
The stringstrings Package
Extensive array of string manipulation routines for cosmetic and programming

application

Steven B. Segletes
steven.b.segletes.civ@mail.mil

2015/02/02
v1.23

Abstract

The stringstrings package provides a large and sundry array of routines
for the manipulation of strings. The routines are developed not only for
cosmetic application, such as the changing of letter cases, selective removal
of character classes, and string substitution, but also for programming ap-
plication, such as character look-ahead applications, argument parsing, \if-
tests for various string conditions, etc. A key tenet employed during the
development of this package (unlike, for comparison, the \uppercase and
\lowercase routines) was to have resultant strings be “expanded” (i.e., the
product of an \edef), so that the stringstrings routines could be strung to-
gether sequentially and nested (after a fashion) to achieve very complex
manipulations.

Contents

1 Motivation 2

2 Philosophy of Operation 4

3 Configuration Commands 6

4 Commands to Manipulate Strings 8

5 Commands to Extract String Information 11

6 Commands to Test Strings 13

7 Disclaimers 14

1

8 Code Listing 18

1 Motivation

There were two seminal moments that brought about my motivation to develop
this package. The first was the realization of the oft cited and infamous LATEX
limitation concerning the inability to nest letter-case changes with LATEX’s intrin-
sic \uppercase and \lowercase routines. The second, though not diminishing its
utility in many useful applications, was the inherent limitations of the coolstr pack-
age, which is otherwise a useful tool for extracting substrings and measuring string
lengths.

The former is well documented and need not be delved into in great detail.
Basically, as it was explained to me, \uppercase and \lowercase are expanded
by LATEX at the last possible moment, and thus attempts to capture their result
for subsequent use are doomed to failure. One is forced to adopt the left-to-right
(rather than nested) approach to case changes.

In the case of the coolstr package, I again want to express my admiration for
the utility of this package. I briefly considered building the stringstrings package
around it, but it proved unworkable, because of some intrinsic limitations. First,
coolstr operates on strings, not tokens, and so in order to fool it into working on
tokenized inputs, one must use the cumbersome nomenclature of

\expandafter\substr\expandafter{\TokenizedString}{...}{...}

in order to, for example grab a substring of \TokenizedString. One may \def

the result of this subroutine, and use it elsewhere in an unaltered state. However,
one may not expand, via \edef, the result of \substr in order to use it as input
to a subsequent string manipulation. And thus, the desire to engage in successive
string manipulations of different natures (e.g., capitalization of leading characters,
extraction of words, reversal of character sequence, removal of character classes,
etc., etc.) are not achievable in the context of coolstr.

It was this state of affairs that brought me to hunger for routines that could
thoroughly manipulate strings, and yet produce their result “in the clear” (i.e., in
an untokenized form) which could be used as input for the next manipulation. It
turns out the heart of the stringstrings package which achieves this goal is based
on the simple (if much maligned) \if construct of LATEX, by using successive
iterations of the following construct:

\if <test char.><string><manipulated test char.>\else ...\fi

in which a character at the begining of a string is tested. If a match is found, the
manipulated test character is replaced at the end of the string, while the original
test character is lopped off from the beginning of the string. A false result is used
to proceed to a different test character. In this manner, the string may be rotated
through, character by character, performing the desired manipulations. And, most
importantly, the product of this operation may be placed into an \edef.

2

It turns out there was one glitch to this process (which has been successfully
remedied in the stringstrings package). And that is that there are several tokenized
LATEX symbols (e.g., \$, \{, \}, \AE, \oe, etc.) which expand to more than a single
byte. If I was more savvy on LATEX constructs, I would probably have known
how to handle this better. But my solution was to develop my own encoding
scheme wherein these problematic characters were re-encoded in my intermediate
calculations as a 2-byte (escape character-escape code) combination, and only
converted back into LATEX symbols at the last moment, as the finalized strings
were handed back to the user.

There are also several tokens, like \dag, \ddag, \P, \d, \t, \b, and \copyright

which can not be put into an \edef construct. The solution developed for strings
containing these such characters was to convert the encoded string not into an
expanded \edef construct, but rather back into a tokenized form amenable to
\def. The \retokenize command accomplishes this task and several others.

There was also one glitch that I have not yet been able to resolve to my
full satisfaction, though I have provided a workaround. And that is the occu-
rance of LATEX grouping characters, { and }, that might typically occur in math
mode. The problem is that the character-rotate technique that is the core of
stringstrings breaks when rotating these group characters. Why?? Because a
string comprised of ...{...}..., during the rotation process, will eventually be-
come ...}......{ during an intermediate stage of character rotation. This latter
string breaks LATEX because it is not a properly constructed grouping, even if
subsequent rotations would intend to bring it back into a proper construction.

And so, while stringstrings can handle certain math-mode constructs (e.g., $,
^, and _), it is unable to directly handle groupings that are brought about by the
use of curly braces. Note that \{ and \} are handled just fine, but not { and }.
As a result of this limitation regarding the use of grouping braces within strings,
stringstrings support for various math symbols remains quite limited.

While it is also common to use curly braces to delimit the arguments of diacrit-
cal marks in words like m\"{u}de etc., the same result can be achieved without the
use of braces as m\"ude, with the proper result obtained: müde. For diacritical
marks that have an alphabetic token such as the breve, given by \u, the curly
braces can also be omitted, with the only change being a space required after the
\u to delimit the token. Thus, c\u at becomes căt. Therefore, when manipulat-
ing strings containing diacritical marks, it is best to formulate them, if possible,
without the use of curly braces.

The workaround fix I have developed, to provide grouping functions within
stringstrings arguments, involves the use of newly defined tokens \LB and \RB (to
be used in lieu of { and }), along with a command \retokenize. This workaround
will be described subsequently, in the Disclaimers section.

3

2 Philosophy of Operation

There are several classes of commands that have been developed as part of the
stringstrings package. In addition to Configuration Commands, which set
parameters for subsequent string operations, there are the following command
classes:

• Commands to Manipulate Strings – these commands take an input
string or token and perform a specific manipulation on the string;

• Commands to Extract String Information – these commands take an
input string or token, and ascertain a particular characteristic of the string;
and

• Commands to Test Strings – these commands take an input string or
token and test for a particular alphanumeric condition.

Of course, there are also Support Commands which are low-level routines which
provide functionality to the package, which are generally not accessible to the user.

To support the intended philosophy that the user may achieve a complex
string manipulation though a series of simpler manipulations (which is otherwise
known as nesting), a mechanism had to be developed. True command nesting of
the form \commandA{\commandB{\commandC{string}}} is not supported by the
stringstrings package, since many of the manipulation commands make use of (and
would thus inadvertantly overwrite) the same sets of variables used by other rou-
tines. Furthermore, there is that ’ol left-to-right philosophy of LATEX to contend
with.

Instead, for the case of commands that manipulate strings, the expanded
(i.e., \edef’ed) result of the manipulation is placed into a string called \thestring.\thestring

Then, \thestring may either be directly used as the input to a subsequent oper-
ation, or \edef’ed into another variable to save it for future use.

String manipulation commands use an optional first argument to specify what
to do with the manipulated string (in addition to putting it in \thestring). Most
string manipulation commands default to verbose mode [v], and print out their[v]

result immediately on the assumption that a simple string manipulation is, many
times, all that is required. If the user wishes to use the manipulated result as is,
but needs to use it later in the document, a quiet mode [q] is provided which[q]

suppresses the immediate output of \thestring.

In the absence of symbol tokens (e.g., \$, \&, \oe, \^, etc.), the verbose
and quiet modes would prove sufficient. However, when a tokenized symbol is
\edef’ed, the token is expanded to the actual symbolic representation of the char-
acter. If this expanded symbol is used as part of an input string to a subsequent
stringstrings manipulation routine, it gets confused, because the means to detect
the token are characteristically different than the means to detect the expanded

4

symbol. Thus, if one wishes to use \thestring as an input to a subsequent ma-
nipulation routine, stringstrings provides an encoded mode [e] which places an[e]

encoded version of the resulting manipulation into \thestring. The encoded
mode is also a quiet mode, since it leaves \thestring in a visually unappealing
state that is intended for subsequent manipulation.

The encoded mode is not a LATEX standard, but was developed for this ap-
plication. And therefore, if the result of a stringstrings manipulation is needed as
input for a routine outside of the stringstrings package, the encoded mode will be
of no use. For this reason (and others), the \retokenize command is provided.\retokenize

Its use is one of only three times that a stringstrings command returns a tokenized
\def’ed string in \thestring, rather than an expanded, \edef’ed string. And in
the other two cases, both call upon \retokenize.

In addition to providing tokenized strings that can be passed to other LATEX
packages, \retokenize can also remedy stringstrings problems associated with
inadequate character encodings (OT1) and the use of grouping characters { and }

within stringstrings arguments. This issue is discussed more fully in the Disclaimers
section, and in the actual \retokenize command description.

Therefore, for complex multistage string manipulations, the recommended pro-
cedure is to perform each stage of the manipulation in encoded [e] mode, passing
along \thestring to each subsequent stage of the manipulation, until the very
last manipulation, which should be, at the last, performed in verbose [v] or quiet
[q] modes. If the resulting manipulation is to be passed to a command out-
side of the stringstrings package for further manipulation (or if the string contains
characters which cannot be placed into an \edef), \thestring may need to be
\retokenize’ed. If concatenations of two (or more) different manipulations are to
be used as input to a third manipulation, \thestring from the first manipulation
will need to be immediately \edef’ed into a different variable, since \thestring

will be overwritten by the second manipulation (see Table 1 for summary).

Table 1: Execution Modes of stringstrings Commands

Mode Coding Use when result is \thestring is

[v] verbose decoded or retokenized final echoed
[q] quiet decoded or retokenized final not echoed
[e] encoded encoded intermediate not echoed

Moving on to commands that extract string information, this class of com-
mands (unless otherwise noted) output their result into a token which is given the
name \theresult. This token does not contain a manipulated form of the string,\theresult

but rather a piece of information about the string, such as “how many characters
are in the string?”, “how many words are in the string?”, “how many letter ‘e’s
are in the string?”, etc.

5

The final class of stringstrings commands are the string-test commands. While
some of this class of commands also store their test result in \theresult, most
of these commands use the \testcondition{string} \ifcondition constructs (see
ifthen package) to answer true/false questions like “is the string composed entirely
of lowercase characters?”, “is the string’s first letter capitalized?” etc.

3 Configuration Commands

\Treatments{U-mode}{l-mode}{p-mode}{n-mode}{s-mode}{b-mode}
\defaultTreatments

\encodetoken[index]{token}
\decodetoken[index]{token}
\+

\?

The command \Treatments is used to define how different classes of charac-\Treatments

ters are to be treated by the command \substring, which is the brains of the
stringstrings package. As will be explained in the next section, most string manip-
ulation routines end up calling \substring, the difference between them being a
matter of how these character treatments are set prior to the call. Because most
string manipulation commands will set the treatments as necessary to perform
their given task, and reset them to the default upon conclusion, one should set
the \Treatments immediately prior to the call upon \substring.

\Treatments has six arguments, that define the mode of treatment for the
six classes of characters that stringstrings has designated. All modes are one-digit
integers. They are described below:

• U-mode— This mode defines the treatment for the upper-case characters
(A–Z, Œ, Æ, Å, Ø, and L). A mode of 0 tells \substring to remove upper-
case characters, a mode of 1 indicates to leave upper-case characters alone,
and a mode of 2 indicates to change the case of upper-case characters to
lower case.

• l-mode— This mode defines the treatment for the lower-case characters (a–z,
œ, æ, å, ø, l, and ß). A mode of 0 tells \substring to remove lower-case
characters, a mode of 1 indicates to leave lower-case characters alone, and
a mode of 2 indicates to change the case of lower-case characters to upper
case. In the case of the eszett character (ß), there is no uppercase equivalent,
and so an l-mode of 2 will leave the eszett unchanged.

• p-mode— This mode defines the treatment for the punctuation characters.
stringstrings defines the punctuation characters as ; : ’ ” , . ? ‘ and ! A
mode of 0 tells \substring to remove punctuation characters, while a mode
of 1 indicates to leave punctuation characters as is.

• n-mode— This mode defines the treatment for the numerals (0–9). A mode

6

of 0 tells \substring to remove numerals, while a mode of 1 indicates to
leave numerals as is.

• s-mode— This mode defines the treatment for the symbols. stringstrings de-
fines symbols as the following characters and diacritical marks: / * () - =
+ [] < > & \& \% \# \{ \} _ \$ † ‡ § ¶ L £ c© x̌ x̂ x̃ ẍ x̀ x́ x̄ ẋ x̆ x̌ x̋ x̧
x. �xx x

¯
as well as @, math and text carats, and the pipe symbol. A mode of

0 tells \substring to remove symbols, while a mode of 1 indicates to leave
symbols as is. Note that the $ symbol, when used for entering and exiting
math mode, is left intact, regardless of s-mode.

• b-mode— This mode defines the treatment for blankspaces. A mode of 0
tells \substring to remove blankspaces, while a mode of 1 indicates to
leave blankspaces as is. The treatment apples to both soft () as well as hard
(~) spaces.

The command \defaultTreatments resets all treatment modes to their default\defaultTreatments

settings, which are to leave individual characters unaltered by a string manipula-
tion.

The commands \encodetoken and \decodetoken have been introduced in\encodetoken

\decodetoken stringstrings v1.20. Prior to this version, the ability of stringstrings to handle a
particular token was dependent on whether provisions for encoding that token
had been explicitly hardwired into the stringstrings package. A large number of
alphabetic and diacritical marks had reserved encodings set aside in stringstrings for
their treatment (see next paragraph or Table 2 for their enumeration). However,
requests would invariable come in for treating yet another token, which required
a new stringstrings release for each revision. The command \encodetoken allows
the user to specify an arbitrary token, to be assigned to the reserved encoding slot
associated with the index (permissible indices are in the range 1–3, 1 being the
default). Once assigned an encoding slot, a token may be successfully manipulated
in stringstrings routines. Once stringstrings manipulation is complete, the token
must undergo a \decodetoken operation in order for that token to be reset to a
normal LATEX token again (lest it display in its encoded stringstrings form).

The commands \+ and \? are a pair that work in tandem to turn on\+

\? stringstrings encoding and turn off stringstrings encoding, respectively. Gen-
erally, the user will not need these commands unless he is writing his own
routines to take advantage of the stringstrings library. After \+ is called, to-
kens which would otherwise expand to multi-byte sequences are instead en-
coded according to the stringstrings methodology. The affected tokens include
\$ \^ \" \{ \} _ \dag \ddag \P \S \ss \AA \aa \O \o \AE \ae \OE, \oe,
\~, \‘, \’, \=, \., \u, \v, \H, \c, \d, \t, \b, \copyright, \pounds, \L, \l, and
\ss. In addition, pipes, text carats, and hard spaces (~) are encoded as well. The
command \? restores the standard LATEX encoding for these tokens.

7

4 Commands to Manipulate Strings

These commands take an input string or token and perform a specific manipulation
on the string. They include:

\substring[mode]{string}{min}{max}
\caseupper[mode]{string}
\caselower[mode]{string}
\solelyuppercase[mode]{string}
\solelylowercase[mode]{string}
\changecase[mode]{string}
\noblanks[mode]{string}
\nosymbolsnumerals[mode]{string}
\alphabetic[mode]{string}
\capitalize[mode]{string}
\capitalizewords[mode]{string}
\capitalizetitle[mode]{string}
\addlcword{word}
\addlcwords{word1 word2 word3 . . .}
\resetlcwords

\reversestring[mode]{string}
\convertchar[mode]{string}{from-char}{to-string}
\convertword[mode]{string}{from-string}{to-string}
\rotateword[mode]{string}
\removeword[mode]{string}
\getnextword[mode]{string}
\getaword[mode]{string}{n}
\rotateleadingspaces[mode]{string}
\removeleadingspaces[mode]{string}
\stringencode[mode]{string}
\stringdecode[mode]{string}
\gobblechar[mode]{string}
\gobblechars[mode]{string}{n}
\retokenize[mode]{string}

Unless otherwise noted, the mode may take one of three values: [v] for ver-
bose mode (generally, the default), [q] for quiet mode, and [e] for encoded
mode. In all cases, the result of the operation is stored in \thestring. In verbose
mode, it is also output immediately (and may be captured by an \edef). In quiet
mode, no string is output, though the result still resides in \thestring. Encoded
mode is also a quiet mode. However, the encoded mode saves the string with its
stringstrings encodings. Encoded mode indicates that the result is an intermediate
result which will be subsequently used as input to another stringstrings manipula-
tion.

The command \substring is the brains of the stringstrings package, in that\substring

most of the commands in this section call upon \substring in one form or another.

8

Nominally, the routine returns a substring of string between the characters defined
by the integers min and max, inclusive. However, the returned substring is affected
by the designated \Treatments which have been defined for various classes of
characters. Additionally, a shorthand of $ may be used in min and max to define
END-OF-STRING, and the shorthand $–integer may be used to define an offset
of integer relative to the END-OF-STRING.

Regardless of how many bytes a LATEX token otherwise expands to, or how
many characters are in the token name, each LATEX symbol token counts as a
single character for the purposes of defining the substring limits, min and max.

While the combination of \Treatments and \substring are sufficient to
achieve a wide array of character manipulations, many of those possibilities are
useful enough that separate commands have been created to describe them, for
convenience. Several of the commands that follow fall into this category.

The command \caseupper takes the input string or token, and converts all\caseupper

lowercase characters in the string to uppercase. All other character classes are left
untouched. Default mode is [v].

The command \caselower takes the input string or token, and converts all\caselower

uppercase characters in the string to lowercase. All other character classes are left
untouched. Default mode is [v].

The command \solelyuppercase is similar to \caseupper, except that all\solelyuppercase

punctuation, numerals, and symbols are discarded from the string. Blankspaces
are left alone, and lowercase characters are converted to uppercase. Default mode
is [v].

The command \solelylowercase is similar to \caselower, except that all\solelylowercase

punctuation, numerals, and symbols are discarded from the string. Blankspaces
are left alone, and uppercase characters are converted to lowercase. Default mode
is [v].

The command \changecase switches lower case to upper case and upper case\changecase

to lower case. All other characters are left unchanged. Default mode is [v].

The command \noblanks removes blankspaces (both hard and soft) from a\noblanks

string, while leaving other characters unchanged. Default mode is [v].

The command \nosymbolsnumerals removes symbols and numerals from a\nosymbolsnumerals

string, while leaving other characters unchanged. Default mode is [v].

The command \alphabetic discards punctuation, symbols, and numerals,\alphabetic

while retaining alphabetic characters and blankspaces. Default mode is [v].

The command \capitalize turns the first character of string into its upper\capitalize

case, if it is alphabetic. Otherwise, that character will remain unaltered. Default
mode is [v].

The command \capitalizewords turns the first character of every word in\capitalizewords

string into its upper case, if it is alphabetic. Otherwise, that character will remain
unaltered. For the purposes of this command, “the first character of a word” is

9

defined as either the first character of the string, or the first non-blank character
that follows one or more blankspaces. Default mode is [v].

The command \capitalizetitle is a command similar to \capitalizewords,\capitalizetitle

except that words which have been previously designated as “lower-case words”
are not capitalized (e.g., prepositions, conjunctions, etc.). In all cases, the first
word of the string is capitalized, even if it is on the lower-case word list. Words
are added to the lower-case word list with the commands \addlcword, in the case\addlcword

of a single word, or with \addlcwords, in the case of multiple (space-separated)\addlcwords

words. Because the addition of many words to the lower-case list can substan-
tially slow-down the execution of the \capitalizetitle command, the command
\resetlcwords has been added to allow the user to zero out the lower-case word\resetlcwords

list. (See newer titlecaps package as an alternative to this command.)

The command \reversestring reverses the sequence of characters in a string,\reversestring

such that what started as the first character becomes the last character in the ma-
nipulated string, and what started as the last character becomes the first character.
Default mode is [v].

The command \convertchar is a substitution command in which a specified\convertchar

match character in the original string (from-char) is substituted with a different
string (to-string). All occurances of from-char in the original string are replaced.
The from-char can only be a single character (or tokenized symbol), whereas to-
string can range from the null-string (i.e., character removal) to a single character
(i.e., character substitution) to a complete multi-character string. Default mode
is [v].

The command \convertword is a substitution command in which a specified\convertword

match string in the original string (from-string) is substituted with a different
string (to-string). All occurances of from-string in the original string are replaced.
If from-string includes spaces, use hard-space (~) characters instead of blanks.
Default mode is [v].

The command \rotateword takes the first word of string (and its leading and\rotateword

trailing spaces) and rotates them to the end of the string. Care must be taken
to have a blankspace at the beginning or end of string if one wishes to retain a
blankspace word separator between the original last word of the string and the
original first word which has been rotated to the end of the string. Default mode
is [v].

The command \removeword removes the first word of string, along with any\removeword

of its leading and trailing spaces. Default mode is [v].

The command \getnextword returns the next word of string. In this case,\getnextword

“word” is a sequence of characters delimited either by spaces or by the beginning
or end of the string. Default mode is [v].

The command \getaword returns a word of string defined by the index, n.\getaword

In this case, “word” is a sequence of characters delimited either by spaces or by
the first or last characters of the string. If the index, n, requested exceeds the
number of words available in the string, the index wraps around back to the first

10

argument of the string, such that asking for the tenth word of an eight word string
will return the second word of the string. Default mode is [v].

The command \rotateleadingspaces takes any leading spaces of the string\rotateleadingspaces

and rotates them to the end of the string. Default mode is [v].

The command \removeleadingspaces removes any leading spaces of the\removeleadingspaces

string. Default mode is [v].

The command \stringencode returns a copy of the string that has been en-\stringencode

coded according to the stringstrings encoding scheme. Because an encoded string
is an intermediate result, the default mode for this command is [e].

The command \stringdecode returns a copy of the string that has been de-\stringdecode

coded. Default mode is [v].

The command \gobblechar returns a string in which the first character of\gobblechar

string has been removed. Unlike the LATEX system command \@gobble which
removes the next byte in the input stream, \gobblechar not only takes an ar-
gument as the target of its gobble, but also removes one character, regardless
of whether that character is a single-byte or multi-byte character. Because this
command may have utility outside of the stringstrings environment, the result of
this command is retokenized (i.e., def’ed) rather than expanded (i.e., edef’ed).
Default mode is [q]. Mode [e] is not recognized.

The command \gobblechars returns a string in which the first n characters of\gobblechars

string have been removed. Like \gobblechar, \gobblechars removes characters,
regardless of whether those characters are single-byte or multi-byte characters.
Likewise, the result of this command is retokenized (i.e., def’ed) rather than
expanded (i.e., edef’ed). Default mode is [q]. Mode [e] is not recognized.

The command \retokenize takes a string that is encoded according to the\retokenize

stringstrings encoding scheme, and repopulates the encoded characters with their
LATEX tokens. This command is particularly useful for exporting a string to a
routine outside of the stringstrings library or if the string includes the following
characters: \{, \}, \|, \dag, \ddag, \d, \t, \b, \copyright, and \P. Default
mode is [q]. Mode [e] is not recognized.

5 Commands to Extract String Information

These commands take an input string or token, and ascertain a particular char-
acteristic of the string. They include:

\stringlength[mode]{string}
\findchars[mode]{string}{match-char}
\findwords[mode]{string}{match-string}
\whereischar[mode]{string}{match-char}
\whereisword[mode]{string}{match-string}
\wordcount[mode]{string}

11

\getargs[mode]{string}

Commands in this section return their result in the string \theresult, unless
otherwise specified. Unless otherwise noted, the mode may take one of two values:
[v] for verbose mode (generally, the default), and [q] for quiet mode. In both
cases, the result of the operation is stored in \theresult. In verbose mode, it is
also output immediately (and may be captured by an \edef). In quiet mode, no
string is output, though the result still resides in \theresult.

The command \stringlength returns the length of string in characters (not\stringlength

bytes). Default mode is [v].

The command \findchars checks to see if the character match-char occurs\findchars

anywhere in string. The number of occurances is stored in \theresult and, if in
verbose mode, printed. If it is desired to find blankspaces, match-char should be
set to {~} and not { }. Default mode is [v].

The command \findwords checks to see if the string match-string occurs any-\findwords

where in string. The number of occurances is stored in \theresult and, if in ver-
bose mode, printed. If it is desired to find blankspaces, those characters in match-
string should be set to hardspaces (i.e., tildes) and not softspaces (i.e., blanks),
regardless of how they are defined in string. Default mode is [v].

The command \whereischar checks to see where the character match-char\whereischar

first occurs in string. The location of that occurance is stored in \theresult and,
if in verbose mode, printed. If the character is not found, \theresult is set to a
value of 0. If it is desired to find blankspaces, match-char should be set to {~}

and not { }. Default mode is [v].

The command \whereisword checks to see where the string match-string first\whereisword

occurs in string. The location of that occurance is stored in \theresult and, if in
verbose mode, printed. If match-string is not found, \theresult is set to a value
of 0. If it is desired to find blankspaces, those characters in match-string should
be set to hardspaces (i.e., tildes) and not softspaces (i.e., blanks), regardless of
how they are defined in string. Default mode is [v].

The command \wordcount counts the number of space-separated words that\wordcount

occur in string. Default mode is [v].

The command \getargs mimics the Unix command of the same name, in\getargs

that it parses string to determine how many arguments (i.e., words) are in string,
and extracts each word into a separate variable. The number of arguments is
placed in \narg and the individual arguments are placed in variables of the name
\argi, \argii, \argiii, \argiv, etc. This command may be used to facilitate
simply the use of multiple optional arguments in a LATEX command, for exam-
ple \mycommand[option1 option2 option3]{argument}. In this case, \mycommand
should exercise \getargs{#1}, with the result being that option1 is stored in
\argi, etc. The command \mycommand may then proceed to parse the optional
arguments and branch accordingly. Default mode is [q]; [e] mode is permitted,
while [v] mode is disabled.

12

6 Commands to Test Strings

These commands take an input string or token and test for a particular alphanu-
meric condition. They include:

\isnextbyte[mode]{match-byte}{string}
\testmatchingchar{string}{n}{match-char}
\testcapitalized{string}
\testuncapitalized{string}
\testleadingalpha{string}
\testuppercase{string}
\testsolelyuppercase{string}
\testlowercase{string}
\testsolelylowercase{string}
\testalphabetic{string}

The command \isnextbyte tests to see if the first byte of string equals match-\isnextbyte

byte. It is the only string-testing command in this section which does not use
the ifthen test structure for its result. Rather, \isnextbyte returns the result
of its test as a T or F in the string \theresult. More importantly, and unlike
other stringstrings commands, \isnextbyte is a byte test and not a character test.
This means that, while \isnextbyte operates very efficiently, it cannot be used
to directly detect multi-byte characters like \$, \^, \{, \}, _, \dag, \ddag, \AE,
\ae, \OE, \oe, etc. (\isnextbyte will give false positives or negatives when testing
for these multi-byte characters). The default mode of \isnextbyte is [v].

If a character needs to be tested, rather than a byte, \testmatchingchar\testmatchingchar

should be used. The command \testmatchingchar is used to ascertain whether
character n of string equals match-char or not. Whereas \isnextbyte checks only
a byte, \testmatchingchar tests for a character (single- or multi-byte character).
After the test is called, the action(s) may be called out with \ifmatchingchar

true-code \else false-code \fi.

The command \testcapitalized is used to ascertain whether the first char-\testcapitalized

acter of string is capitalized or not. If the first character is non-alphabetic, the
test will return FALSE. After the test is called, the action(s) may be called out
with \ifcapitalized true-code \else false-code \fi.

The command \testuncapitalized is used to ascertain whether the first char-\testuncapitalized

acter of string is uncapitalized. If the first character is non-alphabetic, the test
will return FALSE. After the test is called, the action(s) may be called out with
\ifuncapitalized true-code \else false-code \fi.

The command \testleadingalpha is used to ascertain whether the first char-\testleadingalpha

acter of string is alphabetic. After the test is called, the action(s) may be called
out with \ifleadingalpha true-code \else false-code \fi.

The command \testuppercase is used to ascertain whether all the alpha-\testuppercase

betic characters in string are uppercase or not. The presence of non-alphabetic
characters in string does not falsify the test, but are merely ignored. However, a

13

string completely void of alphabetic characters will always test FALSE. After the
test is called, the action(s) may be called out with \ifuppercase true-code \else

false-code \fi.

The command \testsolelyuppercase is used to ascertain whether all the\testsolelyuppercase

characters in string are uppercase or not. The presence of non-alphabetic
characters in string other than blankspaces will automatically falsify the test.
Blankspaces are ignored. However, a null string or a string composed solely of
blankspaces will also test FALSE. After the test is called, the action(s) may be
called out with \ifsolelyuppercase true-code \else false-code \fi.

The command \testlowercase is used to ascertain whether all the alphabetic\testlowercase

characters in string are lowercase or not. The presence of non-alphabetic characters
in string does not falsify the test, but are merely ignored. However, a string
completely void of alphabetic characters will always test FALSE. After the test
is called, the action(s) may be called out with \iflowercase true-code \else

false-code \fi.

The command \testsolelylowercase is used to ascertain whether all the\testsolelylowercase

characters in string are lowercase or not. The presence of non-alphabetic characters
in string other than blankspaces will automatically falsify the test. Blankspaces
are ignored. However, a null string or a string composed solely of blankspaces
will also test FALSE. After the test is called, the action(s) may be called out with
\ifsolelylowercase true-code \else false-code \fi.

The command \testalphabetic is used to ascertain whether all the characters\testalphabetic

in string are alphabetic or not. The presence of non-alphabetic characters in
string other than blankspaces will automatically falsify the test. Blankspaces are
ignored. However, a null string or a string composed solely of blankspaces will
also test FALSE. After the test is called, the action(s) may be called out with
\ifalphabetic true-code \else false-code \fi.

7 Disclaimers

Now that we have described the commands available in the stringstrings package,
it is appropriate to lay out the quirks and warnings associated with the use of the
package.

First, stringstrings is currently set to handle a string no larger than 500 char-
acters. A user could circumvent this, presumably, by editing the style package to
increase the value of \@MAXSTRINGSIZE .\@MAXSTRINGSIZE

It is important to remember that stringstrings follows the underlying rules of
LATEX. Therefore, a passed string could not contain a raw % as part of it, because
it would, in fact, comment out the remainder of the line. Naturally, the string
may freely contain instances of \%.

Tokens that take two or more characters to express (e.g., \#, \oe, \ddag, etc.)
are counted as a single character within the string. The rule applies if you

14

wanted to know the length of a string that was populated with such tokens, or
wanted to extract a substring from a such a string. Of course, the exception that
makes the rule is that of diacritical marks, which count as separate symbols from
the characters they mark. For example, \^a counts as two characters, because the
a is really just the operand of the \^ token, even though the net result looks like
a single character (â).

Consistent with LATEX convention, groups of spaces are treated as a single
blankspace, unless encoded with ~ characters. And finally, again consistent with
the way LATEX operates, the space that follows an alphabetic token is not actually a
space in the string, but serves as the delimiter to the token. Therefore, \OE dipus

(Œdipus) has a length of six characters, one for the \OE and five for the dipus.
The intervening space merely closes out the \OE token, and does not represent a
space in the middle of the string.

One quirk worthy of particular note concerns the tabbing character, meaning
& as opposed to \& (which is handled without problem). As of version 1.01,
stringstrings has the capability to operate on arguments containg the ampersand
&, normally reserved as the LATEX tabbing character. However, one adverse by-
product is that & characters returned in \thestring lose their catcode-4 value,
and thus lose their ability to function as tabbing characters. In the following
example,

\caseupper[q]{a & b & c & d}

\begin{tabular}{|l|c|c|c|}

\hline

\thestring\\

\hline

\end{tabular}

will produce A & B & C & D instead of the desired A B C D .

In the \substring command, no tests are performed to guarantee that the
lower limit, min, is less than the upper limit, max, or that min is even positive.
However, the upper limit, max, is corrected, if set larger than the string length.
Also, the use of the ‘$’ symbol to signify the last character of the string and ‘$–n’
to denote an offset of n characters from the end of the string can be helpful in
avoiding the misindexing of strings.

Table 2 shows a variety of characters and tokens, some of which pose a challenge
to stringstrings manipulations. In all cases, a solution or workaround is provided.
For symbols in the top two categories, the workaround solution includes the use
of retokenized strings instead of expanded strings. For symbols in the next two
categories, use of T1 encoding or retokenizing provides a satisfactory solution. In
the bottom three categories, because of stringstrings encoded [e] mode, there is
nothing to impede the use of these characters in stringstrings arguments, if encoded
[e] mode is employed for intermediate calculations. Some of the details of these
problematic cases is described below.

15

Table 2: Problematic Characters/Tokens and stringstrings Solutions

LATEX Symbol/Name Problem/Solution

{ begin group Cannot use { and } in stringstrings arguments.
} end group However, use \LB. . . \RB in lieu of {. . . };

manipulate string in [e] mode & \retokenize

\dag † Dagger Cannot \edef these tokens; Thus, [v] mode
\ddag ‡ Double Dagger fails with both OT1 and T1 encoding;
\P ¶ Pilcrow manipulate string in [e] mode & \retokenize

\d x. Underdot
\t �xx Joining Arch
\b x

¯
Letter Underline

\copyright c© Copyright

_ Underscore Cannot \edef with OT1 encoding; either
\{ { Left Curly Brace \renewcommand\encodingdefault{T1}, or
\} } Right Curly Brace manipulate string in [e] mode & \retokenize.
\S § Section Symbol With OT1, \S, \c and \pounds break
\c x̧ Cedilla stringstrings [v] mode.

\pounds £ Pounds

\| stringstrings Pipe Char. Distinct from |, the stringstrings encoded-
| (T1) — (OT1) escape character

\$ $ Dollar Either cannot \edef, or
\carat ˆ (text mode) cannot identify uniquely with \if construct, or

\^ x̂ Circumflex expanded character is more than one byte.
\’ x́ Acute
\" ẍ Umlaut However,
\~ x̃ Tilde Use these characters freely, stringstrings
\‘ x̀ Grave encoding functions transparently with them.
\. ẋ Overdot
\= x̄ Macron \retokenize also works
\u x̆ Breve
\v x̌ Caron
\H x̋ Double Acute
\ss ß Eszett

\AE \ae Æ æ æsc
\OE \oe Œ œ œthel
\AA \aa Å å angstrom
\O \o Ø ø slashed O
\L \l L l barred L
~ Hardspace

$ begin/end math mode These characters pose no difficulties;
^ math superscript However, cannot extract substring that
_ math subscript breaks in middle of math mode.

Other math mode symbols NOT supported.

& ampersand Version 1.01 stringstrings can manipulate the
ampersand. However, returned strings
containing the & character lose their
catcode-4 status, making them unfit
for use as tabbing characters.

16

Not surprisingly, you are not allowed to extract a substring of a string, if it
breaks in the middle of math mode, because a substring with only one $ in it
cannot be \edef’ed.

There are a few potential quirks when using LATEX’s native OT1 character en-
coding, most of which can be circumvented by using the more modern T1 encoding
(accessed via \renewcommand\encodingdefault{T1} in the document preamble).
The quirks arise because there are several characters that, while displayable in
LATEX, are not part of the OT1 character encoding. The characters include \{,
\}, and the | symbol (accessed in stringstrings via \|). When using stringstrings to
manipulate strings containing these characters in the presence of OT1 encoding,
they come out looking like –, ˝, and —, respectively. However, if the T1 en-
coding fix is not an option for you, you can also work around this problem by
\retokenize’ing the affected string (the \retokenize command is provided to
convert encoded, expanded strings back into tokenized form, if need be).

Likewise, for both OT1 and T1 encoding, the characters † (\dag), ‡ (\ddag),
¶ (\P), . (\d), � (\t),

¯
(\b), and c© (\copyright) cannot be in the argu-

ment of an \edef expression. For manipulated strings including these characters,
\retokenize is the only option available to retain the integrity of the string.

As discussed thoroughly in the previous section, an “encoded” form of the
string manipulation routines is provided to prevent the undesirable circumstance
of passing an \edef’ed symbol as input to a subsequent manipulation. Likewise,
never try to “decode” an already “decoded” string.

When stringstrings doesn’t understand a token, it is supposed to replace it with
a period. However, some undecipherable characters may inadvertantly be replaced
with a space, instead. Of course, neither of these possibilities is any comfort to
the user.

As mentioned already, stringstrings cannot handle curly braces that are used for
grouping purposes, a circumstance which often arises in math mode. Nonetheless,
\LB and \RB may be used within stringstrings arguments in lieu of grouping braces,
if the final result is to be retokenized. Thus, \caselower[e]{$X^\LB Y + Z\RB$}

followed by \convertchar[e]{\thestring}{x}{(1+x)}, when finished up with
the following command, \retokenize[v]{\thestring} yields as its result:
(1 + x)y + z.

One might ask, “why not retokenize everything, instead of using the [v] mode
of the stringstrings routines?” While one could do this, the answer is simply that
\retokenize is a computationally intensive command, and that it is best used,
therefore, only when the more efficient methods will not suffice. In many, if not
most cases, strings to be manipulated will be solely composed of alphanumeric
characters which don’t require the use of \retokenize, T1 encoding, or even
stringstrings encoding.

Despite these several disclaimers and workarounds required when dealing with
problematic characters, I hope you find the stringstrings architecture and feel to
be straightforward and useful. There is only one thing left, and that is to dissect

17

the code. . . and so here we go.

stringstrings.sty 8 Code Listing

I’ll try to lay out herein the workings of the stringstrings style package.

1 〈∗package〉
2

3 %%%%% INITIALIZATIONS %%%

4 \catcode‘\&=12

ifthen This package makes wide use of the ifthen style package.

5 \usepackage{ifthen}

\@MAXSTRINGSIZE The parameter \@MAXSTRINGSIZE defines the maximum allowable string size that
stringstrings can operate upon.

6 \def\@MAXSTRINGSIZE{500}

7 \def\endofstring{@E@o@S@}%

8 \def\undecipherable{.}% UNDECIPHERABLE TOKENS TO BE REPLACED BY PERIOD

9 \def\@blankaction{\BlankSpace}

Save the symbols which will get redefined stringstrings encoding.

10 \let\SaveDollar\$

11 \let\SaveHardspace~

12 \let\SaveCircumflex\^

13 \let\SaveTilde\~

14 \let\SaveUmlaut\"

15 \let\SaveGrave\‘

16 \let\SaveAcute\’

17 \let\SaveMacron\=

18 \let\SaveOverdot\.

19 \let\SaveBreve\u

20 \let\SaveCaron\v

21 \let\SaveDoubleAcute\H

22 \let\SaveCedilla\c

23 \let\SaveUnderdot\d

24 \let\SaveArchJoin\t

25 \let\SaveLineUnder\b

26 \let\SaveCopyright\copyright

27 \let\SavePounds\pounds

28 \let\SaveLeftBrace\{

29 \let\SaveRightBrace\}

30 \let\SaveUnderscore_

31 \let\SaveDagger\dag

32 \let\SaveDoubleDagger\ddag

18

33 \let\SaveSectionSymbol\S

34 \let\SavePilcrow\P

35 \let\SaveAEsc\AE

36 \let\Saveaesc\ae

37 \let\SaveOEthel\OE

38 \let\Saveoethel\oe

39 \let\SaveAngstrom\AA

40 \let\Saveangstrom\aa

41 \let\SaveSlashedO\O

42 \let\SaveSlashedo\o

43 \let\SaveBarredL\L

44 \let\SaveBarredl\l

45 \let\SaveEszett\ss

46 \let\SaveLB{

47 \let\SaveRB}

The BlankSpace character is the only character which is reencoded with a
1-byte re-encoding. . . in this case the Œ character.

48 \def\EncodedBlankSpace{\SaveOEthel}

49 \edef\BlankSpace{ }

All other reencoded symbols consist of 2 bytes: an escape character plus a unique
code. The escape character is a pipe symbol. the unique code comprises either a
single number, letter, or symbol.

50 \def\EscapeChar{|}

51

52 % |0 IS AN ENCODED |, ACCESSED VIA \|

53 \def\PipeCode{0}

54 \def\EncodedPipe{\EscapeChar\PipeCode}

55 \def\Pipe{|}

56 \let\|\EncodedPipe

57

58 % |1 IS AN ENCODED \$

59 \def\DollarCode{1}

60 \def\EncodedDollar{\EscapeChar\DollarCode}

61 % THE FOLLOWING IS NEEDED TO KEEP OT1 ENCODING FROM BREAKING;

62 % IT PROVIDES AN ADEQUATE BUT NOT IDEAL ENVIRONMENT FOR T1 ENCODING

63 \def\Dollar{\symbol{36}}

64 % THE FOLLOWING IS BETTER FOR T1 ENCODING, BUT BREAKS OT1 ENCODING

65 %\def\Dollar{\SaveDollar}

66

67 % |W IS RESERVED TO BE ASSIGNED TO AN ARBITRARY TOKEN

68 \def\UvariCode{W}

69 \def\EncodedUvari{\EscapeChar\UvariCode}

70 \def\Uvari{Uvari}

71 \let\uvari\EncodedUvari

72

73 % |X IS RESERVED TO BE ASSIGNED TO AN ARBITRARY TOKEN

74 \def\UvariiCode{X}

19

75 \def\EncodedUvarii{\EscapeChar\UvariiCode}

76 \def\Uvarii{Uvarii}

77 \let\uvarii\EncodedUvarii

78

79 % |Y IS RESERVED TO BE ASSIGNED TO AN ARBITRARY TOKEN

80 \def\UvariiiCode{Y}

81 \def\EncodedUvariii{\EscapeChar\UvariiiCode}

82 \def\Uvariii{Uvariii}

83 \let\uvariii\EncodedUvariii

84

85 % |2 IS AN ENCODED ^ FOR USE IN TEXT MODE, ACCESSED VIA \carat

86 \def\CaratCode{2}

87 \def\EncodedCarat{\EscapeChar\CaratCode}

88 \def\Carat{\symbol{94}}

89 \let\carat\EncodedCarat

90

91 % |4 IS AN ENCODED \{

92 \def\LeftBraceCode{4}

93 \def\EncodedLeftBrace{\EscapeChar\LeftBraceCode}

94 % THE FOLLOWING IS NEEDED TO KEEP OT1 ENCODING FROM BREAKING;

95 % IT PROVIDES AN ADEQUATE BUT NOT IDEAL ENVIRONMENT FOR T1 ENCODING

96 \def\LeftBrace{\symbol{123}}

97 % THE FOLLOWING IS BETTER FOR T1 ENCODING, BUT BREAKS OT1 ENCODING

98 %\def\LeftBrace{\SaveLeftBrace}

99

100 % |5 IS AN ENCODED \}

101 \def\RightBraceCode{5}

102 \def\EncodedRightBrace{\EscapeChar\RightBraceCode}

103 % THE FOLLOWING IS NEEDED TO KEEP OT1 ENCODING FROM BREAKING;

104 % IT PROVIDES AN ADEQUATE BUT NOT IDEAL ENVIRONMENT FOR T1 ENCODING

105 \def\RightBrace{\symbol{125}}

106 % THE FOLLOWING IS BETTER FOR T1 ENCODING, BUT BREAKS OT1 ENCODING

107 %\def\RightBrace{\SaveRightBrace}

108

109 % |6 IS AN ENCODED _

110 \def\UnderscoreCode{6}

111 \def\EncodedUnderscore{\EscapeChar\UnderscoreCode}

112 \def\Underscore{\symbol{95}}

113 %\def\Underscore{\SaveUnderscore}

114

115 % |7 IS AN ENCODED \^

116 \def\CircumflexCode{7}

117 \def\EncodedCircumflex{\EscapeChar\CircumflexCode}

118 \def\Circumflex{\noexpand\SaveCircumflex}

119

120 % |8 IS AN ENCODED \~

121 \def\TildeCode{8}

122 \def\EncodedTilde{\EscapeChar\TildeCode}

123 \def\Tilde{\noexpand\SaveTilde}

124

20

125 % |" IS AN ENCODED \"

126 \def\UmlautCode{"}

127 \def\EncodedUmlaut{\EscapeChar\UmlautCode}

128 \def\Umlaut{\noexpand\SaveUmlaut}

129

130 % |‘ IS AN ENCODED \‘

131 \def\GraveCode{‘}

132 \def\EncodedGrave{\EscapeChar\GraveCode}

133 \def\Grave{\noexpand\SaveGrave}

134

135 % |’ IS AN ENCODED \’

136 \def\AcuteCode{’}

137 \def\EncodedAcute{\EscapeChar\AcuteCode}

138 \def\Acute{\noexpand\SaveAcute}

139

140 % |= IS AN ENCODED \=

141 \def\MacronCode{=}

142 \def\EncodedMacron{\EscapeChar\MacronCode}

143 \def\Macron{\noexpand\SaveMacron}

144

145 % |. IS AN ENCODED \.

146 \def\OverdotCode{.}

147 \def\EncodedOverdot{\EscapeChar\OverdotCode}

148 \def\Overdot{\noexpand\SaveOverdot}

149

150 % |u IS AN ENCODED \u

151 \def\BreveCode{u}

152 \def\EncodedBreve{\EscapeChar\BreveCode}

153 \def\Breve{\noexpand\SaveBreve}

154

155 % |v IS AN ENCODED \v

156 \def\CaronCode{v}

157 \def\EncodedCaron{\EscapeChar\CaronCode}

158 \def\Caron{\noexpand\SaveCaron}

159

160 % |H IS AN ENCODED \H

161 \def\DoubleAcuteCode{H}

162 \def\EncodedDoubleAcute{\EscapeChar\DoubleAcuteCode}

163 \def\DoubleAcute{\noexpand\SaveDoubleAcute}

164

165 % |c IS AN ENCODED \c

166 \def\CedillaCode{c}

167 \def\EncodedCedilla{\EscapeChar\CedillaCode}

168 \def\Cedilla{\noexpand\SaveCedilla}

169

170 % |d IS AN ENCODED \d

171 \def\UnderdotCode{d}

172 \def\EncodedUnderdot{\EscapeChar\UnderdotCode}

173 \def\Underdot{.}% CANNOT \edef \d

174

21

175 % |t IS AN ENCODED \t

176 \def\ArchJoinCode{t}

177 \def\EncodedArchJoin{\EscapeChar\ArchJoinCode}

178 \def\ArchJoin{.}% CANNOT \edef \t

179

180 % |b IS AN ENCODED \b

181 \def\LineUnderCode{b}

182 \def\EncodedLineUnder{\EscapeChar\LineUnderCode}

183 \def\LineUnder{.}% CANNOT \edef \b

184

185 % |C IS AN ENCODED \copyright

186 \def\CopyrightCode{C}

187 \def\EncodedCopyright{\EscapeChar\CopyrightCode}

188 \def\Copyright{.}% CANNOT \edef \copyright

189

190 % |p IS AN ENCODED \pounds

191 \def\PoundsCode{p}

192 \def\EncodedPounds{\EscapeChar\PoundsCode}

193 \def\Pounds{\SavePounds}

194

195 % |[IS AN ENCODED {

196 \def\LBCode{[}

197 \def\EncodedLB{\EscapeChar\LBCode}

198 \def\UnencodedLB{.}

199 \def\LB{\EncodedLB}

200

201 % |] IS AN ENCODED }

202 \def\RBCode{]}

203 \def\EncodedRB{\EscapeChar\RBCode}

204 \def\UnencodedRB{.}

205 \def\RB{\EncodedRB}

206

207 % |z IS AN ENCODED \dag

208 \def\DaggerCode{z}

209 \def\EncodedDagger{\EscapeChar\DaggerCode}

210 \def\Dagger{.}% CANNOT \edef \dag

211

212 % |Z IS AN ENCODED \ddag

213 \def\DoubleDaggerCode{Z}

214 \def\EncodedDoubleDagger{\EscapeChar\DoubleDaggerCode}

215 \def\DoubleDagger{.}% CANNOT \edef \ddag

216

217 % |S IS AN ENCODED \S

218 \def\SectionSymbolCode{S}

219 \def\EncodedSectionSymbol{\EscapeChar\SectionSymbolCode}

220 \def\SectionSymbol{\SaveSectionSymbol}

221

222 % |P IS AN ENCODED \P

223 \def\PilcrowCode{P}

224 \def\EncodedPilcrow{\EscapeChar\PilcrowCode}

22

225 \def\Pilcrow{.}% CANNOT \edef \P

226

227 % |E IS AN ENCODED \AE

228 \def\AEscCode{E}

229 \def\EncodedAEsc{\EscapeChar\AEscCode}

230 \def\AEsc{\SaveAEsc}

231

232 % |e IS AN ENCODED \ae

233 \def\aescCode{e}

234 \def\Encodedaesc{\EscapeChar\aescCode}

235 \def\aesc{\Saveaesc}

236

237 % |O IS AN ENCODED \OE

238 \def\OEthelCode{O}

239 \def\EncodedOEthel{\EscapeChar\OEthelCode}

240 \def\OEthel{\SaveOEthel}

241

242 % |o IS AN ENCODED \oe

243 \def\oethelCode{o}

244 \def\Encodedoethel{\EscapeChar\oethelCode}

245 \def\oethel{\Saveoethel}

246

247 % |A IS AN ENCODED \AA

248 \def\AngstromCode{A}

249 \def\EncodedAngstrom{\EscapeChar\AngstromCode}

250 \def\Angstrom{\SaveAngstrom}

251

252 % |a IS AN ENCODED \aa

253 \def\angstromCode{a}

254 \def\Encodedangstrom{\EscapeChar\angstromCode}

255 \def\angstrom{\Saveangstrom}

256

257 % |Q IS AN ENCODED \O

258 \def\SlashedOCode{Q}

259 \def\EncodedSlashedO{\EscapeChar\SlashedOCode}

260 \def\SlashedO{\SaveSlashedO}

261

262 % |q IS AN ENCODED \o

263 \def\SlashedoCode{q}

264 \def\EncodedSlashedo{\EscapeChar\SlashedoCode}

265 \def\Slashedo{\SaveSlashedo}

266

267 % |L IS AN ENCODED \L

268 \def\BarredLCode{L}

269 \def\EncodedBarredL{\EscapeChar\BarredLCode}

270 \def\BarredL{\SaveBarredL}

271

272 % |l IS AN ENCODED \l

273 \def\BarredlCode{l}

274 \def\EncodedBarredl{\EscapeChar\BarredlCode}

23

275 \def\Barredl{\SaveBarredl}

276

277 % |s IS AN ENCODED \ss

278 \def\EszettCode{s}

279 \def\EncodedEszett{\EscapeChar\EszettCode}

280 \def\Eszett{\SaveEszett}

281

282 \newcounter{@letterindex}

283 \newcounter{@@letterindex}

284 \newcounter{@@@letterindex}

285 \newcounter{@wordindex}

286 \newcounter{@iargc}

287 \newcounter{@gobblesize}

288 \newcounter{@maxrotation}

289 \newcounter{@stringsize}

290 \newcounter{@@stringsize}

291 \newcounter{@@@stringsize}

292 \newcounter{@revisedstringsize}

293 \newcounter{@gobbleindex}

294 \newcounter{@charsfound}

295 \newcounter{@alph}

296 \newcounter{@alphaindex}

297 \newcounter{@capstrigger}

298 \newcounter{@fromindex}

299 \newcounter{@toindex}

300 \newcounter{@previousindex}

301 \newcounter{@flag}

302 \newcounter{@matchloc}

303 \newcounter{@matchend}

304 \newcounter{@matchsize}

305 \newcounter{@matchmax}

306 \newcounter{@skipped}

307 \newcounter{@lcwords}

308 %%%%% CONFIGURATION COMMANDS %%

\defaultTreatments This command can be used to restore the default string treatments, prior to calling
\substring. The default treatments leave all symbol types intact and unaltered.

309 \newcommand\defaultTreatments{%

310 \def\EncodingTreatment{v}% <--Set=v to decode special chars (vs. q,e)

311 \def\AlphaCapsTreatment{1}% <--Set=1 to retain uppercase (vs. 0,2)

312 \def\AlphaTreatment{1}% <--Set=1 to retain lowercase (vs. 0,2)

313 \def\PunctuationTreatment{1}% <--Set=1 to retain punctuation (vs. 0)

314 \def\NumeralTreatment{1}% <--Set=1 to retain numerals (vs. 0)

315 \def\SymbolTreatment{1}% <--Set=1 to retain special chars (vs. 0)

316 \def\BlankTreatment{1}% <--Set=1 to retain blanks (vs. 0)

317 \def\CapitalizeString{0}% <--Set=0 for no special action (vs. 1,2)

318 \def\SeekBlankSpace{0}% <--Set=0 for no special action (vs. 1,2)

319 }

24

320 \defaultTreatments

\Treatments This command allows the user to specify the desired character class treatments,
prior to a call to \substring. Unfortunately for the user, I have specified which
character class each symbol belongs to. Therefore, it is not easy if the user decides
that he wants a cedilla, for example, to be treated like an alphabetic character
rather than a symbol.

321 % QUICK WAY TO SET UP TREATMENTS BY WHICH \@rotate HANDLES VARIOUS

322 % CHARACTERS

323 \newcommand\Treatments[6]{%

324 \def\AlphaCapsTreatment{#1}% <--Set=0 to remove uppercase

325 % =1 to retain uppercase

326 % =2 to change UC to lc

327 \def\AlphaTreatment{#2}% <--Set=0 to remove lowercase

328 % =1 to retain lowercase

329 % =2 to change lc to UC

330 \def\PunctuationTreatment{#3}%<--Set=0 to remove punctuation

331 % =1 to retain punctuation

332 \def\NumeralTreatment{#4}% <--Set=0 to remove numerals

333 % =1 to retain numerals

334 \def\SymbolTreatment{#5}% <--Set=0 to remove special chars

335 % =1 to retain special chars

336 \def\BlankTreatment{#6}% <--Set=0 to remove blanks

337 % =1 to retain blanks

338 }

\+ This command (\+) is used to enact the stringstrings encoding. Key symbols are
redefined, and any \edef which occurs while this command is active will adopt
these new definitions.

339 % REENCODE MULTIBYTE SYMBOLS USING THE stringstrings ENCODING METHOD

340 \newcommand\+{%

341 \def\${\EncodedDollar}%

342 \def~{\EncodedBlankSpace}%

343 \def\^{\EncodedCircumflex}%

344 \def\~{\EncodedTilde}%

345 \def\"{\EncodedUmlaut}%

346 \def\‘{\EncodedGrave}%

347 \def\’{\EncodedAcute}%

348 \def\={\EncodedMacron}%

349 \def\.{\EncodedOverdot}%

350 \def\u{\EncodedBreve}%

351 \def\v{\EncodedCaron}%

352 \def\H{\EncodedDoubleAcute}%

353 \def\c{\EncodedCedilla}%

354 \def\d{\EncodedUnderdot}%

355 \def\t{\EncodedArchJoin}%

356 \def\b{\EncodedLineUnder}%

357 \def\copyright{\EncodedCopyright}%

25

358 \def\pounds{\EncodedPounds}%

359 \def\{{\EncodedLeftBrace}%

360 \def\}{\EncodedRightBrace}%

361 \def_{\EncodedUnderscore}%

362 \def\dag{\EncodedDagger}%

363 \def\ddag{\EncodedDoubleDagger}%

364 \def\S{\EncodedSectionSymbol}%

365 \def\P{\EncodedPilcrow}%

366 \def\AE{\EncodedAEsc}%

367 \def\ae{\Encodedaesc}%

368 \def\OE{\EncodedOEthel}%

369 \def\oe{\Encodedoethel}%

370 \def\AA{\EncodedAngstrom}%

371 \def\aa{\Encodedangstrom}%

372 \def\O{\EncodedSlashedO}%

373 \def\o{\EncodedSlashedo}%

374 \def\L{\EncodedBarredL}%

375 \def\l{\EncodedBarredl}%

376 \def\ss{\EncodedEszett}%

377 }

\? The command \? reverts the character encodings back to the standard LATEX
definitions. The command effectively undoes a previously enacted \+.

378 % WHEN TASK IS DONE, REVERT ENCODING TO STANDARD ENCODING METHOD

379 \newcommand\?{%

380 \let\$\SaveDollar%

381 \let~\SaveHardspace%

382 \let\^\SaveCircumflex%

383 \let\~\SaveTilde%

384 \let\"\SaveUmlaut%

385 \let\‘\SaveGrave%

386 \let\’\SaveAcute%

387 \let\=\SaveMacron%

388 \let\.\SaveOverdot%

389 \let\u\SaveBreve%

390 \let\v\SaveCaron%

391 \let\H\SaveDoubleAcute%

392 \let\c\SaveCedilla%

393 \let\d\SaveUnderdot%

394 \let\t\SaveArchJoin%

395 \let\b\SaveLineUnder%

396 \let\copyright\SaveCopyright%

397 \let\pounds\SavePounds%

398 \let\{\SaveLeftBrace%

399 \let\}\SaveRightBrace%

400 \let_\SaveUnderscore%

401 \let\dag\SaveDagger%

402 \let\ddag\SaveDoubleDagger%

403 \let\S\SaveSectionSymbol%

26

404 \let\P\SavePilcrow%

405 \let\AE\SaveAEsc%

406 \let\ae\Saveaesc%

407 \let\OE\SaveOEthel%

408 \let\oe\Saveoethel%

409 \let\AA\SaveAngstrom%

410 \let\aa\Saveangstrom%

411 \let\O\SaveSlashedO%

412 \let\o\SaveSlashedo%

413 \let\L\SaveBarredL%

414 \let\l\SaveBarredl%

415 \let\ss\SaveEszett%

416 }

\encodetoken The command \encodetoken assigns the supplied token to one of three reserved
stringstrings user variables (the optional argument dictates which user variable).
Once encoded, the supplied token cannot be used in the normal way, but only in
stringstrings routines, unless and until it is decoded.

417 \newcommand\encodetoken[2][1]{%

418 \if 1#1%

419 \let\Uvari#2%

420 \let#2\uvari\else

421 \if 2#1%

422 \let\Uvarii#2%

423 \let#2\uvarii\else

424 \if 3#1%

425 \let\Uvariii#2%

426 \let#2\uvariii%

427 \fi

428 \fi

429 \fi

430 }

\decodetoken The command \decodetoken deassigns the supplied token from the reserved
stringstrings user variables (the optional argument dictates which user variable),
so that the token may be used in the normal way again.

431 \newcommand\decodetoken[2][1]{%

432 \if 1#1%

433 \let#2\Uvari%

434 \def\Uvari{Uvari}\else

435 \if 2#1%

436 \let#2\Uvarii%

437 \def\Uvarii{Uvarii}\else

438 \if 3#1%

439 \let#2\Uvariii%

440 \def\Uvariii{Uvariii}%

441 \fi

442 \fi

27

443 \fi

444 }

445 %%%%% COMMANDS TO MANIPULATE STRINGS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

In the next group of commands, the result is always stored in an expandable
string, \thestring. Expandable means that \thestring can be put into a sub-
sequent \edef{} command. Additionally, the optional first argument can be used
to cause three actions (verbose, encoded, or quiet):

=v \thestring is decoded (final result); print it immediately (default)

=e \thestring is encoded (intermediate result); don’t print it

=q \thestring is decoded (final result), but don’t print it

\substring The command \substring is the brains of this package. . . It is used to acquire a
substring from a given string, along with performing specified character manip-
ulations along the way. Its strategy is fundamental to the stringstrings package:
sequentially rotate the 1st character of the string to the end of the string, until
the desired substring resides at end of rotated string. Then, gobble up the leading
part of string until only the desired substring is left.

446 \newcommand\substring[4][v]{\+%

Obtain the string length of the string to be manipulated and store it in
@stringsize.

447 \@getstringlength{#2}{@stringsize}%

First, \@decodepointer is used to convert indirect references like $ and $-3 into
integers.

448 \@decodepointer{#3}%

449 \setcounter{@fromindex}{\@fromtoindex}%

450 \@decodepointer{#4}%

451 \setcounter{@toindex}{\@fromtoindex}%

Determine the number of characters to rotate to the end of the string and the
number of characters to then gobble from it, in order to leave the desired substring.

452 \setcounter{@gobblesize}{\value{@stringsize}}%

453 \ifthenelse{\value{@toindex} > \value{@stringsize}}%

454 {\setcounter{@maxrotation}{\value{@stringsize}}}%

455 {\setcounter{@maxrotation}{\value{@toindex}}}%

456 \addtocounter{@gobblesize}{-\value{@maxrotation}}%

457 \addtocounter{@gobblesize}{\value{@fromindex}}%

458 \addtocounter{@gobblesize}{-1}%

Prepare for the string rotation by initializing counters, setting the targeted string
into the working variable, \rotatingword, and set the encoding treatment speci-
fied.

28

459 \setcounter{@letterindex}{0}%

460 \edef\rotatingword{#2}%

461 \def\EncodingTreatment{#1}%

If capitalization (first character of string or of each word) was specified, the trigger
for 1st-character capitalization will be set. However, the treatments for the alpha-
betic characters for the remainder of the string must be saved and reinstituted
after the first character is capitalized.

462 \if 0\CapitalizeString%

463 % DO NOT SET CAPITALIZE TRIGGER FOR FIRST CHARACTER

464 \setcounter{@capstrigger}{0}%

465 \else

466 % SAVE CERTAIN TREATMENTS FOR LATER RESTORATION

467 \let\SaveAlphaTreatment\AlphaTreatment%

468 \let\SaveAlphaCapsTreatment\AlphaCapsTreatment%

469 % SET CAPITALIZE TRIGGER FOR FIRST CHARACTER

470 \setcounter{@capstrigger}{1}%

471 \@forcecapson%

472 \fi

The command \@defineactions looks at the defined treatments and specifies
how each of the stringstrings encoded characters should be handled (i.e., left alone,
removed, modified, etc.).

473 \@defineactions%

Here begins the primary loop of \substring in which characters of \rotatingword
are successively moved (and possibly manipulated) from the first character of
the string to the last. @letterindex is the running index defining how many
characters have been operated on.

474 \whiledo{\value{@letterindex} < \value{@maxrotation}}{%

475 \addtocounter{@letterindex}{1}%

When \CapitalizeString equals 1, only the first character of the string is cap-
italized. When it equals 2, every word in the string is capitalized. When equal
to 2, this bit of code looks for the blankspace that follows the end of a word, and
uses it to reset the capitalization trigger for the next non-blank character.

476 % IF NEXT CHARACTER BLANK WHILE \CapitalizeString=2,

477 % SET OR KEEP ALIVE TRIGGER.

478 \if 2\CapitalizeString%

479 \isnextbyte[q]{\EncodedBlankSpace}{\rotatingword}%

480 \if F\theresult\isnextbyte[q]{\BlankSpace}{\rotatingword}\fi%

481 \if T\theresult%

482 \if 0\arabic{@capstrigger}%

483 \@forcecapson%

484 \@defineactions%

485 \fi

486 \setcounter{@capstrigger}{2}%

29

487 \fi

488 \fi

Is the next character an encoded symbol? If it is a normal character, simply rotate
it to the end of the string. If it is an encoded symbol however, its treatment will
depend on whether it will be gobbled away or end up in the final substring. If it
will be gobbled away, leave it encoded, because the gobbling routine knows how
to gobble encoded characters. If it will end up in the substring, manipulate it
according to the encoding rules set in \@defineactions and rotate it.

489 % CHECK IF NEXT CHARACTER IS A SYMBOL

490 \isnextbyte[q]{\EscapeChar}{\rotatingword}%

491 \ifthenelse{\value{@letterindex} < \value{@fromindex}}%

492 {%

493 % THIS CHARACTER WILL EVENTUALLY BE GOBBLED

494 \if T\theresult%

495 % ROTATE THE ESCAPE CHARACTER, WHICH WILL LEAVE THE SYMBOL ENCODED

496 % FOR PROPER GOBBLING (ESCAPE CHARACTER DOESN’T COUNT AS A LETTER)

497 \edef\rotatingword{\@rotate{\rotatingword}}%

498 \addtocounter{@letterindex}{-1}%

499 \else

500 % NORMAL CHARACTER OR SYMBOL CODE... ROTATE IT

501 \edef\rotatingword{\@rotate{\rotatingword}}%

502 \fi

503 }%

504 {%

505 % THIS CHARACTER WILL EVENTUALLY MAKE IT INTO SUBSTRING

506 \if T\theresult%

507 % ROTATE THE SYMBOL USING DEFINED TREATMENT RULES

508 \edef\rotatingword{\ESCrotate{\expandafter\@gobble\rotatingword}}%

509 \else

510 % NORMAL CHARACTER... ROTATE IT

511 \edef\rotatingword{\@rotate{\rotatingword}}%

512 \fi

513 }%

Here, the capitalization trigger persistently tries to turn itself off with each loop
through the string rotation. Only if the earlier code found the rotation to be
pointing to the blank character(s) between words while \CapitalizeString equals
2 will the trigger be prevented from extinguishing itself.

514 % DECREMENT CAPITALIZATION TRIGGER TOWARDS 0, EVERY TIME THROUGH LOOP

515 \if 0\arabic{@capstrigger}%

516 \else

517 \addtocounter{@capstrigger}{-1}%

518 \if 0\arabic{@capstrigger}\@relaxcapson\fi

519 \fi

In addition to the standard \substring calls in which fixed substring limits are
specified (which in turn fixes the number of character rotations to be executed),
some stringstrings commands want the rotations to continue until a blankspace

30

is located. This bit of code looks for that blank space, if that was the option
requested. Once found, the rotation will stop. However, depending on the value of
\SeekBlankSpace, the remainder of the string may either be retained or discarded.

520 % IF SOUGHT SPACE IS FOUND, END ROTATION OF STRING

521 \if 0\SeekBlankSpace\else

522 \isnextbyte[q]{\EncodedBlankSpace}{\rotatingword}%

523 \if F\theresult\isnextbyte[q]{\BlankSpace}{\rotatingword}\fi%

524 \if T\theresult%

525 \if 1\SeekBlankSpace%

526 % STOP ROTATION, KEEP REMAINDER OF STRING

527 \setcounter{@maxrotation}{\value{@letterindex}}%

528 \else

529 % STOP ROTATION, THROW AWAY REMAINDER OF STRING

530 \addtocounter{@gobblesize}{\value{@maxrotation}}%

531 \setcounter{@maxrotation}{\value{@letterindex}}%

532 \addtocounter{@gobblesize}{-\value{@maxrotation}}%

533 \fi

534 \fi

535 \fi

536 }%

The loop has ended.
Gobble up the first @gobblesize characters (not bytes!) of the string, which should
leave the desired substring as the remainder. If the mode is verbose, print out the
resulting substring.

537 % GOBBLE AWAY THAT PART OF STRING THAT ISN’T PART OF REQUESTED SUBSTRING

538 \@gobblearg{\rotatingword}{\arabic{@gobblesize}}%

539 \edef\thestring{\gobbledword}%

540 \if v#1\thestring\fi%

541 \?}

Many of the following commands are self-expanatory. The recipe they follow
is to use \Treatments to specify how different character classes are to be ma-
nipulated, and then to call upon \substring to effect the desired manipulation.
Treatments are typically re-defaulted at the conclusion of the command, which
is why the user, if desiring special treatments, should specify those treatments
immediately before a call to \substring.

\caseupper

542 % Convert Lower to Uppercase; retain all symbols, numerals,

543 % punctuation, and blanks.

544 \newcommand\caseupper[2][v]{%

545 \Treatments{1}{2}{1}{1}{1}{1}%

546 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

547 \defaultTreatments%

548 }

31

\caselower

549 % Convert Upper to Lowercase; retain all symbols, numerals,

550 % punctuation, and blanks.

551 \newcommand\caselower[2][v]{%

552 \Treatments{2}{1}{1}{1}{1}{1}%

553 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

554 \defaultTreatments%

555 }

\solelyuppercase

556 % Convert Lower to Uppercase; discard symbols, numerals, and

557 % punctuation, but keep blanks.

558 \newcommand\solelyuppercase[2][v]{%

559 \Treatments{1}{2}{0}{0}{0}{1}%

560 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

561 \defaultTreatments%

562 }

\solelylowercase

563 % Convert Upper to Lowercase; discard symbols, numerals, and

564 % punctuation, but keep blanks.

565 \newcommand\solelylowercase[2][v]{%

566 \Treatments{2}{1}{0}{0}{0}{1}%

567 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

568 \defaultTreatments%

569 }

\changecase

570 % Convert Lower to Uppercase & Upper to Lower; retain all symbols, numerals,

571 % punctuation, and blanks.

572 \newcommand\changecase[2][v]{%

573 \Treatments{2}{2}{1}{1}{1}{1}%

574 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

575 \defaultTreatments%

576 }

\noblanks

577 % Remove blanks; retain all else.

578 \newcommand\noblanks[2][v]{%

579 \Treatments{1}{1}{1}{1}{1}{0}%

580 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

581 \defaultTreatments%

582 }

\nosymbolsnumerals

32

583 % Retain case; discard symbols & numerals; retain

584 % punctuation & blanks.

585 \newcommand\nosymbolsnumerals[2][v]{%

586 \Treatments{1}{1}{1}{0}{0}{1}%

587 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

588 \defaultTreatments%

589 }

\alphabetic

590 % Retain case; discard symbols, numerals &

591 % punctuation; retain blanks.

592 \newcommand\alphabetic[2][v]{%

593 \Treatments{1}{1}{0}{0}{0}{1}%

594 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

595 \defaultTreatments%

596 }

\capitalize The command \CapitalizeString is not set by \Treatments, but only in
\capitalize or in \capitalizewords.

597 % Capitalize first character of string,

598 \newcommand\capitalize[2][v]{%

599 \defaultTreatments%

600 \def\CapitalizeString{1}%

601 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

602 \def\CapitalizeString{0}%

603 }

\capitalizewords

604 % Capitalize first character of each word in string,

605 \newcommand\capitalizewords[2][v]{%

606 \defaultTreatments%

607 \def\CapitalizeString{2}%

608 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

609 \def\CapitalizeString{0}%

610 }

\reversestring Reverses a string from back to front. To do this, a loop is set up in which characters
are grabbed one at a time from the end of the given string, working towards
the beginning of the string. The grabbed characters are concatenated onto the
end of the working string, \@reversedstring. By the time the loop is complete
\@reversedstring fully represents the reversed string. The result is placed into
\thestring.

611 % REVERSES SEQUENCE OF CHARACTERS IN STRING

612 \newcommand\reversestring[2][v]{%

613 \def\@reversedstring{}%

614 \+\@getstringlength{#2}{@@stringsize}\?%

33

615 \setcounter{@@@letterindex}{\the@@stringsize}%

616 \whiledo{\the@@@letterindex > 0}{%

617 \if e#1%

618 \substring[e]{#2}{\the@@@letterindex}{\the@@@letterindex}%

619 \else

620 \substring[q]{#2}{\the@@@letterindex}{\the@@@letterindex}%

621 \fi

622 \edef\@reversedstring{\@reversedstring\thestring}%

623 \addtocounter{@@@letterindex}{-1}%

624 }%

625 \edef\thestring{\@reversedstring}%

626 \if v#1\thestring\fi%

627 }

\convertchar Takes a string, and replaces each occurance of a specified character with a re-
placement string. The only complexity in the logic is that a separate replacement
algorithm exists depending on whether the specified character to be replaced is a
normal character or an encoded character.

628 % TAKES A STARTING STRING #2 AND SUBSTITUTES A SPECIFIED STRING #4

629 % FOR EVERY OCCURANCE OF A PARTICULAR GIVEN CHARACTER #3. THE

630 % CHARACTER TO BE CONVERTED MAY BE EITHER A PLAIN CHARACTER OR

631 % AN ENCODABLE SYMBOL.

632 \newcommand\convertchar[4][v]{%

633 \+%

634 \edef\encodedstring{#2}%

635 \edef\encodedfromarg{#3}%

636 \edef\encodedtoarg{#4}%

637 \?%

638 \isnextbyte[q]{\EscapeChar}{\encodedfromarg}%

639 \if F\theresult%

640 % PLAIN "FROM" ARGUMENT

641 \@convertbytetostring[#1]{\encodedstring}{#3}{\encodedtoarg}%

642 \else

643 % ENCODABLE "FROM" ARGUMENT

644 \@convertsymboltostring[#1]{\encodedstring}%

645 {\expandafter\@gobble\encodedfromarg}{\encodedtoarg}%

646 \fi

647 }

\convertword Takes a string, a replaces each occurance of a specified string with a replacement
string.

648 \newcounter{@@matchloc}

649 % LIKE \convertchar, EXCEPT FOR WORDS

650 \newcommand\convertword[4][v]{%

651 \+\edef\@@teststring{#2}%

652 \edef\@fromstring{#3}%

653 \edef\@tostring{#4}\?%

654 \edef\@@@teststring{\@@teststring}%

34

655 \def\@buildfront{}%

656 \edef\@buildstring{\@@teststring}%

657 \setcounter{@charsfound}{0}%

658 \whiledo{\the@charsfound > -1}{%

Seek occurance of \@fromstring in larger \@@teststring

659 \whereisword[q]{\@@teststring}{\@fromstring}%

660 \setcounter{@matchloc}{\theresult}%

661 \ifthenelse{\the@matchloc = 0}%

662 {%

Not found. Done.

663 \setcounter{@charsfound}{-1}%

664 }%

665 {%

Potential matchstring.

666 \addtocounter{@charsfound}{1}%

Grab current test string from beginning to point just prior to potential match.

667 \addtocounter{@matchloc}{-1}%

668 \substring[e]{\@@@teststring}{1}{\the@matchloc}%

The string \@buildfront is the total original string, with string substitutions,
from character 1 to current potential match.

669 \edef\@buildfront{\@buildfront\thestring}%

See if potential matchstring takes us to end-of-string. . .

670 \addtocounter{@matchloc}{1}%

671 \addtocounter{@matchloc}{\the@matchsize}%

672 \ifthenelse{\the@matchloc > \the@@@stringsize}%

673 {%

. . . if so, then match is last one in string. Tack on replacement string to
\@buildfront to create final string. Exit.

674 \setcounter{@charsfound}{-1}%

675 \edef\@buildstring{\@buildfront\@tostring}%

676 }%

677 {%

. . . if not, redefine current teststring to begin at point following the current substi-
tution. Make substitutions to current \@buildstring and \@buildfront. Loop
through logic again on new teststring.

678 \substring[e]{\@@@teststring}{\the@matchloc}{\@MAXSTRINGSIZE}%

679 \edef\@@teststring{\thestring}%

680 \edef\@@@teststring{\@@teststring}%

35

681 \edef\@buildstring{\@buildfront\@tostring\@@@teststring}%

682 \edef\@buildfront{\@buildfront\@tostring}%

683 }%

684 }%

685 }%

686 \substring[#1]{\@buildstring}{1}{\@MAXSTRINGSIZE}%

687 }

\resetlcwords Removes all words from designated “lower-case words” list. This can be useful
because large lists of lower-case words can significantly slow-down the function of
\capitalizetitle.

688 \setcounter{@lcwords}{0}

689 % RESET LOWER-CASE WORD COUNT; START OVER

690 \newcommand\resetlcwords[0]{%

691 \setcounter{@lcwords}{0}%

692 }

\addlcwords Add words to the list of designated “lower-case words” which will not be capitalized
by \capitalizetitle. The input should consist of space-separated words, which
are, in turn, passed on to \addlcword.

693 % PROVIDE LIST OF SPACE-SEPARATED WORDS TO REMAIN LOWERCASE IN TITLES

694 \newcommand\addlcwords[1]{%

695 \getargs{#1}%

696 \setcounter{@wordindex}{0}%

697 \whiledo{\value{@wordindex} < \narg}{%

698 \addtocounter{@wordindex}{1}%

699 \addlcword{\csname arg\roman{@wordindex}\endcsname}%

700 }

701 }

\addlcword Add a word to the list of designated “lower-case words” which will not be capital-
ized by \capitalizetitle.

702 % PROVIDE A SINGLE WORD TO REMAIN LOWERCASE IN TITLES

703 \newcommand\addlcword[1]{%

704 \addtocounter{@lcwords}{1}%

705 \expandafter\edef\csname lcword\roman{@lcwords}\endcsname{#1}

706 }

\capitalizetitle Makes every word of a multi-word input string capitalized, except for specifi-
cally noted “lower-case words” (examples might include prepositions, conjunc-
tions, etc.). The first word of the input string is capitalized, while lower-case
words, previously designated with \addlcword and \addlcwords, are left in lower
case.

707 % CAPITALIZE TITLE, EXCEPT FOR DESIGNATED "LOWER-CASE" WORDS

708 \newcommand\capitalizetitle[2][v]{%

36

709 % First, capitalize every word (save in encoded form, not printed)

710 \capitalizewords[e]{#2}%

711 % Then lowercase words that shouldn’t be capitalized, like articles,

712 % prepositions, etc. (save in encoded form, not printed)

713 \setcounter{@wordindex}{0}%

714 \whiledo{\value{@wordindex} < \value{@lcwords}}{%

715 \addtocounter{@wordindex}{1}%

716 \edef\mystring{\thestring}%

717 \edef\lcword{\csname lcword\roman{@wordindex}\endcsname}%

718 \capitalize[e]{\lcword}%

719 \edef\ucword{\thestring}%

720 \convertword[e]{\mystring}{\ucword~}{\lcword~}%

721 }

722 % Finally, recapitalize the first word of the Title, and print it.

723 \capitalize[#1]{\thestring}%

724 }

\rotateword Moves first word of given string #2 to end of string, including leading and trailing
blank spaces.

725 \newcommand\rotateword[2][v]{%

726 \+\edef\thestring{#2}\?%

Rotate leading blank spaces to end of string

727 \@treatleadingspaces[e]{\thestring}{}%

Define end-of-rotate condition for \substring as next blank space

728 \def\SeekBlankSpace{1}%

Leave rotated characters alone

729 \Treatments{1}{1}{1}{1}{1}{1}%

Rotate to the next blank space or the end of string, whichever comes first.

730 \substring[e]{\thestring}{1}{\@MAXSTRINGSIZE}%

Rotate trailing spaces.

731 \@treatleadingspaces[#1]{\thestring}{}%

732 \defaultTreatments%

733 }

\removeword Remove the first word of given string #2, including leading and trailing spaces.
Note that logic is identical to \rotateword, except that affected spaces and char-
acters are removed instead of being rotated.

734 \newcommand\removeword[2][v]{%

735 \+\edef\thestring{#2}\?%

The {x} final argument indicates to delete leading spaces.

37

736 \@treatleadingspaces[e]{\thestring}{x}%

737 \def\SeekBlankSpace{1}%

The Treatments are specified to remove all characters.

738 \Treatments{0}{0}{0}{0}{0}{0}%

739 \substring[e]{\thestring}{1}{\@MAXSTRINGSIZE}%

Trailing spaces are also deleted.

740 \@treatleadingspaces[#1]{\thestring}{x}%

741 \defaultTreatments%

742 }

\getnextword A special case of \getaword, where word-to-get is specified as “1”.

743 % GETS NEXT WORD FROM STRING #2.

744 % NOTE: ROTATES BACK TO BEGINNING, AFTER STRING OTHERWISE EXHAUSTED

745 \newcommand\getnextword[2][v]{%

746 \getaword[#1]{#2}{1}%

747 }

\getaword Obtain a specified word number (#3) from string #2. Logic: rotate leading spaces
to end of string; then loop #3 – 1 times through \rotateword. Finally, get next
word.

748 % GETS WORD #3 FROM STRING #2.

749 % NOTE: ROTATES BACK TO BEGINNING, AFTER STRING OTHERWISE EXHAUSTED

750 \newcommand\getaword[3][v]{%

751 \setcounter{@wordindex}{1}%

752 \+\edef\thestring{#2}\?%

753 \@treatleadingspaces[e]{\thestring}{}%

754 \whiledo{\value{@wordindex} < #3}{%

755 \rotateword[e]{\thestring}%

756 \addtocounter{@wordindex}{1}%

757 }%

758 \@getnextword[#1]{\thestring}%

759 }

\rotateleadingspaces Rotate leading spaces of string #2 to the end of string.

760 \newcommand\rotateleadingspaces[2][v]{%

761 \@treatleadingspaces[#1]{#2}{}%

762 }

\removeleadingspaces Remove leading spaces from string #2.

763 \newcommand\removeleadingspaces[2][v]{%

764 \@treatleadingspaces[#1]{#2}{x}%

765 }

38

\stringencode

766 % ENCODE STRING; UNLIKE OTHER COMMANDS, DEFAULT IS NO PRINT

767 \newcommand\stringencode[2][e]{%

768 \defaultTreatments%

769 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

770 }

\stringdecode

771 % DECODE STRING

772 \newcommand\stringdecode[2][v]{%

773 \defaultTreatments%

774 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

775 }

\gobblechar Remove first character (not byte!) from string #2. Unlike just about all other
stringstrings commands, result is retokenized and not expanded.

776 % SINGLE-CHARACTER VERSION OF \gobblechars. IN THIS CASE, TWO-BYTE

777 % ESCAPE SEQUENCES, WHEN ENCOUNTERED, COUNT AS A SINGLE GOBBLE.

778 \newcommand\gobblechar[2][q]{\+%

779 \@gobblearg{#2}{1}%

780 \?\retokenize[#1]{\gobbledword}%

781 }

\gobblechars Remove first #3 characters (not bytes!) from string #2. Unlike just about all other
stringstrings commands, result is retokenized and not expanded.

782 % USER CALLABLE VERSION OF \@gobblearg. TURNS ON REENCODING.

783 % GOBBLE FIRST #3 CHARACTERS FROM STRING #2. TWO-BYTE

784 % ESCAPE SEQUENCES, WHEN ENCOUNTERED, COUNT AS A SINGLE GOBBLE.

785 \newcommand\gobblechars[3][q]{\+%

786 \@gobblearg{#2}{#3}%

787 \?\retokenize[#1]{\gobbledword}%

788 }

\retokenize One of the key stringstrings routines that provides several indispensible functions.
Its function is to take an encoded string #2 that has been given, and repopulate
the string with its LATEX tokens in a \def form (not an expanded \edef form).
It is useful if required to operate on a string outside of the stringstrings library
routines, following a stringstrings manipulation. It is also useful to display certain
tokens which cannot be manipulated in expanded form. See Table 2 for a list
of tokens that will only work when the resulting string is retokenized (and not
expanded).

Logic: Loop through each character of given string #2. Each successive charac-
ter of the string is retokenized as \inexttoken, \iinexttoken, \iiinexttoken,
\ivnexttoken, etc., respectively. Then a series of strings are formed as

39

\def\buildtoken{}

\def\buildtokeni{\builtoken\inexttoken}

\def\buildtokenii{\builtokeni\iinexttoken}

\def\buildtokeniii{\builtokenii\iiinexttoken}

\def\buildtokeniv{\builtokeniii\ivnexttoken}

The last in the sequence of \builtoken... strings (renamed \buildtokenq) is
the retokenized version of string #2.

789 % CONVERTS ENCODED STRING BACK INTO TOKENIZED FORM (i.e., def’ED).

790 \newcommand\retokenize[2][q]{\+%

791 \edef\@svstring{#2}%

792 \edef\buildtoken{}%

793 \@getstringlength{#2}{@@stringsize}\?%

794 \setcounter{@@letterindex}{0}%

795 \whiledo{\the@@letterindex < \the@@stringsize}{%

796 \setcounter{@previousindex}{\the@@letterindex}%

797 \addtocounter{@@letterindex}{1}%

798 \substring[e]{\@svstring}{\the@@letterindex}{\the@@letterindex}%

799 \@retokenizechar{\thestring}{\roman{@@letterindex}nexttoken}%

800 \expandafter\def\csname buildtoken\roman{@@letterindex}%

801 \expandafter\endcsname\expandafter%

802 {\csname buildtoken\roman{@previousindex}\expandafter\endcsname%

803 \csname\roman{@@letterindex}nexttoken\endcsname}%

804 }%

805 \expandafter\def\expandafter\buildtokenq\expandafter{%

806 \csname buildtoken\roman{@@letterindex}\endcsname}%

807 \def\thestring{\buildtokenq}%

808 \if v#1\thestring\fi

809 }

810 % %%%%% COMMANDS TO EXTRACT STRING INFORMATION %%%%%%%%%%%%%%%%%%%%%%%%%%

The following group of commands extract information about a string, and store
the result in a string called \theresult. Since the result is not a substring, a mode
of [e] carries no meaning. Only [v] and [q] modes apply here.

\stringlength Returns the length of the given string in characters, not bytes.

811 % USER CALLABLE VERSION of \@getstringlength:

812 % GET’S STRING LENGTH OF [#2], PUTS RESULT IN \theresult. PRINTS RESULT

813 % UNLESS IN QUIET [q] MODE.

814 \newcommand\stringlength[2][v]{\+%

815 \@getstringlength{#2}{@@stringsize}%

816 \edef\theresult{\arabic{@@stringsize}}%

817 \if v#1\theresult\fi%

818 \?}

\findchars Find number of occurances of character #3 in string #2.

40

819 % CHECKS TO SEE IF THE CHARACTER [#3] APPEARS ANYWHERE IN STRING [#2].

820 % THE NUMBER OF OCCURANCES IS PRINTED OUT, EXCEPT WHEN [#1]=q, QUIET

821 % MODE. RESULT IS ALSO STORED IN \theresult . TO FIND SPACES, ARG3

822 % SHOULD BE SET TO {~}, NOT { }.

823 \newcommand\findchars[3][v]{\+%

824 \@getstringlength{#2}{@@stringsize}%

825 \setcounter{@charsfound}{0}%

826 \setcounter{@@letterindex}{0}%

Loop through each character of #2.

827 \whiledo{\value{@@letterindex} < \value{@@stringsize}}{%

828 \addtocounter{@@letterindex}{1}%

Test if the @@letterindex character of string #2 equals #3. If so, add to tally.

829 \testmatchingchar{#2}{\arabic{@@letterindex}}{#3}%

830 \ifmatchingchar\addtocounter{@charsfound}{1}\fi

831 }%

832 \edef\theresult{\arabic{@charsfound}}%

833 \if q#1\else\theresult\fi%

834 \?}

\whereischar Similar to \findchars, but instead finds first occurance of match character #3

within #2 and returns its location within #2.

835 % CHECKS TO FIND LOCATION OF FIRST OCCURANCE OF [#3] IN STRING [#2].

836 % THE LOCATION IS PRINTED OUT, EXCEPT WHEN [#1]=q, QUIET

837 % MODE. RESULT IS ALSO STORED IN \theresult . TO FIND SPACES, ARG3

838 % SHOULD BE SET TO {~}, NOT { }.

839 \newcommand\whereischar[3][v]{\+%

840 \@getstringlength{#2}{@@stringsize}%

841 \edef\@theresult{0}%

842 \setcounter{@@letterindex}{0}%

Loop through characters of #2 sequentially.

843 \whiledo{\value{@@letterindex} < \value{@@stringsize}}{%

844 \addtocounter{@@letterindex}{1}%

Look for match. If found, save character-location index, and reset loop index to
break from loop.

845 \testmatchingchar{#2}{\arabic{@@letterindex}}{#3}%

846 \ifmatchingchar%

847 \edef\@theresult{\the@@letterindex}%

848 \setcounter{@@letterindex}{\the@@stringsize}%

849 \fi

850 }%

851 \edef\theresult{\@theresult}%

852 \if q#1\else\theresult\fi%

853 \?}

41

\whereisword Finds location of specified word (#3) in string #2.

854 % LIKE \whereischar, EXCEPT FOR WORDS

855 \newcommand\whereisword[3][v]{\+%

856 \setcounter{@skipped}{0}%

\@@@@teststring initially contains #2. As false alarms are located, the string will
be redefined to lop off initial characters of string.

857 \edef\@@@@teststring{#2}%

858 \edef\@matchstring{#3}%

859 \@getstringlength{#2}{@@stringsize}%

860 \setcounter{@@@stringsize}{\value{@@stringsize}}%

861 \@getstringlength{#3}{@matchsize}%

862 \setcounter{@matchmax}{\the@@stringsize}%

863 \addtocounter{@matchmax}{-\the@matchsize}%

864 \addtocounter{@matchmax}{1}%

865 \setcounter{@flag}{0}%

Define \matchchar as the first character of the match string (#3).

866 \substring[e]{#3}{1}{1}%

867 \edef\matchchar{\thestring}%

868 \whiledo{\the@flag = 0}{%

Look for first character of match string within \@@@@teststring.

869 \whereischar[q]{\@@@@teststring}{\matchchar}%

870 \setcounter{@matchloc}{\theresult}%

871 \ifthenelse{\equal{0}{\value{@matchloc}}}%

If none found, we are done.

872 {%

873 \setcounter{@flag}{1}%

874 }%

If \matchchar is found, must determine if it is the beginning of the match
string, or just an extraneous match (i.e., false alarm). Extract substring of
\@@@@teststring, of a size equal to the match string. Compare this extracted
string with the match string.

875 {%

876 \setcounter{@matchend}{\theresult}%

877 \addtocounter{@matchend}{\value{@matchsize}}%

878 \addtocounter{@matchend}{-1}%

879 \substring[e]{\@@@@teststring}{\the@matchloc}{\the@matchend}%

880 \ifthenelse{\equal{\thestring}{\@matchstring}}%

Found a match! Save the match location

881 {%

882 \setcounter{@flag}{1}%

883 \addtocounter{@matchloc}{\the@skipped}%

42

884 \edef\theresult{\the@matchloc}%

885 }%

False alarm. Determine if lopping off the leading characters of \@@@@teststring
(to discard the false-alarm occurance) is feasible. If lopping would take one past
the end of the string, then no match is possible. If lopping permissible, rede-
fine the string \@@@@teststring, keeping track of the total number of lopped-off
characters in the counter @skipped.

886 {%

887 \addtocounter{@skipped}{\the@matchloc}%

888 \addtocounter{@matchloc}{1}%

889 \ifthenelse{\value{@matchloc} > \value{@matchmax}}%

890 {%

891 \setcounter{@flag}{1}%

892 \edef\theresult{0}%

893 }%

894 {%

895 \substring[e]{\@@@@teststring}{\the@matchloc}{\@MAXSTRINGSIZE}%

896 \edef\@@@@teststring{\thestring}%

897 }%

898 }%

899 }%

900 }%

901 \if q#1\else\theresult\fi%

902 \?}

\findwords Finds the number of occurances of a word within the provided string

903 % LIKE \findchar, EXCEPT FOR WORDS

904 \newcommand\findwords[3][v]{%

905 \+\edef\@@teststring{#2}\?%

906 \edef\@@@teststring{\@@teststring}%

907 \setcounter{@charsfound}{0}%

908 \whiledo{\the@charsfound > -1}{%

Seek occurance of #3 in the string to be tested

909 \whereisword[q]{\@@teststring}{#3}%

910 \setcounter{@matchloc}{\theresult}%

911 \ifthenelse{\the@matchloc = 0}%

912 {%

None found. Break from loop.

913 \edef\theresult{\the@charsfound}%

914 \setcounter{@charsfound}{-1}%

915 }%

916 {%

Found. Increment count.

43

917 \addtocounter{@charsfound}{1}%

918 \addtocounter{@matchloc}{\the@matchsize}%

919 \ifthenelse{\the@matchloc > \the@@stringsize}%

920 {%

This ”find” takes us to the end-of-string. Break from loop now.

921 \edef\theresult{\the@charsfound}%

922 \setcounter{@charsfound}{-1}%

923 }%

924 {%

More string to search. Lop off what has been searched from string to be tested,
and re-loop for next search.

925 \substring[e]{\@@@teststring}{\the@matchloc}{\@MAXSTRINGSIZE}%

926 \edef\@@teststring{\thestring}%

927 \edef\@@@teststring{\@@teststring}%

928 }%

929 }%

930 }%

931 \if q#1\else\theresult\fi%

932 }

\wordcount Counts words (space-separated text) in a string. Simply removes one word at a
time, counting the words as it goes. With each removal, checks for non-zero string
size remaining.

933 % WORD COUNT

934 \newcommand\wordcount[2][v]{\+%

935 \edef\@argv{#2}

936 \@getstringlength{\@argv}{@stringsize}

937 \setcounter{@iargc}{0}

938 \whiledo{\value{@stringsize} > 0}{%

939 \addtocounter{@iargc}{1}%

940 \removeword[e]{\@argv}%

941 \edef\@argv{\thestring}%

942 \@getstringlength{\@argv}{@stringsize}%

943 }

944 \edef\theresult{\arabic{@iargc}}%

945 \if v#1\theresult\fi%

946 \?}

\getargs Parse a string of arguments in Unix-like manner. Define \argv as #2. Grabs
leading word from \argv and puts it in \argi. Increment argument count; remove
leading word from \argv. Repeat this process, with each new argument being
placed in \argii, \argiii, \argiv, etc. Continue until size of \argv is exhausted.

947 % OBTAINS ARGUMENTS (WORDS) IN #1 ALA UNIX getarg COMMAND

948 % narg CONTAINS NUMBER OF ARGUMENTS. ARGUMENTS CONTAINED IN

949 % argi, argii, argiii, argiv, ETC.

44

950 % v mode disabled

951 \newcommand\getargs[2][q]{\+%

952 \if v#1\def\@mode{q}\else\def\@mode{#1}\fi%

953 \edef\@argv{#2}%

954 \@getstringlength{\@argv}{@stringsize}%

955 \setcounter{@iargc}{0}%

956 \whiledo{\value{@stringsize} > 0}{%

957 \addtocounter{@iargc}{1}%

958 \getaword[\@mode]{\@argv}{1}%

959 \expandafter\edef\csname arg\roman{@iargc}\endcsname{\thestring}%

960 \removeword[e]{\@argv}%

961 \edef\@argv{\thestring}%

962 \@getstringlength{\@argv}{@stringsize}%

963 }%

964 \edef\narg{\arabic{@iargc}}%

965 \?}

966 %%%%% COMMANDS TO TEST STRINGS %%

The following group of commands test for various alphanumeric string condi-
tions.

\isnextbyte This routine performs a simple test to determine if the first byte of string #3

matches the byte given by #2. The only problem is that the test can produce a
false negative if the first byte of the test string equals the match byte and the
second byte of the test string equals the SignalChar (defined below).

To resolve this possibility, the test is performed twice with two different values
for \SignalChar, only one of which can produce a false negative for a given test
string. If the two results match, then that result gives the correct answer to the
question of whether the first byte of #3 equals #2. If, however, the two results fail
to match, then one can assume that one of the results is a false negative, and so
a “true” condition results.

The following two “signal characters,” used for the two tests, can be any two
distinct characters. They are used solely by \isnextbyte.

967 \def\PrimarySignalChar{@}

968 \def\SecondarySignalChar{‘}

969

970 % \isnextbyte NEEDS TO OPERATE IN RAW (SINGLE BYTE) MODE SO AS TO

971 % PERFORM TESTS FOR PRESENCE OF \EscapeChar

Incidentally, \isnextbyte can and is used by stringstrings to detect multi-byte
characters in a manner which may also be employed by the user. To do this:
First, the string to be tested should be encoded. Then, \isnextbyte may be
used to check for \EscapeChar which is how every multi-byte character will begin
its encoding by the stringstrings package. If \EscapeChar is detected as the next
character, then the string to test may have its leading byte gobbled and the next

45

character (called the Escape Code) may be tested, and compared against the
known stringstrings escape codes. The combination of Escape-Character/Escape-
Code is how all multi-byte characters are encoded by the stringstrings package.

972 \newcommand\isnextbyte[3][v]{%

Here’s the first test. . .

973 \let\SignalChar\PrimarySignalChar%

974 \edef\@x{\if #2#3\else\SignalChar\fi}%

975 \edef\@x{\if \SignalChar\@x F\else T\fi}%

. . . and the second

976 \let\SignalChar\SecondarySignalChar%

977 \edef\@y{\if #2#3\else\SignalChar\fi}%

978 \edef\@y{\if \SignalChar\@y F\else T\fi}%

If the two tests produced the same result, then a comparison of \@x\@y and \@y\@x

will show it.

979 % BECAUSE THE METHOD ONLY PRODUCES FALSE NEGATIVES, IF RESULTS DON’T

980 % AGREE FROM USING TWO DIFFERENT SIGNAL CHARACTERS, RESULT MUST BE TRUE.

981 \ifthenelse{\equal{\@x\@y}{\@y\@x}}

982 {\edef\theresult{\@x}}%

983 % CORRECT THE FALSE NEGATIVE

984 {\edef\theresult{T}}%

985 \if q#1\else\theresult\fi

986 }

\testmatchingchar This routine checks for a specified match-character within a target string. Unlike
\isnextbyte, this routine checks for characters (single- or multi-byte) and not just
individual bytes. Additionally, rather than testing the match-character against
the first byte of the test-string, the user specifies (through #2) which byte of the
test-string should be compared to the match-character.

This routine is not as efficient as \isnextbyte, but much more versatile.

987 % CHECKS TO SEE IF [#2]’th CHARACTER IN STRING [#1] EQUALS [#3]

988 % RESULT STORED IN BOOLEAN \ifmatchingchar

989 \newif\ifmatchingchar

990 \newcommand\testmatchingchar[3]{%

991 \setbox0=\hbox{%

Extract desired character from test string

992 \substring[e]{#1}{#2}{#2}\+%

Determine if the match-character is a multi-byte symbol.

993 \isnextbyte[q]{\EscapeChar}{#3}%

994 \if T\theresult%

46

Is the tested character also a multi-byte symbol?

995 \isnextbyte[q]{\EscapeChar}{\thestring}%

996 \if T\theresult%

Yes it is. . . Therefore, compare codes following the escape character

997 \edef\@testcode{\expandafter\@DiscardNextChar\expandafter{#3}}%

998 \edef\@teststring{\@DiscardNextChar{\thestring}}%

999 \if \@teststring\@testcode\matchingchartrue\else\matchingcharfalse\fi

1000 \else

No, we are comparing a normal character against a multi-byte symbol (apples and
oranges), a false comparison.

1001 \global\matchingcharfalse%

1002 \fi

1003 \else

No, we are comparing two normal one-byte characters, not a mult-byte character.

1004 \if \thestring#3\global\matchingchartrue\else\global\matchingcharfalse\fi

1005 \fi}

1006 \?}

\testcapitalized This routine checks to see if first character of string is capitalized. The only quirk
is that the routine must ascertain whether that character is a single-byte character
or a multi-byte character.

1007 \newif\ifcapitalized

1008 \newcommand\testcapitalized[1]{\+%

1009 \setbox0=\hbox{%

1010 \isnextbyte[q]{\EscapeChar}{#1}%

1011 \if T\theresult%

1012 \def\EncodingTreatment{e}%

1013 \edef\rotatingword{#1}%

Rotate the first [multi-byte] character of the string to the end of the string, lowering
its case. Store as \@stringA.

1014 \def\AlphaCapsTreatment{2}%

1015 \@defineactions%

1016 \edef\@stringA{\ESCrotate{\expandafter\@gobble\rotatingword}}%

Rotate the first [multi-byte] character of the string to the end of the string, re-
taining its case. Store as \@stringB.

1017 \def\AlphaCapsTreatment{1}%

1018 \@defineactions%

1019 \edef\@stringB{\ESCrotate{\expandafter\@gobble\rotatingword}}%

1020 \else

47

. . . or, if the first character is a normal one-byte character. . . Rotate the first [nor-
mal] character of the string to the end of the string, lowering its case. Store as
\@stringA.

1021 \def\AlphaCapsTreatment{2}%

1022 \edef\@stringA{\@rotate{#1}}%

Rotate the first [normal] character of the string to the end of the string, retaining
its case. Store as \@stringB.

1023 \def\AlphaCapsTreatment{1}%

1024 \edef\@stringB{\@rotate{#1}}%

1025 \fi

Compare strings A and B, to see if changing the case of first letter altered the
string

1026 \ifthenelse{\equal{\@stringA}{\@stringB}}%

1027 {\global\capitalizedfalse}{\global\capitalizedtrue}}\?%

1028 \defaultTreatments%

1029 }

\testuncapitalized This routine is the complement of \testcapitalized. The only difference is that
the \@stringA has its case made upper for the comparison, instead of lowered.

1030 \newif\ifuncapitalized

1031 \newcommand\testuncapitalized[1]{\+%

1032 \setbox0=\hbox{%

1033 \isnextbyte[q]{\EscapeChar}{#1}%

1034 \if T\theresult%

1035 \def\EncodingTreatment{e}%

1036 \edef\rotatingword{#1}%

1037 \def\AlphaTreatment{2}%

1038 \@defineactions%

1039 \edef\@stringA{\ESCrotate{\expandafter\@gobble\rotatingword}}%

1040 \def\AlphaTreatment{1}%

1041 \@defineactions%

1042 \edef\@stringB{\ESCrotate{\expandafter\@gobble\rotatingword}}%

1043 \else

1044 \def\AlphaTreatment{2}%

1045 \edef\@stringA{\@rotate{#1}}%

1046 \def\AlphaTreatment{1}%

1047 \edef\@stringB{\@rotate{#1}}%

1048 \fi

1049 \ifthenelse{\equal{\@stringA}{\@stringB}}%

1050 {\global\uncapitalizedfalse}{\global\uncapitalizedtrue}}\?%

1051 \defaultTreatments%

1052 }

\testleadingalpha Test if the leading character of the string is alphabetic. This is simply accom-
plished by checking whether the string is either capitalized or uncapitalized. If

48

non-alphabetic, it will show up as false for both those tests.

1053 \newif\ifleadingalpha

1054 \newcommand\testleadingalpha[1]{%

1055 \testcapitalized{#1}%

1056 \ifcapitalized

1057 \leadingalphatrue%

1058 \else

1059 \testuncapitalized{#1}%

1060 \ifuncapitalized

1061 \leadingalphatrue%

1062 \else

1063 \leadingalphafalse%

1064 \fi

1065 \fi

1066 }

\testuppercase Checks to see if all alphabetic characters in a string are uppercase. Non-alphabetic
characters don’t affect the result, unless the string is composed solely of nonal-
phabetic characters, in which case the test results is false.

1067 \newif\ifuppercase

1068 \newcommand\testuppercase[1]{%

1069 \setbox0=\hbox{%

Strip all non-alphabetic characters. Save as \@stringA.

1070 \Treatments{1}{1}{0}{0}{0}{0}%

1071 \substring[e]{#1}{1}{\@MAXSTRINGSIZE}%

1072 \edef\@stringA{\thestring}%

Lower the case of all uppercase characters in \@stringA. Save as \@stringB.
Compare these two strings.

1073 \def\AlphaTreatment{2}%

1074 \substring[e]{#1}{1}{\@MAXSTRINGSIZE}%

1075 \edef\@stringB{\thestring}%

1076 \ifthenelse{\equal{\@stringA}{\@stringB}}%

1077 {%

If the strings are equal, then all the alphabetic characters in the original string
were uppercase. Need only check to make sure at least one alphabetic character
was present in the original string.

1078 \@getstringlength{\@stringA}{@stringsize}%

1079 \ifthenelse{\value{@stringsize} = 0}%

1080 {\global\uppercasefalse}{\global\uppercasetrue}%

1081 }%

If strings are not equal, then the alphabetic characters of the original string were
not all uppercase. Test false.

49

1082 {\global\uppercasefalse}}%

1083 \defaultTreatments%

1084 }

\ifsolelyuppercase Compare the original string to one made solely uppercase. If they are equal (and
not composed solely of blankspaces), then the original string was solely uppercase
to begin with.

1085 \newif\ifsolelyuppercase

1086 \newcommand\testsolelyuppercase[1]{%

1087 \setbox0=\hbox{%

1088 \stringencode{#1}%

1089 \edef\@stringA{\thestring}%

1090 \solelyuppercase[e]{#1}%

1091 \edef\@stringB{\thestring}%

1092 \ifthenelse{\equal{\@stringA}{\@stringB}}%

1093 {%

1094 \noblanks[q]{\@stringA}%

1095 \@getstringlength{\thestring}{@stringsize}%

1096 \ifthenelse{\value{@stringsize} = 0}%

1097 {\global\solelyuppercasefalse}{\global\solelyuppercasetrue}%

1098 }%

1099 {\global\solelyuppercasefalse}}%

1100 \defaultTreatments%

1101 }

\testlowercase This routine is the complement to \testuppercase, with corresponding logic.

1102 \newif\iflowercase

1103 \newcommand\testlowercase[1]{%

1104 \setbox0=\hbox{%

1105 \Treatments{1}{1}{0}{0}{0}{0}%

1106 \substring[e]{#1}{1}{\@MAXSTRINGSIZE}%

1107 \edef\@stringA{\thestring}%

1108 \def\AlphaCapsTreatment{2}%

1109 \substring[e]{#1}{1}{\@MAXSTRINGSIZE}%

1110 \edef\@stringB{\thestring}%

1111 \ifthenelse{\equal{\@stringA}{\@stringB}}%

1112 {%

1113 \@getstringlength{\@stringA}{@stringsize}%

1114 \ifnum\value{@stringsize}= 0\relax%

1115 \global\lowercasefalse\else\global\lowercasetrue\fi%

1116 }%

1117 {\global\lowercasefalse}}%

1118 \defaultTreatments%

1119 }

\testsolelylowercase This routine is the complement to \testsolelyuppercase, with corresponding
logic.

50

1120 \newif\ifsolelylowercase

1121 \newcommand\testsolelylowercase[1]{%

1122 \setbox0=\hbox{%

1123 \stringencode{#1}%

1124 \edef\@stringA{\thestring}%

1125 \solelylowercase[e]{#1}%

1126 \edef\@stringB{\thestring}%

1127 \ifthenelse{\equal{\@stringA}{\@stringB}}%

1128 {%

1129 \noblanks[q]{\@stringA}%

1130 \@getstringlength{\thestring}{@stringsize}%

1131 \ifthenelse{\value{@stringsize} = 0}%

1132 {\global\solelylowercasefalse}{\global\solelylowercasetrue}%

1133 }%

1134 {\global\solelylowercasefalse}}%

1135 \defaultTreatments%

1136 }

\testalphabetic Comparable to \testsolelyuppercase and \testsolelylowercase in its logic,
this routine tests whether the string is purely alphabetic or not.

1137 \newif\ifalphabetic

1138 \newcommand\testalphabetic[1]{%

1139 \setbox0=\hbox{%

1140 \stringencode{#1}%

1141 \edef\@stringA{\thestring}%

1142 \alphabetic[e]{#1}%

1143 \edef\@stringB{\thestring}%

1144 \ifthenelse{\equal{\@stringA}{\@stringB}}%

1145 {%

1146 \noblanks[q]{\@stringA}%

1147 \@getstringlength{\thestring}{@stringsize}%

1148 \ifthenelse{\value{@stringsize} = 0}%

1149 {\global\alphabeticfalse}{\global\alphabetictrue}%

1150 }%

1151 {\global\alphabeticfalse}}%

1152 \defaultTreatments%

1153 }

1154 %

1155 %%%%% SUPPORT ROUTINES %%

1156 %

The following routines support the execution of the stringstrings package.

\ESCrotate After the escape character has been ascertained as the next character, this routine
operates on the subsequent escape code to rotate the symbol to end of string, in
the fashion of macro \@rotate.

1157 \newcommand\ESCrotate[1]{%

51

1158 \if\UvariCode#1\@uvariaction\else

1159 \if\UvariiCode#1\@uvariiaction\else

1160 \if\UvariiiCode#1\@uvariiiaction\else

1161 \if\@fromcode#1\@tostring\else

1162 \if\PipeCode#1\@pipeaction\else

1163 \if\DollarCode#1\@dollaraction\else

1164 \if\CaratCode#1\@carataction\else

1165 \if\CircumflexCode#1\@circumflexaction\else

1166 \if\TildeCode#1\@tildeaction\else

1167 \if\UmlautCode#1\@umlautaction\else

1168 \if\GraveCode#1\@graveaction\else

1169 \if\AcuteCode#1\@acuteaction\else

1170 \if\MacronCode#1\@macronaction\else

1171 \if\OverdotCode#1\@overdotaction\else

1172 \if\LeftBraceCode#1\@leftbraceaction\else

1173 \if\RightBraceCode#1\@rightbraceaction\else

1174 \if\UnderscoreCode#1\@underscoreaction\else

1175 \if\DaggerCode#1\@daggeraction\else

1176 \if\DoubleDaggerCode#1\@doubledaggeraction\else

1177 \if\SectionSymbolCode#1\@sectionsymbolaction\else

1178 \if\PilcrowCode#1\@pilcrowaction\else

1179 \if\LBCode#1\@lbaction\else

1180 \if\RBCode#1\@rbaction\else

1181 \if\BreveCode#1\@breveaction\else

1182 \if\CaronCode#1\@caronaction\else

1183 \if\DoubleAcuteCode#1\@doubleacuteaction\else

1184 \if\CedillaCode#1\@cedillaaction\else

1185 \if\UnderdotCode#1\@underdotaction\else

1186 \if\ArchJoinCode#1\@archjoinaction\else

1187 \if\LineUnderCode#1\@lineunderaction\else

1188 \if\CopyrightCode#1\@copyrightaction\else

1189 \if\PoundsCode#1\@poundsaction\else

1190 \if\AEscCode#1\@AEscaction\else

1191 \if\aescCode#1\@aescaction\else

1192 \if\OEthelCode#1\@OEthelaction\else

1193 \if\oethelCode#1\@oethelaction\else

1194 \if\AngstromCode#1\@Angstromaction\else

1195 \if\angstromCode#1\@angstromaction\else

1196 \if\SlashedOCode#1\@slashedOaction\else

1197 \if\SlashedoCode#1\@slashedoaction\else

1198 \if\BarredlCode#1\@barredlaction\else

1199 \if\BarredLCode#1\@barredLaction\else

1200 \if\EszettCode#1\@eszettaction\else

1201 \expandafter\@gobble#1\undecipherable%

1202 \fi

1203 \fi

1204 \fi

1205 \fi

1206 \fi

1207 \fi

52

1208 \fi

1209 \fi

1210 \fi

1211 \fi

1212 \fi

1213 \fi

1214 \fi

1215 \fi

1216 \fi

1217 \fi

1218 \fi

1219 \fi

1220 \fi

1221 \fi

1222 \fi

1223 \fi

1224 \fi

1225 \fi

1226 \fi

1227 \fi

1228 \fi

1229 \fi

1230 \fi

1231 \fi

1232 \fi

1233 \fi

1234 \fi

1235 \fi

1236 \fi

1237 \fi

1238 \fi

1239 \fi

1240 \fi

1241 \fi

1242 \fi

1243 \fi

1244 \fi

1245 }

\@getnextword A low-level routine designed to extract the next [space-delimited] word of the
primary argument. It has several quirks: if the passed string has one leading
space, it is included as part of next word. If it has two leading [hard]spaces,
the 2nd hard space is the next word. Using the higher-level \getnextword deals
automatically with these abberant possibilities.

1246 \newcommand\@getnextword[2][v]{%

1247 \defaultTreatments%

1248 \def\SeekBlankSpace{2}%

1249 \substring[#1]{#2}{1}{\@MAXSTRINGSIZE}%

1250 \def\SeekBlankSpace{0}%

53

1251 }

\@retokenizechar This command is the guts of the retokenize command. It grabs the character
provided in string #1 and assigns it to a unique token whose name is created from
the string #2. The command has two primary \if branches. The first branch
is taken if the character is a special two-byte-encoded escape-sequence, while the
second branch is taken if the character is a &, %, #, a blankspace, or any simple
one-byte character.

1252 \newcommand\@retokenizechar[2]{%

1253 \isnextbyte[q]{\EscapeChar}{#1}%

1254 \if T\theresult%

1255 \edef\@ESCcode{\expandafter\@gobble#1}%

1256 \if\UvariCode\@ESCcode%

1257 \expandafter\def\csname#2\endcsname{\Uvari}\else

1258 \if\UvariiCode\@ESCcode%

1259 \expandafter\def\csname#2\endcsname{\Uvarii}\else

1260 \if\UvariiiCode\@ESCcode%

1261 \expandafter\def\csname#2\endcsname{\Uvariii}\else

1262 \if\PipeCode\@ESCcode%

1263 \expandafter\def\csname#2\endcsname{\Pipe}\else

1264 \if\DollarCode\@ESCcode%

1265 \expandafter\def\csname#2\endcsname{\$}\else

1266 \if\CaratCode\@ESCcode%

1267 \expandafter\def\csname#2\endcsname{\Carat}\else

1268 \if\CircumflexCode\@ESCcode%

1269 \expandafter\def\csname#2\endcsname{\^}\else

1270 \if\TildeCode\@ESCcode%

1271 \expandafter\def\csname#2\endcsname{\~}\else

1272 \if\UmlautCode\@ESCcode%

1273 \expandafter\def\csname#2\endcsname{\"}\else

1274 \if\GraveCode\@ESCcode%

1275 \expandafter\def\csname#2\endcsname{\‘}\else

1276 \if\AcuteCode\@ESCcode%

1277 \expandafter\def\csname#2\endcsname{\’}\else

1278 \if\MacronCode\@ESCcode%

1279 \expandafter\def\csname#2\endcsname{\=}\else

1280 \if\OverdotCode\@ESCcode%

1281 \expandafter\def\csname#2\endcsname{\.}\else

1282 \if\LeftBraceCode\@ESCcode%

1283 \expandafter\def\csname#2\endcsname{\{}\else

1284 \if\RightBraceCode\@ESCcode%

1285 \expandafter\def\csname#2\endcsname{\}}\else

1286 \if\UnderscoreCode\@ESCcode%

1287 \expandafter\def\csname#2\endcsname{_}\else

1288 \if\DaggerCode\@ESCcode%

1289 \expandafter\def\csname#2\endcsname{\dag}\else

1290 \if\DoubleDaggerCode\@ESCcode%

1291 \expandafter\def\csname#2\endcsname{\ddag}\else

1292 \if\SectionSymbolCode\@ESCcode%

54

1293 \expandafter\def\csname#2\endcsname{\S}\else

1294 \if\PilcrowCode\@ESCcode%

1295 \expandafter\def\csname#2\endcsname{\P}\else

1296 \if\LBCode\@ESCcode%

1297 \expandafter\def\csname#2\endcsname{\SaveLB}\else

1298 \if\RBCode\@ESCcode%

1299 \expandafter\def\csname#2\endcsname{\SaveRB}\else

1300 \if\BreveCode\@ESCcode\expandafter\def\csname#2\endcsname{\u}\else

1301 \if\CaronCode\@ESCcode\expandafter\def\csname#2\endcsname{\v}\else

1302 \if\DoubleAcuteCode\@ESCcode\expandafter\def\csname#2\endcsname{\H}\else

1303 \if\CedillaCode\@ESCcode\expandafter\def\csname#2\endcsname{\c}\else

1304 \if\UnderdotCode\@ESCcode\expandafter\def\csname#2\endcsname{\d}\else

1305 \if\ArchJoinCode\@ESCcode\expandafter\def\csname#2\endcsname{\t}\else

1306 \if\LineUnderCode\@ESCcode\expandafter\def\csname#2\endcsname{\b}\else

1307 \if\CopyrightCode\@ESCcode\expandafter\def\csname#2\endcsname{\copyright}\else

1308 \if\PoundsCode\@ESCcode\expandafter\def\csname#2\endcsname{\pounds}\else

1309 \if\AEscCode\@ESCcode\expandafter\def\csname#2\endcsname{\AE}\else

1310 \if\aescCode\@ESCcode\expandafter\def\csname#2\endcsname{\ae}\else

1311 \if\OEthelCode\@ESCcode\expandafter\def\csname#2\endcsname{\OE}\else

1312 \if\oethelCode\@ESCcode\expandafter\def\csname#2\endcsname{\oe}\else

1313 \if\AngstromCode\@ESCcode\expandafter\def\csname#2\endcsname{\AA}\else

1314 \if\angstromCode\@ESCcode\expandafter\def\csname#2\endcsname{\aa}\else

1315 \if\SlashedOCode\@ESCcode\expandafter\def\csname#2\endcsname{\O}\else

1316 \if\SlashedoCode\@ESCcode\expandafter\def\csname#2\endcsname{\o}\else

1317 \if\BarredlCode\@ESCcode\expandafter\def\csname#2\endcsname{\l}\else

1318 \if\BarredLCode\@ESCcode\expandafter\def\csname#2\endcsname{\L}\else

1319 \if\EszettCode\@ESCcode\expandafter\def\csname#2\endcsname{\ss}\else

1320 \expandafter\def\csname#2\endcsname{\undecipherable}%

1321 \fi

1322 \fi

1323 \fi

1324 \fi

1325 \fi

1326 \fi

1327 \fi

1328 \fi

1329 \fi

1330 \fi

1331 \fi

1332 \fi

1333 \fi

1334 \fi

1335 \fi

1336 \fi

1337 \fi

1338 \fi

1339 \fi

1340 \fi

1341 \fi

1342 \fi

55

1343 \fi

1344 \fi

1345 \fi

1346 \fi

1347 \fi

1348 \fi

1349 \fi

1350 \fi

1351 \fi

1352 \fi

1353 \fi

1354 \fi

1355 \fi

1356 \fi

1357 \fi

1358 \fi

1359 \fi

1360 \fi

1361 \fi

1362 \fi

1363 \else

1364 \expandafter\ifx\expandafter\%

1365 \expandafter\def\csname#2\endcsname{\&}\else

1366 \expandafter\ifx\expandafter\%#1%

1367 \expandafter\def\csname#2\endcsname{\%}\else

1368 \expandafter\ifx\expandafter\##1%

1369 \expandafter\def\csname#2\endcsname{\#}\else

1370 \if\EncodedBlankSpace#1\expandafter\def\csname#2\endcsname{\ }\else

1371 \expandafter\edef\csname#2\endcsname{#1}%

1372 \fi

1373 \fi

1374 \fi

1375 \fi

1376 \fi

1377 }

\@defineactions This routine defines how encoded characters are to be treated by the \ESCrotate

routine, depending on the [encoding, capitalization, blank, symbol, etc.] treat-
ments that have been a priori specified.

1378 % \@blankaction AND OTHER ...action’S ARE SET, DEPENDING ON VALUES OF

1379 % TREATMENT FLAGS. CHARS ARE EITHER ENCODED, DECODED, OR REMOVED.

1380 \newcommand\@defineactions{%

1381 % SET UP TREATMENT FOR SPACES, ENCODED SPACES, AND [REENCODED] SYMBOLS

1382 \if e\EncodingTreatment%

1383 % ENCODE SPACES, KEEP ENCODED SPACES ENCODED, ENCODE SYMBOLS.

1384 \edef\@blankaction{\EncodedBlankSpace}%

1385 \def\@dollaraction{\EncodedDollar}%

1386 \def\@pipeaction{\EncodedPipe}%

1387 \def\@uvariaction{\EncodedUvari}%

56

1388 \def\@uvariiaction{\EncodedUvarii}%

1389 \def\@uvariiiaction{\EncodedUvariii}%

1390 \def\@carataction{\EncodedCarat}%

1391 \def\@circumflexaction{\EncodedCircumflex}%

1392 \def\@tildeaction{\EncodedTilde}%

1393 \def\@umlautaction{\EncodedUmlaut}%

1394 \def\@graveaction{\EncodedGrave}%

1395 \def\@acuteaction{\EncodedAcute}%

1396 \def\@macronaction{\EncodedMacron}%

1397 \def\@overdotaction{\EncodedOverdot}%

1398 \def\@breveaction{\EncodedBreve}%

1399 \def\@caronaction{\EncodedCaron}%

1400 \def\@doubleacuteaction{\EncodedDoubleAcute}%

1401 \def\@cedillaaction{\EncodedCedilla}%

1402 \def\@underdotaction{\EncodedUnderdot}%

1403 \def\@archjoinaction{\EncodedArchJoin}%

1404 \def\@lineunderaction{\EncodedLineUnder}%

1405 \def\@copyrightaction{\EncodedCopyright}%

1406 \def\@poundsaction{\EncodedPounds}%

1407 \def\@leftbraceaction{\EncodedLeftBrace}%

1408 \def\@rightbraceaction{\EncodedRightBrace}%

1409 \def\@underscoreaction{\EncodedUnderscore}%

1410 \def\@daggeraction{\EncodedDagger}%

1411 \def\@doubledaggeraction{\EncodedDoubleDagger}%

1412 \def\@sectionsymbolaction{\EncodedSectionSymbol}%

1413 \def\@pilcrowaction{\EncodedPilcrow}%

1414 \def\@eszettaction{\EncodedEszett}%

1415 \def\@lbaction{\EncodedLB}%

1416 \def\@rbaction{\EncodedRB}%

1417 \if 2\AlphaCapsTreatment%

1418 \def\@AEscaction{\Encodedaesc}%

1419 \def\@OEthelaction{\Encodedoethel}%

1420 \def\@Angstromaction{\Encodedangstrom}%

1421 \def\@slashedOaction{\EncodedSlashedo}%

1422 \def\@barredLaction{\EncodedBarredl}%

1423 \else

1424 \def\@AEscaction{\EncodedAEsc}%

1425 \def\@OEthelaction{\EncodedOEthel}%

1426 \def\@Angstromaction{\EncodedAngstrom}%

1427 \def\@slashedOaction{\EncodedSlashedO}%

1428 \def\@barredLaction{\EncodedBarredL}%

1429 \fi

1430 \if 2\AlphaTreatment%

1431 \def\@aescaction{\EncodedAEsc}%

1432 \def\@oethelaction{\EncodedOEthel}%

1433 \def\@angstromaction{\EncodedAngstrom}%

1434 \def\@slashedoaction{\EncodedSlashedO}%

1435 \def\@barredlaction{\EncodedBarredL}%

1436 \else

1437 \def\@aescaction{\Encodedaesc}%

57

1438 \def\@oethelaction{\Encodedoethel}%

1439 \def\@angstromaction{\Encodedangstrom}%

1440 \def\@slashedoaction{\EncodedSlashedo}%

1441 \def\@barredlaction{\EncodedBarredl}%

1442 \fi

1443 \else

1444 % EncodingTreatment=v or q:

1445 % LEAVE SPACES ALONE; RESTORE ENCODED SPACES AND SYMBOLS

1446 \def\@blankaction{\BlankSpace}%

1447 \def\@dollaraction{\Dollar}%

1448 \def\@pipeaction{\Pipe}%

1449 \def\@uvariaction{\Uvari}%

1450 \def\@uvariiaction{\Uvarii}%

1451 \def\@uvariiiaction{\Uvariii}%

1452 \def\@carataction{\Carat}%

1453 \def\@circumflexaction{\Circumflex}%

1454 \def\@tildeaction{\Tilde}%

1455 \def\@umlautaction{\Umlaut}%

1456 \def\@graveaction{\Grave}%

1457 \def\@acuteaction{\Acute}%

1458 \def\@macronaction{\Macron}%

1459 \def\@overdotaction{\Overdot}%

1460 \def\@breveaction{\Breve}%

1461 \def\@caronaction{\Caron}%

1462 \def\@doubleacuteaction{\DoubleAcute}%

1463 \def\@cedillaaction{\Cedilla}%

1464 \def\@underdotaction{\Underdot}%

1465 \def\@archjoinaction{\ArchJoin}%

1466 \def\@lineunderaction{\LineUnder}%

1467 \def\@copyrightaction{\Copyright}%

1468 \def\@poundsaction{\Pounds}%

1469 \def\@leftbraceaction{\LeftBrace}%

1470 \def\@rightbraceaction{\RightBrace}%

1471 \def\@underscoreaction{\Underscore}%

1472 \def\@daggeraction{\Dagger}%

1473 \def\@doubledaggeraction{\DoubleDagger}%

1474 \def\@sectionsymbolaction{\SectionSymbol}%

1475 \def\@pilcrowaction{\Pilcrow}%

1476 \def\@eszettaction{\Eszett}%

1477 \def\@lbaction{\UnencodedLB}%

1478 \def\@rbaction{\UnencodedRB}%

1479 \if 2\AlphaCapsTreatment%

1480 \def\@AEscaction{\aesc}%

1481 \def\@OEthelaction{\oethel}%

1482 \def\@Angstromaction{\angstrom}%

1483 \def\@slashedOaction{\Slashedo}%

1484 \def\@barredLaction{\Barredl}%

1485 \else

1486 \def\@AEscaction{\AEsc}%

1487 \def\@OEthelaction{\OEthel}%

58

1488 \def\@Angstromaction{\Angstrom}%

1489 \def\@slashedOaction{\SlashedO}%

1490 \def\@barredLaction{\BarredL}%

1491 \fi

1492 \if 2\AlphaTreatment%

1493 \def\@aescaction{\AEsc}%

1494 \def\@oethelaction{\OEthel}%

1495 \def\@angstromaction{\Angstrom}%

1496 \def\@slashedoaction{\SlashedO}%

1497 \def\@barredlaction{\BarredL}%

1498 \else

1499 \def\@aescaction{\aesc}%

1500 \def\@oethelaction{\oethel}%

1501 \def\@angstromaction{\angstrom}%

1502 \def\@slashedoaction{\Slashedo}%

1503 \def\@barredlaction{\Barredl}%

1504 \fi

1505 \fi

1506 % REMOVE SPACES AND ENCODED SPACES?

1507 \if 0\BlankTreatment%

1508 \edef\@blankaction{}%

1509 \fi

1510 % REMOVE ENCODED SYMBOLS?

1511 \if 0\SymbolTreatment%

1512 \def\@dollaraction{}%

1513 \def\@pipeaction{}%

1514 \def\@carataction{}%

1515 \def\@circumflexaction{}%

1516 \def\@tildeaction{}%

1517 \def\@umlautaction{}%

1518 \def\@graveaction{}%

1519 \def\@acuteaction{}%

1520 \def\@macronaction{}%

1521 \def\@overdotaction{}%

1522 \def\@breveaction{}%

1523 \def\@caronaction{}%

1524 \def\@doubleacuteaction{}%

1525 \def\@cedillaaction{}%

1526 \def\@underdotaction{}%

1527 \def\@archjoinaction{}%

1528 \def\@lineunderaction{}%

1529 \def\@copyrightaction{}%

1530 \def\@poundsaction{}%

1531 \def\@leftbraceaction{}%

1532 \def\@rightbraceaction{}%

1533 \def\@underscoreaction{}%

1534 \def\@daggeraction{}%

1535 \def\@doubledaggeraction{}%

1536 \def\@sectionsymbolaction{}%

1537 \def\@pilcrowaction{}%

59

1538 \def\@lbaction{}%

1539 \def\@rbaction{}%

1540 \fi

1541 % REMOVE ENCODED ALPHACAPS?

1542 \if 0\AlphaCapsTreatment%

1543 \def\@AEscaction{}%

1544 \def\@OEthelaction{}%

1545 \def\@Angstromaction{}%

1546 \def\@slashedOaction{}%

1547 \def\@barredLaction{}%

1548 \fi

1549 % REMOVE ENCODED ALPHA?

1550 \if 0\AlphaTreatment%

1551 \def\@aescaction{}%

1552 \def\@oethelaction{}%

1553 \def\@angstromaction{}%

1554 \def\@slashedoaction{}%

1555 \def\@barredlaction{}%

1556 \def\@eszettaction{}%

1557 \fi

1558 }

\@forcecapson Force capitalization of strings processed by \substring for the time being.

1559 \newcommand\@forcecapson{%

1560 \def\AlphaTreatment{2}%

1561 \def\AlphaCapsTreatment{1}%

1562 }

\@relaxcapson Restore prior treatments following a period of enforced capitalization.

1563 \newcommand\@relaxcapson{%

1564 \let\AlphaTreatment\SaveAlphaTreatment%

1565 \let\AlphaCapsTreatment\SaveAlphaCapsTreatment%

1566 \@defineactions%

1567 }

\@decodepointer As pertains to arguments 3 and 4 of \substring, this routine implements use
of the $ character to mean END-OF-STRING, and $-{integer} for addressing
relative to the END-OF-STRING.

1568 \newcommand\@decodepointer[2][\value{@stringsize}]{%

1569 \isnextbyte[q]{$}{#2}%

1570 \if T\theresult%

1571 \isnextbyte[q]{-}{\expandafter\@gobble#2}%

1572 \if T\theresult%

1573 \setcounter{@@@letterindex}{#1}%

1574 \@gobblearg{#2}{2}%

1575 \addtocounter{@@@letterindex}{-\gobbledword}%

1576 \edef\@fromtoindex{\value{@@@letterindex}}%

60

1577 \else

1578 \edef\@fromtoindex{#1}%

1579 \fi

1580 \else

1581 \edef\@fromtoindex{#2}%

1582 \fi

1583 }

\@getstringlength Get’s string length of #1, puts result in counter #2.

1584 \newcommand\@getstringlength[2]{%

1585 \edef\@@teststring{#1\endofstring}%

1586 \ifthenelse{\equal{\@@teststring}{\endofstring}}%

1587 {\setcounter{#2}{0}}%

1588 {%

1589 \setcounter{@gobblesize}{1}%

1590 \whiledo{\value{@gobblesize} < \@MAXSTRINGSIZE}{%

1591 %

1592 \@gobblearg{\@@teststring}{1}%

1593 \edef\@@teststring{\gobbledword}%

1594 \ifthenelse{\equal{\@@teststring}{\endofstring}}%

1595 {\setcounter{#2}{\value{@gobblesize}}%

1596 \setcounter{@gobblesize}{\@MAXSTRINGSIZE}}%

1597 {\addtocounter{@gobblesize}{1}}%

1598 }%

1599 }%

1600 }

\@gobblearg Gobble first #2 characters from string #1. The result is stored in \gobbledword.
Two-byte escape sequences, when encountered, count as a single gobble.

1601 \newcommand\@gobblearg[2]{%

1602 \setcounter{@letterindex}{0}%

1603 \setcounter{@gobbleindex}{#2}%

1604 \edef\gobbledword{#1}%

1605 \whiledo{\value{@letterindex} < \value{@gobbleindex}}{%

1606 \isnextbyte[q]{\EscapeChar}{\gobbledword}%

1607 \if T\theresult%

1608 % GOBBLE ESCAPE CHARACTER

1609 \edef\gobbledword{\@DiscardNextChar{\gobbledword}}%

1610 \fi

1611 % GOBBLE NORMAL CHARACTER OR ESCAPE CODE

1612 \edef\gobbledword{\@DiscardNextChar{\gobbledword}}%

1613 \addtocounter{@letterindex}{1}%

1614 }%

1615 }

\@DiscardNextChar Remove the next character from the argument string. Since \@gobble skips
spaces, the routine must first look for the case of a leading blankspace. If none

61

is found, proceed with a normal \@gobble. Note: as per LATEX convention,
\@DiscardNextChar treats double/multi-softspaces as single space.

1616 \newcommand\@DiscardNextChar[1]{%

1617 \expandafter\if\expandafter\BlankSpace#1\else

1618 \expandafter\@gobble#1%

1619 \fi

1620 }

\@convertsymboltostring Routine for converting an encodable symbol (#3) into string (#4), for every occu-
rance in the given string #2.

1621 \newcommand\@convertsymboltostring[4][v]{%

1622 \def\@fromcode{#3}%

1623 \def\@tostring{#4}%

1624 \def\EncodingTreatment{e}%

1625 \substring[e]{#2}{1}{\@MAXSTRINGSIZE}%

1626 \@convertoff%

1627 \if e#1\else\substring[#1]{\thestring}{1}{\@MAXSTRINGSIZE}\fi%

1628 }

\@convertbytetostring Routine for converting an plain byte (#3) into string (#4), for every occurance in
the given string #2.

1629 \newcommand\@convertbytetostring[4][v]{%

1630 \def\@frombyte{#3}%

1631 \def\@tostring{#4}%

1632 \def\EncodingTreatment{e}%

1633 \substring[e]{#2}{1}{\@MAXSTRINGSIZE}%

1634 \@convertoff%

1635 \if e#1\else\substring[#1]{\thestring}{1}{\@MAXSTRINGSIZE}\fi%

1636 }

\@treatleadingspaces This routine will address the leading spaces of string #2. If argument #3 is an ’x’
character, those leading spaces will be deleted from the string. Otherwise, those
leading spaces will be rotated to the end of the string.

1637 \newcommand\@treatleadingspaces[3][v]{\+%

1638 \defaultTreatments%

1639 \edef\thestring{#2}%

1640 \@getstringlength{\thestring}{@stringsize}%

1641 \setcounter{@maxrotation}{\value{@stringsize}}%

1642 \setcounter{@letterindex}{0}%

1643 \whiledo{\value{@letterindex} < \value{@maxrotation}}{%

1644 \addtocounter{@letterindex}{1}%

1645 \isnextbyte[q]{\EncodedBlankSpace}{\thestring}%

1646 \if F\theresult\isnextbyte[q]{\BlankSpace}{\thestring}\fi%

1647 \if T\theresult%

1648 \isnextbyte[q]{#3}{x}%

1649 \if F\theresult%

62

1650 % NORMAL OR ENCODED BLANK... ROTATE IT

1651 \edef\thestring{\@rotate{\thestring}}%

1652 \else

1653 % NORMAL OR ENCODED BLANK... DELETE IT (IF 3rd ARG=X)

1654 \@gobblearg{\thestring}{1}%

1655 \edef\thestring{\gobbledword}%

1656 \fi

1657 \else

1658 \setcounter{@maxrotation}{\value{@letterindex}}%

1659 \fi

1660 }\?%

1661 \substring[#1]{\thestring}{1}{\@MAXSTRINGSIZE}%

1662 }

\@convertoff This routine is an initialization routine to guarantee that there is no conversion of
\@frombyte to \@tostring, until further notice. It accomplishes this by setting
up such that subsequent \if\@frombyte and \if\@fromcode clauses will auto-
matically fail.

1663 \newcommand\@convertoff{\def\@frombyte{xy}\def\@tostring{}%

1664 \def\@fromcode{xy}}

1665 \@convertoff

\@rotate The following code is the engine of the string manipulation routine. It is a tree
of successive LATEX commands (each of which is composed of an \if... cascade)
which have the net effect of rotating the first letter of the string into the last po-
sition. Depending on modes set by \@defineactions and \defaultTreatments,
the leading character is either encoded, decoded, or removed in the process. Note:
\@rotate loses track of double/multi-spaces, per LATEX convention, unless encoded
blanks (~) are used.

1666 \newcommand\@rotate[1]{%

1667 % CHECK BYTE CONVERSION TEST FIRST

1668 \if \@frombyte#1\@tostring\else

1669 % MUST CHECK FOR MULTI-BYTE CHARACTERS NEXT, SO THAT ENCODING CHARACTER

1670 % ISN’T MISTAKEN FOR A NORMAL CHARACTER LATER IN MACRO.

1671 \if 0\SymbolTreatment%

1672 \@removeExpandableSymbols{#1}%

1673 \else

1674 \@rotateExpandableSymbols{#1}%

1675 \fi

1676 \fi

1677 }

1678

1679 \newcommand\@rotateExpandableSymbols[1]{%

1680 % INDIRECT (EXPANDABLE) SYMBOLS

1681 \expandafter\ifx\expandafter\\&\else

1682 \expandafter\ifx\expandafter\%#1\%\else

1683 \expandafter\ifx\expandafter\##1\#\else

63

1684 \@rotateBlankSpaces{#1}%

1685 \fi

1686 \fi

1687 \fi

1688 }

1689

1690 \newcommand\@removeExpandableSymbols[1]{%

1691 % INDIRECT (EXPANDABLE) SYMBOLS

1692 \expandafter\ifx\expandafter\\else

1693 \expandafter\ifx\expandafter\%#1\else

1694 \expandafter\ifx\expandafter\##1\else

1695 \@rotateBlankSpaces{#1}%

1696 \fi

1697 \fi

1698 \fi

1699 }

1700

1701 \newcommand\@rotateBlankSpaces[1]{%

1702 \expandafter\ifx\expandafter$#1$\else% <---RETAIN GOING INTO/FROM MATH MODE

1703 % THE FOLLOWING FINDS TILDES, BUT MUST COME AFTER EXPANDABLE SYMBOL

1704 % SEARCH, OR ELSE IT FINDS THEM TOO, BY MISTAKE.

1705 \if \EncodedBlankSpace#1\@blankaction\else% <--- FINDS REENCODED TILDE

1706 % THE FOLLOWING SHOULD FIND TILDES, BUT DOESN’T... THUS, COMMENTED OUT.

1707 % \expandafter\ifx\expandafter\EncodedBlankSpace#1\@blankaction\else

1708 \if \BlankSpace#1\@blankaction\else

1709 \if 2\AlphaTreatment%

1710 \@chcaseAlpha{#1}%

1711 \else

1712 \if 0\AlphaTreatment%

1713 \@removeAlpha{#1}%

1714 \else

1715 \@rotateAlpha{#1}%

1716 \fi

1717 \fi

1718 \fi

1719 % \fi

1720 \fi

1721 \fi

1722 }

1723

1724 \newcommand\@rotateAlpha[1]{%

1725 % LOWERCASE

1726 \if a#1a\else

1727 \if b#1b\else

1728 \if c#1c\else

1729 \if d#1d\else

1730 \if e#1e\else

1731 \if f#1f\else

1732 \if g#1g\else

1733 \if h#1h\else

64

1734 \if i#1i\else

1735 \if j#1j\else

1736 \if k#1k\else

1737 \if l#1l\else

1738 \if m#1m\else

1739 \if n#1n\else

1740 \if o#1o\else

1741 \if p#1p\else

1742 \if q#1q\else

1743 \if r#1r\else

1744 \if s#1s\else

1745 \if t#1t\else

1746 \if u#1u\else

1747 \if v#1v\else

1748 \if w#1w\else

1749 \if x#1x\else

1750 \if y#1y\else

1751 \if z#1z\else

1752 \if 2\AlphaCapsTreatment%

1753 \@chcaseAlphaCaps{#1}%

1754 \else

1755 \if 0\AlphaCapsTreatment%

1756 \@removeAlphaCaps{#1}%

1757 \else

1758 \@rotateAlphaCaps{#1}%

1759 \fi

1760 \fi

1761 \fi

1762 \fi

1763 \fi

1764 \fi

1765 \fi

1766 \fi

1767 \fi

1768 \fi

1769 \fi

1770 \fi

1771 \fi

1772 \fi

1773 \fi

1774 \fi

1775 \fi

1776 \fi

1777 \fi

1778 \fi

1779 \fi

1780 \fi

1781 \fi

1782 \fi

1783 \fi

65

1784 \fi

1785 \fi

1786 \fi

1787 }

1788

1789 \newcommand\@removeAlpha[1]{%

1790 % LOWERCASE

1791 \if a#1\else

1792 \if b#1\else

1793 \if c#1\else

1794 \if d#1\else

1795 \if e#1\else

1796 \if f#1\else

1797 \if g#1\else

1798 \if h#1\else

1799 \if i#1\else

1800 \if j#1\else

1801 \if k#1\else

1802 \if l#1\else

1803 \if m#1\else

1804 \if n#1\else

1805 \if o#1\else

1806 \if p#1\else

1807 \if q#1\else

1808 \if r#1\else

1809 \if s#1\else

1810 \if t#1\else

1811 \if u#1\else

1812 \if v#1\else

1813 \if w#1\else

1814 \if x#1\else

1815 \if y#1\else

1816 \if z#1\else

1817 \if 2\AlphaCapsTreatment%

1818 \@chcaseAlphaCaps{#1}%

1819 \else

1820 \if 0\AlphaCapsTreatment%

1821 \@removeAlphaCaps{#1}%

1822 \else

1823 \@rotateAlphaCaps{#1}%

1824 \fi

1825 \fi

1826 \fi

1827 \fi

1828 \fi

1829 \fi

1830 \fi

1831 \fi

1832 \fi

1833 \fi

66

1834 \fi

1835 \fi

1836 \fi

1837 \fi

1838 \fi

1839 \fi

1840 \fi

1841 \fi

1842 \fi

1843 \fi

1844 \fi

1845 \fi

1846 \fi

1847 \fi

1848 \fi

1849 \fi

1850 \fi

1851 \fi

1852 }

1853

1854 \newcommand\@chcaseAlpha[1]{%

1855 % LOWERCASE TO UPPERCASE

1856 \if a#1A\else

1857 \if b#1B\else

1858 \if c#1C\else

1859 \if d#1D\else

1860 \if e#1E\else

1861 \if f#1F\else

1862 \if g#1G\else

1863 \if h#1H\else

1864 \if i#1I\else

1865 \if j#1J\else

1866 \if k#1K\else

1867 \if l#1L\else

1868 \if m#1M\else

1869 \if n#1N\else

1870 \if o#1O\else

1871 \if p#1P\else

1872 \if q#1Q\else

1873 \if r#1R\else

1874 \if s#1S\else

1875 \if t#1T\else

1876 \if u#1U\else

1877 \if v#1V\else

1878 \if w#1W\else

1879 \if x#1X\else

1880 \if y#1Y\else

1881 \if z#1Z\else

1882 \if 2\AlphaCapsTreatment%

1883 \@chcaseAlphaCaps{#1}%

67

1884 \else

1885 \if 0\AlphaCapsTreatment%

1886 \@removeAlphaCaps{#1}%

1887 \else

1888 \@rotateAlphaCaps{#1}%

1889 \fi

1890 \fi

1891 \fi

1892 \fi

1893 \fi

1894 \fi

1895 \fi

1896 \fi

1897 \fi

1898 \fi

1899 \fi

1900 \fi

1901 \fi

1902 \fi

1903 \fi

1904 \fi

1905 \fi

1906 \fi

1907 \fi

1908 \fi

1909 \fi

1910 \fi

1911 \fi

1912 \fi

1913 \fi

1914 \fi

1915 \fi

1916 \fi

1917 }

1918

1919 \newcommand\@rotateAlphaCaps[1]{%

1920 % UPPERCASE

1921 \if A#1A\else

1922 \if B#1B\else

1923 \if C#1C\else

1924 \if D#1D\else

1925 \if E#1E\else

1926 \if F#1F\else

1927 \if G#1G\else

1928 \if H#1H\else

1929 \if I#1I\else

1930 \if J#1J\else

1931 \if K#1K\else

1932 \if L#1L\else

1933 \if M#1M\else

68

1934 \if N#1N\else

1935 \if O#1O\else

1936 \if P#1P\else

1937 \if Q#1Q\else

1938 \if R#1R\else

1939 \if S#1S\else

1940 \if T#1T\else

1941 \if U#1U\else

1942 \if V#1V\else

1943 \if W#1W\else

1944 \if X#1X\else

1945 \if Y#1Y\else

1946 \if Z#1Z\else

1947 \if 0\NumeralTreatment%

1948 \@removeNumerals{#1}%

1949 \else

1950 \@rotateNumerals{#1}%

1951 \fi

1952 \fi

1953 \fi

1954 \fi

1955 \fi

1956 \fi

1957 \fi

1958 \fi

1959 \fi

1960 \fi

1961 \fi

1962 \fi

1963 \fi

1964 \fi

1965 \fi

1966 \fi

1967 \fi

1968 \fi

1969 \fi

1970 \fi

1971 \fi

1972 \fi

1973 \fi

1974 \fi

1975 \fi

1976 \fi

1977 \fi

1978 }

1979

1980 \newcommand\@removeAlphaCaps[1]{%

1981 % UPPERCASE

1982 \if A#1\else

1983 \if B#1\else

69

1984 \if C#1\else

1985 \if D#1\else

1986 \if E#1\else

1987 \if F#1\else

1988 \if G#1\else

1989 \if H#1\else

1990 \if I#1\else

1991 \if J#1\else

1992 \if K#1\else

1993 \if L#1\else

1994 \if M#1\else

1995 \if N#1\else

1996 \if O#1\else

1997 \if P#1\else

1998 \if Q#1\else

1999 \if R#1\else

2000 \if S#1\else

2001 \if T#1\else

2002 \if U#1\else

2003 \if V#1\else

2004 \if W#1\else

2005 \if X#1\else

2006 \if Y#1\else

2007 \if Z#1\else

2008 \if 0\NumeralTreatment%

2009 \@removeNumerals{#1}%

2010 \else

2011 \@rotateNumerals{#1}%

2012 \fi

2013 \fi

2014 \fi

2015 \fi

2016 \fi

2017 \fi

2018 \fi

2019 \fi

2020 \fi

2021 \fi

2022 \fi

2023 \fi

2024 \fi

2025 \fi

2026 \fi

2027 \fi

2028 \fi

2029 \fi

2030 \fi

2031 \fi

2032 \fi

2033 \fi

70

2034 \fi

2035 \fi

2036 \fi

2037 \fi

2038 \fi

2039 }

2040

2041 \newcommand\@chcaseAlphaCaps[1]{%

2042 % UPPERCASE TO LOWERCASE

2043 \if A#1a\else

2044 \if B#1b\else

2045 \if C#1c\else

2046 \if D#1d\else

2047 \if E#1e\else

2048 \if F#1f\else

2049 \if G#1g\else

2050 \if H#1h\else

2051 \if I#1i\else

2052 \if J#1j\else

2053 \if K#1k\else

2054 \if L#1l\else

2055 \if M#1m\else

2056 \if N#1n\else

2057 \if O#1o\else

2058 \if P#1p\else

2059 \if Q#1q\else

2060 \if R#1r\else

2061 \if S#1s\else

2062 \if T#1t\else

2063 \if U#1u\else

2064 \if V#1v\else

2065 \if W#1w\else

2066 \if X#1x\else

2067 \if Y#1y\else

2068 \if Z#1z\else

2069 \if 0\NumeralTreatment%

2070 \@removeNumerals{#1}%

2071 \else

2072 \@rotateNumerals{#1}%

2073 \fi

2074 \fi

2075 \fi

2076 \fi

2077 \fi

2078 \fi

2079 \fi

2080 \fi

2081 \fi

2082 \fi

2083 \fi

71

2084 \fi

2085 \fi

2086 \fi

2087 \fi

2088 \fi

2089 \fi

2090 \fi

2091 \fi

2092 \fi

2093 \fi

2094 \fi

2095 \fi

2096 \fi

2097 \fi

2098 \fi

2099 \fi

2100 }

2101

2102 \newcommand\@rotateNumerals[1]{%

2103 % NUMERALS

2104 \if 1#11\else

2105 \if 2#12\else

2106 \if 3#13\else

2107 \if 4#14\else

2108 \if 5#15\else

2109 \if 6#16\else

2110 \if 7#17\else

2111 \if 8#18\else

2112 \if 9#19\else

2113 \if 0#10\else

2114 \if 0\PunctuationTreatment%

2115 \@removePunctuation{#1}%

2116 \else

2117 \@rotatePunctuation{#1}%

2118 \fi

2119 \fi

2120 \fi

2121 \fi

2122 \fi

2123 \fi

2124 \fi

2125 \fi

2126 \fi

2127 \fi

2128 \fi

2129 }

2130

2131 \newcommand\@removeNumerals[1]{%

2132 % NUMERALS

2133 \if 1#1\else

72

2134 \if 2#1\else

2135 \if 3#1\else

2136 \if 4#1\else

2137 \if 5#1\else

2138 \if 6#1\else

2139 \if 7#1\else

2140 \if 8#1\else

2141 \if 9#1\else

2142 \if 0#1\else

2143 \if 0\PunctuationTreatment%

2144 \@removePunctuation{#1}%

2145 \else

2146 \@rotatePunctuation{#1}%

2147 \fi

2148 \fi

2149 \fi

2150 \fi

2151 \fi

2152 \fi

2153 \fi

2154 \fi

2155 \fi

2156 \fi

2157 \fi

2158 }

2159

2160 \newcommand\@rotatePunctuation[1]{%

2161 % PUNCTUATION

2162 \if ;#1;\else

2163 \if :#1:\else

2164 \if ’#1’\else

2165 \if "#1"\else

2166 \if ,#1,\else

2167 \if .#1.\else

2168 \if ?#1?\else

2169 \if ‘#1‘\else

2170 \if !#1!\else

2171 \if 0\SymbolTreatment%

2172 \@removeDirectSymbols{#1}%

2173 \else

2174 \@rotateDirectSymbols{#1}%

2175 \fi

2176 \fi

2177 \fi

2178 \fi

2179 \fi

2180 \fi

2181 \fi

2182 \fi

2183 \fi

73

2184 \fi

2185 }

2186

2187 \newcommand\@removePunctuation[1]{%

2188 % PUNCTUATION

2189 \if ;#1\else

2190 \if :#1\else

2191 \if ’#1\else

2192 \if "#1\else

2193 \if ,#1\else

2194 \if .#1\else

2195 \if ?#1\else

2196 \if ‘#1\else

2197 \if !#1\else

2198 \if 0\SymbolTreatment%

2199 \@removeDirectSymbols{#1}%

2200 \else

2201 \@rotateDirectSymbols{#1}%

2202 \fi

2203 \fi

2204 \fi

2205 \fi

2206 \fi

2207 \fi

2208 \fi

2209 \fi

2210 \fi

2211 \fi

2212 }

2213

2214 \newcommand\@rotateDirectSymbols[1]{%

2215 % DIRECT SYMBOLS

2216 \if /#1/\else

2217 \if @#1@\else

2218 \if *#1*\else

2219 \if (#1(\else

2220 \if)#1)\else

2221 \if -#1-\else

2222 \if _#1_\else

2223 \if =#1=\else

2224 \if +#1+\else

2225 \if [#1[\else

2226 \if]#1]\else

2227 \if ^#1^\else% <--FOR SUPERSCRIPTS, NOT \^

2228 \if <#1<\else

2229 \if >#1>\else

2230 \if |#1|\else

2231 \if &\else

2232 \@rotateUndecipherable{#1}%

2233 \fi

74

2234 \fi

2235 \fi

2236 \fi

2237 \fi

2238 \fi

2239 \fi

2240 \fi

2241 \fi

2242 \fi

2243 \fi

2244 \fi

2245 \fi

2246 \fi

2247 \fi

2248 \fi

2249 }

2250

2251 \newcommand\@removeDirectSymbols[1]{%

2252 % DIRECT SYMBOLS

2253 \if /#1\else

2254 \if @#1\else

2255 \if *#1\else

2256 \if (#1\else

2257 \if)#1\else

2258 \if -#1\else

2259 \if _#1\else

2260 \if =#1\else

2261 \if +#1\else

2262 \if [#1\else

2263 \if]#1\else

2264 \if ^#1\else% <--FOR SUPERSCRIPTS, NOT \^

2265 \if <#1\else

2266 \if >#1\else

2267 \if |#1\else

2268 \if \else

2269 \@rotateUndecipherable{#1}%

2270 \fi

2271 \fi

2272 \fi

2273 \fi

2274 \fi

2275 \fi

2276 \fi

2277 \fi

2278 \fi

2279 \fi

2280 \fi

2281 \fi

2282 \fi

2283 \fi

75

2284 \fi

2285 \fi

2286 }

2287

2288 \newcommand\@rotateUndecipherable[1]{%

2289 % REPLACE UNDECIPHERABLE SYMBOL WITH A TOKEN CHARACTER (DEFAULT .)

2290 \expandafter\@gobble#1\undecipherable%

2291 % DONE... CLOSE UP SHOP

2292 }

2293 \catcode‘\&=4

2294 %%%

2295 〈/package〉

76

