
A Document Class and a Package

for Handling Multi-File Projects

Federico Garcia, Gernot Salzer

2019/09/28

Abstract

The subfiles package allows authors to split a document into one main
file and one and more subsidiary files (subfiles) akin to the \input command,
with the added benefit of making the subfiles compilable by themselves. This
is achieved by reusing the preamble of the main file also for the subfiles.

1 Introduction

The LATEX commands \include and \input allow the user to split the TEX source
of a document into several input files. This is useful when creating documents with
many chapters, but also for handling large tables, figures, and code samples, which
require a considerable amount of trial-and-errors. 1

In this process the rest of the document is of little use, and can even interfere.
For example, error messages may indicate not only the wrong line number, but
may point to the wrong file. Frequently, one ends up wanting to work only on the
new file:

• Create a new file, and copy-paste the preamble of the main file into it.

• Work on this file, typeset it alone as many times as necessary.

• Finally, when the result is satisfactory, delete the preamble from the file
(alongside with \end{document}!), and \include or \input it from the
main file.

It is desirable to reduce these three steps to the interesting, middle one. Each
new, subordinate file (henceforth ‘subfile’) should behave both as a self-sufficient
LATEX document and as part of the whole project, depending on whether it is
LATEXed individually or \included/\input from the main document. This is
what the class subfiles.cls and the package subfiles.sty are intended for.

1Frederico had to typset numerous musical examples, whose code in MusiXTEX is long, in-
trincate, and barely readable.

1



2 Basic usage

The main file, i.e., the file with the preamble to be shared with the subfiles, has
to load the package subfiles at the very end of the preamble:

\usepackage{subfiles}

\begin{document}

Subordinate files (subfiles) are loaded from the main file or from other subfiles
with the command

\subfile{〈subfile name〉}

The subfiles have to start with the line

\documentclass[〈main file name〉]{subfiles}

which loads the class subfiles. Its only ‘option’, which is actually mandatory,
gives the name of the main file. This name follows TEX conventions: .tex is the
default extension, the path has to be provided if the main file is in a different
directory, and directories in the path have to be separated by / (not \). Thus, we
have the following structure:

main file

\documentclass[...]{...}

〈shared preamble〉
\usepackage{subfiles}

\begin{document}

. . .
\subfile{〈subfile name〉}
. . .
\end{document}

subfile

\documentclass[〈main file name〉]{subfiles}
\begin{document}

. . .
\end{document}

Now there are two possibilities.

• If LATEX is run on the subfile, the line \documentclass[..]{subfiles} is
replaced by the preamble of the main file (including its \documentclass

command). The rest of the subfile is processed normally.

• If LATEX is run on the main file, the subfile is loaded like with an \input

command, except that the three lines \documentclass[..]{subfiles},
\begin{document}, and \end{document} are ignored.

3 Advanced usage

3.1 Hierarchy of directories

Sometimes it is desirable to put a subfile together with its images and further files
into its own directory. The difficulty now is that these additional files have to be
addressed by different pathes depending on whether the main files or the subfile

2



is typeset. As of version 1.3, the subfiles package handles this problem by using
the import package.

As an example, consider the following hierarchy of files:

main.tex

mypreamble.tex

dir1/subfile1.tex

dir1/image1.jpg

dir1/text1.tex

dir1/dir2/subfile2.tex

dir1/dir2/image2.jpg

dir1/dir2/text2.tex

where main, subfile1, and subfile2 have the following contents:

main.tex

\documentclass{article}

\input{mypreamble}

\usepackage{graphicx}

\usepackage{subfiles}

\begin{document}

\subfile{dir1/subfile1}

\end{document}

subfile1.tex

\documentclass[../main]{subfiles}

\begin{document}

\input{text1}

\includegraphics{image1.jpg}

\subfile{dir2/subfile2}

\end{document}

subfile2.tex

\documentclass[../../main]{subfiles}

\begin{document}

\input{text2}

\includegraphics{image2.jpg}

\end{document}

Then each of the three files can be typeset individually in its respective directory,
where LATEX is able to locate all included text files and images.

3.2 Additional definitions for subfiles

Usually all definitions and packages required by the subfiles should go into the
preamble of the main file. There are some places, though, where one might consider
adding definitions for the subfiles.

Code after the end of the main document is added to the preamble of
the subfiles, but is ignored when typesetting the main file. This happens because
a subfile typeset by itself does not really take the preamble of the main file, but
everything outside of \begin{document} and \end{document}. This has two con-
sequences: a) the user can add some commands to be processed as part of the
preamble only when the subfiles are typeset by themselves; but also b) the user
has to be careful even after \end{document} in the main file, for any syntax error
there will ruin the LATEXing of the subfile(s).

3



Code in the preamble of a subfile is processed as part of the text when
typesetting the main file, but as part of the preamble when typesetting the subfile.
This means that the preamble of a subfile can only contain stuff that is acceptable
for both, the preamble and the text area. One should also keep in mind that each
subfile is \input within a group, so definitions made within may not work outside.
A good practice when using subfiles (and also when not using it) is to make any
definitions in the preamble of the main file, avoiding confusion and allowing the
reader to find them easily.

3.3 Avoiding extra spaces

Sometimes you may want to load the contents of a subfile without white space
separating it from the contents of the main file. In this respect \subfile behaves
like \input. Any space or newline before and after the \subfile command will
appear in the typeset document, as will any white space between the last character
of the subfile and \end{document}. Therefore, to load the contents of a subfile
without intervening spaces, you have either to add comment signs:

main.tex

. . .
text before%

\subfile{sub.tex}%

text after

sub.tex

\documentclass[main.tex]{subfiles}

\begin{document}

contents of subfile%

\end{document}

or to put everything on the same line:

text before\subfile{sub.tex}text after

contents of subfile\end{document}

4 Dependencies

The subfiles package requires the verbatim package, whose comment environ-
ment is used to ignore the text area of the main file when typesetting subfiles
separately. Moreover, the import package is needed to load subfiles and their
auxiliary files from different directories. Both packages are part of the standard
TEX distributions.

5 Version history

v1.1 (FG): Start of version history.

v1.2 (GS): The subfiles package becomes compatible with classes and packages
that modify the \document command, like the class revtex4.

v1.3 (GS): Use of import package to handle directory hierarchies. \ignorespaces
added to avoid spurious spaces. Incompatibility with commands removed
that expect \document to be equal to \@onlypreamble after the preamble
(thanks to Eric Domenjoud for analysing the problem).

4



6 The Implementation

6.1 The class

1 〈∗class〉
2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesClass{subfiles}[2019/09/28 v1.3 Federico Garcia, Gernot Salzer]

4 \DeclareOption*{\typeout{Preamble taken from file ‘\CurrentOption’}%

5 \let\preamble@file\CurrentOption}

6 \ProcessOptions

We start by saving the regular LATEX definition of \documentclass:
7 \let\subfiles@documentclass\documentclass

Now \documentclass is set equal to \LoadClass such that the class and the
options of the main file will be loaded as usual.
8 \let\documentclass\LoadClass\relax

To handle subfiles in separate directories, we load the import package.
9 \RequirePackage{import}

The \subimport command requires the path and the basename of the file to
be loaded in separate arguments. Therefore we have to decompose file names into
these two components.
10 \def\subfiles@split#1{%

11 \edef\subfiles@filename{#1}%

12 \def\subfiles@dir{}%

13 \def\subfiles@base{}%

14 \def\subfiles@sep{}%

15 \expandafter\subfiles@split@\subfiles@filename/\@nil/%

16 }

17 \def\subfiles@split@#1/{%

18 \def\tmp{#1}%

19 \ifx\tmp\@nnil

20 \let\subfiles@next\relax

21 \else

22 \edef\subfiles@dir{\subfiles@dir\subfiles@base\subfiles@sep}%

23 \def\subfiles@base{#1}%

24 \def\subfiles@sep{/}%

25 \let\subfiles@next\subfiles@split@

26 \fi

27 \subfiles@next

28 }

After executing e.g. \subfiles@split{../dir1/dir2/file.tex}, the com-
mands \subfiles@dir and \subfiles@base expand to ../dir1/dir2/ and
file.tex, respectively.

Now we split the name of the main file that has been provided as optional
argument of the document class, and \subimport the main file.
29 \subfiles@split{\preamble@file}

30 \subimport{\subfiles@dir}{\subfiles@base}

5



The main file loads the package subfiles as part of the preamble, which
saves the contents of \document and \enddocument as \subfiles@document and
\subfiles@enddocument, respectively. Then we restore the original values of
\document, \enddocument, and \documentclass. The backup commands are
\undefined to save memory. That’s it.
31 {\catcode‘\@=11

32 \global\let\document\subfiles@document

33 \global\let\enddocument\subfiles@enddocument

34 \global\let\documentclass\subfiles@documentclass

35 \global\let\subfiles@document\undefined

36 \global\let\subfiles@enddocument\undefined

37 \global\let\subfiles@documentclass\undefined

38 }

39 〈/class〉

It may not be obvious why @ has to be catcoded to a letter, since we are
in a style file anyway. However, the \preamble@file occasionally contains
\usepackage commands that make @ a non-letter. This is why the part after
loading the main preamble needs a \catcode command, grouping, and \global’s.

6.2 The package

Any option will be ignored.

40 〈∗package〉
41 \NeedsTeXFormat{LaTeX2e}

42 \ProvidesPackage{subfiles}[2019/09/28 v1.3 Federico Garcia, Gernot Salzer]

43 \DeclareOption*{\PackageWarning{\CurrentOption ignored}}

44 \ProcessOptions

45 \RequirePackage{verbatim}

To handle subfiles in separate directories, we load the import package.

46 \RequirePackage{import}

The \import command requires the path and the basename of files in separate
arguments. Therefore we have to decompose file names into these two components.

47 \def\subfiles@split#1{%

48 \edef\subfiles@filename{#1}%

49 \def\subfiles@dir{}%

50 \def\subfiles@base{}%

51 \def\subfiles@sep{}%

52 \expandafter\subfiles@split@\subfiles@filename/\@nil/%

53 }

54 \def\subfiles@split@#1/{%

55 \def\tmp{#1}%

56 \ifx\tmp\@nnil

57 \let\subfiles@next\relax

58 \else

59 \edef\subfiles@dir{\subfiles@dir\subfiles@base\subfiles@sep}%

60 \def\subfiles@base{#1}%

61 \def\subfiles@sep{/}%

6



62 \let\subfiles@next\subfiles@split@

63 \fi

64 \subfiles@next

65 }

After executing e.g. \subfiles@split{../dir1/dir2/file.tex}, the com-
mands \subfiles@dir and \subfiles@base expand to ../dir1/dir2/ and
file.tex, respectively.

The command \subfile first redefines \documentclass and the document en-\subfile

vironment to do nothing. To avoid spurious spaces we \ignorespaces. Moreover,
we have to set \document to the value it usually has after the end of the preamble,
since some commands check this value and raise an error saying that the command
cannot be used in the preamble.

66 \newcommand\subfile[1]{%

67 \begingroup

68 \renewcommand\documentclass[2][subfiles]{\ignorespaces}%

69 \renewenvironment{document}{\let\document\@onlypreamble\ignorespaces}{}%

Now we split the file name into path and base name and \subimport it.

70 \subfiles@split{#1}%

71 \subimport{\subfiles@dir}{\subfiles@base}%

72 \unskip

73 \endgroup

74 }

Note that the changes to \documentclass and the document environment
happen within a group, so they are undone after inclusion of the subfile.

If the package is being processed as part of the main file, then we are
done. However, if the initial document class was subfiles, then the main file
is loaded as part of a subfile. In this case anything between \begin{document}

and \end{document} has to be skipped, while the contents of the commands
\document and \enddocument has to be retained for later use in the subfile.
Therefore we save the contents of the two commands as \subfiles@document

and \subfiles@enddocument, respectively. Now the document environment is
redefined to become the comment environment from the verbatim package. Con-
sequently, the body of the main file is ignored by LATEX, and only the preamble is
read (as well as anything that comes after \end{document}!).

75 \@ifclassloaded{subfiles}{%

76 \let\subfiles@document\document

77 \let\subfiles@enddocument\enddocument

78 \let\document\comment

79 \let\enddocument\endcomment

80 }{}

81 〈/package〉
By loading the subfiles package immediately before \begin{document} we

ensure that \subfiles@document and \subfiles@enddocument contain all mod-
ifications that the class and the preamble of the main file may have applied to the
document environment. This happens e.g. with the class revtex4 and the package
pythontex.

7


