions; in particular the \or control sequence conflicts with the \or primitive

7

command used within the syntax of \ifcase2; \oR is a little exception since all the
other accent-vowel macros contain only lowercase letters; og is another exception,
and the accent macros have to be used; \og collided with the French command
for inserting the opening guillemets (see below). The point is that accent vowel
sequences that directly access the accented glyph are made up as such:

\〈base character〉〈first diacritic〉〈second diacritic〉〈third diacritic〉
where
〈first diacritic〉 is d or r or s for diaeresis, rough or smooth breath
〈second diacritic〉 is c or a or g for circumflex or acute or grave
〈third diacritic〉 is i for iota subscript or adscript

Evidently none of the diacritical marks is compulsory, but at least one must be
present; if more than one is present it must be given in that sequence. Since \oR
means omicron with rough breath, it is not very important that it is declared with
the standard sequence <o or with \oR or with \<o, because it never falls after
another letter, so that it never breaks any ligature or kerning command. The
command is there just for completeness. More or less the same is true with the
\og sequence; it fails to work correctly when the main language is French and the
french option to the babel package is in force; matter of facts, \og conflicts with
the homonymous command defined by that option to mean “ouvrir guillemets”;
therefore it’s necessary to use either the plain sequence ‘o or the extended accent
macro \‘o.

At the same time since all accent combinations are defined as “text commands”,
in LATEX jargon, when their commands are followed by a vowel (or ‘r’) they define a
“text symbol” i.e. they fetch directly the glyph of the accented character; therefore
<o, \oR and \r{o} are all equivalent (at the beginning of a word where omicron
with rough breath is the only place where you might find it). See more on this
point in the following sections.

These glyph name macros are not defined by default, because the GlyphNames
boolean variable is false by default; you can specify the option GlyphNames for
activating these macro names. In any case the same result is more comfortably
obtained by using the extended accent macros whose behaviour is specified by the
new babelgreek settings.

Another unusual option is set up for being used with non standard TEX system
fonts; we have noticed that the Lipsian fonts appear a little too light when used
together with the Times or the Palatino fonts; probably this is true also with other
PostScript fonts. In this case the user might specify the option boldLipsian and
the Lipsian fonts used in medium series will be substituted with those of the
semibold one.

At the same time, from July 2005 and for a few years, the full collection of the
complete size set of the CB fonts has not been available any more as the default
TEX system set up; only the 10pt size were available unless the cbgreek-full font
package was loaded; for this reason a new option was needed in order to instruct
teubner.sty to use the specific file type1ec.sty dated at least 2002/09/07, so

2With version 2002/07/18 v.1.0d this has been eliminated; the option remains for compati-
bility with older versions, but the only legal command is now \oR.

8

as to scale up or down all the EC and CB fonts from an original 10 pt size. In
order that the 10pt plays its role correctly, it was convenient, if not compulsory, to
require first the babel package, then the teubner one with the option 10pt, then
all other packages required for a specific document, in particular the fontenc one
if the T1 encoding is requested. All this is maintained for backward compatibility,
and should not be necessary any more; now the complete set of the CB fonts gets
installed with every full installation of the TEX system, but with partial or basic
installations, such option might turn out to be useful even now.

This kludge is necessary for all fonts that have description files that use the
\EC@family command for describing the available shapes and sizes; in practice this
happens only with the EC fonts, even when the cm-super scalable implementation
is used. For using the Latin Modern fonts (LM) new specific font description files
for the CB fonts are part of the babel package, so this problem does not exist;
when using other fonts, such as the TX, PX, ZE, . . . , other kludges are necessary,
because their font family names are different from those normally used with TEX:
cmr for serifed fonts, cmss for sans serif ones, and cmtt for monospaced ones.3

Notice that when using, for example, the TX fonts and no kludge is available,
the CB fonts are loaded only as the “error font”, since the TX fonts have different
family names than the CB ones; in many cases this might pass un-noticed, but if
real Greek text in different shapes and series has to be typeset, the unaware type-
setter might get crazy trying to force shape and series changes in the Greek text;
it would not be impossible, but it would be very, very boring. In any case see in
the next sections the implemented kludges in order to run successful compilations
also with non standard TEX system fonts.
12 \newif\ifor\orfalse % Compatibility with older versions
13 \DeclareOption{or}{\relax}
14 \newif\ifboldLipsian \boldLipsianfalse
15 \DeclareOption{boldLipsian}{\boldLipsiantrue}
16 \newif\ifonesizetypeone
17 \DeclareOption{10pt}{\onesizetypeonetrue}
18 \newif\ifGlyphNames \GlyphNamesfalse
19 \DeclareOption{NoGlyphNames}{\GlyphNamesfalse}
20 \DeclareOption{GlyphNames}{\GlyphNamestrue}
21 \ProcessOptions*

In the next sections we frequently use the acronym for the Greek font encod-
ing; we hope it will eventually become GR or, following the actual 256 glyph font
encodings, T7 or X74. Meanwhile the acronym is LGR, so we’d better define a

3Even the Latin Modern fonts have different family names, but, due to their importance,
specific font description files have been added to the babel package. The LM fonts are more
comfortable than the EC ones, when scalable fonts are to be used, because they are continuously
scalable and download into the produced files less font files than the EC o cm-super ones. Unless
specifically requested, the LM fonts should always be preferred to the EC and cm-super ones.
When using the LM fonts, its better to use the full collection of the CB fonts, even if the CB
font description files are compatible with the single 10 pt size.

4Apparently T7 has been reserved to define an encoding where the first 128 glyphs are the
standard OT1 encoded Latin fonts, and the second group, again of 128 glyphs, contains the
Greek characters; therefore, since polytonic spelling requires more than 128 glyphs, the extended

9

symbolic name, so that we can change the definitive name in just one place.
22 \def\GRencoding@name{LGR}

Now the default Olga Greek fonts, used for rendering the “Greek italic shape”
are an alternative with the Lipsian ones.

If the 10pt option was specified it is necessary to load also the package texttt-
type1ec.sty. In any case we load also packages graphicx and ifthen that shall
be useful for some commands.
23 \ifonesizetypeone
24 \RequirePackage[10pt]{type1ec}[2002/09/07]
25 \fi
26 \RequirePackage{graphicx}
27 \RequirePackage{ifthen}

\metricsfont Similarly the metric symbol font is declared together with a command for selecting
it:
28 \DeclareFontFamily{U}{mtr}{\hyphenchar\font\m@ne}
29 \ifonesizetypeone
30 \DeclareFontShape{U}{mtr}{m}{n}{<-> gmtr1000}{}%
31 \else
32 \DeclareFontShape{U}{mtr}{m}{n}{%
33 <-5.5> gmtr0500 <5.5-6.5> gmtr0600
34 <6.5-7.5> gmtr0700 <7.5-8.5> gmtr0800 <8.5-9.5> gmtr0900
35 <9.5-11> gmtr1000 <11-15> gmtr1200 <15-> gmtr1728}{}%
36 \fi
37 \DeclareFontShape{U}{mtr}{m}{it}{<->ssub*mtr/m/n}{}%
38 \DeclareFontShape{U}{mtr}{b}{it}{<->ssub*mtr/m/n}{}%
39 \DeclareFontShape{U}{mtr}{b}{n}{<->ssub*mtr/m/n}{}%
40 \newcommand*\metricsfont{\fontencoding{U}\fontfamily{mtr}\upshape}

Next we require the package for extensible math fonts; it might be strange to use
extensible math fonts in Greek philology, but a certain glyph must be picked up
from such fonts, with the assurance that it changes size together with the current
font size.
41 \RequirePackage{exscale}

Some macros are necessary to switch languages; such macros must be inde-
pendent (at least for now) from the particular babel version, whether it be version
3.6, 3.7, 3.8, or 3.9; in the former the concept of “language attribute” is unknown,
while the latter recognises varieties of the same language by the attribute setting.
With babel version 3.9g things have further changed; the attribute to a language
may be appended to the language name with an interposed dot; for example for
Greek it might be greek.polutoniko. Such macros, besides being as robust as
possible, must provide the alphabet changes as required.

\GreekName During the language switching operations \GreekName distinguishes the variant
or the main language whose attribute gets set and, evidently, becomes effective
encoding X7 will probably become the one applicable to the whole set of the CB fonts. Time
passing by, the X7 encoding name apparently has been used for some nordic language.

10

when the main language greek is in force. Notice that if the greek.ldf has
a date previous to 2014/09/18, the attribute ancient may not be defined; in
this case the polutoniko attribute is set, else the ancient attribute is selected.
The difference is that the attribute polutoniko selects the polytonic spelling and
the modern Greek hyphenation, while ancient selects the polytonic spelling and
the classical Greek hyphenation. It is assumed that this teubner package gets
used for philological purposes only for ancient Greek. Nevertheless, if some work
on modern polytonic Greek philological document is being typeset, the ancient
attribute may work satisfactorily, but with some possible “ancient” line breaks.
42 \ifx\languageattribute\undefined
43 \def\GreekName{polutonikogreek}%
44 \else
45 \def\GreekName{greek}
46 \def\strip@slash#1/#2/#3!{\edef\@tempA{#1#2#3}}
47 \def\getgreekdate#1 #2 #3 #4!{\def\@tempA{#1}\expandafter\strip@slash\@tempA!}
48 \expandafter\expandafter\expandafter\getgreekdate\csname ver@greek.ldf\endcsname !
49 \ifnum\@tempA<20140918
50 \languageattribute{greek}{polutoniko}%
51 \else
52 \languageattribute{greek}{ancient}%
53 \fi
54 \let\strip@slash\@undefined
55 \let\getgreekdate\@undefined
56 \fi

5.2 Compatibility with Latin fonts
\previouslanguage
\previousencoding

The “default” language is defined as the “previous” language; similarly the “de-
fault” encoding is defined as the “previous” encoding; these are the language and
the encoding in force when the document starts; this is why such macros are de-
fined at the beginning of the document. At the same time we assure that if the
CM (or EC) or the LM fonts are the default ones, nothing special is done, while
if the default fonts are, say, the TX ones, they are correctly restored, but the CM
families are used for the CB ones.

\substitutefontfamily
\ifLipsian

The font macro \substitutefontfamily is already present in the babel kernel,
but with version 3.9g it is deprecated, although maintained for backwards com-
patibility; it copes only with the standard families, series and shapes, therefore it
does not consider the Lipsian shape and its series. I had to redefine it together
with a new conditional macro in order to do the same job as the original one but
taking into consideration also the Lipsian shape; the purpose of this macro is to
write in the working directory a number of font description files that refer to the
LGR Greek encoding, but have the names of the Latin font families; such font
description files, simply substitute these non existent encoding-family series and
shapes with the existing series and shapes of any other LGR encoded Greek font,
in particular the CB ones. Things might change in the future, so as to use the
package by Günter Milde substitutefont package (already present in the ctan

11

archive) or other solutions by the core of babel. Meanwhile we cope with what is
available right now.

By issuing a command such as:
\ifFamily{pxr}{cmr}

an association is made with all the series and shapes of the Palatino serifed fonts
to the corresponding CB serifed series and shapes; therefore when a language
shift changes the default encoding from, say, T1 to LGR the font family LGR+pxr
is mapped to the font family LGR+cmr and everything is supposed to work fine;
when another language change resets the encoding to T1, the original Latin script
is used again. The redefined \substitutefontfamily macro is as such:
57 \newif\ifLipsian
58
59 \providecommand*\substitutefontfamily{}%
60 \renewcommand*\substitutefontfamily[3]{{%
61 \edef\@tempA{#1#2.fd}%
62 \lowercase\expandafter{\expandafter\def\expandafter\@tempA\expandafter{\@tempA}}%
63 \expandafter\IfFileExists\expandafter{\@tempA}{}{%
64 \immediate\openout15=\@tempA
65 \typeout{Writing file #1#2.fd}
66 \immediate\write15{%
67 \string\ProvidesFile{#1#2.fd}^^J
68 [\the\year/\two@digits{\the\month}/\two@digits{\the\day}
69 \space generated font description file]^^J
70 \string\DeclareFontFamily{#1}{#2}{}^^J
71 \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}^^J
72 \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}^^J
73 \string\DeclareFontShape{#1}{#2}{m}{sl}{<->ssub * #3/m/sl}{}^^J
74 \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}^^J
75 \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}^^J
76 \string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}^^J
77 \string\DeclareFontShape{#1}{#2}{b}{sl}{<->ssub * #3/bx/sl}{}^^J
78 \string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}^^J
79 \string\DeclareFontShape{#1}{#2}{bx}{n}{<->ssub * #3/bx/n}{}^^J
80 \string\DeclareFontShape{#1}{#2}{bx}{it}{<->ssub * #3/bx/it}{}^^J
81 \string\DeclareFontShape{#1}{#2}{bx}{sl}{<->ssub * #3/bx/sl}{}^^J
82 \string\DeclareFontShape{#1}{#2}{bx}{sc}{<->ssub * #3/bx/sc}{}^^J
83 }%
84 \ifLipsian
85 \immediate\write15{%
86 \string\DeclareFontShape{#1}{#2}{m}{li}{<->ssub * #3/m/li}{}^^J %<- Lipsian
87 \string\DeclareFontShape{#1}{#2}{b}{li}{<->ssub * #3/b/li}{}^^J %<- Lipsian
88 \string\DeclareFontShape{#1}{#2}{bx}{li}{<->ssub * #3/bx/li}{}^^J %<-Lipsian
89 \string\DeclareFontShape{#1}{#2}{m}{ui}{<->ssub * #3/m/ui}{}^^J %<- upright Olga
90 \string\DeclareFontShape{#1}{#2}{b}{ui}{<->ssub * #3/m/ui}{}^^J %<- upright Olga
91 \string\DeclareFontShape{#1}{#2}{bx}{ui}{<->ssub * #3/bx/ui}{}^^J%<-upright Olga
92 \string\DeclareFontShape{#1}{#2}{m}{rs}{<->ssub * #3/m/rs}{}^^J %<-serifed lc
93 \string\DeclareFontShape{#1}{#2}{b}{rs}{<->ssub * #3/m/rs}{}^^J %<-serifed lc
94 \string\DeclareFontShape{#1}{#2}{bx}{rs}{<->ssub * #3/bx/rs}{}^^J%<-serifed lc

12

95 }%
96 \global\Lipsianfalse\fi
97 \closeout15}%
98 }}
99

Notice that together with the Lipsian fonts the upright italics (Olga) and upright
serifed lowercase alphabets are defined. In a while there are the definition for
selecting these shapes. Of course you are not obliged to use them, but in case you
wanted. . .

These results are obtained by means of the following macros.

\ifCMLM
\ifFamily

The \ifCMLM processes the necessary test in order to set the auxiliary macro
\n@xt to be an alias to \iftrue or iffalse depending on the fact that the CM
(or EC) fonts or the LM fonts are the default Latin ones, in this case it sets the
\n@xt macro equivalent to \iftrue, otherwise it sets it to \iffalse. In order to
succeed, it requires to analyse the first two letters of the default family name; if
these letters form one of the sequences cm or lm, the CM or LM fonts have been
loaded, otherwise some other fonts are in force. We need therefore a macro with
delimited arguments in order to extract the first two letters of the family name.

100 \def\ifCMLM#1#2#3!{\edef\f@milyprefix{#1#2}%
101 \ifthenelse{\(\equal{\f@milyprefix}{cm}\OR\equal{\f@milyprefix}{lm}\)}%
102 {\let\n@xt\iftrue}{\def\f@milyprefix{cmr}\let\n@xt\iffalse}\n@xt}
103

The other macro \ifFamily uses the previous macro and according to the test
result, possibly runs the \substitutefontfamilymacro that, if necessary, creates
the description file that map the specified family font description file to the second
specified font family, both connected to the LGR encoding. Therefore, after these
font definition files exist, LATEX can fetch the Greek fonts by way of substitution.
Let’s explain again: if you specify

\Lipsiantrue\ifFamily{pxr}{lmr}

you state that you want to run the macro on the serifed Palatino font family, by
associating the pxr family to the lmr one5; by specifying \Lipsiantrue you state
that you want to create entries also for the Lipsian series and shape; the macro
provides to reset \Lipsianfalse in order to avoid that other calls of that macro
on non serifed or monospaced fonts try to create entries that in any case do not
exist: the Lipsian font comes only as a serifed font! In this way, if you are using
Palatino fonts through the pxfonts package, the teubner macros provide to create
the necessary font description files so that while you are typesetting in medium
normal Latin Palatino and you switch to Greek, the built in macros change the
encoding to LGR; the LGR Palatino serifed medium normal Greek font does not

5If you have the full CB Greek font collection it’s more convenient to map the missing fonts
to the Latin Modern Greek ones, while if you need to use the 10pt option, you’d better map the
missing family to the ordinary Computer Modern ones; the actual fonts are the same, but the
latter font definition files cope with the 10pt option, while the former don’t.

13

exist, but that family, series and shape are mapped by the font description file
to the corresponding LGR encoded Latin Modern CB fonts in medium series and
normal shape, and typesetting goes on with the right Greek fonts.

104 \newcommand*\ifFamily[2]{%
105 \expandafter\ifCMLM#1!\else\substitutefontfamily{LGR}{#1}{#2}\fi}
106

You don’t actually need to use that macro for the Times or the Palatino eXtended
fonts loaded by means of the corresponding packages txfonts or pxfonts, because a
hook is set up so that “at begin document” the loading of those packages is tested,
and if the test is true, the necessary font description files are possibly created. If
you load the Times or the Palatino or any other non standard font by means of
other packages, it’s up to you to issue the \substitutefontfamily macro right
after calling that font package and by using the correct family names; similarly
you might substitute the new Latin font family names to other Greek font family
names, if you have other fonts available. At the same time at begin document we
memorise the name and encoding of the Latin font used for the default language,
so that when returning to Latin font typesetting after Greek font typesetting, the
proper language typesetting rules and encoding are restored.

107 \AtBeginDocument{%
108 \@ifpackageloaded{pxfonts}{\typeout{Palatino fonts loaded}%
109 \Lipsiantrue\ifFamily{pxr}{cmr}\Lipsianfalse
110 \ifFamily{pxss}{cmss}\ifFamily{pxtt}{cmtt}}{\relax}}
111
112 \AtBeginDocument{%
113 \@ifpackageloaded{txfonts}{\typeout{Times fonts loaded}%
114 \RequirePackage{teubnertx}}{}}
115
116 \AtBeginDocument{%
117 \edef\previouslanguage{\languagename}%
118 \edef\previousencoding{\f@encoding}}

Nevertheless all this requires a minimum of attention in specifying the op-
tions for the babel package and in the order extensions packages are input. The
teubner.sty package should be read after any other package that sets or resets
the Latin font encoding; for example if the T1 encoding is selected as the default
one, in place of the OT1 encoding, then this choice must be made before this
package is read in. Similarly when the babel options are specified, remember that
the last language name becomes the default language at begin document; never
specify greek as the last language option!

\Lipsiakostext
\lishape
\textli

\lishape is the normal declaration, modelled on the other similar macros in the
LATEX kernel, made up to chose the Lipsian shape. Nevertheless since it is a
light character, if it must blend well with the other PostScript fonts, not only
the CM and LM, but also the other ones available for typesetting with the TEX
system, it is necessary to chose the b (bold) series in place of the m (medium)
one, while maintaining the bx (bold extended) series when the other fonts are set
with the blacker and larger series. This is why the \lishape declaration is a little

14

more complicate than normal, since it has to test the value of the current series.
The text command \textli matches the similar commands for Latin fonts. But
the \lishape declaration is used also within the more complicated macros for
declaring or setting the Lipsian font.

\Lipsiakostext is a declaration stating that from now on typesetting will
be done with the Lipsian fonts; notice that the encoding and the language name
in force before this declaration are memorised, then the current Greek version is
selected; the \let\~\accperispomeni is required because switching on and off
may reset the active tilde and connected macros definitions. \~ in Greek must set
the circumflex accent, so we make sure that this really occurs.

119 \DeclareRobustCommand{\lishape}{%
120 \not@math@alphabet\lishape\relax
121 \ifthenelse{\equal{\f@encoding}{\GRencoding@name}}{%
122 \ifboldLipsian
123 \ifthenelse{\equal{\f@series}{m}}%
124 {\fontseries{b}\fontshape{li}\rmfamily}%
125 {\fontshape{li}\rmfamily}\else
126 \fontshape{li}\rmfamily\fi}%
127 {\fontshape{it}\selectfont}}%
128
129 \DeclareTextFontCommand{\textli}{\lishape}%
130 \DeclareRobustCommand\Lipsiakostext{%
131 \expandafter\select@language\expandafter{\GreekName}%
132 \let\~\accperispomeni\let~\accperispomeni\lishape}
133

\textLipsias \textLipsias is a command that typesets its argument with the \Lipsiakostext
declaration in force. The LATEX command declaration used here makes sure that
possible italic corrections are taken into account; the actual font switching is made
through the same \Lipsiakostext declaration, but the inner working maintain
local this declaration; for this reason we suggest to use this text command rather
than the font declaration.

134 \DeclareTextFontCommand{\textLipsias}{\Lipsiakostext}
135

\NoLipsiakostext \NoLipsiakostext is the opposite declaration that undoes everything that was
done with \Lipsiakostext. Probably it is superfluous, but it has been asked for.
If \Lipsiakostext is delimited within a scope by means of an explicit group or
an environment, it stops its effectiveness with the end of its scope.

It is worth noting that, in order to delimit within a scope the action of this
and of the other declarations, it is possible to use them as environments with the
same name without the backslash. for example one might input in the source file
something as:

\begin{Lipsiakostext}

〈Greek text to be typeset with the Lipsian font〉
\end{Lipsiakostext}

15

Remember also that these Greek text declarations may be issued while typesetting
with Latin fonts; they provide also the language switch, so that they do not require
the typesetter to first switch to Greek and then to choose a certain Greek font.

136 \DeclareRobustCommand\NoLipsiakostext{%
137 \ifthenelse{\equal{\f@series}{b}}{\fontseries{m}}{\relax}%
138 \fontshape{n}\selectfont
139 \expandafter\select@language\expandafter{\previouslanguage}%
140 \rmfamily\bbl@activate{~}}
141

\textDidot \textDidot is a similar macro where the common upright Greek characters are
selected; it goes by itself that if \textli is specified within the \textDidot argu-
ment, the typesetting is or becomes identical with what one can obtain with the
\textLipsias command.

142 \DeclareRobustCommand\textDidot[1]{{%
143 \expandafter\select@language\expandafter{\GreekName}%
144 \let\~\accperispomeni\let~\accperispomeni
145 \fontencoding{LGR}\rmfamily#1}}
146

\textlatin \textlatin is a redefinition of the standard babel macro that is adapted to the
present situation, where it may be called behind the scenes in certain situations
that are beyond the control of the typesetter. Therefore every precaution is taken
in order to be sure that the composition of the command argument is really done
with the default encoding and font families, but maintaining the current series and
shape; of course, if the shape is that related to the Lipsian font, then the italic
shape is temporarily restored (local definition). Moreover, with the (default) Latin
fonts the tilde is restored to a non breaking space by simply making it an active
character.

147 \DeclareRobustCommand\textlatin[1]{\edef\externalencoding{\f@encoding}{%
148 \def\itdefault{it}\def\@tempA{li}\ifx\@tempA\f@shape\def\f@shape{it}\fi
149 \expandafter\select@language\expandafter{\previouslanguage}%
150 \fontencoding{\previousencoding}%
151 \fontfamily{\rmdefault}\selectfont
152 \bbl@activate{~}#1}%
153 \expandafter\fontencoding\expandafter{\externalencoding}\rmfamily}
154

\uishape
\textui

\rsshape
\textrs

The other switching font macros for using the other shapes that are available with
the CB fonts are working only when typesetting in Greek and the default encoding
is therefore LGR.

155 \DeclareRobustCommand\uishape{%
156 \ifthenelse{\equal{\f@encoding}{\GRencoding@name}}%
157 {\fontshape{ui}\selectfont}{\relax}}
158 \DeclareTextFontCommand{\textui}{\uishape}
159
160 \DeclareRobustCommand\rsshape{%
161 \ifthenelse{\equal{\f@encoding}{\GRencoding@name}}%

16

162 {\fontshape{rs}\selectfont}{\relax}}
163 \DeclareTextFontCommand{\textrs}{\rsshape}
164

5.3 Service macros
Now we start the specific additions introduced with this package.

\strip@pt The LATEX kernel has the macro \strip@pt that strips off the pt part from the
expanded value of a dimension register and makes available the measure in pt of
the contained length (the register contains the length measure in scaled points; the
expansion performed by TEX with the command \the converts the scaled points
to printer points and shows the result with a string of decimal digits with, possibly,
a decimal fraction); its argument is supposed to be a dimension register name, not
its expanded contents. The \strip@pt command eliminates the decimal point
and the fractional part if the latter is nought.

With the help of such service macro we are going to define a certain number
of “lift accent” macros or “put cedilla” macros that work with both upright and
slanted fonts, although they contain different parameters for Latin compared to
Greek alphabets.

\lift@accent The first “lift accent” macro just puts an accent over a letter, without inserting any
space between them; the first argument is the accent code (decimal, hexadecimal
or octal; I prefer decimal), while the second argument is the letter – any letter,
even if it is not a vowel!

165 \newcommand*\lift@accent[2]{\leavevmode
166 {\edef\slant@{\strip@pt\fontdimen1\font}%
167 \dimen@=\z@\setbox\z@\hbox{\char#1}\advance\dimen@-.5\wd\z@
168 \setbox\tw@\hbox{i}\setbox\z@\hbox{#2}%
169 \ifdim\wd\z@>\wd\tw@\advance\dimen@ .5\wd\z@
170 \else\advance\dimen@ .3\wd\z@\fi
171 \ifx#2h\advance\dimen@.05\wd\z@\fi
172 \@tempdima\ht\z@\advance\@tempdima-1ex\relax
173 \advance\dimen@\slant@\@tempdima
174 \raise\@tempdima\hbox to\z@{\kern\dimen@\char#1\relax\hss}\box\z@}}
175

\Lift@accent The second “lift accent” macro behaves as the first one except it interposes a small
vertical distance between the accent and the letter:

176 \newcommand*\Lift@accent[2]{\leavevmode
177 {\edef\slant@{\strip@pt\fontdimen1\font}%
178 \dimen@=\z@\setbox\z@\hbox{\char#1}\advance\dimen@-.5\wd\z@
179 \setbox\tw@\hbox{i}\setbox\z@\hbox{#2}%
180 \ifdim\wd\z@>\wd\tw@\advance\dimen@ .5\wd\z@
181 \else\advance\dimen@ .3\wd\z@\fi
182 \ifx#2a\advance\dimen@-.1\wd\z@\fi
183 \ifx#2h\advance\dimen@.05\wd\z@\fi
184 \@tempdima\ht\z@\advance\@tempdima-1ex\advance\@tempdima.1ex\relax

17

185 \advance\dimen@\slant@\@tempdima
186 \raise\@tempdima\hbox to\z@{\kern\dimen@\char#1\relax\hss}\box\z@}}
187

\LIFT@accent The third “lift accent” macro behaves as the first one, except it interposes a
specified vertical space between the letter and the accent; this space is specified
as the second argument:

188 \newcommand*\LIFT@accent[3]{\leavevmode
189 {\edef\slant@{\strip@pt\fontdimen1\font}%
190 \dimen@=\z@\setbox\z@\hbox{\char#1}\advance\dimen@-.5\wd\z@
191 \setbox\tw@\hbox{i}\setbox\z@\hbox{#3}%
192 \ifdim\wd\z@>\wd\tw@\advance\dimen@ .5\wd\z@
193 \else\advance\dimen@ .3\wd\z@\fi
194 \ifx#2a\advance\dimen@-.1\wd\z@\fi
195 \ifx#2h\advance\dimen@.05\wd\z@\fi
196 \@tempdima\ht\z@\advance\@tempdima-1ex\relax
197 \def\@tempA{#2}\ifx\@tempA\undefined\else
198 \advance\@tempdima#2\fi\let\@tempA\undefined
199 \advance\dimen@\slant@\@tempdima
200 \raise\@tempdima\hbox to\z@{\kern\dimen@\char#1\relax\hss}\box\z@}}
201

All these macros will be used in subsequent “put accent” macros, that will
stack also several accents one above the other; the necessity arises for example
when the macron or breve diacritical marks have to be put over accented letters;
according to typographical practice the accents must go over the macron or the
breve. In a similar way philologists often must use other diacritical marks in
addition to the traditional Greek ones, therefore these macros will be used, for
example, for setting the Scandinavian ring (from a Latin font) over a Greek letter
(from a Greek font).

\cap@ The first such unusual diacritical mark is a small cap, a small upside down breve
sign, that is in position 1 of the Greek font table.

202 \DeclareRobustCommand{\cap@}[1]{\leavevmode
203 {\edef\slant@{\strip@pt\fontdimen1\font}%
204 \setbox\tw@\hbox{\fontencoding{\GRencoding@name}\selectfont
205 \char1}\dimen@-.5\wd\tw@
206 \setbox\z@\hbox{#1}%
207 \advance\dimen@ .5\wd\z@
208 \@tempdima\ht\z@\advance\@tempdima.55ex\relax
209 \advance\dimen@\slant@\@tempdima
210 \ifx\cf@encoding\GRencoding@name\else
211 \ifx#1k\advance\dimen@-.3\wd\tw@\fi\fi
212 \raise\@tempdima\hbox to\z@{\kern\dimen@\box\tw@\relax\hss}\box\z@}}
213

The \ifx\cf@encoding\GRencoding@name conditional construct shows that this
macro behaves differently with different font encodings; the following \ifx#1k
checks the argument against the Greek letter kappa, which shows very clearly
that these macros operate on any letter, not only on vowels.

18

\cap By means of the above \cap@ macro we can define three equivalent commands
to be used either when the Greek encoding is in force, or when one of the Latin
encodings is in force; but we must pay attention, because there exist already
the command \cap to be used in mathematics; therefore we better exclude this
possibility through a clever use of the \textormath macro. Therefore we first save
the math command into an alia \mcap; then we define three textual commands
for the various encodings \tcap; finnally we use \textormath:

214 \let\mcap\cap
215 \DeclareTextCommand{\tcap}{\GRencoding@name}{\cap@}
216 \DeclareTextCommand{\tcap}{OT1}{\cap@}
217 \DeclareTextCommand{\tcap}{T1}{\cap@}
218 \DeclareRobustCommand*\cap{\textormath{\tcap}{\mcap}}

Probably one definition would be sufficient, but on one side the presence of three
encoding dependent macros are the remains of initial works, while on the other
side they prevent to use these macros with encodings for which the macro might
not work well, because it was not tested with them.

\cap@cedilla Similarly a small cap can be put under another letter as it was a cedilla; for this
task another macro is defined, which makes use of the same glyph in position 1 in
the Greek font table:

219 \newcommand*\cap@cedilla[1]{\leavevmode
220 {\setbox4\hbox{\fontencoding{\GRencoding@name}\selectfont\char1}%
221 \dimen@-.5\wd4
222 \setbox\z@\hbox{#1}%
223 \ifx\cf@encoding\GRencoding@name
224 \ifx#1i\advance\dimen@ .65\wd\z@\else\advance\dimen@ .5\wd\z@\fi
225 \else
226 \ifx#1i\advance\dimen@ .55\wd\z@\else\advance\dimen@ .5\wd\z@\fi
227 \fi
228 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}
229

\ring@cedilla Another cedilla like diacritical mark is the Scandinavian ring put under a letter;
the ring is taken from the metrics font, so its slot position does not depend on the
various Latin encodings; the correct positioning requires careful examination of
the letter under which it is to be placed, distinguishing the Greek from the Latin
encodings:

230 \newcommand*\ring@cedilla[1]{\leavevmode
231 {\setbox4\hbox{\metricsfont\char26}%
232 \edef\slant@{\strip@pt\fontdimen1\font}%
233 \dimen@-.5\wd4\ifdim\slant@\p@>\z@\advance\dimen@-.04ex\fi
234 \setbox\z@\hbox{#1}%
235 \ifx\cf@encoding\GRencoding@name
236 \advance\dimen@ .45\wd\z@
237 \ifx#1h\advance\dimen@-.13\wd\z@\fi
238 \ifx#1a\advance\dimen@-.07\wd\z@\fi
239 \ifx#1o\advance\dimen@-.07\wd\z@\fi
240 \ifx#1u\advance\dimen@+.07\wd\z@\fi

19

241 \ifx#1w\advance\dimen@+.03\wd\z@\fi
242 \else
243 \ifx#1i\advance\dimen@.55\wd\z@\else
244 \ifx#1r\advance\dimen@.38\wd\z@\else
245 \ifx#1o\advance\dimen@.47\wd\z@\else
246 \advance\dimen@0.5\wd\z@
247 \fi\fi\fi
248 \fi
249 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}
250

\dot@cedilla Even the standard LATEX macro dot must be redefined with a cedilla like macro,
so as to make use of a special dot from the metric symbols font:

251 \newcommand*\dot@cedilla[1]{\leavevmode
252 {\setbox4\hbox{\metricsfont\char27}%
253 \dimen@-.5\wd4
254 \setbox\tw@\hbox{i}\setbox\z@\hbox{#1}%
255 \ifx\cf@encoding\GRencoding@name
256 \advance\dimen@ .5\wd\z@
257 \ifx#1h\advance\dimen@-.13\wd\z@\fi
258 \else
259 \ifdim\wd\z@>\wd\tw@\advance\dimen@.55\wd\z@
260 \else\advance\dimen@.5\wd\tw@\fi
261 \fi
262 \setbox\tw@\hbox{o}\ifdim\wd\z@=\wd\tw@\advance\dimen@-.05\wd\z@\fi
263 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}
264

\tie@cedilla LATEX has the macro \t for placing a “tie” over two letters; philologists require
also a tie under two letters; this is why another cedilla like macro is needed:

265 \newcommand*\tie@cedilla[1]{\leavevmode
266 {\setbox4\hbox{\fontencoding{\GRencoding@name}\selectfont\char20}%
267 \dimen@-.5\wd4
268 \setbox\tw@\hbox{i}\setbox\z@\hbox{#1}%
269 \ifx\cf@encoding\GRencoding@name
270 \advance\dimen@.5\wd\z@
271 \ifx#1h\advance\dimen@-.1\wd\z@\fi
272 \ifx#1u\advance\dimen@.15\wd\z@\fi
273 \else
274 \ifdim\wd\z@>\wd\tw@\advance\dimen@ .55\wd\z@
275 \else\advance\dimen@ .5\wd\tw@\fi
276 \fi
277 \setbox\tw@\hbox{o}\ifdim\wd\z@=\wd\tw@\advance\dimen@-.05\wd\z@\fi
278 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}
279

5.4 Extended accent definitions
We will use those service macros in the definition of several accent like macros
that keep all the intricacies away from the user.

20

In particular the LATEX kernel macros are used in order to declare accents,
composite glyphs, composite commands, and the like; these are used as the de-
fault definitions; afterwards other definitions will be given that work when these
composite macros don’t work.

In other words, while \~ and u in Greek form the composite glyph “upsilon
with circumflex” that exists in the Greek font table, the same macro \~ and the
letter k produce the superposition of a circumflex on top of a “kappa” glyph,
since this glyph does not exist in the Greek font table. Notice that all these
declarations are restricted to the Greek font encoding so they are usable only when
such encoding is in force. See the teubner-doc.pdf file for more details concerning
the usefulness of the extended accent macros vs. the ligature mechanism. In any
case, with version 3.9g of babel and the modifications introduced by Günter Milde,
the actual babelgreek maintainer, during the year 2013, such extended accent
macros are LICR encoded and may always be used when typesetting in Greek; see
file greek-fontenc.def and lgrenc.def for further details, remembering that
such files are always loaded when typesetting Greek texts, irrespective of the
input encoding; if the encoding is utf8 direct Greek glyph input is possible (if
your keyboard allows you to do such input).

6 Avoiding conflicts
Some LICR definitions are necessary to use teubner, but some of them are really
important; therefore Günter Milde developed package textslpha that comes with
the other special files for the Greek LICR encoding, that avoids any conflict;we load
it at the \begin{document} execution so that it will be loaded only if necessary:

280 \AtBeginDocument{\RequirePackage{textalpha}}

6.1 Special accent macros
Now we come back to the “accent like” and “cedilla like” general macros we defined
above, and that will be extensively used in the following definitions. Note that for
what the circumflex is concerned, when teubner is in effect it is not defined as an
active character and does not work as a non breaking space. The command \~ is
just an accent macro; how do you put a non breaking space in a Greek context?
By simply using the LATEX kernel macro \nobreakspace; when typesetting with
non-Greek fonts the ~ is certainly handy to insert a non breaking space (a tie),
but for polytonic Greek spelling in the past 15 years or so the Greek language
definition file has always used the ~ sign a letter, not as an active character. If you
look in the babel package documentation related to the Greek language, you find
that for what concerns the ~ with polytonic spelling a number of “dirty tricks”
have been used, but nothing has been done to replace the “tie” function of this
character when typesetting in languages that use the Latin script; the only action
related to this point has been to redefine the kernel macros for typesetting figure
and table captions so as to substitute the ~ character with its explicit definition

21

\nobreakspace. It is necessary to do the same when this package is used, although
a shorter alias command \nbs is provided in order to simplify the input keying.

281 \let\nbs\nobreakspace

Before defining the Greek accents with the extended macros input with the
LICR accent macros, we have to define the accent superpositioning macros that
with teubner allow to stack from one to more accent over the base letter, taking
into account the slant of the font from which the base letter is taken. Notice
that these macros allow to set an accent on any base latter, even if that might
be meaningless. At the same time we redefine the standard macros so as to let
them do the same work when the LGR encoding is not in force. This duality
is necessary, not only for backward compatibility, but also for avoiding that the
normal redefined macros highjack the LICR facility.

We first define aliases for the standard LATEX accents, so that when entering
Greek typesetting mode we can save the LATEX macros, and restore them upon
exiting:

282 \let\accacuto\’
283 \let\accgrave\‘
284 \let\acccircon\~
285 \let\accdieresi\"
286 \let\accbreve\u
287 \let\accmacron\=

Then we define alternate macros for these accents, as “lifting” accent macros,
so that they can put their respective accent over any letter. For the diaeresis we
need to put an invisible character (v in the LGR encoded CB fonts, that with LICR
becomes \textcompwordmark) in order to avoid any ligature with an implied end
of word (boundarychar) that turns the diaeresis into an apostrophe.

288 \DeclareTextCommand{\G}{\GRencoding@name}[1]{\lift@accent{96}{#1}}
289 \DeclareTextCommand{\A}{\GRencoding@name}[1]{\lift@accent{39}{#1}}
290 \DeclareTextCommand{\C}{\GRencoding@name}[1]{\lift@accent{126}{#1}}
291 \DeclareTextCommand{\D}{\GRencoding@name}[1]{\lift@accent{34\textcompwordmark}{#1}}
292 \DeclareTextCommand{\B}{\GRencoding@name}[1]{\lift@accent{30}{#1}}
293 \DeclareTextCommand{\M}{\GRencoding@name}[1]{\lift@accent{31}{#1}}
294 %

But we have to provide also the means for disabling the ~ shorthand that is reset
every time the Greek language is selected again in a multi language document
where language shifts take place quite often; we must also counteract the reset-
ting of the \~ definition performed by the greek.ld file in every language shift;
we add the accent definition to the \extrasgreek macro, and we reset them at
\noextrasgreek execution.

295 \addto\extrasgreek{\shorthandoff{~}\let\~\accperispomeni
296 \let\"\accdialytika\let\’\acctonos\let\‘\accvaria}
297 \addto\noextrasgreek{\shorthandon{~}\let\~\acccircon
298 \let\"\accdieresi\let\’\accacuto\let\‘\accgrave}
299

Besides the normal \B command for setting a breve command, another “large
breve” is required by philologists, who need to mark a diphthong, or in general two

22

letters; the macro \U does the job, but it is the typesetter’s responsibility to input
the macro argument as made of two letters (possibly with their own accents):

300 \DeclareTextCommand{\U}{\GRencoding@name}[1]{\lift@accent{151}{#1}}
301 % rough
302 \DeclareTextCommand{\r}{\GRencoding@name}[1]{\lift@accent{60}{#1}}
303 % smooth
304 \DeclareTextCommand{\s}{\GRencoding@name}[1]{\lift@accent{62}{#1}}
305 % acute+diaeresis
306 \DeclareTextCommand{\Ad}{\GRencoding@name}[1]{\lift@accent{35}{#1}}
307 % grave+diaeresis
308 \DeclareTextCommand{\Gd}{\GRencoding@name}[1]{\lift@accent{36}{#1}}
309 % circumflex+diaeresis
310 \DeclareTextCommand{\Cd}{\GRencoding@name}[1]{\lift@accent{32}{#1}}
311 % acute+rough
312 \DeclareTextCommand{\Ar}{\GRencoding@name}[1]{\lift@accent{86}{#1}}
313 % grave+rough
314 \DeclareTextCommand{\Gr}{\GRencoding@name}[1]{\lift@accent{67}{#1}}
315 % circumflex+rough
316 \DeclareTextCommand{\Cr}{\GRencoding@name}[1]{\lift@accent{64}{#1}}
317 % acute+smooth
318 \DeclareTextCommand{\As}{\GRencoding@name}[1]{\lift@accent{94}{#1}}
319 % grave+smooth
320 \DeclareTextCommand{\Gs}{\GRencoding@name}[1]{\lift@accent{95}{#1}}
321 % circumflex+smooth
322 \DeclareTextCommand{\Cs}{\GRencoding@name}[1]{\lift@accent{92}{#1}}

Most of the above accent commands are used again in order to tie a text symbol
meaning to certain combinations, that is when they receive as argument a vowel
whose accented glyph is present in the font; in this way in order to type “alpha
with rough breath, acute accent and iota subscript” you can type <’a|, or \Ar{a}|
or \arai or \<’a|, if you use the new standard accent macros; the advantage of
using the first notation is its short string; the advantage of the second is that
it does not break kerning commands with a preceding letter; the advantage of
the third is that it does not break any kerning either before or after; the fourth
solution produces the same result as the third, but it’s easier to make up and you
don’t have to memorise any specific naming rule for accented glyphs. With the
Lipsian font this trick is particularly useful for any sequence of alpha and upsilon
each one with its own accents and/or diaeresis.

In Greek the regular cedilla is meaningless, so that \c may be redefined as a
semivowel command; at the same time the typesetter might be more comfortable
if he could always use the same, although longer, macro for marking a vowel as a
semivowel one; therefore \c plays the same role in Greek as \semiv.

323 % cap cedilla
324 \DeclareTextCommand{\c}{\GRencoding@name}[1]{\cap@cedilla{#1}}
325 \DeclareTextCommand{\semiv}{\GRencoding@name}[1]{\cap@cedilla{#1}}
326 \DeclareTextCommand{\semiv}{OT1}[1]{\cap@cedilla{#1}}
327 \DeclareTextCommand{\semiv}{T1}[1]{\cap@cedilla{#1}}
328 % ring cedilla
329 \DeclareTextCommand{\ring}{\GRencoding@name}[1]{\ring@cedilla{#1}}

23

330 \DeclareTextCommand{\ring}{OT1}[1]{\ring@cedilla{#1}}
331 \DeclareTextCommand{\ring}{T1}[1]{\ring@cedilla{#1}}
332 % dot cedilla
333 \DeclareTextCommand{\Dot}{\GRencoding@name}[1]{\dot@cedilla{#1}}
334 \DeclareTextCommand{\Dot}{OT1}[1]{\dot@cedilla{#1}}
335 \DeclareTextCommand{\Dot}{T1}[1]{\dot@cedilla{#1}}
336 % tie cedilla
337 \DeclareTextCommand{\ut}{\GRencoding@name}[1]{\tie@cedilla{#1}}
338 \DeclareTextCommand{\ut}{OT1}[1]{\tie@cedilla{#1}}
339 \DeclareTextCommand{\ut}{T1}[1]{\tie@cedilla{#1}}
340 %
341 % Acute breve
342 \DeclareTextCommand{\Ab}{\GRencoding@name}[1]%
343 {\LIFT@accent{39}{-.15ex}{\lift@accent{30}{#1}}}
344 % Grave breve
345 \DeclareTextCommand{\Gb}{\GRencoding@name}[1]%
346 {\LIFT@accent{96}{-.15ex}{\lift@accent{30}{#1}}}
347 % Acute rough breve
348 \DeclareTextCommand{\Arb}{\GRencoding@name}[1]%
349 {\LIFT@accent{86}{-.15ex}{\lift@accent{30}{#1}}}
350 % Grave rough breve
351 \DeclareTextCommand{\Grb}{\GRencoding@name}[1]%
352 {\LIFT@accent{67}{-.15ex}{\lift@accent{30}{#1}}}
353 % Acute smooth breve
354 \DeclareTextCommand{\Asb}{\GRencoding@name}[1]%
355 {\LIFT@accent{94}{-.15ex}{\lift@accent{30}{#1}}}
356 % Grave smooth breve
357 \DeclareTextCommand{\Gsb}{\GRencoding@name}[1]%
358 {\LIFT@accent{95}{-.15ex}{\lift@accent{30}{#1}}}
359 %
360 % Acute macron
361 \DeclareTextCommand{\Am}{\GRencoding@name}[1]%
362 {\Lift@accent{39}{\lift@accent{31}{#1}}}
363 % Grave macron
364 \DeclareTextCommand{\Gm}{\GRencoding@name}[1]%
365 {\Lift@accent{96}{\lift@accent{31}{#1}}}
366 % Circumflex macron
367 \DeclareTextCommand{\Cm}{\GRencoding@name}[1]%
368 {\Lift@accent{126}{\lift@accent{31}{#1}}}
369 % Acute rough macron
370 \DeclareTextCommand{\Arm}{\GRencoding@name}[1]%
371 {\Lift@accent{86}{\lift@accent{31}{#1}}}
372 % Grave rough macron
373 \DeclareTextCommand{\Grm}{\GRencoding@name}[1]%
374 {\Lift@accent{67}{\lift@accent{31}{#1}}}
375 % Circumflex rough macron
376 \DeclareTextCommand{\Crm}{\GRencoding@name}[1]%
377 {\Lift@accent{64}{\lift@accent{31}{#1}}}
378 % Acute smooth macron
379 \DeclareTextCommand{\Asm}{\GRencoding@name}[1]%

24

380 {\Lift@accent{94}{\lift@accent{31}{#1}}}
381 % Grave smooth macron
382 \DeclareTextCommand{\Gsm}{\GRencoding@name}[1]%
383 {\Lift@accent{95}{\lift@accent{31}{#1}}}
384 % Circumflex smooth macron
385 \DeclareTextCommand{\Csm}{\GRencoding@name}[1]%
386 {\Lift@accent{92}{\lift@accent{31}{#1}}}
387 % smooth macron
388 \DeclareTextCommand{\Sm}{\GRencoding@name}[1]%
389 {\Lift@accent{62}{\lift@accent{31}{#1}}}
390 % rough macron
391 \DeclareTextCommand{\Rm}{\GRencoding@name}[1]%
392 {\Lift@accent{60}{\lift@accent{31}{#1}}}
393 % smooth breve
394 \DeclareTextCommand{\Sb}{\GRencoding@name}[1]%
395 {\LIFT@accent{62}{-0.15ex}{\lift@accent{30}{#1}}}
396 % rough breve
397 \DeclareTextCommand{\Rb}{\GRencoding@name}[1]%
398 {\LIFT@accent{60}{-0.15ex}{\lift@accent{30}{#1}}}
399 % breve and dieresis
400 \DeclareTextCommand{\bd}{\GRencoding@name}[1]%
401 {\LIFT@accent{30}{-.1ex}{\lift@accent{34v}{#1}}}
402 %
403 % iota subscript
404 \DeclareTextCommand{\iS}{\GRencoding@name}[1]
405 {\ooalign{#1\crcr\hidewidth\char124\hidewidth}}
406

\d The \d macro must be made available also with the Greek encoding
407 \DeclareTextCommand{\d}{\GRencoding@name}[1]%
408 {\leavevmode\bgroup\o@lign{\relax#1\crcr
409 \hidewidth\sh@ft{10}.\hidewidth}\egroup}
410

Some other philologist diacritical marks are needed.

\Open The \Open macro sets a special sign under a letter in order to mark it with an
open pronunciation.

411 \DeclareRobustCommand{\Open}[1]{\leavevmode
412 {\setbox4\hbox{\raise-.33ex\hbox{\metricsfont\char14}}%
413 \dimen@-.5\wd4
414 \setbox\tw@\hbox{i}\setbox\z@\hbox{#1}%
415 \ifx\cf@encoding\GRencoding@name
416 \advance\dimen@ .5\wd\z@
417 \setbox\tw@\hbox{h}\ifdim\wd\z@=\wd\tw@\advance\dimen@-.13\wd\z@\fi
418 \else
419 \ifdim\wd\z@>\wd\tw@\advance\dimen@ .55\wd\z@
420 \else\advance\dimen@ .5\wd\tw@\fi
421 \fi
422 \setbox\tw@\hbox{o}\ifdim\wd\z@=\wd\tw@\advance\dimen@-.05\wd\z@\fi

25

423 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}
424

\nasal The macro \nasal marks a letter for a nasal pronunciation.
425 \DeclareRobustCommand{\nasal}[1]{\leavevmode
426 {\setbox4\hbox{\raise-1.7ex\hbox{\GEcq}}%
427 \dimen@-.5\wd4
428 \setbox\tw@\hbox{i}\setbox\z@\hbox{#1}%
429 \ifx\cf@encoding\GRencoding@name
430 \advance\dimen@ .5\wd\z@
431 \setbox\tw@\hbox{h}\ifdim\wd\z@=\wd\tw@\advance\dimen@-.13\wd\z@\fi
432 \else
433 \ifdim\wd\z@>\wd\tw@\advance\dimen@ .55\wd\z@
434 \else\advance\dimen@ .5\wd\tw@\fi
435 \fi
436 \setbox\tw@\hbox{o}\ifdim\wd\z@=\wd\tw@\advance\dimen@-.05\wd\z@\fi
437 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}
438

\tenaspir Similarly \tenaspir marks a “tenuis aspiratio”
439 \DeclareRobustCommand{\tenaspir}[1]{#1\/%
440 {\fontencoding{\GRencoding@name}\selectfont<v}}

\palat \palat marks a palatal pronunciation of some consonants.
441 \DeclareRobustCommand{\palat}[1]{#1{%
442 \expandafter\fontencoding\expandafter{\GRencoding@name}\selectfont
443 \anwtonos}}
444

With the help of the previous macros some new commands get defined so as to
use a simple more or less mnemonic macro instead of having the typesetter type
in nested macros; these macros are valid only in the Greek and Latin encodings.

445 % dot and breve
446 \DeclareTextCommand{\Ud}{\GRencoding@name}[1]{\d{\u{#1}}}
447 % dot and macron
448 \DeclareTextCommand{\md}{\GRencoding@name}[1]{\d{\={#1}}}
449 % open and breve
450 \DeclareTextCommand{\UO}{\GRencoding@name}[1]{\Open{\u{#1}}}
451 % open and macron
452 \DeclareTextCommand{\mO}{\GRencoding@name}[1]{\Open{\={#1}}}
453
454 %
455 \DeclareTextCommand{\Ud}{T1}[1]{\d{\u{#1}}}
456 \DeclareTextCommand{\md}{T1}[1]{\d{\={#1}}}
457 \DeclareTextCommand{\UO}{T1}[1]{\Open{\u{#1}}}
458 \DeclareTextCommand{\mO}{T1}[1]{\Open{\={#1}}}
459 %
460 \DeclareTextCommand{\Ud}{OT1}[1]{\d{\u{#1}}}
461 \DeclareTextCommand{\md}{OT1}[1]{\d{\={#1}}}

26

462 \DeclareTextCommand{\UO}{OT1}[1]{\Open{\u{#1}}}
463 \DeclareTextCommand{\mO}{OT1}[1]{\Open{\={#1}}}
464

6.2 Some text commands
\greekquoteleft

\greekquoteright
\textguillemotleft

\textguillemotright
\textcompwordmark

\textemdash
emdash

\textendash

All these macros are defined by the new lgrenc.def file, so it is not necessary to
redefine them.

\stigma
\varstigma

\koppa
\coppa

\varkoppa
\sampi
\Coppa

\Stigma
\Sampi
\Euro

\permill

S These macros, too, are defined by the lgrenc.def file and subsidiaries, but with
different names; therefore we make some aliases. We exclude to use the modern
koppa sign (zig-zag koppa) so we let its commands equal to the old koppa.; at the
same time, for backwards compatibility, we let also the variant name \varkoppa
to address the ancient glyph. For the digit 6 in the ‘units’ position, we foresee to
use either the true stigma glyph or the digamma one.

465 \let\stigma\textstigma \let\Stigma\textStigma
466 \let\varstigma\textvarstigma
467 \let\koppa\textkoppa \let\Koppa\textQoppa
468 \let\qoppa\textqoppa
469 \let\varkoppa\textqoppa
470 \let\coppa\textqoppa \let\Coppa\textQoppa
471 \let\sampi\textsampi \let\Sampi\textSampi
472 \let\f\textdigamma \let\F\textDigamma \let\Digamma\F
473 \let\Euro\texteuro
474 \let\permill\textperthousand
475 \let\schwa\textschwa

\textdollar
\textsection

\textsterling
\textunderscore

\textvisiblespace

More important, although unlikely to be found in a philological text, is the ques-
tion of standard LATEX commands that are defined with reference to some encod-
ing; if Greek text is being typeset, the Greek encoding is being used and such
symbols would not be available any more; LATEXwould issue warning messages
complaining for their absence. Therefore we redefined them also for the Greek
encoding.

476 \DeclareTextCommand{\textdollar}{\GRencoding@name}%
477 {{\fontencoding{T1}\selectfont\char36}}
478 \DeclareTextCommand{\textsection}{\GRencoding@name}%
479 {{\fontencoding{T1}\selectfont\char159}}
480 \DeclareTextCommand{\textsterling}{\GRencoding@name}%
481 {{\fontencoding{T1}\selectfont\char191}}
482 \DeclareTextCommand{\textunderscore}{\GRencoding@name}%
483 {{\fontencoding{T1}\selectfont\char95}}
484 \DeclareTextCommand{\textvisiblespace}{\GRencoding@name}%
485 {{\fontencoding{T1}\selectfont\char32}}
486

6.3 Accent macros and glyph names
Now come dozens of macros that allow to access Greek accented vowels (plus rho
with rough and smooth breaths) with macros instead of ligatures; such macros

27

allow the kerning information to be used by TEX, while the ligature mechanism
would sometimes impeach the use of such kerning information. Notice that the
same glyphs are often accessed with a “text symbol” or a “text composite symbol”;
as explained above the opportunity of using either one derives from the necessity
of maintaining the kerning mechanism embedded in the font; if the CB fonts had
a postfixed accent notation, instead of a prefixed one, none of these macros would
be necessary (probably. . . !), but there would be other inconveniences.

Notice that the following code is subject to the boolean variable GlyphNames
which is set to false by default, just for compatibility with the past; I suggest to use
the GlyphNames option when when you really want to use such macros; remember
though that all these glyphs are more easily specified by means of the extended
accent macros that are also less restricted in their names; for a letter marked with
a smooth breath and an acute accent you can indifferently type before the letter
one of the following \>\’, \>’, \’\>, \’> at your choice. Moreover you can always
postfix the mark for the iota subscribed at the right of the letter, without any need
o memorising complicated names.

Notice the macros \oR and \oG that have the second letter capitalised in order
to avoid conflicts with otherwise homonymous macros defined in the LATEX ker-
nel or in other packages; by maintaining the false value to the boolean variable
GlyphNames you are sure to avoid conflicts.

487 \ifGlyphNames
488 \DeclareTextSymbol{\ag}{\GRencoding@name}{128}
489 \DeclareTextSymbol{\ar}{\GRencoding@name}{129}
490 \DeclareTextComposite{\r}{\GRencoding@name}{a}{129}
491 \DeclareTextSymbol{\as}{\GRencoding@name}{130}
492 \DeclareTextComposite{\s}{\GRencoding@name}{a}{130}
493 \DeclareTextSymbol{\aa}{\GRencoding@name}{136}
494 \DeclareTextSymbol{\ac}{\GRencoding@name}{144}
495 \DeclareTextSymbol{\ai}{\GRencoding@name}{248}
496 \DeclareTextSymbol{\aai}{\GRencoding@name}{140}
497 \DeclareTextSymbol{\aci}{\GRencoding@name}{148}
498 \DeclareTextSymbol{\agi}{\GRencoding@name}{132}
499 \DeclareTextSymbol{\ara}{\GRencoding@name}{137}
500 \DeclareTextComposite{\Ar}{\GRencoding@name}{a}{137}
501 \DeclareTextSymbol{\arc}{\GRencoding@name}{145}
502 \DeclareTextComposite{\Cr}{\GRencoding@name}{a}{145}
503 \DeclareTextSymbol{\arg}{\GRencoding@name}{131}
504 \DeclareTextComposite{\Gr}{\GRencoding@name}{a}{131}
505 \DeclareTextSymbol{\ari}{\GRencoding@name}{133}
506 \DeclareTextSymbol{\asa}{\GRencoding@name}{138}
507 \DeclareTextComposite{\As}{\GRencoding@name}{a}{138}
508 \DeclareTextSymbol{\asc}{\GRencoding@name}{146}
509 \DeclareTextComposite{\Cs}{\GRencoding@name}{a}{146}
510 \DeclareTextSymbol{\asg}{\GRencoding@name}{139}
511 \DeclareTextComposite{\Gs}{\GRencoding@name}{a}{139}
512 \DeclareTextSymbol{\asi}{\GRencoding@name}{134}
513 \DeclareTextSymbol{\argi}{\GRencoding@name}{135}
514 \DeclareTextSymbol{\arai}{\GRencoding@name}{141}

28

515 \DeclareTextSymbol{\arci}{\GRencoding@name}{149}
516 \DeclareTextSymbol{\asai}{\GRencoding@name}{142}
517 \DeclareTextSymbol{\asgi}{\GRencoding@name}{143}
518 \DeclareTextSymbol{\asci}{\GRencoding@name}{150}
519 \DeclareTextSymbol{\hg}{\GRencoding@name}{152}
520 \DeclareTextSymbol{\hr}{\GRencoding@name}{153}
521 \DeclareTextComposite{\r}{\GRencoding@name}{h}{153}
522 \DeclareTextSymbol{\hs}{\GRencoding@name}{154}
523 \DeclareTextComposite{\s}{\GRencoding@name}{h}{154}
524 \DeclareTextSymbol{\hrg}{\GRencoding@name}{163}
525 \DeclareTextComposite{\Gr}{\GRencoding@name}{h}{163}
526 \DeclareTextSymbol{\hgi}{\GRencoding@name}{156}
527 \DeclareTextSymbol{\hri}{\GRencoding@name}{157}
528 \DeclareTextSymbol{\hsi}{\GRencoding@name}{158}
529 \DeclareTextSymbol{\hrgi}{\GRencoding@name}{167}
530 \DeclareTextSymbol{\ha}{\GRencoding@name}{160}
531 \DeclareTextSymbol{\hra}{\GRencoding@name}{161}
532 \DeclareTextComposite{\Ar}{\GRencoding@name}{h}{161}
533 \DeclareTextSymbol{\hsa}{\GRencoding@name}{162}
534 \DeclareTextComposite{\As}{\GRencoding@name}{h}{162}
535 \DeclareTextSymbol{\hsg}{\GRencoding@name}{171}
536 \DeclareTextComposite{\Gs}{\GRencoding@name}{h}{171}
537 \DeclareTextSymbol{\hai}{\GRencoding@name}{164}
538 \DeclareTextSymbol{\hrai}{\GRencoding@name}{165}
539 \DeclareTextSymbol{\hsai}{\GRencoding@name}{166}
540 \DeclareTextSymbol{\hsgi}{\GRencoding@name}{175}
541 \DeclareTextSymbol{\hc}{\GRencoding@name}{168}
542 \DeclareTextSymbol{\hrc}{\GRencoding@name}{169}
543 \DeclareTextComposite{\Cr}{\GRencoding@name}{h}{169}
544 \DeclareTextSymbol{\hsc}{\GRencoding@name}{170}
545 \DeclareTextComposite{\Cs}{\GRencoding@name}{h}{170}
546 \DeclareTextSymbol{\hci}{\GRencoding@name}{172}
547 \DeclareTextSymbol{\hrci}{\GRencoding@name}{173}
548 \DeclareTextSymbol{\hsci}{\GRencoding@name}{174}
549 \DeclareTextSymbol{\hi}{\GRencoding@name}{249}
550 \DeclareTextSymbol{\wg}{\GRencoding@name}{176}
551 \DeclareTextSymbol{\wr}{\GRencoding@name}{177}
552 \DeclareTextComposite{\r}{\GRencoding@name}{w}{177}
553 \DeclareTextSymbol{\ws}{\GRencoding@name}{178}
554 \DeclareTextComposite{\s}{\GRencoding@name}{w}{178}
555 \DeclareTextSymbol{\wrg}{\GRencoding@name}{179}
556 \DeclareTextComposite{\Gr}{\GRencoding@name}{w}{179}
557 \DeclareTextSymbol{\wgi}{\GRencoding@name}{180}
558 \DeclareTextSymbol{\wri}{\GRencoding@name}{181}
559 \DeclareTextSymbol{\wsi}{\GRencoding@name}{182}
560 \DeclareTextSymbol{\wrgi}{\GRencoding@name}{183}
561 \DeclareTextSymbol{\wa}{\GRencoding@name}{184}
562 \DeclareTextSymbol{\wra}{\GRencoding@name}{185}
563 \DeclareTextComposite{\Ar}{\GRencoding@name}{w}{185}
564 \DeclareTextSymbol{\wsa}{\GRencoding@name}{186}

29

565 \DeclareTextComposite{\As}{\GRencoding@name}{w}{186}
566 \DeclareTextSymbol{\wsg}{\GRencoding@name}{187}
567 \DeclareTextComposite{\Gs}{\GRencoding@name}{w}{187}
568 \DeclareTextSymbol{\wai}{\GRencoding@name}{188}
569 \DeclareTextSymbol{\wrai}{\GRencoding@name}{189}
570 \DeclareTextSymbol{\wsai}{\GRencoding@name}{190}
571 \DeclareTextSymbol{\wsgi}{\GRencoding@name}{191}
572 \DeclareTextSymbol{\wc}{\GRencoding@name}{192}
573 \DeclareTextSymbol{\wrc}{\GRencoding@name}{193}
574 \DeclareTextComposite{\Cr}{\GRencoding@name}{w}{193}
575 \DeclareTextSymbol{\wsc}{\GRencoding@name}{194}
576 \DeclareTextComposite{\Cs}{\GRencoding@name}{w}{194}
577 \DeclareTextSymbol{\wci}{\GRencoding@name}{196}
578 \DeclareTextSymbol{\wrci}{\GRencoding@name}{197}
579 \DeclareTextSymbol{\wsci}{\GRencoding@name}{198}
580 \DeclareTextSymbol{\wi}{\GRencoding@name}{250}
581 \DeclareTextSymbol{\ig}{\GRencoding@name}{200}
582 \DeclareTextSymbol{\ir}{\GRencoding@name}{201}
583 \DeclareTextComposite{\r}{\GRencoding@name}{i}{201}
584 \DeclareTextSymbol{\is}{\GRencoding@name}{202}
585 \DeclareTextComposite{\s}{\GRencoding@name}{i}{202}
586 \DeclareTextSymbol{\irg}{\GRencoding@name}{203}
587 \DeclareTextComposite{\Gr}{\GRencoding@name}{i}{203}
588 \DeclareTextSymbol{\ia}{\GRencoding@name}{208}
589 \DeclareTextSymbol{\ira}{\GRencoding@name}{209}
590 \DeclareTextComposite{\Ar}{\GRencoding@name}{i}{209}
591 \DeclareTextSymbol{\isa}{\GRencoding@name}{210}
592 \DeclareTextComposite{\As}{\GRencoding@name}{i}{210}
593 \DeclareTextSymbol{\isg}{\GRencoding@name}{211}
594 \DeclareTextComposite{\Gs}{\GRencoding@name}{i}{211}
595 \DeclareTextSymbol{\ic}{\GRencoding@name}{216}
596 \DeclareTextSymbol{\irc}{\GRencoding@name}{217}
597 \DeclareTextComposite{\Cr}{\GRencoding@name}{i}{217}
598 \DeclareTextSymbol{\isc}{\GRencoding@name}{218}
599 \DeclareTextComposite{\Cs}{\GRencoding@name}{i}{218}
600 \DeclareTextSymbol{\id}{\GRencoding@name}{240}
601 \DeclareTextSymbol{\idg}{\GRencoding@name}{241}
602 \DeclareTextComposite{\Gd}{\GRencoding@name}{i}{241}
603 \DeclareTextSymbol{\ida}{\GRencoding@name}{242}
604 \DeclareTextComposite{\Ad}{\GRencoding@name}{i}{242}
605 \DeclareTextSymbol{\idc}{\GRencoding@name}{243}
606 \DeclareTextComposite{\Cd}{\GRencoding@name}{i}{243}
607 \DeclareTextSymbol{\ug}{\GRencoding@name}{204}
608 \DeclareTextSymbol{\ur}{\GRencoding@name}{205}
609 \DeclareTextComposite{\r}{\GRencoding@name}{u}{205}
610 \DeclareTextSymbol{\us}{\GRencoding@name}{206}
611 \DeclareTextComposite{\s}{\GRencoding@name}{u}{206}
612 \DeclareTextSymbol{\urg}{\GRencoding@name}{207}
613 \DeclareTextComposite{\Gr}{\GRencoding@name}{u}{207}
614 \DeclareTextSymbol{\ua}{\GRencoding@name}{212}

30

615 \DeclareTextSymbol{\ura}{\GRencoding@name}{213}
616 \DeclareTextComposite{\Ar}{\GRencoding@name}{u}{213}
617 \DeclareTextSymbol{\usa}{\GRencoding@name}{214}
618 \DeclareTextComposite{\As}{\GRencoding@name}{u}{214}
619 \DeclareTextSymbol{\usg}{\GRencoding@name}{215}
620 \DeclareTextComposite{\Gs}{\GRencoding@name}{u}{215}
621 \DeclareTextSymbol{\uc}{\GRencoding@name}{220}
622 \DeclareTextSymbol{\urc}{\GRencoding@name}{221}
623 \DeclareTextComposite{\Cr}{\GRencoding@name}{u}{221}
624 \DeclareTextSymbol{\usc}{\GRencoding@name}{222}
625 \DeclareTextComposite{\Cs}{\GRencoding@name}{u}{222}
626 \DeclareTextSymbol{\ud}{\GRencoding@name}{244}
627 \DeclareTextSymbol{\udg}{\GRencoding@name}{245}
628 \DeclareTextComposite{\Gd}{\GRencoding@name}{u}{245}
629 \DeclareTextSymbol{\uda}{\GRencoding@name}{246}
630 \DeclareTextComposite{\Ad}{\GRencoding@name}{u}{246}
631 \DeclareTextSymbol{\udc}{\GRencoding@name}{247}
632 \DeclareTextComposite{\Cd}{\GRencoding@name}{u}{247}
633 \DeclareTextSymbol{\eg}{\GRencoding@name}{224}
634 \DeclareTextSymbol{\er}{\GRencoding@name}{225}
635 \DeclareTextComposite{\r}{\GRencoding@name}{e}{225}
636 \DeclareTextSymbol{\es}{\GRencoding@name}{226}
637 \DeclareTextComposite{\s}{\GRencoding@name}{e}{226}
638 \DeclareTextSymbol{\erg}{\GRencoding@name}{227}
639 \DeclareTextComposite{\Gr}{\GRencoding@name}{e}{227}
640 \DeclareTextSymbol{\ea}{\GRencoding@name}{232}
641 \DeclareTextSymbol{\era}{\GRencoding@name}{233}
642 \DeclareTextComposite{\Ar}{\GRencoding@name}{e}{233}
643 \DeclareTextSymbol{\esa}{\GRencoding@name}{234}
644 \DeclareTextComposite{\As}{\GRencoding@name}{e}{234}
645 \DeclareTextSymbol{\esg}{\GRencoding@name}{235}
646 \DeclareTextComposite{\Gs}{\GRencoding@name}{e}{235}
647 \DeclareTextSymbol{\oR}{\GRencoding@name}{229}
648 \DeclareTextComposite{\r}{\GRencoding@name}{o}{229}
649 \DeclareTextSymbol{\oG}{\GRencoding@name}{228}
650 \DeclareTextSymbol{\os}{\GRencoding@name}{230}
651 \DeclareTextComposite{\s}{\GRencoding@name}{o}{230}
652 \DeclareTextSymbol{\org}{\GRencoding@name}{231}
653 \DeclareTextComposite{\Gr}{\GRencoding@name}{o}{231}
654 \DeclareTextSymbol{\oa}{\GRencoding@name}{236}
655 \DeclareTextSymbol{\ora}{\GRencoding@name}{237}
656 \DeclareTextComposite{\Ar}{\GRencoding@name}{o}{237}
657 \DeclareTextSymbol{\osa}{\GRencoding@name}{238}
658 \DeclareTextComposite{\As}{\GRencoding@name}{o}{238}
659 \DeclareTextSymbol{\osg}{\GRencoding@name}{239}
660 \DeclareTextComposite{\Gs}{\GRencoding@name}{o}{239}
661 \DeclareTextSymbol{\rr}{\GRencoding@name}{251}
662 \DeclareTextComposite{\r}{\GRencoding@name}{r}{251}
663 \DeclareTextSymbol{\rs}{\GRencoding@name}{252}
664 \DeclareTextComposite{\s}{\GRencoding@name}{r}{252}

31

665 \DeclareTextSymbol{\Id}{\GRencoding@name}{219}
666 \DeclareTextSymbol{\Ud}{\GRencoding@name}{223}
667 \DeclareTextComposite{\"}{\GRencoding@name}{U}{223}
668 \fi
669
670 %

6.4 Text philological symbols and macros
Next come some short macros for inserting special symbols that philologists use
quite often in Greek.

\h Macro \h is used to insert a Latin “h” while typesetting in Greek.

\q Macro \q is used to insert a Latin “q” while typesetting in Greek.

\yod
\iod

Macros \yod and \iod are used to insert a Latin “j” while typesetting in Greek;
the control sequence \jod was avoided in order to reduce the possibility of typing
\jot which is a TEX internal dimension.

671 \DeclareTextCommand{\h}{\GRencoding@name}%
672 {{\fontencoding{OT1}\selectfont h}}
673 \DeclareTextCommand{\q}{\GRencoding@name}%
674 {{\fontencoding{OT1}\selectfont q}}
675 \DeclareTextCommand{\yod}{\GRencoding@name}%
676 {{\fontencoding{OT1}\selectfont j}}%
677 \let\iod\yod
678

\f
\F

\digamma
\Digamma

At the same time it was believed that for inserting lower and upper case “digamma”
it was preferable to use short macros and to avoid the dilemma between the
\ddigamma and the \digamma macros, the former being the one defined in the
greek option to babel, the latter being a standard mathematical symbol; ini-
tially I believed that philologists do not use mathematical symbols so we made
\digamma an alias for \f; afterwards I found out that mathematicians, physicists,
engineers, . . . use the teubner.sty package and that the \digamma is a symbol al-
ready defined in package amssymb.sty; therefore I made a conditional creation of
this alias; this trick is delayed to the beginning of the document, so as to make
it independent on the order with which packages are loaded. Actually, since the
introduction of the LICR macros, this is irrelevant and I deleted it.

\fLow
\fHigh

The digamma glyphs set forth another question because, according to Paolo Ciac-
chi, a different glyph should be used for typesetting text compared with the one
that is used as a variant in Milesian numerals in place of the standard stigma
symbol. By means of macros \fLow or \fHigh it is possible to chose the raised or
the lowered digamma glyphs; Greek numerals always use the lowered one, while
when text is being typeset the user can chose the version s/he likes best.

679 \DeclareRobustCommand{\fLow}%
680 {{\setbox\z@\hbox{\f}\dimen@\ht\z@
681 \advance\dimen@-1ex\raisebox{-\dimen@}{\f}}}

32

682 \DeclareRobustCommand{\fHigh}%
683 {{\setbox\z@\hbox{\f}\dimen@\dp\z@\raisebox{\dimen@}{\f}}}
684

\qmark
\lpar
\rpar

\frapar

Here we start a set of miscellaneous macros. We begin with some parentheses that
should turn out in upright shape, even if the default font is the Lipsian one which
is oblique; its parentheses are oblique as in all oblique fonts, therefore we need to
quietly change fonts behind the scenes. The same is true with the question mark
that, philologically speaking, represents an uncertain element, not the termination
of a real question; it should therefore always come out between parentheses and
in upright shape from a Latin font. While the parenthesized question mark comes
from the OT1 Latin upright font, the parentheses obtained with \lpar and \rpar
are taken from the metric symbols font, as well as the parentheses used in the
parenthesized text processed with macro \frapar.

685 \DeclareRobustCommand\qmark{\hskip.16ex{\fontencoding{OT1}\upshape(?)}}
686 \DeclareRobustCommand\lpar{{\metricsfont(}}
687 \DeclareRobustCommand\rpar{{\metricsfont)}}
688 \DeclareRobustCommand\frapar[1]{\lpar#1\rpar}
689

\ap The apex/superscript macro \ap does not differ much from the plain standard
LATEX macro \textsuperscript, the only difference being the italic correction
that precedes \textsuperscript.

690 \DeclareRobustCommand{\ap}[1]{\/#1}
691

\Dots
\DOTS

\Dashes
\DASHES

Four macros are defined so as to insert a certain number of dots or dashes as
specified in the optional command argument; \Dots and \Dashes fit the dots or
the dashes pretty close together, while \DOTS and \DASHES fit them more loosely
apart.

692 \newcommand\Dots[1][1]{{\count255=#1\@whilenum\count255>\z@
693 \do{\kern.4ex\d{v}\kern.4ex\advance\count255\m@ne}}}
694 \newcommand\DOTS[1][1]{{\count255=#1\@whilenum\count255>\z@
695 \do{\kern.8ex\d{v}\kern.8ex\advance\count255\m@ne}}}
696 \newcommand\Dashes[1][1]{{\count255=#1\@whilenum\count255>\z@
697 \do{\kern.4ex--\kern.4ex\advance\count255\m@ne}}}
698 \newcommand\DASHES[1][1]{{\count255=#1\@whilenum\count255>\z@
699 \do{\kern.8ex--\kern.8ex\advance\count255\m@ne}}}
700

\:
\;
\?

\MutPers

Greek text or poetry sometimes requires some stacked dots; here we prepared
macros for two (\:), three (\;), and four (\?) stacked dots. Two stacked dots
in a row indicate that the speaker of a drama or comedy has changed (mutatio
personae). For \: and \; it is necessary to preserve the mathematical meaning,
while \? apparently does not have any previous use in standard LATEX. The real
macros are \tw@dots, \thre@dots, and \f@urdots.

701 \DeclareRobustCommand{\:}{\textormath{\tw@dots}{\mskip\medmuskip}}
702 \DeclareRobustCommand{\;}{\textormath{\thre@dots}{\mskip\thickmuskip}}

33

703 \DeclareRobustCommand{\?}{\f@urdots}
704 \DeclareRobustCommand{\mutpers}{\makebox[1ex]{\:\hfill\:}\space}
705 \let\MutPers\mutpers\let\antilabe\mutpers
706 \def\tw@dots{\mbox{\kern1\p@\vbox to1ex{\hbox{.}\vss\hbox{.}}}}
707 \def\thre@dots{\mbox{\kern1\p@\vbox to 2ex{\hbox{.}\vss
708 \hbox{.}\vss\hbox{.}}}}
709 \def\f@urdots{\mbox{\kern1\p@\vbox to 2ex{\hbox{.}\vss
710 \hbox{.}\vss\hbox{.}\vss\hbox{.}}}}
711

\|
\dBar
\tBar

Similarly Greek text and poetry require certain cesurae indicated with vertical
bars; we provided commands for one (\|), two (\dBar), and three (\tBar) vertical
bars.

712 \DeclareRobustCommand{\|}{\relax\ensuremath{\mskip2mu\vert}}
713 \DeclareRobustCommand{\dBar}{\ensuremath{\vert\vert}}
714 \DeclareRobustCommand{\tBar}{\ensuremath{\vert\vert\vert}}
715

\negthinspace
\posthinspace

\posthindspace
\,
\!

The following are mostly service macros for adjusting the spacing within macro def-
initions. Nevertheless they are available also to the typesetter, because sometimes
certain glyph combinations require a little adjustment. Of course the typesetter
will not use them at the very beginning, but only during proof revision, so as to
introduce them only where really necessary.

716 \def\negthinspace{\nobreak\hskip-0.07em}
717 \def\posthinspace{\nobreak\hskip0.07em}
718 \def\posthindspace{\nobreak\hskip0.14em}
719 \renewcommand{\,}{\textormath{\posthinspace}{\mskip\thinmuskip}}
720 \renewcommand{\!}{\textormath{\negthinspace}{\mskip-\thinmuskip}}
721

\lbrk
\rbrk
\lmqi
\rmqi
\lmqs
\rmqs
\mqi
\mqs

\Ladd
\LLadd
\ladd

\lladd
\lesp
\ldel

Philologists require a certain number of special parentheses in order to enclose
parts of text that are doubtful or that have been added although they are missing
from the original manuscripts; even letter strings that have been modified under
the assumption that the copyist made some error. Such enclosing marks include
angle brackets, square brackets, upper part of square brackets, lower part of square
brackets. Such symbols may even appear doubled. Most of these glyphs have been
designed anew, because they are missing or are inadequate if they are taken from
the usual CM fonts (either text or math fonts). Brackets for example have been
designed as to be higher and deeper than the font total height, so as not to interfere
with Greek accents and to accomodate for at least one level of nesting (for example
square brackets enclosing lower part of square brackets. The single glyphs may be
used directly by the typesetter, but we think that the commands requiring some
text are far more useful. \Ladd and its double version \LLadd enclose text that
should be added for sure. \ladd and its double version \lladd enclose text that
probably should be added. \lesp and its synonymous \ldel enclose text that
should be deleted. \mqi surrounds some text with the lower part of open and
closed square brackets. \mqs surrounds some text with the upper part of open
and closed square brackets. See teubenr-doc.pdf for samples of such commands.

34

722 \DeclareRobustCommand{\lbrk}{{\metricsfont\posthindspace[\negthinspace}}
723 \DeclareRobustCommand{\rbrk}{{\metricsfont]}}
724 \DeclareRobustCommand\lmqi{{\metricsfont!}}
725 \DeclareRobustCommand\rmqi{{\metricsfont:}}
726 \DeclareRobustCommand\lmqs{{\metricsfont?}}
727 \DeclareRobustCommand\rmqs{{\metricsfont;}}
728 \DeclareRobustCommand\mqi[1]{\posthinspace\lmqi\negthinspace
729 {#1\/}\rmqi}\let\mezzeq\mqi
730 \DeclareRobustCommand\mqs[1]{\lmqs{#1\/}\rmqs}
731 \DeclareRobustCommand{\Ladd}[1]{{\metricsfont<}{\!\!#1\/}%
732 {\metricsfont>}}% litterae certe addendae
733 \DeclareRobustCommand{\LLadd}[1]{{\metricsfont<\kern-.3ex<}
734 {\!\!#1\/}{\metricsfont>\kern-.3ex>}}% litterae certe addendae
735 \DeclareRobustCommand{\ladd}[1]{{\metricsfont\kern.15ex[\negthinspace}%
736 {#1\/}{\metricsfont]\kern-.15ex}}% litterae addendae
737 \DeclareRobustCommand{\lladd}[1]{{\metricsfont\kern.15ex[\kern-.3ex[%
738 \negthinspace}{#1\/}{\metricsfont]\kern-.3ex]%
739 \kern-.15ex}}% litterae addendae
740 \DeclareRobustCommand{\lesp}[1]%
741 {\mbox{$\{\kern-.20ex$#1\kern.16ex$\}$}}% litterae delendae
742 \let\ldel\lesp
743

6.5 Greek, English, and German quotes
\itopenquotes

\itclosedquotes
\itoq
\itcq

The following macros allow to set Italian/English high quotes even while typing
in Greek; such quotes are standard in Italian and in English typesetting and
their commands preserve the font family shape and series of the surrounding font.
In French typography, as well in the typographic traditions of other countries,
different quotes are used. In that case the typesetter must resort to a change
of language, for example returning to German, inputting the German quotes,
then turning back to Greek. He might as well define his own macros, or he
might clone the following definitions and change them according to his country
typographic traditions. If he decides to modify these definitions he should either
rename this file or he should put his redefinitions in a private package to be input
after teubner.sty.

744 \DeclareTextCommand{\itopenquotes}{\GRencoding@name}%
745 {{\fontencoding{OT1}\selectfont\char92}}%
746 \DeclareTextCommand{\itclosedquotes}{\GRencoding@name}%
747 {{\fontencoding{OT1}\selectfont\char34}}%
748 \let\itoq\itopenquotes
749 \let\itcq\itclosedquotes
750

\GEodq
\GEcdq

\GEdqtext
\GEoq
\GEcq

\GEqtext
\ENodq
\ENcdq

\ENdqtext

On the opposite the following German and English quotes are redesigned and
included in the metric symbols font. Since this font is in one shape and one
series, these quotes do not change as the outside font does, but remain fixed;
the most useful commands are \GEdqtext for enclosing some text within German

35

double quotes, \GEqtext for enclosing some text within German single quotes,
and \ENdqtext for enclosing some text in English double quotes. Apparently
while setting Greek poetry in stacked, possibly enumerated, verses, German double
or single quotes are often used, since they cannot be misunderstood with Greek
diacritical marks. Modern Greek double quotes apparently are not appreciated by
philologists, at least outside Greece.

751 \newcommand\GEodq{\bgroup\futurelet\@tempA\GE@dq}
752 \def\GE@dq{{\metricsfont\char18}\ifx\@tempA m\posthinspace\fi\egroup}
753 \newcommand\GEcdq{{\metricsfont\char16}}
754 \newcommand\GEdqtext[1]{\GEodq\posthinspace#1\/\posthinspace\GEcdq}
755 \newcommand\GEoq{\bgroup\futurelet\@tempA\GE@q}
756 \def\GE@q{{\metricsfont\char13}\ifx\@tempA m\posthinspace\fi\egroup}
757 \newcommand\GEcq{{\metricsfont\char19}}
758 \newcommand\GEqtext[1]{\GEoq\posthinspace#1\/\posthinspace\GEcq}
759 \newcommand\ENodq{{\metricsfont\char16}}
760 \newcommand\ENcdq{{\metricsfont\char17}}
761 \newcommand\ENdqtext[1]{\ENodq\negthinspace#1\/\posthinspace\ENcdq}
762

6.6 Other philological symbols and macros
\LitNil
\litnil

The next synonymous macros indicate the littera nihil.
763 \DeclareRobustCommand\LitNil{\textbullet}
764 \let\litnil\LitNil

\sva
\shva
\shwa

The CB fonts include also the letter “shwa”, the glyph that appears as a ro-
man “e” rotated 180◦ around its center. Philologists need it even when writing
Greek. In order to make it available also when the Latin encodings are in force,
suitable definitions have been given so that the suitable CB font was changed be-
hind the scenes without any intervention by the typesetter. With this version of
teubner.sty a new definition is made up that uses the \rotatebox facility of the
graphicx package; In a future revision of the CB fonts the \schwa slot shall be
freed so that Greek glyphs only populate it, without extraneous presences. The
\schwa glyph is made available also with the Latin encodings.

765 %\DeclareTextSymbol{\sva}{\GRencoding@name}{26}
766 \DeclareTextCommand{\sva}{\GRencoding@name}{%
767 \rotatebox[origin=c]{180}{\def\@tempA{li}%
768 \fontencoding{OT1}\ifx\f@shape\@tempA\fontshape{it}\fi\selectfont e}}
769 \DeclareTextCommand\sva{OT1}{{\expandafter\fontencoding
770 \expandafter{\GRencoding@name}\selectfont\sva}}
771 \DeclareTextCommand\sva{T1}{{\expandafter\fontencoding
772 \expandafter{\GRencoding@name}\selectfont\sva}}
773 \let\shva\sva\let\shwa\sva
774

\skewstack The \skewstack command stacks two arguments not one on top of the other,
but the second argument is placed to the right and upwards relative to the first
argument. The second argument is set in script font size. Although there are

36

similarities with the \textsuperscript command, the exact placement of the
second argument depends on the shape (height and depth) of both arguments.
This command will be used for creating some philologist’s symbols, but is readily
available to the typesetter both for direct use and for writing macros defining new
symbols.

775 \DeclareRobustCommand\skewstack[2]{{%
776 \edef\slant@{\strip@pt\fontdimen1\font}%
777 \setbox\z@\hbox{#1}\dimen@\ht\z@\box\z@
778 \kern-.045em\setbox\@ne\hbox{\scriptsize#2}%
779 \ifdim\dimen@>1.2ex\advance\dimen@-\ht\@ne\else
780 \dimen@1ex\advance\dimen@-.5\ht\@ne\fi
781 \kern\slant@\dimen@\raise\dimen@\hbox{\box\@ne}}}
782

\hv
\qw
\gw

\gusv
\qusv

\qu

Matter of fact some common Latin stacked symbols are defined here in terms of
\skewstack. As it may bee seen, the second argument (the first as well, but here
there are no examples) may in turn contain other macros for composite symbols.

783 \DeclareRobustCommand\hv{{\fontencoding{OT1}\selectfont
784 \skewstack{h}{v}}}
785 \DeclareRobustCommand\qw{{\fontencoding{OT1}\selectfont
786 \skewstack{q}{w}}}
787 \DeclareRobustCommand\gw{{\fontencoding{OT1}\selectfont
788 \skewstack{g}{w}}}
789 \DeclareRobustCommand\gusv{{\fontencoding{OT1}\selectfont
790 \skewstack{g}{\semiv{u}}}}
791 \DeclareRobustCommand\qusv{{\fontencoding{OT1}\selectfont
792 \skewstack{q}{\semiv{u}}}}
793 \DeclareRobustCommand\qu{{\fontencoding{OT1}\selectfont
794 \skewstack{q}{u}}}
795

\dz Without using \skewstack other symbols may be defined; here \dz is just an
example, where the kerning between ‘d’ and ‘z’ has been found by cut and try.
With other glyphs may be different kerning is necessary.

796 \DeclareRobustCommand\dz{{\fontencoding{OT1}\selectfont d\kern-.33ex z}}
797

Now we come to another set of commands like the ones needed to mark the
syneresis or the zeugma and other similar marks.

\Utie This first macro sets a “smile” symbol under a couple of letters. The glyph is
fine but is good only for two adjacent letters, therefore it is necessary to have a
stretchable symbol.

798 \DeclareRobustCommand\Utie[1]{%
799 \mbox{\vtop{\ialign{##\crcr
800 \hfil#1\hfil\crcr
801 \noalign{\kern.3ex\nointerlineskip}%
802 \hfil\smile\hfil\crcr}}}}
803

37

\siner
\siniz

This is why the \siner and \siniz synonymous commands have been defined;
in place of or in addition to the “smile” symbol; they contain a stretchable filler
\upfill that behaves almost as the stretchable horizontal brace that is used in
the definition of the LATEX commands \underbrace or \overbrace.

804 \DeclareRobustCommand{\siner}[1]{%
805 \mbox{\vtop{\ialign{##\crcr
806 \hfil#1\hfil\crcr
807 \noalign{\kern.6ex\nointerlineskip}%
808 \upfill\crcr}}}}
809 \let\siniz\siner
810

\upfill The \upfill is defined as a leader, the same way as the corresponding LATEX
stretchable horizontal brace.

811 \def\upfill{$\m@th \scriptstyle\setbox\z@\hbox{$\scriptstyle\bracelu$}%
812 \kern.16ex\bracelu\ifPDF\kern-.15ex\fi
813 \leaders\vrule \@height\ht\z@ \@depth\z@\hfill
814 \braceru\kern.16ex$}
815

\downfill The \downfill arc is totally similar to the \upfill one, except for its terminating
elements that change the shape of the arc from “up” to “down”.

816 \def\downfill{$\m@th\scriptstyle\setbox\z@\hbox{$\scriptstyle\braceld$}%
817 \kern.16ex\braceld\ifPDF\kern-.15ex\fi
818 \leaders\vrule \@height\ht\z@ \@depth\z@\hfill
819 \bracerd\kern.16ex$}
820

\zeugma Similarly \zeugma puts a stretchable arc over its argument; it must take into
account the slant of the argument font so as to skew the placement of the arc.

821 \newcommand*\zeugma[1]{{\vbox{\setbox\z@\hbox{#1}\dimen@=\ht\z@
822 \edef\@slant{\strip@pt\fontdimen1\font}%
823 \dimen\tw@=\wd\z@
824 \dimen@=\@slant\dimen@\ifmetricsfont\dimen@=\z@
825 \advance\dimen\tw@-.5ex\fi
826 \kern-.2ex\ialign{##\crcr
827 \hbox to\z@{\ifmetricsfont\kern.25ex\fi\kern\dimen@
828 \hbox to\dimen\tw@{\hss\downfill\kern.2\dimen@\hss}\hss}\crcr
829 \noalign{\ifmetricsfont\kern.6ex
830 \else\kern.4ex\fi\nointerlineskip}%
831 \hfil{#1}\hfil\crcr}}}%
832 }
833

\slzeugma
\rszeugma

Although the shape of oblique zeugma arcs cannot be changed depending on the
width and height of the zeugma argument, in certain circumstances the philolo-
gists want to use oblique zeugma marks. This is why we defined a “sloping zeugma
arc” \slzeugma, and a “rising zeugma arc” \rszeugma that can be used with poor

38

results, if such arcs are superimposed over the “wrong” letters. There is nothing
automatic in the choice of the oblique arc and is totally on the typesetter responsi-
bility to use the correct command. These slanted zeugma signs are possibly useful
only for two letters since they are not stretchable.

834 \newcommand*\slzeugma[1]{{\leavevmode
835 \setbox\tw@\hbox{\metricsfont\char120}%
836 \setbox\z@\hbox{#1}\dimen@.5\wd\z@\advance\dimen@-.5\wd\tw@
837 \edef\@slant{\strip@pt\fontdimen1\font}%
838 \advance\dimen@\@slant\ht\z@
839 \hbox to\z@{\kern\dimen@\box\tw@\hss}\box\z@
840 }%
841 }
842
843 \newcommand*\rszeugma[1]{{\leavevmode
844 \setbox\tw@\hbox{\metricsfont\char122}%
845 \setbox\z@\hbox{#1}\dimen@.5\wd\z@\advance\dimen@-.5\wd\tw@
846 \edef\@slant{\strip@pt\fontdimen1\font}%
847 \advance\dimen@\@slant\ht\z@
848 \hbox to\z@{\kern\dimen@\box\tw@\hss}\box\z@
849 }%
850 }
851

\nexus
\nesso

Originally I had two different macros for marking a nexus; one made use of a “up
stretchable turtle bracket”, and the user used a leader of Latin circumflex signs.
Both were unsatisfactory; the latter was really ugly, but I kept the macro name as
a synonym for compatibility with the past. The good looking marker is obtained
from a mathematical \widehat sign by stretching it to the width of the string
the marcher should mark; the new macro \nexus (that replaces the stretchable
turtle bracket) relies on the facilities offered by the \resizebox of the package
graphicx.

852 \newcommand*{\nexus}[1]{{\setbox\tw@\hbox{#1\/}%
853 \edef\slant@{\strip@pt\fontdimen1\font}%
854 \@tempdima=\slant@\ht\tw@\advance\@tempdima.45ex
855 \setbox4\hbox{\resizebox{\wd\tw@}{\height}{$\widehat{}$}}%
856 \setbox4\hbox{\smash{\lower1.35ex\hbox{\box4}}}%
857 \vbox{\ialign{##\crcr%
858 \kern\@tempdima\box4%
859 \crcr
860 \noalign{\kern.15ex\nointerlineskip}%
861 \hfil{#1}\hfil\crcr}}}}
862 \let\nesso\nexus
863

\coronis
\Coronis
\paragr

\dpar

While setting poetry it is necessary to mark the end of paragraphs, which do not
necessarily coincide with the ends of stanzas. After the verse that concludes a
logical paragraph philologists insert a mark called “coronis” (synonymous of para-
graph, therefore the command \paragr) or a “stronger” mark called “Coronis”,

39

which differs from the common “coronis” because it bears an inverted semilunar
sign on its left. Both marks are input by means of their respective commands
\paragr (preferred to \coronis) or \Coronis inserted at the beginning of the
paragraph terminating verse. The command \dparagr inserts a double coronis
mark, which is sometimes required in place of the ordinary single mark.

864 \def\C@rule{\vrule\@height.45ex\@depth-.35ex\@width1.5em}
865 \def\coronis@rule{\hbox to\z@{\hss\C@rule\hss}}
866 \def\Coronis@rule{\hbox to\z@
867 {\hss\hbox to\z@{\hss$\scriptstyle)$\kern-1.5\p@}\C@rule\hss}}
868 \DeclareRobustCommand\paragr{\raisebox{-1ex}[\z@][\z@]{\coronis@rule}}
869 \let\coronis\paragr
870 \DeclareRobustCommand\Coronis{\raisebox{-1ex}[\z@][\z@]{\Coronis@rule}}
871 \DeclareRobustCommand{\dparagr}%
872 {\raisebox{-1.3ex}[\z@][\z@]{\coronis@rule}%
873 \raisebox{-1.6ex}[\z@][\z@]{\coronis@rule}}
874

\sinafia
\crux

\FinisCarmen
\apici

\positio
\Int

\star
\dstar
\tstar

\responsio

The next group of commands are intended to insert special symbols in the philo-
logical text; just the command \apici requires an argument, a block of text that
shall be enclosed within straight vertical apices, irrespective of the font slant. The
command \FinisCarmen although very descriptive, is long to type, therefore a
shorter alias \FinCar has been defined. \apex was the initial name given to the
command, but on a second time it was changed to \positio, and the latter should
always be used in place of the former. For what concerns \star which is a stan-
dard LATEX math command, the original definition is saved in the service macro
\m@thst@r and the command is redefined so as to perform as it should both in
text and in math mode. The symbol

∫
, on the contrary, was redefined so as not

to mix math with text, even if its rendering resorts to mathematics.
875 \DeclareRobustCommand*\sinafia{{\metricsfont s}}
876 \DeclareRobustCommand*{\crux}{{\metricsfont\char’171}}
877 \DeclareRobustCommand*{\FinisCarmen}{\ensuremath{\otimes}}
878 \let\FinCar\FinisCarmen
879 \DeclareRobustCommand*{\apici}[1]%
880 {\posthinspace{\metricsfont\char96}\negthinspace#1%
881 \posthinspace{\metricsfont\char39}\negthinspace}
882 \DeclareRobustCommand*{\apex}%
883 {\/\hskip.5ex\vrule\@height1.7ex\@depth-1ex\hskip.2ex}
884 \let\positio\apex
885 \DeclareRobustCommand*{\Int}{\ensuremath{\int}}
886 \let\m@thst@r\star
887 \DeclareRobustCommand*{\star}{\textormath{{{\upshape *}}}{\m@thst@r}}
888 \DeclareRobustCommand*{\dstar}{{\upshape **}}
889 \DeclareRobustCommand*{\tstar}{{\upshape ***}}
890 \DeclareRobustCommand*{\responsio}{{\boldmath\ensuremath{\sim}}}
891

\thorn
\Thorn

\thorn and \Thorn are the exact equivalents of \th and \Th that are defined only
for the T1 encoding. Therefore such encoding is selected in an implicit way.

40

892 \DeclareRobustCommand{\thorn}{{\fontencoding{T1}\selectfont\th}}
893 \DeclareRobustCommand{\Thorn}{{\fontencoding{T1}\selectfont\TH}}
894

6.7 Ancient Greek monetary unit symbols
\dracma

\hemiobelion
\tetartemorion

\stater
\denarius

\etos

This set of symbols, taken from the metrics symbol font (which by this time is
evident does not contain only metrics symbols) represents the unit symbols of
some coins of ancient Greece, as they were found on many “ostraka” in several
archeological sites.

895 \DeclareRobustCommand{\dracma}{{\metricsfont D}}
896 \DeclareRobustCommand{\hemiobelion}{{\metricsfont A}}
897 \DeclareRobustCommand{\tetartemorion}{{\metricsfont B}}
898 \DeclareRobustCommand{\stater}{{\metricsfont C}}
899 \DeclareRobustCommand{\denarius}{{\metricsfont E}}
900 \DeclareRobustCommand{\etos}{{\metricsfont G}}
901

6.8 Another set of philological symbols and macros
\cut

\dcutbar
\bcutbar
\gcutbar

The following set of macros are all connected with the principal macro \cut,
which should position a horizontal tie or bar across a certain number of latin
letters, specifically ‘d’, ‘b’, and ‘g’; due to their different shapes, such bars are
of different length and located at different heights; if they are in italics the bar
position must change again. Therefore even if the user command \cut is the same
for all these letters, its action must change depending on different circumstances.
It merely checks its argument (it must be one letter and unpredictable results are
obtained if more that one token is passed as an argument to \cut) and selects the
proper bar. The specific bar commands \dcutbar, \bcutbar, and \gcutbar, are
defined in such a way as to cope only with the their initial letter.

902 \DeclareRobustCommand{\cut}[1]{%
903 \ifx#1d\dcutbar\else
904 \ifx#1b\bcutbar\else
905 \ifx#1g\gcutbar
906 \fi
907 \fi
908 \fi}
909 %
910 \def\dcutbar{{\edef\slant@{\strip@pt\fontdimen1\font}%
911 d\dimen@1.2ex\kern\slant@\dimen@
912 \llap{\vrule\@height1.3ex\@depth-\dimen@
913 \ifdim\slant@\p@>\z@\@width.35em\else\@width.4em\fi\kern.03em}}}
914 \def\bcutbar{{\edef\slant@{\strip@pt\fontdimen1\font}%
915 \rlap{\dimen@1.2ex\kern\slant@\dimen@
916 \ifdim\slant@\p@=\z@\kern.03em\fi
917 \vrule\@height1.3ex\@depth-\dimen@
918 \ifdim\slant@\p@>\z@\@width.3em\else\@width.4em\fi}b}}
919 \def\gcutbar{{\edef\slant@{\strip@pt\fontdimen1\font}%

41

920 \ifdim\slant@\p@>\z@
921 g\kern-.55ex\dimen@.2ex\kern-\slant@\dimen@
922 \vrule\@height-.1ex\@depth\dimen@\@width.6ex
923 \else
924 \dimen@.2ex\kern\slant@\dimen@\vrule\@height.3ex\@depth-\dimen@
925 \@width.6ex\kern-.55ex\relax g
926 \fi}}
927

\OSN The next macro is just a shortcut instead of using \oldstylenums.
928 \let\OSN\oldstylenums
929

\splus
\stimes
\kclick

The next three macros are used in glottology; the first two ones are used to mark
special pronunciations of the sibilant, while the last one is used to mark a special
pronunciation of the guttural that produces a “click”.

930 \newcommand\splus{\leavevmode{%
931 \edef\slant@{\strip@pt\fontdimen1\font}%
932 \setbox\z@\hbox{s}%
933 \dimen@=\wd\z@
934 \setbox\tw@\hbox{$\scriptscriptstyle+$}%
935 \advance\dimen@.35\ht\tw@
936 \raisebox{\dimen@}[\z@][\z@]{%
937 \makebox[\z@][l]{\kern.5\wd\z@
938 \kern\slant@\dimen@\kern-.5\wd\tw@\box\tw@}}%
939 \box\z@}}%
940 \newcommand\stimes{\leavevmode{%
941 \edef\slant@{\strip@pt\fontdimen1\font}%
942 \setbox\z@\hbox{s}%
943 \dimen@=\wd\z@
944 \setbox\tw@\hbox{$\scriptscriptstyle\times$}%
945 \advance\dimen@.2\ht\tw@
946 \raisebox{\dimen@}[\z@][\z@]{%
947 \makebox[\z@][l]{\kern.5\wd\z@
948 \kern\slant@\dimen@\kern-.5\wd\tw@\box\tw@}}%
949 \box\z@}}%
950 \newcommand\kclick{\leavevmode{%
951 \edef\slant@{\strip@pt\fontdimen1\font}%
952 \setbox\z@\hbox{k}%
953 \setbox\tw@\hbox{\fontencoding\GRencoding@name\selectfont\s{v}}%
954 \dimen@\wd\z@
955 \ifdim\slant@\p@=\z@
956 \advance\dimen@-.1\wd\z@\else\advance\dimen@\wd\tw@
957 \fi
958 k\makebox[\z@][r]{\unhcopy\tw@\kern.5\dimen@}%
959 }}%
960

42

6.9 Poetry environments and macros
\verso
versi

Here we start with verse environments; we already explained that we defined three
new verse environments that typeset poetry in “in-line” verses, “numbered by five”
verses, and “numbered by five and subnumbered” verses. For the environment
versi we first need a counter and a little macro for generating the short bar that
has to receive the verse number as a “limits” superscript.

961 \newcounter{verso}\setcounter{verso}{0}
962 \newcommand{\smallvert}{\vrule\@height.6ex\@depth.4ex}
963

Next we define the macro \verso that sets the small bar with the verse number
on top. Since the initial numbering might be different from 1, \verso accepts
an optional argument, which is intended to be the initial counter value. Since
\verso steps up the counter a different action must be taken if the optional ar-
gument is present; in order to be able to reference such verse by means of the
\label–\ref cross reference mechanism, this stepping up must be done by means
of \refstepcounter; therefore we have to leave \refstepcounter outside the
conditional code, and step down the counter by one unit only in case the initial
value is specified.

964 \DeclareRobustCommand\verso[1][]{%
965 \def\@tempA{#1}\ifx\@tempA\empty
966 \else
967 \setcounter{verso}{#1}\addtocounter{verso}{\m@ne}%
968 \fi
969 \refstepcounter{verso}%
970 \@killglue\space
971 \ensuremath{\mathop{\smallvert}\limits^{\scriptscriptstyle\theverso}}%
972 \space\ignorespaces}
973

Now that the verse separation macro is ready we can define the environment; the
required opening statement argument represents a short text whose width is taken
as a measure for indentation, so that verses are typeset with a left margin that
leaves out this short text. Substantially this environment is a list one, and the
left margin variable width is totally similar to the one used in thebibiography
environment. Also the \makelabel command has been modified accordingly.

974 \newenvironment{versi}[1]{%
975 \def\makelabel##1{##1}
976 \setbox\z@\hbox{#1}%
977 \list{}{\labelwidth\wd\z@\leftmargin\labelwidth
978 \advance\leftmargin\labelsep}%
979 \item[\box\z@]
980 }{%
981 \endlist
982 }
983 \let\versus\versi \let\endversus\endversi

Versi The second environment Versi accepts an optional starting number in the open-
ing, statement, whose default value is 1: verses are composed as in the standard

43

LATEX verse environment (with one minor difference) except they are numbered
in the left margin with a progression of five; only verse numbers that are integer
multiples of five are displayed. The minor difference is that stanzas cannot be
marked with a blank line in the input .tex file, as it is customary with the stan-
dard environment, but if a visual mark is desired, such as extra vertical space, it
is necessary to resort to the optional spacing parameter that can be specified to
the \\ command. This environment uses the same verse counting counter, defined
for use with the versi environment.

\BreakVersotrue
\BreakVersofalse

For specific purposes it is necessary to have a boolean variable for allowing or
prohibiting verses to split up at the end of line; the default is not to split.

984 \newif\ifBreakVersi
985 \BreakVersifalse
986 \newenvironment{Versi}[1][1]{%
987 \setcounter{verso}{#1}%

An internal macro \writ@verso does not actually write out the complete, possi-
bly numbered verse, but provides for checking that the verse counter contains a
multiple of 5, and to write it out using old stile numbers; in case the number is
not an integer multiple of 5 the number is written out as the \empty macro.

988 \def\writ@verso{%
989 \count255=\value{verso}\divide\count255by5\relax
990 \multiply\count255by5\relax
991 \advance\count255-\value{verso}%
992 \ifnum\count255=\z@
993 {\fontseries{m}\small
994 \expandafter\oldstylenums\expandafter{\the\c@verso}}%
995 \else
996 \empty
997 \fi}%

Since the \\ command should provide the same functionality as the regular LATEX
command, while in this environment it should provide other functionalities, such as
triggering the display of the verse number. It is necessary to define an intermediate
command \v@rscr, that examines the possible optional arguments, such as the
optional star or the brackets enclosing vertical spacing

998 \def\acapo{\@ifstar{\v@rscr{\@M}}{\v@rscr{\z@}}}%
999 \let\\\acapo

1000 \def\v@rscr##1{\@ifnextchar[{\wr@teverse{##1}}%
1001 {\wr@teverse{##1}[\z@]}}%

Finally the \wr@teverse macro does the actual typesetting of the verse. Notice
that the environment opening statement and every succeeding previous verse starts
an horizontal box where the contents of the current verse is stored. Therefore the
first thing to do is to close the box with the \egroup command, then a line of text is
output that contains a possibly empty box or the verse number and the command
for stepping up the verse counter, followed by the verse box number 0 and an end
of paragraph; in this way the \\ operates always in vertical mode, contrary to what
happens in the verse standard LATEX environment. Even in this environment the

44

actual typesetting is done within a list environment, whose parameters are set
differently from what they are in the verse environment. Notice in any case that
the command \wr@teverse reopens the 0 box, so on the last verse, upon closing
the environment, it is necessary to remember to close such box, whose contents is
irrelevant and can be thrown away.

I have experienced some problems in typesetting verses in two-column format;
the column width might be too short for setting up verses even if verses are not
that long, because in the left margin there must be room for the verse numbering;
for homogeneity the spacing must conform also with the following environment
VERSI that has a secondary verse numbering, therefore it can’t be too small. The
result is that there might be a test for controlling the two-column format, but
I think that it is more useful for the typesetter to be able to switch on and off
the possibility of breaking long verses on more lines. On two-column format in
any case it is better to leave the right margin to coincide with the column right
margin.

1002 \def\wr@teverse##1[##2]{\egroup
1003 \makebox[3em][r]{%
1004 \writ@verso\refstepcounter{verso}\kern1.5em}
1005 \ifBreakVersi
1006 \begingroup\raggedright
1007 \hyphenpenalty \@M
1008 \unhbox\z@\par
1009 \endgroup
1010 \else
1011 \rlap{\box\z@}\par
1012 \fi
1013 \penalty##1\vskip##2\relax
1014 \setbox\z@\hbox\bgroup\ignorespaces}%
1015 \list{}{\itemsep\z@\parsep\z@
1016 \if@twocolumn
1017 \itemindent -5.3em%
1018 \listparindent\itemindent
1019 \rightmargin\z@
1020 \advance\leftmargin 3.3em
1021 \else
1022 \itemindent -1.5em%
1023 \listparindent\itemindent
1024 \rightmargin \leftmargin
1025 \advance\leftmargin 1.5em
1026 \fi
1027 }%
1028 \item\leavevmode\setbox\z@\hbox\bgroup\ignorespaces
1029 }{%

Upon closing it is necessary to activate the writing out of the last verse that is
still in the 0 box, but since this box is immediately reopened, it is necessary to
close it again before exiting the environment.

1030 \\%
1031 \egroup

45

1032 \endlist
1033 }
1034 \let\Versus\Versi \let\endVersus\endVersi
1035

VERSI The third environment VERSI set verses in the traditional way, but numbers them
with two different enumerations; the principal one is by multiples of five, while the
secondary one counts by units, and may be turned on and off, or reset at will. We
therefore need another counter for the secondary enumeration and commands for
turning it on and off and for resetting the counter. We need also a new length and
a new boolean variable in order to manage the secondary enumeration. The new
length represents an indentation of those verses that do no have the secondary
enumeration, while secondary enumerated verses are not indented. For VERSI
there is the same possibility of turning on and off the possibility of breaking verses
at the end of line as it happens for the environment Versi.

\SubVerso
\NoSubVerso

Macro \NoSubVerso turns off the secondary enumeration; macro \SubVerso turns
on the secondary enumeration, but it accepts an optional argument for resetting
the secondary counter; the default value is 0; if no optional argument is specified,
and therefore if the optional argument has its default value 0, no resetting is per-
formed and the enumeration keeps going from the last contents of the secondary
counter; if the first use of \SubVerso does not contain the optional argument, the
secondary enumeration keeps going from the old contents of the secondary counter
which is unpredictable, depending upon the previous occurrences of the environ-
ment VERSI. The typesetter, therefore, must remember to specify the optional
argument to \SubVerso the first time he uses it in this environment.

1036 \newcounter{subverso} \setcounter{subverso}{0}
1037 \newif\ifSubVerso
1038 \newlength{\versoskip}
1039 \newcommand*\NoSubVerso{\global\SubVersofalse
1040 \global\versoskip1.3em\ignorespaces}
1041 \newcommand*\SubVerso[1][0]{\global\SubVersotrue
1042 \ifnum#1=0\else
1043 \setcounter{subverso}{#1}%
1044 \global\protected@edef\@currentlabel{\the\c@subverso}%
1045 \fi
1046 \global\versoskip.3em\ignorespaces}
1047

The opening environment statement accepts an optional argument (default
equals 1) which represents the primary enumeration starting number:

1048 \newenvironment{VERSI}[1][1]{%
1049 \setcounter{verso}{#1}%

We need two macros \writ@verso and \writ@subverso, that typeset the primary
and secondary enumeration; the first one is similar to the one used in the Versi
environment, while the second one has no special features except the conditional
construct needed to check if the secondary enumeration has to be printed out.

46

1050 \def\writ@verso{%
1051 \count255=\value{verso}\divide\count255by5\relax
1052 \multiply\count255by5\relax
1053 \advance\count255-\value{verso}%
1054 \ifnum\count255=0\relax
1055 {\fontseries{m}\small\expandafter\oldstylenums\expandafter{\the\c@verso}}%
1056 \else
1057 \empty
1058 \fi}%
1059 \NoSubVerso
1060 \def\writ@subverso{%
1061 \ifSubVerso
1062 {\fontseries{m}\scriptsize\expandafter\oldstylenums
1063 \expandafter{\the\c@subverso}}%
1064 \fi}%

Similarly to the previous environment, the \\ command must be redefined so as
to perform more or less as the standard one, while doing all the necessary actions
needed in this environment. It must check the presence of the optional star and
of the optional vertical skip and it has to pass control to a service macro \v@rscr
that does the actual job; actually it passes control to a third macro \writ@verse
that effectively outputs the current verse.

1065 \def\\%
1066 {\@ifstar{\v@rscr{\@M}}{\v@rscr{\z@}}}%
1067 \def\v@rscr##1{\@ifnextchar[{\writ@verse{##1}}%
1068 {\writ@verse{##1}[\z@]}}%
1069 \def\writ@verse##1[##2]{\egroup
1070 \makebox[1.5em][r]{\writ@verso\refstepcounter{verso}}%
1071 \makebox[1.5em][r]{\writ@subverso\refstepcounter{subverso}}%
1072 \kern1.5ex\hskip\versoskip
1073 \ifBreakVersi
1074 \begingroup
1075 \hyphenpenalty \@M
1076 \unhbox\z@\par
1077 \endgroup
1078 \else
1079 \rlap{\box\z@}\par
1080 \fi
1081 \penalty##1\vskip##2\relax
1082 \setbox\z@\hbox\bgroup\ignorespaces}%

For the remaining part, the environment is a normal list environment with spe-
cific initial parameters.

1083 \list{}{\parsep\z@\itemsep\z@
1084 \if@twocolumn
1085 \itemindent -5.3em%
1086 \listparindent\itemindent
1087 \rightmargin\z@
1088 \advance\leftmargin 3.3em
1089 \else

47

1090 \itemindent -1.5em%
1091 \listparindent\itemindent
1092 \rightmargin \leftmargin
1093 \advance\leftmargin 1.5em
1094 \fi
1095 }%
1096 \item\leavevmode\setbox\z@\hbox\bgroup\ignorespaces
1097 }{%

The closing statement must output the last verse, which is still contained in box 0;
since box 0 is automatically reopened, it must be closed again and its contents, of
no significance now, can be lost upon closing the environment group.

1098 \\%
1099 \egroup\endlist}
1100 \let\VERSUS\VERSI \let\endVERSUS\endVERSI
1101

6.10 Metrics symbols, macros and environments
Now we start defining many macros concerned with metrics; the metric symbol
font has been developed mainly for this purpose. We start defining some macros
for inputting specific symbols.

Previous versions of this package defined the metric sign using both Italian and
Latin names; then a user6 discovered a conflict with the amsmath package, espe-
cially due to the macro \breve, the Italian version of \brevis. It is unusual to use
teubner with the advanced mathematics functionalities of amsmath, and package
teubner has been in use for so many years, that such conflicts were never expe-
rienced. But Heinrich is a fond admirer of Archimedes and wrote several critical
papers on Archimedes’ works, some of which required advanced mathematics.

We therefore decided that the Italian metric symbol names could be done
without, and we eliminated all or most such ‘Italian’ macros. Those now available
are the following.

\longa
\brevis

\bbrevis
\barbrevis

\barbbrevis
\ubarbrevis

\ubarbbrevis
\ubarsbrevis

\ubrevislonga

1102 \DeclareRobustCommand\longa{{\metricsfont l}}
1103 \DeclareRobustCommand\brevis{\textormath{{{\metricsfont b}}}{\br@ve}}
1104 \DeclareRobustCommand\bbrevis{{\metricsfont c}}
1105 \DeclareRobustCommand\barbrevis{{\metricsfont i}}
1106 \DeclareRobustCommand\barbbrevis{{\metricsfont j}}
1107 \DeclareRobustCommand\ubarbrevis{{\metricsfont d}}
1108 \DeclareRobustCommand\ubarbbrevis{{\metricsfont e}}
1109 \DeclareRobustCommand\ubarsbrevis{{\metricsfont f}}
1110 \DeclareRobustCommand{\ubrevislonga}{{\metricsfont\char107}}
1111

\corona
\ElemInd

\coronainv
\catal

\ipercatal
\hiatus
\Hiatus

\X
\anceps

\banceps
\ancepsdbrevis

\aeolicbii
\aeolicbiii
\aeolicbiv

Similarly the following symbols have straightforward definitions. Only \hiatus
and \Hiatus require a small explanation; \hiatus inserts a small capital ‘H’

6Thank you Heinrich Fleck!

48

in superscript position; initially it was chosen the solution of designing a specific
sans serif glyph in superscript position directly in the metric symbol font (actually
this symbol is still part of the font), but while testing it, Paolo Ciacchi observed
that a regular ‘H’ with serifs was better looking than the sans serif counterpart.
Therefore the definition was changed in order to use the current font upright shape;
by specifying ‘H’, it is irrelevant if the current one is a Latin font, and the letter
is a capital ’h’, or if the current font is a Greek one and the letter is a capital
‘eta’. \Hiatus displays the same symbol in a zero width box so that it does not
occupy any horizontal space; it is useful while writing down complicated metric
sequences. Macro\X may be considered, thanks to its shape, a mnemonic shortcut
in place of the full name \anceps.

1112 \DeclareRobustCommand\corona{{\metricsfont\char20}}
1113 \let\ElemInd\corona
1114 \DeclareRobustCommand\coronainv{{\metricsfont\char21}}
1115 \DeclareRobustCommand\catal{{\metricsfont g}}
1116 \DeclareRobustCommand\ipercatal{{\metricsfont h}}
1117 \DeclareRobustCommand\hiatus{\upshape H}
1118 \DeclareRobustCommand\Hiatus{\makebox[\z@]{\hiatus}}
1119 \DeclareRobustCommand\X{{\metricsfont X}}
1120 \let\anceps\X
1121 \DeclareRobustCommand\banceps{{\metricsfont Y}}
1122 \DeclareRobustCommand\ancepsdbrevis{{\metricsfont Z}}
1123 \DeclareRobustCommand{\aeolicbii}{{\metricsfont I}}
1124 \DeclareRobustCommand{\aeolicbiii}{{\metricsfont J}}
1125 \DeclareRobustCommand{\aeolicbiv}{{\metricsfont K}}
1126

\stripsl@sh
\2
\3
\4

Here we prepare for the definition of a very useful macro, \newmetrics, that
should ease quite a lot writing complicated and repetitive metric sequences. We
shall define \newmetrics by means of the internal LATEX macro \@namedef which
accepts a macro name containing any character, provided this name does not
contain the initial back slash (if it does this back slash becomes part of the macro
name; see the TEXbook where there is an example for the definition of \\TeX).
Therefore we need a service macro \stripsl@sh that strips the first token from
the control sequence, so that the naïf user does not have to treat the new metrics
control sequence differently from the control sequences it uses for example with
\newcommand. Next we define three numeric control sequences that should be
followed by the rest of the macro name. The naïf user can then type-in something
like \2iamb␣ in order to activate a macro whose name is formed by the tokens
2iamb, which is normally impossible in LATEX. Notice, though, the compulsory
space after the macro name.

1127 \newif\ifmetricsfont\metricsfontfalse
1128 \def\stripsl@sh#1{\expandafter\@gobble\string#1}
1129 \def\2#1 {\csname2#1\endcsname}
1130 \def\3#1 {\csname3#1\endcsname}
1131 \def\4#1 {\csname4#1\endcsname}
1132

49

\newmetrics Here is the user macro \newmetrics, to be used just as \newcommand, except it
accepts a macro name starting with one of the digits ‘2’, ‘3’, or ‘4’, and sets the
suitable boolean variable to true so that in a long metric sequence the metric font
might be selected just once.

1133 \newcommand\newmetrics[2]{%
1134 \expandafter\@namedef\expandafter{\stripsl@sh#1}%
1135 {{\metricsfonttrue#2}}}
1136

\iam
\chor

\enopl
\4MACRO

\aeolchorsor
\hexam

\pentam
\2tr

Here some common metric sequences are defined; some define single measures,
such as the ‘iambus’ or the ‘choriambus’, while some define complete verses such
as the ‘hexameter’ or the ‘pentameter’.

1137 \newmetrics\iam{\barbrevis\longa\brevis\longa}
1138 \newmetrics\chor{\longa\brevis\brevis\longa}
1139 \newmetrics\enopl{\brevis\longa\brevis\brevis\longa\brevis\brevis\longa}
1140 \newmetrics{\4MACRO}{\longa\longa\longa\longa}
1141 \newmetrics{\aeolchorsor}{\longa\zeugma{\brevis\brevis}\brevis
1142 \brevis\zeugma{\brevis\brevis}}
1143 \newmetrics{\hexam}{\longa\brevis\brevis\longa\brevis\brevis
1144 \longa\brevis\brevis\longa\brevis\brevis\longa\brevis\brevis
1145 \longa\longa}
1146 \newmetrics{\pentam}{\longa\barbbrevis\longa\barbbrevis\longa\dBar
1147 \longa\brevis\brevis\longa\brevis\brevis\longa}
1148 \newmetrics{\2tr}{\longa\brevis\longa\X\ \longa\brevis\longa\X\ }
1149

As it may be seen, the definition of such metric sequences may contain almost
anything; here \zeugma was used as well as \␣, but almost every macro defined in
the previous parts may be freely used.

\metricstack \metricstack is a command similar to \shortstack used to stack something
over something else; specifically the second argument over the third one; it was
specifically designed for use while typesetting metric sequences, but actually there
is nothing that forbids to use it with any base character (typeset in text LR mode)
and any superscript character belonging to a math alphabet (which is being set
in script–script style, not in script style, as it happens with \shortstack.

1150 \DeclareRobustCommand*{\metricstack}[2]%
1151 {$\mathord{\mathop{\hbox{#1\rule{\z@}{1ex}}}%
1152 \limits^{\scriptscriptstyle\relax#2\relax}}$}
1153

\svert \svert is a short vertical rule that may be used, for example, with \metricstack
for putting a small number over a dividing vertical bar in metric sequences.

1154 \newcommand*{\svert}{\vrule\@height.8ex\@depth.2ex\relax}

\textoverline LATEX has macro \underline that can be used in both text and math mode; there
is nothing similar for overlining, therefore we defined a new command for this task.

1155 \DeclareRobustCommand*{\textoverline}[1]{%

50

1156 \leavevmode\vbox{\setbox\z@\hbox{#1}
1157 \ialign{##\crcr
1158 \hbox to\wd\z@{\hrulefill}\crcr
1159 \noalign{\kern.4ex\nointerlineskip}%
1160 \hfil\box\z@\hfil\crcr}}}
1161

\verseskip
bracedmetrics

The environment bracedmetrics is used primarily for setting some metric se-
quences one atop the other, with a certain alignment and grouped together with
a right brace. We need therefore a length name \br@cedmetrics for measuring
the width of this large metrics sequence stack; we need a command \verseskip
for inserting a blank space before, after or in the middle of a metric sequence,
that more or less is as wide as an integer number of metric symbols, and, last but
not least, the environment itself for typesetting this large object containing the
said metric sequences; see the documentation file teubner-doc.pdf for examining
some examples.

1162 \newlength{\br@cedmetrics}
1163 \newcommand*{\verseskip}[1]{{%
1164 \setbox\z@\hbox{\longa}\dimen@\wd\z@\leavevmode\hbox to#1\dimen@{}}}
1165
1166 \newenvironment{bracedmetrics}[1]{\def\Hfill{\leavevmode\hfill}%
1167 \settowidth{\br@cedmetrics}{#1}%
1168 \ifvmode\vskip1ex\fi
1169 $\displaystyle\left.%
1170 \vcenter\bgroup\hsize\br@cedmetrics\parindent\z@\parskip\z@
1171 }{\egroup\right\}$}
1172

6.11 Debugging commands
\TRON

\GTRON
\TROF

\GTROF
\treceon

\traceoff

Here there are some macros for turning on and off the tracing facilities of TEX,
that turn out to be useful while debugging; they are accessible also to the end
user. Global settings must be turned on and off globally; local settings die out by
themselves when a group is closed, but it is a good habit to explicitly turn them
out regardless of groups. Attention that when the tracing facilities are on and a
page ship out takes place, the .log file receives a lot of material, and this file gets
very large. In order to avoid logging too much information the trace package is
loaded; this package give access to the macros \traceon and \traceoff that log a
lot of information, except the redundant one, specifically all the macros executed
during any font change. Users don’t realise the amount of processing done behind
the scenes when with the New Font Selection Scheme (NFSS) a font change takes
place; luckily enough modern processors are quite fast so that the compilation
CPU time does not become too heavy. But if the TEX processing is logged, this
amount of work implies thousands of lines of almost meaningless information when
the purpose of logging depends on errors that are difficult to spot; Font changes
are almost exempt from errors, so the processing of the inner workings need not
be logged down.

51

If the user needs to trace something in order to spot errors, s/he is invited
to use the commands \traceon and \traceoff; commands \TRON and \TROF
do log much more material, in particular font changes, but at least they action
may be confined within groups or environments; \GTRON and \GTROF are global
settings and can’t be confined within groups or environments; sometimes they are
necessary, but it’s important to turn off global tracing as soon as possible.

1173 \RequirePackage{trace}
1174 \def\GTRON{\global\tracingcommands=\tw@ \global\tracingmacros=\tw@}
1175 \def\GTROF{\global\tracingcommands=\z@ \global\tracingmacros=\z@}
1176 \def\TRON{\tracingcommands=\tw@ \tracingmacros=\tw@}
1177 \def\TROF{\tracingcommands=\z@ \tracingmacros=\z@}
1178

6.12 Classical Greek numerals
When typesetting Greek it may occur to specify numbers written out as Milesian
numerals; the greek option to the babel package defines a couple of macros for
transforming explicit Arabic numerals or counter contents as Milesian numerals.
Since this package offers more possibilities in the choice of those “non alphabetic”
characters used in the Milesian notation, such macros have to be redefined. On
the occasion we changed some little internal details so as to make such macros a
little faster and more robust.

\Greeknumeral
\greeknumeral

\grtoday

Both \greeknumeral and \Greeknumeral, the latter producing upper case Greek
numerals, while the former produces lower case ones, resort to robust internal
macros if the greek.ldf language description style is active; they are renamed ver-
sions of the original macros that are perfect for modern Greek usage; therefore we
simply let the glyph placeholders for the vales 6, 90, and 900, originally indicated
with the place holders \textstigma and \textkoppa, (together with their capital
glyph counterparts) the the place holders for \textdigamma and \textqoppa; with
the value 6, we decided to use either the stigma or the digamma sign by using the
usual asterisk added to the macro names; the LATEX3 language greatly simplifies
this task.

Therefore \Greeknumeral and \greeknumeral macros are redefined by means
of \RenewDocumentCommand that assures solidity and by resorting to the internal
greek.ldf macros, we avoid all the tests that the previous version had to make in
order to handle the \anwtonos; furthermore the code is much simpler to maintain.
Notice that the glyph for ‘90’ is the old styled ‘qoppa’ and for ‘900’ it is the ’sampi’;
if the asterisk is specified, the glyph for ‘6’ is the lowered digamma, wile without
the asterisk it is the ‘stigma’, the other Milesian numerals are the other 26 Greek
letters. the Greek date in capital letters is already provided by the greek.ldf
file; we define the \grtoday date in lower case letters that differs from the \today
one, because the numerals for the day and the year are composed with the Greek
numeral macros just defined, The optional asterisk to \grtoday is passed directly
to the \greeknumeral macros, although in a complicated way in order to avoid
messing the \expandafter workings

52

1179 %
1180
1181 \RenewDocumentCommand\Greeknumeral{s m}{\bgroup%
1182 \let\textkoppa\textqoppa \let\textKoppa\textQoppa
1183 \IfBooleanTF{#1}%
1184 {\let\textstigmagreek\textstigma \let\textStigmagreek\textStigma}%
1185 {\let\textstigmagreek\textdigamma \let\textStigmagreek\textDigamma}%
1186 \bbl@greek@GreekNum\@secondoftwo{#2}\egroup}
1187
1188 \RenewDocumentCommand\greeknumeral{s m}{\bgroup%
1189 \let\textkoppa\textqoppa \let\textKoppa\textQoppa
1190 \IfBooleanTF{#1}%
1191 {\let\textstigmagreek\textstigma \let\textStigmagreek\textStigma}%
1192 {\let\textstigmagreek\textdigamma \let\textStigmagreek\textDigamma}%
1193 \bbl@greek@GreekNum\@firstoftwo{#2}\egroup}
1194
1195 \providecommand\grtoday{}
1196 \RenewDocumentCommand\grtoday{ s }%
1197 {\bgroup\IfBooleanTF{#1}%
1198 {\greeknumeral*{\the\day}\space\gr@c@month\space\greeknumeral*{\the\year}}%
1199 {\greeknumeral{\the\day}\space\gr@c@month\space\greeknumeral{\the\year}}%
1200 \egroup}
1201

6.13 Attic numerals
It’s true that Apostolos Siropoulos wrote also the athnum.sty extension package
in order to typeset integer numbers with the Athenian or Attic notation; this
representation of strictly positive integers was similar in a way to the Roman no-
tation, based on a biquinary7 representation of decimal digits (taking into account
that there was not a symbol for zero) so as the Romans had the symbols for 1, 5,
10, 50, 100, 500 and 1000 (I, V, X, L, C, D, M). The Attic notation has symbols
for the same sequence of decimal values extended with 10 000 and 50 000.

While typesetting philological texts in Greek it might be necessary to use also
the Attic notation. As the original Roman notation used to be purely additive (i.e.
9 → VIIII different from the subtractive one 9 → IX), so is the Attic notation.

\AtticNumeral
\AtticCycl@

Therefore another conversion macro was devised that receives the value to be
converted as its argument: first it checks that such argument falls in the allowed
range; actually the lower boundary is zero, while the upper boundary was chosen
to be 99 999, for no other reason than the lack of further symbols beyond the value
50 000, that would force to long sequences of identical symbols that are difficult
to read. The athnum.sty package allows to extend this range to 249 9999; should
it be necessary, the user is invited to load that package and its transformation
command \athnum.

7The word biquinary does not appear in the Oxford dictionary, but its etymology is pretty
clear: couples of quintets. After all we have two hands with five fingers each, and we started
counting on our hands since we were little children.

53

The user command \AtticNumeral must be preceded by the definitions of the
biquinary symbols for 50, 500, 5000, and 50 000; such symbols are present in all
the CB Greek fonts in all sizes, series and shapes; therefore the definitions must
be subject to the LGR encoding:

1202 \DeclareTextSymbol{\Vmiria}{\GRencoding@name}{5}
1203 \DeclareTextSymbol{\Vkilo}{\GRencoding@name}{4}
1204 \DeclareTextSymbol{\Vetto}{\GRencoding@name}{3}
1205 \DeclareTextSymbol{\Vdeka}{\GRencoding@name}{2}

The we need a command to issue a warning message if the number to be trans-
formed is out of range:

1206 \newcommand*\attic@ill@value[1]{\PackageWarning{teubner}{%
1207 Illegal value (\number#1) for \string\ActicNumeral\space}}

Finally the robust definition of the \AtticNumeral command"
1208 \DeclareRobustCommand*\AtticNumeral[1]{%
1209 \ifnum#1<\@ne \attic@ill@value{#1}\else
1210 \ifnum#1>99999\relax \attic@ill@value{#1}\else
1211 \AtticCycl@{#1}%
1212 \fi
1213 \fi}
1214

The real transformation algorithm is transferred to the auxiliary macro \AttiCycl@,
where successive division by 10 allow to extract the various decimal digits of vari-
ous weights maintaining the remainder in the original counter; each decimal digit
is possibly divided into the biquinary value and the remaining units up to 4; the
the cycle is repeated until the decimal units that do not require the computation
of the remainder and terminate the cycle. Notice that we use also the ε-TEX
extended commands for integer computations; this implies that teubner must be
run with a suitably recent version of the typesetting engine that embeds the above
extensions.

1215 \def\AtticCycl@#1{%
1216 \bgroup
1217 \countdef\valore=252\countdef\cifra=250\relax
1218 \valore=#1\relax
1219 \@whilenum\valore>0\do{%
1220 \ifnum\valore>9999\relax
1221 \cifra=\valore\divide\cifra10000\relax
1222 \valore=\numexpr\valore-\cifra*10000\relax
1223 \ifnum\cifra>4\relax\Vmiria \advance\cifra-5\relax\fi
1224 \@whilenum\cifra>\z@\do{M\advance\cifra\m@ne}%
1225 \else
1226 \ifnum\valore>999\relax
1227 \cifra=\valore\divide\cifra1000\relax
1228 \valore=\numexpr\valore-\cifra*1000\relax
1229 \ifnum\cifra>4\relax\Vkilo \advance\cifra-5\relax\fi
1230 \@whilenum\cifra>\z@\do{Q\advance\cifra\m@ne}%
1231 \else
1232 \ifnum\valore>99\relax

54

1233 \cifra=\valore\divide\cifra100\relax
1234 \valore=\numexpr\valore-\cifra*100\relax
1235 \ifnum\cifra>4\relax\Vetto \advance\cifra-5\relax\fi
1236 \@whilenum\cifra>\z@\do{H\advance\cifra\m@ne}%
1237 \else
1238 \ifnum\valore>9\relax
1239 \cifra=\valore\divide\cifra10\relax
1240 \valore=\numexpr\valore-\cifra*10\relax
1241 \ifnum\cifra>4\relax\Vdeka \advance\cifra-5\relax\fi
1242 \@whilenum\cifra>\z@\do{D\advance\cifra\m@ne}%
1243 \else
1244 \ifnum\valore>0\relax
1245 \cifra=\valore
1246 \ifnum\cifra>4\relax P\advance\cifra-5\relax\fi
1247 \@whilenum\cifra>\z@\do{I\advance\cifra\m@ne}%
1248 \valore=\cifra
1249 \fi
1250 \fi
1251 \fi
1252 \fi
1253 \fi
1254 }%
1255 \egroup}
1256

7 Accessing the CBgreek fonts when the TX fonts
are selected

During the year 2010 this package teubner.sty was upgraded in order to allow using
the CBgreek fonts even when other Latin fonts, different from the “standard” CM
and LM ones are selected for typesetting text with the Latin script.

At the same time Antonis Tsolomitis uploaded a new package in order to let
Greek users use some Greek fonts that match the Times eXtended ones8. In
order to use the de facto default encoding LGR for Greek fonts, he produced the
necessary lgrtxr.fd, lgrtxss.fd, lgrtxtt.fd, font definition files that allow
the font switching implied by the greek option to the babel package. These files
take precedence over the mechanism outlined in section 5.2, because command
\substitutefontfamily first tests the existence of lgrtxr.fd, and, if this is
not available, it may generate a specific one suitable for working smoothly with
teubner.sty.

Now if Tsolomitis’ files are available on the main system tree, these take prece-
dence and the teubner compatible files are not generated. Unfortunately Tsolomi-
tis’ fonts, although better suited to match the TX fonts, are well matched to

8Probably Antonis Tsolomitis’ Greek fonts match also the newer Times eXtended fonts pro-
duced by Michael Sharpe. The newer fonts have different font family names than the previous
TX fonts; in order to produce similar .fd files to be used with the newer Times fonts, it is
necessary to procede as for any other font collection different from the TX ones.

55

modern Greek typesetting, but they are incomplete for philological typesetting.
We therefore avoid this clash by creating a teubnertx.sty file. This extension

defines the families and shapes available with the familiar font definition files, but
the information gets input by teubner.sty at the “begin document” time, with-
out resorting to any .fd file. Maybe more information is loaded than is strictly
necessary, but it is better to do this way than to clash with other packages.

1257 \DeclareFontFamily{LGR}{txr}{}
1258 \DeclareFontShape{LGR}{txr}{m}{n}{<->ssub * cmr/m/n}{}
1259 \DeclareFontShape{LGR}{txr}{m}{it}{<->ssub * cmr/m/it}{}
1260 \DeclareFontShape{LGR}{txr}{m}{sl}{<->ssub * cmr/m/sl}{}
1261 \DeclareFontShape{LGR}{txr}{m}{sc}{<->ssub * cmr/m/sc}{}
1262 \DeclareFontShape{LGR}{txr}{b}{n}{<->ssub * cmr/bx/n}{}
1263 \DeclareFontShape{LGR}{txr}{b}{it}{<->ssub * cmr/bx/it}{}
1264 \DeclareFontShape{LGR}{txr}{b}{sl}{<->ssub * cmr/bx/sl}{}
1265 \DeclareFontShape{LGR}{txr}{b}{sc}{<->ssub * cmr/bx/sc}{}
1266 \DeclareFontShape{LGR}{txr}{bx}{n}{<->ssub * cmr/bx/n}{}
1267 \DeclareFontShape{LGR}{txr}{bx}{it}{<->ssub * cmr/bx/it}{}
1268 \DeclareFontShape{LGR}{txr}{bx}{sl}{<->ssub * cmr/bx/sl}{}
1269 \DeclareFontShape{LGR}{txr}{bx}{sc}{<->ssub * cmr/bx/sc}{}
1270
1271 \DeclareFontShape{LGR}{txr}{m}{li}{<->ssub * cmr/m/li}{}
1272 \DeclareFontShape{LGR}{txr}{b}{li}{<->ssub * cmr/b/li}{}
1273 \DeclareFontShape{LGR}{txr}{bx}{li}{<->ssub * cmr/bx/li}{}
1274 \DeclareFontShape{LGR}{txr}{m}{ui}{<->ssub * cmr/m/ui}{}
1275 \DeclareFontShape{LGR}{txr}{b}{ui}{<->ssub * cmr/m/ui}{}
1276 \DeclareFontShape{LGR}{txr}{bx}{ui}{<->ssub * cmr/bx/ui}{}
1277 \DeclareFontShape{LGR}{txr}{m}{rs}{<->ssub * cmr/m/rs}{}
1278 \DeclareFontShape{LGR}{txr}{b}{rs}{<->ssub * cmr/m/rs}{}
1279 \DeclareFontShape{LGR}{txr}{bx}{rs}{<->ssub * cmr/bx/rs}{}
1280
1281 \DeclareFontFamily{LGR}{txss}{}
1282 \DeclareFontShape{LGR}{txss}{m}{n}{<->ssub * cmss/m/n}{}
1283 \DeclareFontShape{LGR}{txss}{m}{it}{<->ssub * cmss/m/it}{}
1284 \DeclareFontShape{LGR}{txss}{m}{sl}{<->ssub * cmss/m/sl}{}
1285 \DeclareFontShape{LGR}{txss}{m}{sc}{<->ssub * cmss/m/sc}{}
1286 \DeclareFontShape{LGR}{txss}{b}{n}{<->ssub * cmss/bx/n}{}
1287 \DeclareFontShape{LGR}{txss}{b}{it}{<->ssub * cmss/bx/it}{}
1288 \DeclareFontShape{LGR}{txss}{b}{sl}{<->ssub * cmss/bx/sl}{}
1289 \DeclareFontShape{LGR}{txss}{b}{sc}{<->ssub * cmss/bx/sc}{}
1290 \DeclareFontShape{LGR}{txss}{bx}{n}{<->ssub * cmss/bx/n}{}
1291 \DeclareFontShape{LGR}{txss}{bx}{it}{<->ssub * cmss/bx/it}{}
1292 \DeclareFontShape{LGR}{txss}{bx}{sl}{<->ssub * cmss/bx/sl}{}
1293 \DeclareFontShape{LGR}{txss}{bx}{sc}{<->ssub * cmss/bx/sc}{}
1294
1295 \DeclareFontFamily{LGR}{txtt}{\hyphenchar=-1}
1296 \DeclareFontShape{LGR}{txtt}{m}{n}{<->ssub * cmtt/m/n}{}
1297 \DeclareFontShape{LGR}{txtt}{m}{it}{<->ssub * cmtt/m/it}{}
1298 \DeclareFontShape{LGR}{txtt}{m}{sl}{<->ssub * cmtt/m/sl}{}
1299 \DeclareFontShape{LGR}{txtt}{m}{sc}{<->ssub * cmtt/m/sc}{}

56

1300 \DeclareFontShape{LGR}{txtt}{b}{n}{<->ssub * cmtt/bx/n}{}
1301 \DeclareFontShape{LGR}{txtt}{b}{it}{<->ssub * cmtt/bx/it}{}
1302 \DeclareFontShape{LGR}{txtt}{b}{sl}{<->ssub * cmtt/bx/sl}{}
1303 \DeclareFontShape{LGR}{txtt}{b}{sc}{<->ssub * cmtt/bx/sc}{}
1304 \DeclareFontShape{LGR}{txtt}{bx}{n}{<->ssub * cmtt/bx/n}{}
1305 \DeclareFontShape{LGR}{txtt}{bx}{it}{<->ssub * cmtt/bx/it}{}
1306 \DeclareFontShape{LGR}{txtt}{bx}{sl}{<->ssub * cmtt/bx/sl}{}
1307 \DeclareFontShape{LGR}{txtt}{bx}{sc}{<->ssub * cmtt/bx/sc}{}

57

