
A Document Class and a Package

for Handling Multi-File Projects

Federico Garcia, Gernot Salzer

2020/02/14 v1.6

Abstract

The subfiles package allows authors to split a document into one main
file and one and more subsidiary files (subfiles) akin to the \input command,
with the added benefit of making the subfiles compilable by themselves. This
is achieved by reusing the preamble of the main file also for the subfiles.

Contents

1 Introduction 1

2 Basic usage 2

3 Advanced usage 3
3.1 Hierarchy of directories . 3
3.2 Including files instead of inputting them 4
3.3 Bibliographies . 4
3.4 Unusual locations for placing definitions and text 4
3.5 Avoiding extra spaces . 5

4 Troubleshooting 6

5 Dependencies 6

6 Version history 6

7 The Implementation 7
7.1 The class . 7
7.2 The package . 9

1 Introduction

The LATEX commands \include and \input allow the user to split the TEX source
of a document into several input files. This is useful when creating documents with

1

many chapters, but also for handling large tables, figures, and code samples, which
require a considerable amount of trial-and-errors.

In this process the rest of the document is of little use, and can even interfere.
For example, error messages may indicate not only the wrong line number, but
may point to the wrong file. Frequently, one ends up wanting to work only on the
new file:

• Create a new file, and copy-paste the preamble of the main file into it.

• Work on this file, typeset it alone as many times as necessary.

• Finally, when the result is satisfactory, delete the preamble from the file
(alongside with \end{document}!), and \include or \input it from the
main file.

It is desirable to reduce these three steps to the interesting, middle one. Each
new, subordinate file (henceforth ‘subfile’) should behave both as a self-sufficient
LATEX document and as part of the whole project, depending on whether it is
LATEXed individually or \included/\input from the main document. This is
what the class subfiles.cls and the package subfiles.sty are intended for.

2 Basic usage

The main file, i.e., the file with the preamble to be shared with the subfiles, hassubfiles.sty

to load the package subfiles at the end of the preamble:

\usepackage{subfiles}

\begin{document}

Subordinate files (subfiles) are loaded from the main file or from other subfiles\subfile

with the command

\subfile{〈subfile name〉}
The subfiles have to start with the linesubfiles.cls

\documentclass[〈main file name〉]{subfiles}
which loads the class subfiles. Its only ‘option’, which is actually mandatory,
gives the name of the main file. This name follows TEX conventions: .tex is the
default extension, the path has to be provided if the main file is in a different
directory, and directories in the path have to be separated by / (not \). Thus, we
have the following structure:

main file

\documentclass[...]{...}

〈shared preamble〉
\usepackage{subfiles}

\begin{document}

. . .
\subfile{〈subfile name〉}
. . .
\end{document}

subfile

\documentclass[〈main file name〉]{subfiles}
\begin{document}

. . .
\end{document}

2

Now there are two possibilities.

• If LATEX is run on the subfile, the line \documentclass[..]{subfiles} is
replaced by the preamble of the main file (including its \documentclass

command). The rest of the subfile is processed normally.

• If LATEX is run on the main file, the subfile is loaded like with an \input

command, except that the three lines \documentclass[..]{subfiles},
\begin{document}, and \end{document} are ignored.

3 Advanced usage

3.1 Hierarchy of directories

Sometimes it is desirable to put a subfile together with its images and further files
into its own directory. The difficulty now is that these additional files have to be
addressed by different pathes depending on whether the main files or the subfile
is typeset. As of version 1.3, the subfiles package handles this problem by using
the import package.

As an example, consider the following hierarchy of files:

main.tex

mypreamble.tex

dir1/subfile1.tex

dir1/image1.jpg

dir1/text1.tex

dir1/dir2/subfile2.tex

dir1/dir2/image2.jpg

dir1/dir2/text2.tex

where main, subfile1, and subfile2 have the following contents:

main.tex

\documentclass{article}

\input{mypreamble}

\usepackage{graphicx}

\usepackage{subfiles}

\begin{document}

\subfile{dir1/subfile1}

\end{document}

subfile1.tex

\documentclass[../main]{subfiles}

\begin{document}

\input{text1}

\includegraphics{image1.jpg}

\subfile{dir2/subfile2}

\end{document}

subfile2.tex

\documentclass[../../main]{subfiles}

\begin{document}

\input{text2}

\includegraphics{image2.jpg}

\end{document}

3

Then each of the three files can be typeset individually in its respective directory,
where LATEX is able to locate all included text files and images.

3.2 Including files instead of inputting them

In plain LATEX, you can use either \input or \include to load a file. In most\subfileinclude

cases the first is appropriate, but sometimes there are reasons to prefer the latter.
Internally, the \subfile command uses \input. For those cases where you need
\include, the package provides the command

\subfileinclude{〈subfile name〉}

3.3 Bibliographies

Manual bibliographies with the thebibliography environment work as usual.
Problems may arise if external programs like bibtex or biber are used to generate
the bibliography. Here are some hints on how to make it work.

• Make sure the command \bibliography is executed after loading the\bibliography

subfiles package. Put the command between \usepackage{subfiles}

and \begin{document} or somewhere into the text part.

• When you use the package biblatex, and programs like biber complain
about not being able to find the bibliography files, use \bibliography in-
stead of \addbibresource (see above), or the command \subfix (see be-
low).

• Whenever an external program complains that a file specified in the LATEX\subfix

document cannot be found, wrap the command \subfix around the file-
name. Here are some examples.

package command when used with subfiles

biblatex \addbibresource{\subfix{〈file〉}}
bibunits \putbib[\subfix{〈file1 〉},\subfix{〈file2 〉},. . .]

\defaultbibliography{\subfix{〈file1 〉},. . . }

The subfiles package has been tested with the packages biblatex, bibunits,
and chapterbib as well as with the external programs bibtex and biber.

3.4 Unusual locations for placing definitions and text

Usually all definitions and packages required by the subfiles should go into the
preamble of the main file. There are some further locations, though, where one
might consider adding definitions and text. Put negatively, apparently irrelevant
stuff in these locations may become unexpectedly visible in the document or cause
errors.

4

Code after the end of the main document is added to the preamble of
the subfiles, but is ignored when typesetting the main file. This happens because
a subfile typeset by itself does not really take the preamble of the main file, but
everything outside of \begin{document} and \end{document}. This has two con-
sequences: a) the user can add some commands that are to be processed as part
of the preamble only when the subfiles are typeset by themselves; but also b) the
user has to be careful even after \end{document} in the main file, for any syntax
error there will ruin the LATEXing of the subfile(s).

Similarly, when typesetting the main document, the \subfile command does
not really load the stuff within the document environment, but everything ex-
cept the three commands \documentclass[...]{...}, \begin{document}, and
\end{document}. This has the following consequences.

Code in the preamble of a subfile is processed as part of the text when
typesetting the main file, but as part of the preamble when typesetting the subfile.
This means that the preamble of a subfile can only contain stuff that is acceptable
for both, the preamble and the text area. One should also keep in mind that each
subfile is input within a group, so definitions made within may not work outside.

Code after \end{document} in a subfile is treated like the code preceding
it when the subfile is loaded from the main file, but is ignored when typesetting
the subfile. The code after \end{document} behaves as if following the \subfile

command in the main file, except that it is still part of the group enclosing the
subfile. As a consequence, empty lines at the end of the subfile lead to a new
paragraph in the main document, even if the \subfile command is immediately
followed by text.

3.5 Avoiding extra spaces

Sometimes you may want to load the contents of a subfile without white space
separating it from the contents of the main file. In this respect \subfile be-
haves similar to \input. Any space or newline before and after the \subfile

command will appear in the typeset document, as will any white space between
the last character of the subfile and \end{document}. Moreover, any stuff after
\end{document} will end up in the main document, including spurious empty
lines, which may lead to a new paragraph. Therefore, to load the contents of a
subfile without intervening spaces, you have either to add comment signs:

main.tex

. . .
text before%

\subfile{sub.tex}%

text after

sub.tex

\documentclass[main.tex]{subfiles}

\begin{document}

contents of subfile%

\end{document}

% No empty lines after \end{document}!

or to put everything on the same line:

5

text before\subfile{sub.tex}text after

contents of subfile\end{document}

4 Troubleshooting

Here are some hints that solve most problems.

1. Make sure to use the most recent version of the subfiles package, available
from CTAN1 and Github2.

2. Make sure that \usepackage{subfiles} comes last in the preamble of the
main document.

3. If some external program that cooperates with TEX, like bibtex or biber,
complains about not being able to find a file, locate the name of the file in
the LATEX source and replace 〈filename〉 by \subfix{〈filename〉}.

4. Make sure that there is no stuff after \end{document}, neither in the main
file nor in the subfiles.

5. If there is anything in the preambles of the subfiles, make sure that it is
admissible for both, the preamble and the document area.

6. If nothing of the above helps and you are stuck, ask the people on
tex.stackexchange3.

5 Dependencies

The subfiles package requires the verbatim package, whose comment environ-
ment is used to ignore the text area of the main file when typesetting subfiles
separately. Moreover, the import package is needed to load subfiles and their
auxiliary files from different directories. Both packages are part of the standard
TEX distributions.

6 Version history

v1.1: Initial version by Federico Garcia. Further versions by Gernot Salzer.

v1.2:

• Incompatibility with classes and packages removed that modify the
\document command, like the class revtex4.

v1.3:

1https://ctan.org/pkg/subfiles
2https://github.com/gsalzer/subfiles
3https://tex.stackexchange.com/

6

https://ctan.org/pkg/subfiles
https://github.com/gsalzer/subfiles
https://tex.stackexchange.com/

• Use of import package to handle directory hierarchies.

• \ignorespaces added to avoid spurious spaces.

• Incompatibility with commands removed that expect \document to be
equal to \@onlypreamble after the preamble. Thanks to Eric Domen-
joud for analysing the problem.

v1.4:

• Incompatibility with memoir class and comment package removed.

• Bug ‘\unskip cannot be used in vertical mode‘ fixed.

v1.5:

• Command \subfileinclude added.

• Basic support for bibtex related bibliographies in subfiles added.
Seems to suffice also for sub-bibliographies with the package chapterbib.

• Support for sub-bibliographies with package bibunits added.

v1.6:

• Support for sub-bibliographies with package bibunits dropped, in fa-
vor of \subfix.

• Command \subfix added.

• Incompatibility with standalone class removed.

• The options of the main class are now also processed when typesetting
a subfile; before they were ignored. Thanks to Ján Kl’uka for analysing
the problem.

7 The Implementation

7.1 The class

1 〈∗class〉
2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesClass{subfiles}[2020/02/14 v1.6 Multi-file projects (class)]

4 \DeclareOption*{\typeout{Preamble taken from file ‘\CurrentOption’}%

5 \let\preamble@file\CurrentOption}

6 \ProcessOptions

After processing the option of the subfiles class, we reset \@classoptionslist
such that the options in the main file will be processed.
7 \let\@classoptionslist\relax

Then we save the regular definition of \documentclass to be able to reset it later
to this definition:
8 \let\subfiles@documentclass\documentclass

7

Now \documentclass is set equal to \LoadClass such that the class and the
options of the main file will be loaded as usual.
9 \let\documentclass\LoadClass\relax

When typesetting a subfile, we have to skip the document environment of the
main file. This is done with the commands \comment and \endcomment from
the verbatim package. Now there is a problem: If we load verbatim here, the
definition of the commands may be overwritten if the user loads e.g. the comment

package. Loading verbatim in subfiles.sty at the latest possible moment is not
reliable, either. On the one hand we may overwrite macros required later by the
user, on the other hand the memoir class contains a copy of verbatim, so a later
\RequirePackage refuses to reload the package. Thus, in the case of a document
loading the memoir class and the comment package, we end up with the wrong
definition of \comment in any case.

Therefore we load the verbatim package here and save the contents of the
crucial commands \comment and \endcomment under a different name.
10 \RequirePackage{verbatim}

11 \let\subfiles@comment\comment

12 \let\subfiles@endcomment\endcomment

To handle subfiles in separate directories, we load the import package.
13 \RequirePackage{import}

The \subimport command requires path and filename as separate arguments,
so we have to split file locations into these two components. The internal LATEX
command \filename@parse almost fits the bill, except that it additionally splits
the filename into basename and extension. Unfortunately, concatenating base-
name and extension to recover the filename is not clean: Under Unix/Linux, the
filenames base and base. denote different entities, but after \filename@parse

both have the same basename and an empty extension. Therefore we redefine
the command \filename@simple temporarily; it is responsible for this unwanted
split.
14 \def\subfiles@split#1{%

15 \let\subfiles@filename@simple\filename@simple

16 \def\filename@simple##1.\\{\edef\filename@base{##1}}%

17 \filename@parse{#1}%

18 \let\filename@simple\subfiles@filename@simple

19 }

E.g., after executing \subfiles@split{../dir1/dir2/file.tex} the macros
\filename@area and \filename@base expand to ../dir1/dir2/ and file.tex,
respectively.

Now we split the name of the main file that has been provided as optional
argument of the document class, and \subimport the main file.
20 \subfiles@split{\preamble@file}

21 \subimport{\filename@area}{\filename@base}

The main file loads the package subfiles as part of the preamble, which
saves the contents of \document and \enddocument as \subfiles@document and
\subfiles@enddocument, respectively. We use these macors now to restore the

8

original values of \document, \enddocument, and \documentclass. The backup
commands are \undefined to save memory. That’s it.
22 {\catcode‘\@=11

23 \global\let\document\subfiles@document

24 \global\let\enddocument\subfiles@enddocument

25 \global\let\documentclass\subfiles@documentclass

26 \global\let\subfiles@document\undefined

27 \global\let\subfiles@enddocument\undefined

28 \global\let\subfiles@documentclass\undefined

29 }

30 〈/class〉

It may not be obvious why @ has to be catcoded to a letter, since we are
in a style file anyway. However, the \preamble@file occasionally contains
\usepackage commands that make @ a non-letter. This is why the part after
loading the main preamble needs a \catcode command, grouping, and \global’s.

7.2 The package

Any option will be ignored.

31 〈∗package〉
32 \NeedsTeXFormat{LaTeX2e}

33 \ProvidesPackage{subfiles}[2020/02/14 v1.6 Multi-file projects (package)]

34 \DeclareOption*{\PackageWarning{\CurrentOption ignored}}

35 \ProcessOptions

If the initial document class was subfiles, then the main file is loaded
as part of a subfile. In this case anything between \begin{document} and
\end{document} has to be skipped, while the contents of the commands \document
and \enddocument has to be retained for later use in the subfile. There-
fore we save the contents of the two commands as \subfiles@document and
\subfiles@enddocument, respectively. Now the document environment is rede-
fined to become the saved comment environment from the verbatim package. Con-
sequently, the body of the main file is ignored by LATEX, and only the preamble is
read (as well as anything that comes after \end{document}!).

36 \@ifclassloaded{subfiles}{%

37 \let\subfiles@document\document

38 \let\subfiles@enddocument\enddocument

39 \let\document\subfiles@comment

40 \let\enddocument\subfiles@endcomment

By loading the subfiles package immediately before \begin{document} we
ensure that \subfiles@document and \subfiles@enddocument contain all mod-
ifications that the class and the preamble of the main file may have applied to the
document environment. This happens e.g. with the class revtex4 and the package
pythontex.

We use the import package to handle subfiles in separate directories. The
\subimport command requires path and filename as separate arguments, so we
have to split file locations into these two components. The internal LATEX com-
mand \filename@parse almost fits the bill, except that it additionally splits the

9

filename into basename and extension. Unfortunately, concatenating basename
and extension to recover the filename is not clean: Under Unix/Linux, the file-
names base and base. denote different entities, but after \filename@parse both
have the same basename and an empty extension. Therefore we redefine the com-
mand \filename@simple temporarily; it is responsible for this unwanted split.
Both things, loading the package and defining the command, are also done in
subfiles.cls, so we have to execute this code only if we are typesetting the
main file.

41 }{% subfiles class not loaded, we typeset the main document

42 \RequirePackage{import}

43 \def\subfiles@split#1{%

44 \let\subfiles@filename@simple\filename@simple

45 \def\filename@simple##1.\\{\edef\filename@base{##1}}%

46 \filename@parse{#1}%

47 \let\filename@simple\subfiles@filename@simple

48 }

49 }

E.g., after executing \subfiles@split{../dir1/dir2/file.tex} the macros
\filename@area and \filename@base expand to ../dir1/dir2/ and file.tex,
respectively.

The command \subfile specifies the command \subimport for \inputing the\subfile

subfile, and then calls \subfiles@subfile.

50 \newcommand\subfile{%

51 \let\subfiles@loadfile\subimport

52 \subfiles@subfile

53 }

The command \subfileinclude specifies the command \subincludefrom for\subfileinclude

\includeing the subfile, and then calls \subfiles@subfile.

54 \newcommand\subfileinclude{%

55 \let\subfiles@loadfile\subincludefrom

56 \subfiles@subfile

57 }

The main functionality of the two \subfile commands is implemented in
\subfiles@subfile. It redefines \documentclass and the document environ-
ment to do nothing but reverting these command to their original meaning and
avoiding spurious spaces. Reverting \documentclass and \document to their orig-
inal definition is important for being compatible with classes like standalone or
packages like bibentry, which rely on this definition.

58 \newcommand\subfiles@subfile[1]{%

59 \begingroup

60 \let\subfiles@documentclass\documentclass

61 \let\subfiles@document\document

62 \let\subfiles@enddocument\enddocument

63 \renewcommand\documentclass[2][subfiles]{%

64 \let\documentclass\subfiles@documentclass

65 \ignorespaces

10

66 }%

67 \renewenvironment{document}{%

68 \let\document\subfiles@document

69 \ignorespaces

70 }{%

71 \let\enddocument\subfiles@enddocument

72 \@ignoretrue

73 }%

Now we split the file name into path and base name and load the file.

74 \subfiles@split{#1}%

75 \subfiles@loadfile{\filename@area}{\filename@base}%

76 \endgroup

77 }

To let external programs find files, we have to add the \import@path to file
names. This is accomplished with the command \subfiles@addimportpath.

78 \def\subfiles@addimportpath#1{%

79 \def\subfiles@filelist{}%

80 \def\subfiles@sep{}%

81 \@for\subfiles@filename:=#1\do{%

82 \edef\subfiles@filelist{%

83 \subfiles@filelist

84 \subfiles@sep

85 \import@path

86 \subfiles@filename

87 }%

88 \def\subfiles@sep{,}%

89 }

90 }

We redefine the \bibliography command such that the import path is added\bibliography

to the file names before the original command is called.

91 \let\subfiles@bibliography\bibliography

92 \renewcommand\bibliography[1]{%

93 \subfiles@addimportpath{#1}%

94 \expandafter\subfiles@bibliography\expandafter{\subfiles@filelist}%

95 }

Instead of adding further fixes for other packages that write filenames to ex-\subfix

ternal files (like bibunits), we provide a command for adding the \import@path

to a filename.

96 \def\subfix#1{\import@path#1}

11

	Introduction
	Basic usage
	Advanced usage
	Hierarchy of directories
	Including files instead of inputting them
	Bibliographies
	Unusual locations for placing definitions and text
	Avoiding extra spaces

	Troubleshooting
	Dependencies
	Version history
	The Implementation
	The class
	The package

