
1 The tagpdf package, v0.81 1

2 Ulrike Fischer 2

3 fischer@troubleshooting-tex.de 3

4 2021-05-14 4

5 This package is not meant for normal document production. It is mainly a tool to
research tagging. 5

6 You need a very current LATEX format. You need a very current L3 programming layer.
You need the new LATEX PDF management bundle. 6

7 This package is incomplete, experimental and quite probably contains bugs. At some
time it will disappear when the code has been integrated into the LATEX format. 7

8 This package can change in an incompatible way. 8

9 You need some knowledge about TEX, PDF and perhaps even lua to use it. 9

10 Issues, comments, suggestions should be added as issues to the github tracker: 10

11 https://github.com/u-fischer/tagpdf 11

Contents

14 1. Preface to version 0.8 and newer 2 14

15 2. Introduction 3 15

16 2.1. Tagging and accessibility . 4 16

17 2.2. Engines and modes . 4 17

18 2.3. References and target PDF version . 4 18

19 2.4. Validation . 5 19

20 2.5. Examples wanted! . 5 20

21 2.6. Changes in 0.3 . 5 21

22 2.7. Changes in 0.5 . 6 22

23 2.8. Changes in 0.6 . 6 23

24 2.9. Changes in version 0.61 . 6 24

25 2.10. Changes in version 0.8 . 6 25

26 2.11. Changes in version 0.81 . 7 26

27 2.12. Proof of concept: the tagging of the documentation itself 7 27

28 3. Setup 8 28

29 3.1. Modes and package options . 8 29

30 3.2. Setup and activation . 9 30

1

https://github.com/u-fischer/tagpdf

31 4. Tagging 10 31

32 4.1. Three tasks . 11 32

59 4.2. Task 1: Marking the chunks: the mark-content-step 11 59

60 4.2.1. Generic mode versus lua mode in the mc-task 14 60

61 4.2.2. Commands to mark content and chunks 14 61

62 4.2.3. Luamode: global or not global – that is the question 17 62

63 4.2.4. Tips . 18 63

64 4.2.5. Links . 18 64

65 4.2.6. Math . 20 65

66 4.2.7. Split paragraphs . 21 66

67 4.2.8. Automatic tagging of paragraphs . 21 67

68 4.3. Task 2: Marking the structure . 22 68

69 4.3.1. Structure types . 22 69

70 4.3.2. Sectioning . 22 70

71 4.3.3. Commands to define the structure . 23 71

72 4.3.4. Root structure . 25 72

73 4.3.5. Attributes and attribute classes . 25 73

74 4.4. Task 3: tree Management . 26 74

75 4.5. A fully marked up document body . 26 75

76 4.6. Lazy and automatic tagging . 27 76

77 4.7. Adding tagging to commands . 28 77

78 5. Alternative text, ActualText and text-to-speech software 28 78

79 6. Standard types and new tags 29 79

80 7. “Real” space glyphs 30 80

81 8. Accessibility is not only tagging 31 81

82 9. Debugging 32 82

83 10. To-do 32 83

84 References 33 84

85 A. Some remarks about the PDF syntax 33 85

1. Preface to version 0.8 and newer

87 Starting with version 0.8 one major step towards integration of the code into the LATEX has been
done: The code now relies on the new LATEX PDF management. This management, which is for
a testphase provided as an external package, pdfmanagement-testphase, prepares the ground
for better support for tagged PDF in LATEX. It is part of a larger project to automatically generate
tagged PDF https://www.latex-project.org/news/2020/11/30/tagged-pdf-FS-study/ 87

2

https://www.latex-project.org/news/2020/11/30/tagged-pdf-FS-study/

88 While this is a major improvement—it will for example allow to use tagpdf with more engines
as the new PDF management supports all major engines and allowed to add support for
associated files—it also means that this version requires a special setup of the document
and is incompatible with a number of packages, see the documentation of pdfmanagement-
testphase for details. 88

115 Another important step is the new hook management in LATEX: the newest development
version has hooks for paragraphs which should at the end allow to tag many paragraphs
automatically. The small red numbers around paragraphs in the documentation show them
in action. The main problem here is not to tag a paragraph, but to avoid to tag too many:
paragraphs pop up in many places. 115

2. Introduction

117 Since many year the creation of accessible PDF-files with LATEX which conform to the PDF/UA
standard has been on the agenda of TEX-meetings. Many people agree that this is important
and Ross Moore has done quite some work on it. There is also a TUG-mailing list and a
webpage [5] dedicated to this theme. 117

118 But in my opinion missing are means to experiment with tagging and accessibility. Means
to try out, how difficult it is to tag some structures, means to try out, how much tagging is
really needed (standards and validators don’t need to be right …), means to test what else is
needed so that a PDF works e.g. with a screen reader. Without such experiments it is imho
quite difficult to get a feeling about what has to be done, which kernel changes are needed,
how packages should be adapted. 118

119 This package tries to close this gap by offering core commands to tag a PDF1. 120

121 My hope is that the knowledge gained by the use of this package will at the end allow to decide
if and how code to do tagging should be part of the LATEX kernel. 121

122 The package does not patch commands from other packages. It is also not an aim of the
package to develop such patches. While at the end changes to various commands in many
classes and packages will be needed to get tagged PDF files – and the examples accompanying
the package try (or will try) to show various strategies – these changes should in my opinion
be done by the class, package and document writers themselves using a sensible API provided
by the kernel and not by some external package that adds patches everywhere and would
need constant maintenance – one only need to look at packages like tex4ht or bidi or hyperref
to see how difficult and sometimes fragile this is. 122

123 So this package deliberately concentrates on the basics – and this already quite a lot, there
are much more details involved as I expected when I started. 123

124 I’m sure that it has bugs. Bugs reports, suggestions and comments can be added to the issue
tracker on github. https://github.com/u-fischer/tagpdf. 124

125 Please also check the github site for new examples and improvements. 125

1In case you don’t know what this means: there will be some explanations later on.

3

https://github.com/u-fischer/tagpdf

2.1. Tagging and accessibility

127 While the package is named tagpdf the goal is actually accessible PDF-files. Tagging is one
requirement for accessibility but there are others. I will mention some later on in this docu-
mentation, and – if sensible – I will also try to add code, keys or tips for them. 127

154 So the name of the package is a bit wrong. As excuse I can only say that it is shorter and easier
to pronounce. 154

2.2. Engines and modes

156 The package works currently with pdflatex and lualatex. First steps have been done to also
enable support for xelatex and the latex-dvips-route; but this isn’t yet much tested. 156

157 The package has two modes: the generic mode which should work in theory with every engine
and the lua mode which works only with lualatex. 157

158 I implemented the generic mode first. Mostly because my tex skills are much better than
my lua skills and I wanted to get the tex side right before starting to fight with attributes and
node traversing. 158

159 While the generic mode is not bad and I spent quite some time to get it working I nevertheless
think that the lua mode is the future and the only one that will be usable for larger documents.
PDF is a page orientated format and so the ability of luatex to manipulate pages and nodes
after the TEX-processing is really useful here. Also with luatex characters are normally already
given as unicode. 159

2.3. References and target PDF version

161 My main reference for the first versions of this package was the free reference for PDF 1.7. [2]
and so the package also targetted this version. 161

162 In 2018 PDF 2.0. has been released, and since 2020 all engines can set the version to 2.0. So
the package will now target PDF 2.0. This doesn’t mean that 2.0 will be required, but that the
code and the options will be extended to support PDF 2.0. One example is the support for
associated files, another the support for name spaces in version 0.82. 162

163 The packages doesn’t try to suppress all 2.0 features if an older PDF version is produced.
It normally doesn’t harm if a PDF contains keys unknown in its version and it makes the
code faster and easier to maintain if there aren’t too many tests and code pathes; so for
example associated files will always be added. But tests could be added in case this leads to
incompabilities. 163

164 It should be noted that some tools don’t like PDF 2.0. PAC3 for example simply crashes, and
pdftk will create a PDF 1.0 from it. This makes testing PDF 2.0 files a bit of a challenge. 164

4

2.4. Validation

166 PDF’s created with the commands of this package must be validated: 166

193 • One must check that the PDF is syntactically correct. It is rather easy to create broken
PDF: e.g. if a chunk is opened on one page but closed on the next page or if the document
isn’t compiled often enough. 193

194 • One must check how good the requirements of the PDF/UA standard are followed
formally. 194

195 • One must check how good the accessibility is practically. 195

196 Syntax validation and formal standard validation can be done with preflight of the (non-free)
adobe acrobat. It can also be done also with the free PDF Accessibility Checker (PAC 3) [7].
There is also the validator veraPDF [6]. A rather new tool is “Next Generation PDF” [3], a
browser application which converts a tagged PDF to html, allows to inspect its structure and
also to edit the structure. 196

197 Practical validation is naturally the more complicated part. It needs screen reader, users
which actually knows how to handle them, can test documents and can report where a PDF
has real accessibility problems. 197

198 Preflight woes 198

199 Sadly validators can not be always trusted. As an example for an reason that I don’t understand
the adobe preflight don’t like the list structure L. It is also possible that validators contradict:
that the one says everything is okay, while the other complains. 199

2.5. Examples wanted!

201 To make the package usable examples are needed: examples that demonstrate how various
structures can be tagged and which patches are needed, examples for the test suite, examples
that demonstrates problems. 201

202 Feedback, contribuations and corrections are welcome! 202

204 All examples should use the \tagpdfsetup key uncompress described in the next section so
that uncompressed PDF are created and the internal objects and structures can be inspected
and – hopefully soon – be compared by the l3build checks. 204

2.6. Changes in 0.3

206 In this version I improved the handling of alternative and actual text. See section 5. This
change meant that the package relied on the module l3str-convert. 206

207 I no longer try to (pdf-)escape the tag names: it is a bit unclear how to do it at best with luatex.
This will perhaps later change again. 207

5

2.7. Changes in 0.5

209 I added code to handle attributes and attribute classes, see section 4.3.5 and corrected a small
number of code errors. 209

236 I added code to add “real” space glyphs to the PDF, see section 7. 236

2.8. Changes in 0.6

238 Breaking change! The attributes used in luamode to mark the MC-chunks are no longer
set globally. I thought that global attribute would make it easier to tag, but it only leads to
problem when e.g. header and footer are inserted. So from this version on the attributes are
set locally and the effect of a \tagmcbegin ends with the current group. This means that in
some cases more \tagmcbegin are needed and this affected some of the examples, e.g. the
patching commands for sections with KOMA. On the other side it means that quite often one
can omit the \tagmcend command. 238

2.9. Changes in version 0.61

240 • internal code adaptions to expl3 changes. 240

241 • dropped the compresslevel key – probably not needed. 241

2.10. Changes in version 0.8

243 As a first step to include the code proper in the LATEX kernel the module name has changed
from uftag to tag. The commands starting with \uftag will stay valid for some time but then
be deprecated. 243

244 Breaking change! The argument of newattribute option should no longer add the dictionary
bracket <<..>>, they are added by the code. 244

245 Breaking change! The package now requires the new PDF management as provided for now
by the package pdfmanagement-testphase 245

246 Support to add associated files to structures has been added with new keys AF, AFinline and
AFinline-o. 246

247 Breaking change! The support for other 8-bit input encodings has been removed. utf8 is now
the required encoding. 247

248 The keys |lang|, |ref| and |E| have been added for structures. 248

6

2.11. Changes in version 0.81

250 Hook code to tag links (URI and GoTo type) have been added. So normally they should simply
work if tagging is activated. 250

251 Commands and keys to allow automatic paragraph tagging have been added. See section ??.
As can be seen in this documentation the code works quite good already, but one should
be aware that “paragraphs” can appear in many places and sometimes there are even more
paragraph begin than ends. 251

278 A key to test if local or global setting of the mc-attributes in luamode is more sensible, see
4.2.3 for more details. 278

279 New commands to store and reset mc-tags. 279

280 PDF 2.0 namespace are now supported. 280

2.12. Proof of concept: the tagging of the documentation itself

282 Starting with version 0.6 the documentation itself has been tagged. The tagging wasn’t
(and isn’t) in no way perfect. The validator from Adobe didn’t complain, but PAX3 wanted
alternative text for all links (no idea why) and so I put everywhere simple text like “ link” and
“ref”. The links to footnotes gave warnings, so I disabled them. I used types from the PDF
version 1.7, mostly as I have no idea what should be used for code in 2.0. Margin notes were
simply wrong … 282

283 The tagging has been improved and automated over time in sync with improvements and
new features in the LaTeX kernel and the pdfmanagement code. 283

284 But even if the documentation passed the tests of the validators: as mentioned above passing
a formal test doesn’t mean that the content is really good and usable. I have a lot doubts that
the code parts are really readable. The bibliography and the references must be improved.
The user commands used for the tagging and also some of the patches used are still rather
crude. So there is lot space for improvement. 284

285 Be aware that to create the tagged version a current lualatex-dev and a current version
of the pdfmanagment-testphase package is needed. 285

7

3. Setup

315 Activation needed! 315

316 When the package is loaded it will – apart from loading more packages and defining a lot
of things – not do much. You will have to activate it with \tagpdfsetup, see below. (At least
that’s the theory, I’m not quite sure, if really the tests are done always as planed….) 316

3.1. Modes and package options

318 The package has two different modes: The generic mode works (in theory, currently only
tested with pdftex and luatex) probably with all engines, the lua mode only with luatex. The
differences between both modes will be described later. The mode can be set with package
options: 318

319 luamode 319

320 This is the default mode. It will use the generic mode if the document is processed with
pdflatex and the lua mode with lualatex. 320

321 genericmode 321

322 This will force the generic mode for all engines. 322

8

3.2. Setup and activation

325 \tagpdfsetup{⟨key-val-list ⟩} 325

353 This command setups the general behaviour of the package. The command should be
normally used only in the preamble (for a few keys it could also make sense to change them
in the document). 353

354 The key-val list understands the following keys: 354

355 activate-all Boolean, initially false. Activates everything, that’s normally the sensible thing to
do. 355

356 activate-mc Boolean, initially false. Activates the code related to marked content. 356

357 activate-struct Boolean, initially false. Activates the code related to structures. Should be
used only if activate-mc has been used too. 357

358 activate-tree Boolean, initially false. Activates the code related to trees. Should be used only
if the two other keys has been used too. 358

359 add-new-tag Allows to define new tag names, see section 6 for a description. 359

360 check-tags Boolean, initially true. Activates some safety checks (but doesn’t do very much
currently. It will perhaps be merged with the log-level key). 360

361 interwordspace Choice key, possible values are true/””on and false/off. The key activates/de-
activates the insertion of space glyphs, see section 7. In the luamode it only works if at
least activate-mc has been used. 361

362 log Choice key, possible values none, v, vv, vvv, all. Setups the log level. Changing the value
affects currently mostly the luamode: “ higher” values gives more messages in the log.
The current levels and messages have been setup in a quite ad-hoc manner and will
need improvement. 362

363 newattribute This key takes two arguments and declares an attribute. See 4.3.5. 363

364 show-spaces Boolean.luamode That’s a debug option, it helps in lua mode to see where space glyph
will be inserted if interwordspace is activated. 366

367 paratagging Boolean. This activate/deactivates the automatic tagging of paragraphs. It uses
the para/begin and para/end hooks of the newest LATEX version (2021-05-01). This is a
first try to use this hooks, and the code is bound to change. Paragraphs can appear in
many unexpected places and the code can easily break, so there is also an option to see
where such paragraphs are: 367

368 paratagging-show Boolean. This activate/deactivates small red numbers in the places where
the paratagging hook code is used. 368

369 tabsorder Choice key, possible values are row, column, structure, none. This decides if a /Tabs
value is written to the dictionary of the page objects. Not really needed for tagging itself,
but one of the things you probably need for accessibility checks. So I added it. Currently
the tabsorder is the same for all pages. Perhaps this should be changed …. 369

9

370 tagunmarked Boolean,luamode initially true. When this boolean is true, the lua code will try to mark
everything that has not been marked yet as an artifact. The benefit is that one doesn’t
have to mark up every deco rule oneself. The danger is that it perhaps marks things that
shouldn’t be marked – it hasn’t been tested yet with complicated documents containing
annotations etc. See also section 4.6 for a discussion about automatic tagging. 372

399 uncompress Sets both the PDF compresslevel and the PDF objcompresslevel to 0 and so
allows to inspect the PDF. 399

400 global-mc Only relevant for luatex and luamode and can only be used in the preamble. If
used the attributes used for the mc-tags are set globally. This key is temporary! It is
there to allow to test if global or local setting is more sensible. See section 4.2.3 for more
info. 400

4. Tagging

402 pdf is a page orientated graphic format. It simply puts ink and glyphs at various coordinates
on a page. A simple stream of a page can look like this2: 403

stream
BT
/F27 14.3462 Tf %select font
89.291 746.742 Td %move point
[(1)-574(Intro)-32(duction)]TJ %print text
/F24 10.9091 Tf %select font
0 -24.35 Td %move point
[(Let's)-331(start)]TJ %print text
205.635 -605.688 Td %move point
[(1)]TJ %print text

ET
endstream

416 From this stream one can extract the characters and their placement on the page but not
their semantic meaning (the first line is actually a section heading, the last the page number).
And while in the example the order is correct there is actually no guaranty that the stream
contains the text in the order it should be read. 416

417 Tagging means to enrich the PDF with information about the semantic meaning and the
reading order. (Tagging can do more, one can also store all sorts of layout information like
font properties and indentation with tags. But as I already wrote this package concentrates
on the part of tagging that is needed to improve accessibility.) 417

2The appendix contains some remarks about the syntax of a PDF file

10

4.1. Three tasks

419 To tag a PDF three tasks must be carried out: 419

420 1. The mark-content-task:mc-task The document must add “ labels” to the page stream which
allows to identify and reference the various chunks of text and other content. This is the
most difficult part of tagging – both for the document writer but also for the package
code. At first there can be quite many chunks as every one is a leaf node of the structure
and so often a rather small unit. At second the chunks must be defined page-wise –
and this is not easy when you don’t know where the page breaks are. Also in a standard
document a lot text is created automatically, e.g. the toc, references, citations, list
numbers etc and it is not always easy to mark them correctly. 422

449 2. The structure-task:struct-
task

 The document must declare the structure. This means marking the
start and end of semantically connected portions of the document (correctly nested as a
tree). This too means some work for the document writer, but less than for the mc-task:
at first quite often the mc-task and the structure-task can be combined, e.g. when you
mark up a list number or a tabular cell or a section header; at second one doesn’t have to
worry about page breaks so quite often one can patch standard environments to declare
the structure. On the other side a number of structures end in LATEX only implicitly –
e.g. an item ends at the next item, so getting the PDF structure right still means that
additional mark up must be added. 451

452 3. The tree management:tree-task At last the structure must be written into the PDF. For every
structure an object of type StructElem must be created and flushed with keys for the
parents and the kids. A parenttree must be created to get a reference from the mc-
chunks to the parent structure. A rolemap must be written. And a number of dictionary
entries. All this is hopefully done automatically and correctly by the package …. 454

4.2. Task 1: Marking the chunks: the mark-content-step

463 To be able to refer to parts of the text in the structure, the text in the page stream must get
“ labels”. In the PDF reference they are called “marked content”. The three main variants
needed here are: 463

464 Artifacts They are marked with of a pair of keywords, BMC and EMC which surrounds the text.
BMC has a single prefix argument, the fix tag name /Artifact. Artifacts should be used
for irrelevant text and page content that should be ignored in the structure. Sadly it is
often not possible to leave such text simply unmarked – the accessibility tests in Acrobat
and other validators complain. 464

/Artifact BMC
text to be marked
/EMC

11

455 Page stream with marked content 455

… … … mc-chunk 1 mc-chunk 2 mc-chunk 3 mc-chunk 3 … …

457 Structure 457

Sect (start section)

H (header section)

mc-chunk 1

mc-chunk 2

/H (end header)

P (start paragraph)

mc-chunk 3

mc-chunk 4

/P (end paragraph)

/Sect (end section)

461 Figure 1: Schematical description of the relation between marked content in the page stream
and the structure 461

468 Artifacts with a type They are marked with of a pair of keywords, BDC and EMC which sur-
rounds the text. BDC has two arguments: again the tag name /Artifact and a following
dictionary which allows to specify the suppressed info. Text in header and footer can
e.g. be declared as pagination like this: 468

/Artifact <</Type /Pagination>> BDC
text to be marked
/EMC

498 Content Content is marked also with of a pair of keywords, BDC and EMC. The first argument
of BDC is a tag name which describes the structural type of the text3Examples are /P
(paragraph), /H2 (header), /TD (table cell). The reference mentions a number of standard
types but it is possible to add more or to use different names. 499

500 In the second argument of BDC – in the property dictionary – more data can be stored.
Required is an /MCID-key which takes an integer as a value: 500

/H1 <</MCID 3>> BDC

3There is quite some redundancy in the specification here. The structural type is also set in the structure tree.
One wonders if it isn’t enough to use always /SPAN here.

12

text to be marked
/EMC

530 This integer is used to identify the chunk when building the structure tree. The chunks
are numbered by page starting with 0. As the numbers are also used as an index in
an array they shouldn’t be “ holes” in the numbering system (It is perhaps possible to
handle a numbering scheme not starting by 0 and having holes, but it will enlarge the
PDF as one would need dummy objects.). 530

531 It is possible to add more entries to the property dictionary, e.g. a title, alternative text
or a local language setting. 531

532 The needed markers can be added with low level code e.g. like this (in pdftex syntax): 532

\pdfliteral page {/H1 <</MCID 3>> BDC}%
text to be marked
\pdfliteral page {EMC}%

536 This sounds easy. But there are quite a number of traps, mostly with pdfLaTeX: 536

537 1. PDF is a page oriented format. And this means that the start BDC/BMC and the corre-
sponding end EMC must be on the same page. So marking e.g. a section title like in the
following example won’t always work as the literal before the section could end on the
previous page: 537

\pdfliteral page {/H1 <</MCID 3>> BDC} %problem: possible pagebreak here
\section{mysection}
\pdfliteral page {EMC}%

541 Using the literals inside the section argument is better, but then one has to take care
that they don’t wander into the header and the toc. 541

542 2. Literals are “whatsits” nodes and can change spacing, page and line breaking. The
literal behind the section in the previous example could e.g. lead to a lonely section
title at the end of the page. 542

543 3. The /MCID numbers must be unique on a page. So you can’t use the literal in a saved
box that you reuse in various places. This is e. g. a problem with longtable as it saves
the table header and footer in a box. 543

544 4. The /MCID-chunks are leaf nodes in the structure tree, so they shouldn’t be nested. 544

545 5. Often text in a document is created automatically or moved around: entries in the table
of contents, index, bibliography and more. To mark these text chunks correctly one has
to analyze the code creating such content to find suitable places to inject the literals. 545

546 6. The literals are inserted directly and not at shipout. This means that due to the asyn-
chronous page breaking of TEX the MCID-number can be wrong even if the counter is
reset at every page (this package uses in generic mode a label-ref-system to get around
this problem. This sadly means that three compilations are needed until everything
has settled down). 546

13

547 7. There exist environments which process their content more than once – examples are
align and tabularx. So one has to check for doublettes and holes in the counting
system. 547

574 8. PDF is a page oriented format. And this means that the start and the end marker must
be on the same page … so what to do with normal paragraphs that split over pages??.
This question will be discussed in subsection 4.2.7. 574

4.2.1. Generic mode versus lua mode in the mc-task

576 While in generic mode the commands insert the literals directly and so have all the problems
described above the lua mode works quite differently: The tagging commands don’t insert
literals but set some attributes which are attached to all the following nodes. When the page
is shipped out some lua code is called which wanders through the shipout box and injects
the literals at the places where the attributes changes. 576

577 This means that quite a number of problems mentioned above are not relevant for the lua
mode: 577

578 1. Pagebreaks between start and end of the marker are not a problem. So you can mark a
complete paragraph. If a pagebreak occur directly after an start marker or before an
end marker this can lead to empty chunks in the PDF and so bloat up PDF a bit, but this
is imho not really a problem (compared to the size increase by the rest of the tagging). 578

579 2. The commands don’t insert literals directly and so affect line and page breaking much
less. 579

580 3. The numbering of the MCID are done at shipout, so no label/ref system is needed. 580

581 4. The code can do some marking automatically. Currently everything that has not been
marked up by the document is marked as artifact. 581

4.2.2. Commands to mark content and chunks

583 In generic modeGeneric
mode

only

 is vital that the end command is executed on the same page as the begin
command. So think carefully how to place them. For strategies how to handle paragraphs
that split over pages see subsection 4.2.7. 585

587 \tagmcbegin{⟨key-val-list ⟩} 587

590 \tag_mc_begin:n{⟨key-val-list ⟩} 590

592 These commands insert the begin of the marked content code in the PDF. They don’t start a
paragraph. They don’t start a group. The user command additionally issues an \ignorespaces
to suppress spaces after itself. Such markers should not be nested. The command will warn
you if this happens. 592

593 The key-val list understands the following keys: 593

14

594 tag This is required, unless you use the artifact key. The value of the key is normally one of
the standard type listed in section 6 (without a slash at the begin, this is added by the
code). It is possible to setup new tags, see the same section. The value of the key is
expanded, so it can be a command. The expansion is passed unchanged to the PDF, so
it should with a starting slash give a valid PDF name (some ascii with numbers like H4 is
fine). 594

621 artifact This will setup the marked content as an artifact. The key should be used for content
that should be ignored. The key can take one of the values pagination, layout, page,
background and notype (this is the default). Text in the header and footer should be
marked with artifact=pagination. 621

622 It is not quite clear if rules and other decorative graphical objects needs to be marked
up as artifacts. Acrobat seems not to mind if not, but PAC 3 complained. 622

623 The validators complain if some text is not marked up, but it is not quite clear if this is a
serious problem. 623

624 Thelua mode
only

 lua mode will mark up everything unmarked as artifact=notype. You can suppress
this behaviour by setting the tagpdfsetup key tagunmarked to false. See section 3.2. 626

627 stash Normally marked content will be stored in the “current” structure. This may not be
what you want. As an example you may perhaps want to put a marginnote behind or
before the paragraph it is in the tex-code. With this boolean key the content is marked
but not stored in the kid-key of the current structure. 627

628 label This key sets a label by which you can call the marked content later in another structure
(if it has been stashed with the previous key). Internally the label name will start with
tagpdf-. 628

629 alttext This key inserts an /Alt value in the property dictionary of the BDC operator. See
section 5. The value is handled as verbatim string, commands are not expanded. 629

630 alttext-o This key inserts an /Alt value in the property dictionary of the BDC operator. See
section 5. The value is handled as verbatim string like the key alttext but expanded once
(the o refers to the o type in expl3). That means that you can do something like in the
following listing and it will insert \frac{a}{b} (hex encoded) in the PDF. 630

\newcommand\myalttext{\frac{a}{b}}
\tagmcbegin{tag=P,alttext-o=\myalttext}

633 actualtext This key inserts an /ActualText value in the property dictionary of the BDC
operator. See section 5. The value is handled as verbatim string, commands are not
expanded. 633

634 actualtext-o This key inserts an /ActualText value in the property dictionary of the BDC
operator. See section 5. The value is handled as verbatim string like the key actualtext
but expanded once (the o refers to the o type in expl3). That means that you can do
something like in the following listing and and it will insert X (hex encoded) in the PDF. 634

\newcommand\myactualtext{X}
\tagmcbegin{tag=P,alttext-o=\myactualtext}

15

637 raw This key allows you to add more entries to the properties dictionary. The value must be
correct, low-level PDF. E.g. raw=/Alt (Hello) will insert an alternative Text. 637

665 \tagmcend 665

668 \tag_mc:end 668

670 These commands insert the end code of the marked content. They don’t end a group and in
generic mode it doesn’t matter if they are in another group as the starting commands. The
user command also issues in hmode at first an \unskip. In generic mode both commands
check if there has been a begin marker and issue a warning if not. In luamode it is often
possible to omit the command, as the effect of the begin command ends with the current
group or with a new \tagmcbegin anyway. 670

671 About nesting mc-commands 671

672 Attention!luamode As mentioned above in luamode it is often possible to omit the \tagmcend
command. This basically means that mc-chunks can be nested. But be aware that this
can have surprising side effects on the order in the structure. 674

675 Consider a code like this: 675

\tagmcbegin{tag=P} Block 1 {\tagmcbegin{tag=P} Block 2} Block 3 \tagmcend

677 Block 3 will here get the same id number as Block 1 and be stored in the structure before
Block 2. The PDF will record the chunks in the order Block 1 -- Block 3 -- Block
2. See also section 4.2.3. 677

680 \tagmcuse 680

683 \tag_mc_use:n 683

685 These commands allow you to record a marked content that you stashed away into the current
structure. Be aware that a marked content can be used only once – the command will warn
you if you try to use it a second time. 685

687 \tag_mc_end_push: 687

690 \tag_mc_begin_pop:n{⟨key-val-list ⟩} 690

692 If there is an open mc chunk, the first command ends it and pushes its tag on a stack. If there
is no open chunk, it puts −1 on the stack (for debugging). The second command removes a
value from the stack. If it is different from −1 it opens a tag with it. The command is mainly
meant to be used inside hooks and command definitions so there is only an expl3 version.
Perhaps other content of the mc-dictionary (for example the Lang) needs to be saved on the
stacked too. 692

694 \tagmcifinTF{⟨true code⟩}{⟨false code⟩} 694

697 \tag_mc_if_in:TF{⟨true code⟩}{⟨false code⟩} 697

16

699 These commands check if a marked content is currently open and allows you to e.g. add the
end marker if yes. 699

726 In generic mode, where marked content command shouldn’t be nested, it works with a global
boolean. 726

727 In lua mode it tests if the mc-attribute is currently unset. You can’t test the nesting level with
it! 727

729 \tagpdfget{⟨key word⟩} 729

732 \tag_get:n{⟨key word⟩} 732

734 These commands give back some variables. Currently the only working key words are mc_tag
and struct_tag. 734

4.2.3. Luamode: global or not global – that is the question

736 InLuamode
mode

only

 luamode the mc-commands set and unset an attribute to mark the nodes. One can view
such an attribute like a font change or a color: they affect all following chars and glue node
until stopped. 738

739 Currently the attributes are set locally. This has the advantage that the attributes don’t spill
over in area where they are not wanted like the header and footer or the background pictures.
But it has the disadvantage that is difficult for an inner structure to correctly interrupt the
outer mc-chunk if it can’t control the group level. For example this would work fine: 739

\tagstructbegin{tag=P}
\tagmcbegin{tag=P}
Start paragraph
\tag_mc_end_push:
\tagstructbegin{tag=Em}
\tagmcbegin{tag=Em}
\emph{Emphasized test}
\tagmcend
\tagstructend
\tag_mc_begin_pop:n{}

Continuation of paragraph
\tagmcend
\tagstructend

753 But if the user adds a group like in the following listing, then the reading order will be wrong
and the emphasized text will move in the structure at the end as described in the box about
nesting mc-chunks on page 16. 753

\tagstructbegin{tag=P}
\tagmcbegin{tag=P}
Start paragraph
{ %group

17

\tag_mc_end_push:
\tagstructbegin{tag=Em}
\tagmcbegin{tag=Em}
\emph{with emphasized text}
\tagmcend
\tagstructend
\tag_mc_begin_pop:n{}
} %group
Continuation of paragraph
\tagmcend
\tagstructend

795 If the attribute is set globally this wouldn’t be a problem. Currently the question is undecided.
To allow to test with both versions it is possible to switch for a document with global-mc to
global attributes. 795

4.2.4. Tips

797 • Mark commands inside floats should work fine (but need perhaps some compilation
rounds in generic mode). 797

798 • In case you want to use it inside a \savebox (or some command that saves the text
internally in a box): If the box is used directly, there is probably no problem. If the use
is later, stash the marked content and add the needed \tagmcuse directly before oder
after the box when you use it. 798

799 • Don’t use a saved box with markers twice. 799

800 • If boxes are unboxed you will have to analyze the PDF to check if everything is ok. 800

801 • If you use complicated structures and commands (breakable boxes like the one from
tcolorbox, multicol, many footnotes) you will have to check the PDF. 801

4.2.5. Links

833 Link annotations (like all PDF annotations) are associated with a geometric region of the page
rather than with a particular object in its content stream. Any connection between the link
and the content is based solely on visual appearance rather than on an explicitly specified
association. 833

834 To connect such a link with the underlying text a specific structure has to be added, see 2.
When using the low-level commands to create a link, this structure can be created by adding
an entry to the attr argument of the startlink command, and by adding a command of the
tagpdf package after the endlink command, as show in the following listing: 834

18

18 0 obj %Link Object
<< /Type /Annot /Subtype/Link

/Rect [196.109 494.573 399.167 506.831]
/StructParent 16
/A<</Type/Action /S/URI /URI(https://github.com/u-fischer/tagpdf)>>
>>

endobj

19 0 obj %Object reference (OBJR)
<</Type /OBJR /Obj 18 0 R >>
endobj

17 0 obj %Structure Element
<< /Type /StructElem /S /Link /P 11 0 R
/K [<</Type /MCR /Pg 8 0 R /MCID 6>> 19 0 R]>>
endobj};

5 0 obj %Parenttree
<< /Nums
[... 16 17 0 R ...] >>
endobj

Figure 2: Structure needed for a link annotation

19

\pdfextension startlink
attr
{
/StructParent \int_use:N\c@g__tag_parenttree_obj_int %<----
}
user {

/Subtype/Link
/A
<<
/Type/Action
/S/URI
/URI(http://www.dante.de)
>>

}
This is a link.

\pdfextension endlink
__tag_struct_finish_link: %<----

904 The question was here is how to add this to the hyperref commands without doing a lot
patching? This had lead to a new project to some definitions for links to the LATEX-kernel so
that package likes hyperref and tagpdf can coexist and both add their code to links at the
same time. This new code is now available in a test package pdfmanagment-testphase and it
allows to add the code through hooks to links which has been done. 904

905 So starting with version 0.81 links are tagged automatically if tagging is activated. 905

906 With luatex and local attributes (see section 4.2.3) commands like \url should not be grouped
to allow them to reset the mc-attributes, or if groups are involved the mc-chunks should be
closed and reopened manually to get the right reading order. 906

4.2.6. Math

908 Math is a problem. I have seen an example where every single symbol has been marked up
with tags from MathML along with an /ActualText entry and an entry with alternate text
which describes how to read the symbol. The PDF then looked like this 908

/mn <</MCID 6 /ActualText<FEFF0034>/Alt(: open bracket: four)>>BDC
...
/mn <</MCID 7 /ActualText<FEFF0033>/Alt(third s)>>BDC
...
/mo <</MCID 8 /ActualText<FEFF2062>/Alt(times)>>BDC

914 If this is really the way to go one would need some script to add the mark-up as doing it
manually is too much work and would make the source unreadable – at least with pdflatex
and the generic mode. In lua mode is it probably possible to hook into the mlist_to_hlist
callback and add marker automatically. 914

20

915 But I’m not sure that this is the best way to do math. It looks rather odd that a document
should have to tell a screen reader in such detail how to read an equation. It would be much
more efficient, sensible and flexible if a complete representation of the equation in mathML
could be stored in the PDF and the task how to read this aloud delegated to the screen reader.
As PDF 2.0 introduced associated files it is probable that this will be the way to go but more
investigations are needed here. 915

942 See also section 5 for some more remarks and tests. 942

4.2.7. Split paragraphs

944 AGeneric
mode

only

 problem in generic mode are paragraphs with page breaks. As already mentioned the end
marker EMC must be added on the same page as the begin marker. But it is in pdflatex very
difficult to inject something at the page break automatically. One can manipulate the shipout
box to some extend in the output routine, but this is not easy and it gets even more difficult if
inserts like footnotes and floats are involved: the end of the paragraph is then somewhere in
the middle of the box. 946

947 So with pdflatex in generic mode one currently has to do the splitting manually. 947

948 The example mc-manual-para-split demonstrates how this can be done. The general idea
is to use \vadjust in the right place: 948

\tagmcbegin{tag=P}
...
fringilla, ligula wisi commodo felis, ut adipiscing felis dui in
enim. Suspendisse malesuada ultrices ante.% page break
\vadjust{\tagmcend\pagebreak\tagmcbegin{tag=P}}
Pellentesque scelerisque
...
sit amet, lacus.\tagmcend

4.2.8. Automatic tagging of paragraphs

959 \tagpdfparaOn 959

962 \tagpdfparaOff 962

964 Another feature that emerged from the LATEX tagged PDF project are hooks at the begin
and end of paragraphs. tagpdf makes use of these hooks to tag paragraphs. This can be
activated/deactivated (also locally) with options of \tagpdfsetup or with the two commands
above. This is very experimental and it requires a new latex-dev! 964

21

4.3. Task 2: Marking the structure

966 The structure is represented in the PDF with a number of objects of type StructElem which
build a tree: each of this objects points back to its parent and normally has a number of kid ele-
ments, which are either again structure elements or – as leafs of the tree – the marked contents
chunks marked up with the tagmc-commands. The root of the tree is the StructTreeRoot. 966

4.3.1. Structure types

994 The tree should reflect the semantic meaning of the text. That means that the text should be
marked as section, list, table head, table cell and so on. A number of standard structure types
is predefined, see section 6 but it is allowed to create more. If you want to use types of your
own you must declare them. E.g. this declares two new types TAB and FIG and bases them on
P: 994

\tagpdfsetup{
add-new-tag = TAB/P,
add-new-tag = FIG/P,

}

4.3.2. Sectioning

1000 The sectioning units can be structured in two ways: a flat, html-like and a more (in pdf/UA2
basically deprecated) xml-like version. The flat version creates a structure like this: 1000

<H1>section header</H1>
<P> text</P>
<H2>subsection header</H2>
...

1005 So here the headers are marked according their level with H1, H2, etc. 1005

1006 In the xml-like tree the complete text of a sectioning unit is surrounded with the Sect tag,
and all headers with the tag H. Here the nesting defines the level of a sectioning header. 1006

<Sect>
<H>section header</H>
<P> text</p>
<Sect>
<H>subsection header</H>
...

</Sect>
</Sect>

1015 The flat version is more LATEX-like and it is rather straightforward to patch \chapter, \section
and so on to insert the appropriates H… start and end markers. The xml-like tree is more
difficult to automate. If such a tree is wanted I would recommend to use – like the context
format – explicit commands to start and end a sectioning unit. 1015

22

4.3.3. Commands to define the structure

1017 The following commands can be used to define the tree structure: 1017

1045 \tagstructbegin{⟨key-val-list ⟩} 1045

1048 \tag_struct_begin:n{⟨key-val-list ⟩} 1048

1050 These commands start a new structure. They don’t start a group. They set all their values
globally. 1050

1051 The key-val list understands the following keys: 1051

1052 tag This is required. The value of the key is normally one of the standard types listed in
section 6. It is possible to setup new tags/types, see the same section. The value can
also be of the form |type/NS|, where |NS| is the shorthand of a declared name space.
Currently the names spaces |pdf|, |pdf2|, |mathml| and |user| are defined. This allows to
use a different name space than the one connected by default to the tag. But normally
this should not be needed. 1052

1053 stash Normally a new structure inserts itself as a kid into the currently active structure.
This key prohibits this. The structure is nevertheless from now on “the current active
structure” and parent for following marked content and structures. 1053

1054 label This key sets a label by which you can use the structure later in another structure.
Internally the label name will start with tagpdfstruct-. 1054

1055 alttext This key inserts an /Alt value in the dictionary of structure object, see section 5. The
value is handled as verbatim string and hex encoded. 1055

1056 alttext-o This key inserts an /Alt value in the dictionary of a structure object, see section 5.
The value is handled as verbatim string like the key alttext but expanded once (the o
refers to the o type in expl3). That means that you can do something like this: 1056

\newcommand\myalttext{\frac{a}{b}}
\tagstructbegin{tag=P,alttext-o=\myalttext}

1059 and it will insert \frac{a}{b} (hex encoded) in the PDF. 1059

1060 actualtext This key inserts an /ActualText value in the dictionary of structure object, see
section 5. The value is handled as verbatim string, commands are not expanded. 1060

1061 actualtext-o This key inserts an /ActualText value in the dictionary of structure object, see
section 5. The value is handled as verbatim string like the key actualtext but expanded
once (the o refers to the o type in expl3). That means that you can do something like
this: 1061

\newcommand\myactualtext{X}
\tagstructbegin{tag=P,alttext-o=\myactualtext}

1064 and it will insert X (hex encoded) in the PDF. 1064

23

1065 attribute This key takes as argument a comma list of attribute names (use braces to protect
the commas from the external key-val parser) and allows to add one or more attribute
dictionary entries in the structure object. As an example 1065

\tagstructbegin{tag=TH,attribute= TH-row}

1093 See also section 4.3.5. 1093

1094 attribute-class This key takes as argument a comma list of attribute names (use braces to
protect the commas from the external key-val parser) and allows to add one or more
attribute classes to the structure object. As an example 1094

\tagstructbegin{tag=TH,attribute-class= TH-row}

1096 See also section 4.3.5. 1096

1097 title This key allows to set the dictionary entry /Title in the structure object. The value is
handled as verbatim string and hex encoded. Commands are not expanded. 1097

1098 title-o This key allows to set the dictionary entry /Title in the structure object. The value is
expanded once and then handled as verbatim string like the title key. 1098

1099 AF This key allows to reference an associated file in the structure element. The value
should be the name of an object pointing to the /Filespec dictionary as expected
by \pdf_object_ref:n from a current l3kernel. For example: 1099

\pdfdict_put:nnn {l_pdffile/Filespec} {AFRelationship}{/Supplement}
\pdffile_embed_file:nnn{example-input-file.tex}{}{tag/AFtest}
\tagstructbegin{tag=P,AF=tag/AFtest}

1103 As shown, the wanted AFRelationship can be set by filling the dictionary with the value.
The mime type is here detected automatically, but for unknown types it can be set too.
See the l3pdffile documentation for details. Associated files are a concept new in PDF
2.0, but the code currently doesn’t check the pdf version, it is your responsability to set
it (this can be done with the pdfversion key in \DeclareDocumentMetadata). 1103

1104 AFinline This key allows to embed an associated file with inline content. The value is some
text, which is embedded in the PDF as a text file with mime type text/plain. 1104

\tagstructbegin{tag=P,AFinline=Some extra text}

1106 AFinline-o This is like verb+AFinline+, but it expands the value once. 1106

1107 lang This key allows to set the language for a structure element. The value should be a
bcp-identifier, e.g. |de-De|. 1107

1108 ref This key allows to add references to other structure elements, it adds the |/Ref| array to
the structure. The value should be a comma separated list of structure labels set with
the |label| key. e.g. |ref=label1,label2|. 1108

1109 E This key sets the |/E| key, the expanded form of an abbreviation or an acronym (I couldn’t
think of a better name, so I sticked to E). 1109

24

1111 \tagstructend 1111

1114 \tag_struct_end: 1114

1142 These commands end a structure. They don’t end a group and it doesn’t matter if they are in
another group as the starting commands. 1142

1144 \tagstructuse{⟨label⟩} 1144

1147 \tag_struct_use:n{⟨label⟩} 1147

1149 These commands insert a structure previously stashed away as kid into the currently active
structure. A structure should be used only once, if the structure already has a parent you will
get a warning. 1149

4.3.4. Root structure

1151 A document should have at least one structure which contains the whole document. A
suitable tag is Document or Article. I’m considering to automatically inserting it. 1151

4.3.5. Attributes and attribute classes

1153 Structure Element can have so-called attributes. A single attribute is a dictionary(or a stream
but this is currently not supported by the package as I don’t know an use-case) with at least
the required key /O (for “Owner” which describes the scope the attribute applies too. As an
example here an attribute that can be attached to tabular header (type TH) and adds the info
that the header is a column header: 1153

<</O /Table /Scope /Column>>

1155 One or more such attributes can be attached to a structure element. It is also possible to store
such an attribute under a symbolic name in a so-called “ClassedMap” and then to attach
references to such classes to a structure. 1155

1156 To use such attributes you must at first declare it in \tagpdfsetup with the key newattribute.
This key takes two argument, a name and the content of the attribute. The name should be a
sensible key name, the content a dictionary. 1156

\tagpdfsetup
{
newattribute =
{TH-col}{/O /Table /Scope /Column},
newattribute =
{TH-row}{/O /Table /Scope /Row},
}

25

1164 Attributes are only written to the PDF when used, so it is not a problem to predeclare a number
of standard attributes. 1164

1165 It is your responsability that the content of the dictionary is valid PDF and that the values are
sensible! 1165

1192 Attributes can then be used with the key attribute or attribute-class which both take a comma
list of attribute names as argument: 1192

\tagstructbegin{tag=TH,
attribute-class= {TH-row,TH-col},
attribute = {TH-row,TH-col},
}

4.4. Task 3: tree Management

1198 When all the document content has been correctly marked and the data for the trees has
been collected they must be flushed to the PDF. This is done automatically (if the package
has been activated) with the following command in \AfterEndDocument: 1198

1200 \tag_finish_structure: 1200

1202 This will hopefully write all the needed objects and values to the PDF. (Beside the already
mentioned StructTreeRoot and StructElem objects, additionally a so-called ParentTree
is needed which records the parents of all the marked contents bits, a Rolemap, perhaps a
ClassMap and object for the attributes, and a few more values and dictionaries). 1202

1203 I’m not quite sure if this shouldn’t be a really internal command. 1203

4.5. A fully marked up document body

1205 The following shows the marking needed for a section, a sentence and a list with two items.
It is obvious that one wouldn’t like to have to do this for real documents. If tagging should be
usable, the commands must be hidden as much as possible inside suitable LATEX commands
and enviroments. 1205

\begin{document}

\tagstructbegin{tag=Document}

\tagstructbegin{tag=Sect}
\tagstructbegin{tag=H}
\tagmcbegin{tag=H} %avoid page break!
\section{Section}
\tagmcend
\tagstructend
\tagstructbegin{tag=P}

26

\tagmcbegin{tag=P,raw=/Alt (x)}
a paragraph\par x
\tagmcend
\tagstructend

\tagstructbegin{tag=L} %List
\tagstructbegin{tag=LI}
\tagstructbegin{tag=Lbl}
\tagmcbegin{tag=Lbl}
1.
\tagmcend
\tagstructend
\tagstructbegin{tag=LBody}
\tagmcbegin{tag=P}
List item body
\tagmcend
\tagstructend %lbody
\tagstructend %Li

\tagstructbegin{tag=LI}
\tagstructbegin{tag=Lbl}
\tagmcbegin{tag=Lbl}
2.
\tagmcend
\tagstructend
\tagstructbegin{tag=LBody}
\tagmcbegin{tag=P}
another List item body
\tagmcend
\tagstructend %lbody
\tagstructend %Li
\tagstructend %L

\tagstructend %Sect
\tagstructend %Document
\end{document}

4.6. Lazy and automatic tagging

1280 A number of features of PDF readers need a fully tagged PDF. As an example screen readers
tend to ignore alternative text (see section 5) if the PDF is not fully tagged. Also reflowing a
PDF only works for me (even if real space chars are in the PDF) if the PDF is fully tagged. 1280

1281 This means that even if you don’t care about a proper structure you should try to add at least
some minimal tagging. With pdflatex this is not easy due to the page break problem. But

27

with lualatex you can use an Document structure and inside it rather large mc-chunks. This
minimizes the needed work. 1281

1308 One could ask if in lua mode the code couldn’t try to mark up unmarked parts e.g. as P-type
chunks, like it marks them up as artifacts currently. Sadly this is not so easy, as it is quite
difficult to reliably identify the structure and the place in the kids array where such chunks
belongs too. I also don’t think that it is really needed. It is not so difficult to define user macros
which e.g. opens a structure and start an mc-chunk or which close an open mc-chunk before
issuing the next \tagmcbegin. 1308

4.7. Adding tagging to commands

1310 As mentioned above the mc-markers should not be nested. Basically you write: 1310

\tagmcbegin{..}some text ...\tagmcend
<optional structure commands>
\tagmcbegin{..}some other text\tagmcend

1314 This is quite workable as long as you mark everything manually. But how to write commands,
e.g for a tabular or a graphic, that do tagging automatically without breaking the flow and the
structure? 1314

5. Alternative text, ActualText and text-to-speech software

1316 The PDF format allows to add alternative text through the /Alt and the /ActualText key. Both
can be added either to the marked content in the page stream or to the object describing the
structure. 1316

1317 The value of /ActualText (inserted by tagpdf with actualtext) is meant to replace single char-
acters or rather small pieces of text. It can be used also without any tagging (e.g. with the
package accsupp). If the PDF reader support this (adobe reader does, sumatra not) one can
change with it how a piece of text is copied and pasted e.g. to split up a ligature. 1317

1318 /Alt (inserted by tagpdf with alttext) is a key to improve accessibility: with it one can add to a
picture or something else an alternative text. 1318

1319 The file ex-alt-actualtext.tex shows some experiments I made with with both keys and
text-to-speech software (the in-built of adobe and nvda). To sum them up: 1319

1320 • The keys have an impact on text-to-speech software only if the document is fully tagged. 1320

1321 • /ActualText should be at best used around short pieces of marked content. 1321

1322 • /Alt is used at best with a structure – this avoids problems with luatex where marked
contents blocks can be split over pages. 1322

1323 • To some extend one can get a not so bad reading of math with the alternative text. 1323

28

6. Standard types and new tags

1325 The tags used to describe the type of a structure element can be rather freely chosen. PDF 1.7
and earlier only requires that in a tagged PDF all types should be either from a known set of
standard types or are “role mapped” to such a standard type. Such a role mapping is a simple
key-value in the RoleMap dictionary. 1325

1352 So instead of |H1| the type |section| could be used. The role mapping can then be declared
with the |add-new-tag| key: 1352

\tagpdfsetup{add-new-tag = section/H1}

1354 In PDF 2.0 the situation is a bit more complicated. At first PDF 2.0 introduced name spaces.
That means that a type can have more than one “meaning” depending on the name space it
belongs to. |section (name space A)| and |section (name space B)| are two different types. 1354

1355 At second PDF 2.0 still requires that a tagged PDF maps all types to a standard type, but now
there are three sets of standard types (The meanings of the PDF types can be looked up in
the PDF-references [1, 4]): 1355

1356 1. The standard structure namespace for PDF 1.7, also called the default standard structure
namespace. The public name of the namespace is |tag/NS/pdf|. This can be used to
reference the namespace e.g. in attributes. These are the structure names from PDF
1.7: Document, Part, Sect, Div, Caption, Index, NonStruct, H, H1, H2, H3, H4, H5, H6, P,
L, LI, Lbl, LBody, Table, TR, TH, TD, THead, TBody, TFoot, Span, Link, Annot, Figure,
Formula, Form, Ruby, RB, RT, Warichu, WT, WP, Artifact, Art, BlockQuote, TOC, TOCI,
Index, Private, Quote, Note, Reference, BibEntry, Code 1356

1357 2. The standard structure namespace for PDF 2.0. The public name of the namespace is
|tag/NS/pdf2|. This can be used to reference the namespace e.g. in attributes. These are
more or less same types as in PDF. The following types have been removed from this set:
Art, BlockQuote, TOC, TOCI, Index, Private, Quote, Note, Reference, BibEntry, Code
and the following are new:
DocumentFragment, Aside, H7, H8, H9, H10, Title, FENote, Sub, Em, Strong, Artifact 1357

1358 3. MathML 3.0 as an other namespaces. The public name of the namespace is |tag/NS/-
mathml|. This can be used to reference the namespace e.g. in attributes. There are
nearly 200 types in this name space, so I refrain from listing them here. 1358

1359 To allow to this more complicated setup the syntax of the add-new-tag key has been extended.
It now takes as argument a key-value list with the following keys. A normal document shouldn’t
need the extended syntax, the simple syntax |section/H1| should in most cases do the right
thing. 1359

1360 tag This is the name of the new type as it should then be used in \tagstructbegin. 1360

1361 namespace This is the namespace of the new type. The value should be a shorthand of a
namespace. The allowed values are currently |pdf|, |pdf2|, |mathml| and |user|. The
default value (and recommended value for a new tag) is |user|. The public name of the

29

user namespace is |tag/NS/user|. This can be used to reference the namespace e.g. in
attributes. 1361

1362 role This is type the tag should be mapped too. In a PDF 1.7 or earlier this is normally a type
from the |pdf| set, in PDF 2.0 from the |pdf|, |pdf2| and |mathml| set. It can also be a user
type, or a still unknown type. The PDF format allows mapping to be done transitively.
But you should be aware that tagpdf can’t (or more precisely won’t) check such unusual
role mapping. It lies in the responsability of the author to ensure here that every type is
correctly role mapped. 1362

1389 role-namespace If the role is a known type the default value is the default namespace: |pdf2|
for all types in this set, |pdf| for the type which exist only in PDF 1.7, |mathml| for the
MathML types, and for previously defined user types whatever namespace has been
set there. If the role is unknown, |user| is used and the code hopes that the type will be
defined later. 1389

1390 unknown key An unknown key is interpreted as a |tag/role|, this preserves the old syntax. So
this two calls are equivalent:

\tagpdfsetup{add-new-tag = section/H1}
\tagpdfsetup{add-new-tag = {tag=section,role=H1}}

1393 The exact effects of the key depends on the PDF version. With PDF 1.7 or older the namespace
keys are ignored, with PDF 2.0 the namespace keys are use to setup the correct rolemaps. The
|namespace| key is also used to define the default namespace if the type is used as a role or as
tag in a structure. 1393

7. “ Real” space glyphs

1395 TeX uses only spaces (horizontal movements) to separate words. That means that a PDF
reader has to use some heuristic when copying text or reflowing the text to decide if a space
is meant as a word boundary or e.g. as a kerning. Accessible document should use real space
glyphs (U+0032) from a font in such places. 1395

1396 With the key interwordspace you can activate such space glyphs. 1396

1397 With pdftex this will simply call the primitive \pdfinterwordspaceon. pdftex will then insert
at various places a char from a font called dummy-space. Attention! This means that at every
space there are additional font switches in the PDF: from the current font to the dummy-space
font and back again. This will make the PDF larger. As \pdfinterwordspaceon is a primitive
function it can’t be fine tuned or adapted. You can only turn it on and off and insert manually
such a space glyph with \pdffakespace. 1397

1398 With luatex (in luamode) interwordspace is implemented with a lua-function which is inserted
in two callbacks and marks up the places where it seems sensible to inter a space glyph. Later
in the process (when also the mc-markers are inserted) the space glyphs are injected – the
code will take the glyph from the current font if this has a space glyph or switch to the default
latin modern font. The current code works reasonable well in normal text. 1398

30

1399 The key show-spaces will show lines at the places where in lua mode spaces are inserted and
so can help you to find problematic places. For listings – which have a quite specific handling
of spaces – you can find a suggestion in the example ex-space-glyph-listings. 1399

1426 Attention: Even with real spaces copy& pasting of code doesn’t need to give the correct results:
you get spaces but not necessarly the right number of spaces. The PDF viewers I tried all
copied four real space glyphs as one space. I only got the four spaces with the export to text
or xml in the AdobePro. 1426

1428 \pdffakespace 1428

1430 This is in pdftex a primitive. It inserts the dummy space glyph. tagpdf defines this command
also for luatex – attention if can perhaps insert break points. 1430

8. Accessibility is not only tagging

1432 A tagged PDF is needed for accessibility but this is not enough. As already mentioned there
are more requirements: 1432

1433 • The language must be declared by adding a /Lang xx-XX to the PDF catalog or – if the
language changes for a part of the text to the structure or the marked content. Setting the
document language can be rather easily done with existing packages. With the new PDF
resource management it should be done with \pdfmanagement_add:nnn{Catalog}{Lang}{(en-
US)}. For settings in marked content and structure I will have to add keys. 1433

1434 • All characters must have an unicode representation or a suitable alternative text. With
lualatex and open type (unicode) fonts this is normally not a problem. With pdflatex it
could need 1434

 \input{glyphtounicode}
 \pdfgentounicode=1

1438 and perhaps some\pdfglyphtounicode commands. 1438

1439 • Hard and soft hyphen must be distinct. 1439

1440 • Spaces between words should be space glyphs and not only a horizontal movement.
See section 7. 1440

1441 • Various small infos must be present in the catalog dictionary, info dictionary and the
page dictionaries, e.g. metadata like title. 1441

1442 If suitable I will add code for this tasks to this packages. But some of them can also be done
already with existing packages like hyperref, hyperxmp, pdfx. 1442

31

9. Debugging

1444 While developing commands and tagging a document, it can be useful to get some info about
the current structure. For this a number of commands are provided 1444

1472 \showtagstack 1472

1474 This shows the tag names of the currently open structures. Typically it will contain at least
|root| and |Document|. 1474

1476 \showtagpdfmcdata[⟨mc number⟩] 1476

1478 Thisluaonly can only be used with lualatex and shows some info about the current mc-chunk. The
optional argument allows to select a number. 1480

1482 \showtagpdfattributes 1482

1484 Thisluaonly can only be used with lualatex and shows some info about the current attributes. 1486

10. To-do

1488 • Add commands and keys to enable/disable the checks. 1488

1489 • Check/extend the code for language tags. 1489

1490 • Think about math. 1490

1491 • Think about Links/Annotations 1491

1492 • Keys for alternative and actualtext. How to define the input encoding? Like in Accsupp? 1492

1493 • Check twocolumn documents 1493

1494 • Examples 1494

1495 • Write more Tests 1495

1496 • Write more Tests 1496

1497 • Unicode 1497

1498 • Hyphenation char 1498

1499 • Think about included (tagged) PDF. Can one handle them? 1499

1500 • Improve the documentation 1500

1501 • Tag as proof of concept the documentation (nearly done) 1501

1502 • Document the code better 1502

1503 • Create dtx 1503

1504 • Find someone to check and improve the lua code 1504

32

1505 • Move more things to lua in the luamode 1505

1532 • Find someone to check and improve the rest of the code 1532

1533 • Check differences between PDF versions 1.7 and 2.0. 1533

1534 • bidi? 1534

References

1536 [1] Adobe Systems Incorporated. Document management – Portable document format –
Part 1: PDF 1.7. 1st ed. July 1, 2008. URL: https://www.adobe.com/content/dam/acom/
en/devnet/pdf/pdfs/PDF32000_2008.pdf (visited on 04/18/2021). 1536

1537 [2] Adobe Systems Incorporated. PDF Reference, sixth edition. 2006. URL: https://www.
adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf. 1537

1538 [3] Dual Lab. Next-Generation PDF. URL: http://ngpdf.com/. 1538

1539 [4] International Standard. ISO 32000-2:2020(en). Document management — Portable docu-
ment format — Part 2: PDF 2.0. 2nd ed. Dec. 2020. URL: https://www.iso.org/obp/ui/
#iso:std:iso:32000:-2:ed-2:v1:en (visited on 04/18/2021). 1539

1540 [5] TeX User Group. PDF accessibility and PDF standards. URL: https://tug.org/twg/
accessibility/. 1540

1541 [6] veraPDF consortium. veraPDF. URL: http://verapdf.org/. 1541

1542 [7] Zugang für alle – Schweizerische Stiftung zur behindertengerechten Technologienutzung.
PDF Accessibility Checker (PAC 3). URL: http://www.access-for-all.ch/ch/pdf-
werkstatt/pdf-accessibility-checker-pac.html (visited on 07/05/2018). 1542

A. Some remarks about the PDF syntax

1544 This is not meant as a full reference only as a background to make the examples and remarks
easier to understand. 1544

1545 postfix notation PDF uses in various places postfix notation. This means that the operator is
behind its arguments: 1545

18 0 obj

18 0 R (a reference (operator R) to an object

1 0 0 1 100.2 742 Tm

/P <</MCID 0>> BDC

33

https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
http://ngpdf.com/
https://www.iso.org/obp/ui/#iso:std:iso:32000:-2:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:32000:-2:ed-2:v1:en
https://tug.org/twg/accessibility/
https://tug.org/twg/accessibility/
http://verapdf.org/
http://www.access-for-all.ch/ch/pdf-werkstatt/pdf-accessibility-checker-pac.html
http://www.access-for-all.ch/ch/pdf-werkstatt/pdf-accessibility-checker-pac.html

1550 Names PDF knows a sort of variable called a “name”. Names start with a slash and may
include any regular characters, but not delimiter or white-space characters. Uppercase
and lowercase letters are considered distinct: /A and /a are different names. /.notdef
and /Adobe#20Green are valid names. 1550

1577 Quite a number of the options of tagpdf actually define such a name which is later
added to the PDF. I recommend strongly not to use spaces and exotic chars in such
names. While it is possible to escape such names it is rather a pain when moving them
through the various lists and commands and quite probably I forgot some place where
it is needed. 1577

1578 Strings There are two types of strings: Literal strings are enclosed in round parentheses. They
normally contain a mix of ascii chars and octal numbers: 1578

1579 (gr\374\377ehello[]\050\051). 1579

1580 Hexadezimal strings are enclosed in angle brackets. They allow for a representation of
all characters the whole unicode ranges. This is the default output of lualatex. 1580

1581 <003B00600243013D0032>. 1581

1582 Arrays Arrays are enclosed by square brackets. They can contain all sort of objects including
more arrays. As an example here an array which contains five objects: a number, an
object reference, a string, a dictionary and another array. Be aware that despite the
spaces 15 0 R is one element of the array. 1582

1583 [0 15 0 R (hello) <</Type /X>> [1 2 3]] 1583

0 15 0 R (hello) <</Type /X>> [1 2 3]

1585 Dictionaries Dictionaries are enclosed by double angle brackets. They contain key-value
pairs. The key is always a name. The value can be all sort of objects including more
dictionaries. It doesn’t matter in which order the keys are given. 1585

1586 Dictionaries can be written all in one line:
<</Type/Page/Contents 3 0 R/Resources 1 0 R/Parent 5 0 R>>
but at least for examples a layout with line breaks and indentation is more readable: 1586

<<
/Type /Page
/Contents 3 0 R
/Resources 1 0 R
/MediaBox [0 0 595.276 841.89]
/Parent 5 0 R

>>

1594 (indirect) objects These are enclosed by the keywords obj (which has two numbers as prefix
arguments) and endobj. The first argument is the object number, the second a genera-
tion number – if a PDF is edited objects with a larger generation number can be added.
As with pdflatex/lualatex the PDF is always new we can safely assume that the number
is always 0. Objects can be referenced in other places with the R operator. The content
of an object can be all sort of things. 1594

34

1595 streams A stream is a sequence of bytes. It can be long and is used for the real content of PDF:
text, fonts, content of graphics. A stream starts with a dictionary which at least sets the
/Length name to the length of the stream followed by the stream content enclosed by
the keywords stream and endstream. 1595

1622 Here an example of a stream, an object definition and reference. In the object 2 (a page
object) the /Contents key references the object 3 and this then contains the text of the
page in a stream. Tf, Tm and TJ are (postfix) operators, the first chooses the font with
the name /F15 at the size 10.9, the second displaces the reference point on the page
and the third inserts the text. 1622

% a page object (shortened)
2 0 obj
<<
/Type/Page
/Contents 3 0 R
/Resources 1 0 R
...

>>
endobj

%the /Contents object (/Length value is wrong)
3 0 obj
<</Length 153 >>
stream
BT
/F15 10.9 Tf 1 0 0 1 100.2 746.742 Tm [(hello)]TJ
ET
endstream
endobj

1642 In such a stream the BT–ET pair encloses texts while drawing and graphics are outside
of such pairs. 1642

1643 Number tree This is a more complex data structure that is meant to index objects by numbers.
In the core is an array with number-value pairs. A simple version of number tree which
has the keys 0 and 3 is 1643

6 0 obj
<<
/Nums [

0 [20 0 R 22 0 R]
3 21 0 R

]
>>
endobj

1652 This maps 0 to an array and 2 to the object reference 21 0 R. Number trees can be split
over various nodes – root, intermediate and leaf nodes. We will need such a tree for the

35

parent tree. 1652

36

	Preface to version 0.8 and newer
	Introduction
	Tagging and accessibility
	Engines and modes
	References and target PDF version
	Validation
	Examples wanted!
	Changes in 0.3
	Changes in 0.5
	Changes in 0.6
	Changes in version 0.61
	Changes in version 0.8
	Changes in version 0.81
	Proof of concept: the tagging of the documentation itself

	Setup
	Modes and package options
	Setup and activation

	Tagging
	Three tasks
	Task 1: Marking the chunks: the mark-content-step
	Generic mode versus lua mode in the mc-task
	Commands to mark content and chunks
	Luamode: global or not global – that is the question
	Tips
	Links
	Math
	Split paragraphs
	Automatic tagging of paragraphs

	Task 2: Marking the structure
	Structure types
	Sectioning
	Commands to define the structure
	Root structure
	Attributes and attribute classes

	Task 3: tree Management
	A fully marked up document body
	Lazy and automatic tagging
	Adding tagging to commands

	Alternative text, ActualText and text-to-speech software
	Standard types and new tags
	"Real" space glyphs
	Accessibility is not only tagging
	Debugging
	To-do
	References
	Some remarks about the PDF syntax

