
Semantic Markup in TEX/LATEX

Michael Kohlhase
FAU Erlangen-Nürnberg

http://kwarc.info/kohlhase

March 20, 2019

Abstract

We present a collection of TEX macro packages that allow to markup
TEX/LATEX documents semantically without leaving the document format,
essentially turning TEX/LATEX into a document format for mathematical
knowledge management (MKM).

Contents

1 Introduction 3
1.1 The XML vs. TEX/LATEX Formats and Workflows 3
1.2 A LATEX-based Workflow for XML-based Mathematical Documents 5
1.3 Generating OMDoc from STEX . 5
1.4 Conclusion . 5
1.5 Licensing, Download and Setup . 6

2 The Packages of the STEX Collection 8
2.1 The STEX Distribution . 8
2.2 Content Markup of Mathematical Formulae in TEX/LATEX 8
2.3 Mathematical Statements . 9
2.4 Context Markup for Mathematics 9
2.5 Mathematical Document Classes 10
2.6 Metadata . 10
2.7 Support for MathHub . 11
2.8 Auxiliary Packages . 11

3 Workflows and Best Practices 12
3.1 The “Little Modules” Approach . 12
3.2 Basic Utilities & Makefiles . 13
3.3 MathHub: a Portal for Active Mathematical Documents 13
3.4 lmh: MathHub’s Build System Locally 13

1

http://kwarc.info/kohlhase

4 The Implementation 15
4.1 Package Options . 15
4.2 The STEX Logo . 15

2

1 Introduction

The last few years have seen the emergence of various content-oriented XML-
based, content-oriented markup languages for mathematics on the web, e.g. Open-
Math [BusCapCar:2oms04], content MathML [CarIon:MathML03], or our
own OMDoc [Kohlhase:OMDoc1.2]. These representation languages for math-
ematics, that make the structure of the mathematical knowledge in a document
explicit enough that machines can operate on it. Other examples of content-
oriented formats for mathematics include the various logic-based languages found
in automated reasoning tools (see [RobVor:hoar01] for an overview), program
specification languages (see e.g. [Bergstra:as89]).

The promise if these content-oriented approaches is that various tasks in-
volved in “doing mathematics” (e.g. search, navigation, cross-referencing, qual-
ity control, user-adaptive presentation, proving, simulation) can be machine-
supported, and thus the working mathematician is relieved to do what humans
can still do infinitely better than machines: The creative part of mathematics
— inventing interesting mathematical objects, conjecturing about their prop-
erties and coming up with creative ideas for proving these conjectures. How-
ever, before these promises can be delivered upon (there is even a conference
series [MKM-IG-Meetings:online] studying “Mathematical Knowledge Man-
agement (MKM)”), large bodies of mathematical knowledge have to be converted
into content form.

Even though MathML is viewed by most as the coming standard for repre-
senting mathematics on the web and in scientific publications, it has not not fully
taken off in practice. One of the reasons for that may be that the technical com-
munities that need high-quality methods for publishing mathematics already have
an established method which yields excellent results: the TEX/LATEX system: and
a large part of mathematical knowledge is prepared in the form of TEX/LATEX
documents.

TEX [Knuth:ttb84] is a document presentation format that combines complex
page-description primitives with a powerful macro-expansion facility, which is uti-
lized in LATEX (essentially a set of TEX macro packages, see [Lamport:ladps94])
to achieve more content-oriented markup that can be adapted to particular tastes
via specialized document styles. It is safe to say that LATEX largely restricts con-
tent markup to the document structure1, and graphics, leaving the user with the
presentational TEX primitives for mathematical formulae. Therefore, even though
LATEX goes a great step into the direction of an MKM format, it is not, as it lacks
infrastructure for marking up the functional structure of formulae and mathemat-
ical statements, and their dependence on and contribution to the mathematical
context.

1.1 The XML vs. TEX/LATEX Formats and Workflows

MathML is an XML-based markup format for mathematical formulae, it is stan-

1supplying macros e.g. for sections, paragraphs, theorems, definitions, etc.

3

dardized by the World Wide Web Consortium in [CarIon:MathML03], and is
supported by the major browsers. The MathML format comes in two integrated
components: presentation MathML presentation MathML and content MathML
content MathML. The former provides a comprehensive set of layout primitives
for presenting the visual appearance of mathematical formulae, and the second
one the functional/logical structure of the conveyed mathematical objects. For
all practical concerns, presentation MathML is equivalent to the math mode of
TEX. The text mode facilitates of TEX (and the multitude of LATEX classes) are
relegated to other XML formats, which embed MathML.

The programming language constructs of TEX (i.e. the macro definition fa-
cilities2) are relegated to the XML programming languages that can be used
to develop language extensions. transformation language XSLT [Deach:exls99;
Kay:xpr00] or proper XML-enabled The XML-based syntax and the separa-
tion of the presentational-, functional- and programming/extensibility concerns in
MathML has some distinct advantages over the integrated approach in TEX/LATEX
on the services side: MathML gives us better

• integration with web-based publishing,

• accessibility to disabled persons, e.g. (well-written) MathML contains
enough structural information to supports screen readers.

• reusability, searchabiliby and integration with mathematical software sys-
tems (e.g. copy-and-paste to computer algebra systems), and

• validation and plausibility checking.

On the other hand, TEX/LATEX/s adaptable syntax and tightly integrated pro-
gramming features within has distinct advantages on the authoring side:

• The TEX/LATEX syntax is much more compact than MathML, and if needed,
the community develops LATEX packages that supply new functionality in
with a succinct and intuitive syntax.

• The user can define ad-hoc abbreviations and bind them to new control
sequences to structure the source code.

• The TEX/LATEX community has a vast collection of language extensions and
best practice examples for every conceivable publication purpose and an
established and very active developer community that supports these.

• There is a host of software systems centered around the TEX/LATEX lan-
guage that make authoring content easier: many editors have special modes
for LATEX, there are spelling/style/grammar checkers, transformers to other
markup formats, etc.

2We count the parser manipulation facilities of TEX, e.g. category code changes into the
programming facilities as well, these are of course impossible for MathML, since it is bound to
XML syntax.

4

In other words, the technical community is is heavily invested in the whole
workflow, and technical know-how about the format permeates the community.
Since all of this would need to be re-established for a MathML-based workflow,
the technical community is slow to take up MathML over TEX/LATEX, even in
light of the advantages detailed above.

1.2 A LATEX-based Workflow for XML-based Mathematical
Documents

An elegant way of sidestepping most of the problems inherent in transitioning from
a LATEX-based to an XML-based workflow is to combine both and take advantage
of the respective advantages.

The key ingredient in this approach is a system that can transform TEXLATEX
documents to their corresponding XML-based counterparts. That way, XML-
documents can be authored and prototyped in the LATEX workflow, and trans-
formed to XML for publication and added-value services, combining the two work-
flows.

There are various attempts to solve the TEX/LATEX to XML transformation
problem (see [StaGinDav:maacl09] for an overview); the most mature is prob-
ably Bruce Miller’s LATEXML system [Miller:latexml:online]. It consists of two
parts: a re-implementation of the TEX analyzer with all of it’s intricacies, and a
extensible XML emitter (the component that assembles the output of the parser).
Since the LATEX style files are (ultimately) programmed in TEX, the TEX analyzer
can handle all TEX extensions, including all of LATEX. Thus the LATEXML parser
can handle all of TEX/LATEX, if the emitter is extensible, which is guaranteed by
the LATEXML binding language: To transform a TEX/LATEX document to a given
XML format, all TEX extensions3 must have “LATEXML bindings”binding, i.e. a
directive to the LATEXML emitter that specifies the target representation in XML.

1.3 Generating OMDoc from STEX

The STEX packages (see Section 2) provide functionalities for marking up the
functional structure of mathematical documents, so that the LATEX sources con-
tain enough information that can be exported to the OMDoc format (Open
Mathematical Documents; see [Kohlhase:OMDoc1.2]). For the actual trans-
formation, we use a LATEXML plugin [LaTeXMLsTeX:github:on] that provides
the LATEXML bindings for the STEX packages.

1.4 Conclusion

The STEX collection provides a set of semantic macros that extends the familiar and
time-tried LATEX workflow in academics until the last step of Internet publication
of the material. For instance, an SMGloM module can be authored and maintained
in LATEX using a simple text editor, a process most academics in technical subjects

3i.e. all macros, environments, and syntax extensions used int the source document

5

are well familiar with. Only in a last publishing step (which is fully automatic) does
it get transformed into the XML world, which is unfamiliar to most academics.

Thus, STEX can serve as a conceptual interface between the document author
and MKM systems: Technically, the semantically preloaded LATEX documents
are transformed into the (usually XML-based) MKM representation formats, but
conceptually, the ability to semantically annotate the source document is sufficient.

The STEX macro packages have been validated together with a case study [Kohlhase04:stex],
where we semantically preload the course materials for a two-semester course in
Computer Science at Jacobs University Bremen and transform them to the OM-
Doc MKM format.

1.5 Licensing, Download and Setup

The STEX packages are licensed under the LATEX Project Public License [LPPL],
which basically means that they can be downloaded, used, copied, and even mod-
ified by anyone under a set of simple conditions (e.g. if you modify you have to
distribute under a different name).

1.5.1 The STEX Distribution

The STEX packages and classes are available from the Comprehensive TEX Archive
Network (CTAN [CTAN:on]) and are part of the primary TEX/LATEX distribu-
tions (e.g. TeXlive [TeXLive:on] and MikTeX [MiKTeX:on]). The development
version is on GitHub [sTeX:github:on], it can cloned or forked from the reposi-
tory URL

https://github.com/KWARC/sTeX.git

It is usually a good idea to enlarge the internal memory allocation of the
TEX/LATEXexecutables. This can be done by adding the following configurations in
texmf.cnf (or changing them, if they already exist). Note that you will probably
need sudo to do this.

max_in_open = 50 % simultaneous input files and error insertions,

param_size = 20000 % simultaneous macro parameters, also applies to MP

nest_size = 1000 % simultaneous semantic levels (e.g., groups)

stack_size = 10000 % simultaneous input sources

main_memory = 12000000

After that, you have to run the

sudo fmtutil-sys --all

With this installation using STEX is as painless as using LATEX, just make sure
the STEX distribution is where latex can find it and run pdflatex over the main
file.

6

https://github.com/KWARC/sTeX.git

1.5.2 The STEX Plugin for LATEXML

For the OMDoc transformation of STEX documents we use a LATEXML plugin that
provides the LATEXML bindings for the STEX packages. For installation and setup
follow the instructions at [LaTeXMLsTeX:github:on]1EdN:1

1EdNote: We are working on a CPAN submission that should make installations painless.

7

2 The Packages of the STEX Collection

In the following, we will shortly preview the packages and classes in the STEX
collection. They all provide part of the solution of representing semantic structure
in the TEX/LATEX workflow. We will group them by the conceptual level they
address. Figure 1 gives an overview.

2.1 The STEX Distribution

The stex package provides stex.sty that just loads all packages below and passes
around the package options accordingly and stex-logo.sty that provides the
macros \sTeX and \stex that typeset the STEX logo.\sTeX

\stex

metakeyscpath presentation

sref cmath

rdfmeta modules omdoc sproof

workaddress omtext structview

dcm statements stex-logo

problemtikzinputstexsmultiling

smglom.sty mikoslides.sty hwexam.sty

smglom.cls mikoslides.cls hwexam.cls

omdoc.cls

Figure 1: The STEX packages and their dependencies.

2.2 Content Markup of Mathematical Formulae in TEX/LATEX

2.2.1 cmath: Building Content Math Representations

The cmath package (see [Kohlhase:cmath:ctan]) supplies an interface for build-
ing content math representations. It gives special macros for marking up vari-
ables, applications and bindings. It supports the transformation into both Open-
Math [BusCapCar:2oms04] and content MathML [CarIon:MathML03].

8

2.2.2 presentation: Flexible Presentation for Semantic Macros

The presentation package (see [Kohlhase:ipsmsl:ctan]) supplies an infras-
tructure that allows to specify the presentation of semantic macros, including
preference-based bracket elision. This allows to markup the functional structure
of mathematical formulae without having to lose high-quality human-oriented pre-
sentation in LATEX. Moreover, the notation definitions can be used by MKM
systems for added-value services, either directly from the STEX sources, or after
translation.

2.3 Mathematical Statements

2.3.1 statements: Extending Content Macros for Mathematical Nota-
tion

The statements package (see[Kohlhase:smms:ctan]) provides semantic markup
facilities for mathematical statements like Theorems, Lemmata, Axioms, Defini-
tions, etc. in STEX files. This structure can be used by MKM systems for added-
value services, either directly from the STEX sources, or after translation.

2.3.2 sproof: Extending Content Macros for Mathematical Notation

The sproof package (see [Kohlhase:smp:ctan]) supplies macros and environ-
ment that allow to annotate the structure of mathematical proofs in STEX files.
This structure can be used by MKM systems for added-value services, either di-
rectly from the STEX sources, or after translation.

2.3.3 omtext: Mathematical Text

2EdN:2

2.4 Context Markup for Mathematics

2.4.1 modules: Extending Content Macros for Mathematical Notation

The modules package (see [KohAmb:smmssl:ctan]) supplies a definition mech-
anism for semantic macros and a non-standard scoping construct for them, which
is oriented at the semantic dependency relation rather than the document struc-
ture. This structure can be used by MKM systems for added-value services, either
directly from the STEX sources, or after translation. A side effect of this is that
we have an “object-oriented” inheritance mechanism for semantic macros: the se-
mantic macros for the mathematical objects described in a module come with the
module itself. As a consequence, the modules signatures (only the macro defini-
tions, not the descriptions) need to be loaded before they can be used somewhere
else.

2EdNote: say something

9

2.4.2 smultiling: Multilingual Mathematical Modules

In multilingual settings, i.e. where we have multiple STEX documents that are
translations of each other, it is better to separate the module signature from the
descriptive document. 3EdN:3

2.4.3 structview: Structures and Views

4EdN:4

2.5 Mathematical Document Classes

2.5.1 OMDoc Documents

The omdoc package provides an infrastructure that allows to markup OMDoc
documents in LATEX. It provides omdoc.cls, a class with the and omdocdoc.sty5EdN:5

2.5.2 hwexam: Homeworks and Exams

The hwexam package [Kohlhase:hwexam:ctan] provides hwexam.cls and hwexam.sty

for marking up homework assignments, and exams. The content markup strat-
egy employed in STEX allows to specify – and profit from – administrative meta-
data such as time and point counts. This package relies on the problem pack-
age [Kohlhase:problem:ctan] which provides markup for problems, hints, and
solutions.

2.5.3 mikoslides: Slides and Course Notes

The mikoslides package provides a document class from which we can generate
both course slides – via the beamer classs – and course notes – via the omdoc class
– in a transparent way.

2.6 Metadata

2.6.1 rdfmeta: RDFa Metadata for STEX

6EdN:6

2.6.2 dcm: Dublin Core Metadata

7EdN:7

3EdNote: continue
4EdNote: Say something
5EdNote: continue
6EdNote: Say something
7EdNote: Say something

10

2.6.3 workaddress: Markup for FOAF Metadata

8EdN:8

2.7 Support for MathHub

The mathhub package provides the supplementary packages mikoslides-mh,
modules-mh.sty, omtext-mh.sty, problem-mh.sty, smultiling-mh.sty, structview-mh.sty,
and tikzinput-mh.sty with variants of the user-visible macros that are adapted
to the MathHub system – see Section 3.3 for details.

2.8 Auxiliary Packages

2.8.1 metakeys: An extended key/value Interface

9EdN:9

2.8.2 pathsuris: Managing Relative/Absolute File Paths

10EdN:10

2.8.3 tikzinput: External TIKZ Pictures as Standalone Images

11EdN:11

8EdNote: Say something
9EdNote: Say something

10EdNote: Say something
11EdNote: Say something

11

3 Workflows and Best Practices

3.1 The “Little Modules” Approach

One of the key advantages of semantic markup with STEX is that the STEX sources
are highly reusable by the “object-oriented” inheritance model induced by STEX
modules. It turned out to be useful to divide STEX documents into three kinds of
files:

1. module files: files that essentially contain a collection of STEX mod-
ules [KohAmb:smmssl:ctan] – usually a single one whose module name
coincides the file name base.

2. fragment files: files that contain a group of input references to module- or
fragment files – usually one group deep for flexibility, transition text, and
additional remarks.

3. driver files that set up the document class, contain the preambles, and
input reference fragment files.

These correspond to the STEX documents, but can reuse and share STEX frag-
ments and modules. Figure 2 shows a situation, where we have two courses given
over multiple years, which results in five course notes documents given by driver
files, wich share quite a few components. As drivers and fragment files are mostly
content-free – they only contribute document structure, this lets all documents
contribute from the development of the modules.

modules

fragments

drivers

strings
prefix
codes

codes

DAGTrees

GraphTheo

NatDedFOL

Logic

GenCS
2011

GenCS
2010

GenCS
2012

. . .

AdvCS
2011

AdvCS
2012

. . .

Figure 2: Reuse of Fragments and Modules in a Course Notes Setting

The downside of this “object-oriented” inheritance mechanism is that we need
to keep the module signatures (see Section 2.4.1) up to date adding to the com-
plexity of document management.

Another advantage of the “little modules approach” is that modules can be
developed separately. Indeed all modules of a given subject share common pre-
and post-ambles which can be developed in special files – usually named pre.tex,
post.tex, and preamble.tex (the latter is included in pre.tex). Given such a
setup, the call to pdflatex can be suitably adapted to handle the pre/postfixes.

12

3.2 Basic Utilities & Makefiles

The STEX distribution contains three basic command line utilities to manage STEX
documents in the bin directory of the distribution.

sms computes the STEX module signatures for a given STEX file (see [KohAmb:smmssl:ctan]
details).

filedate and checksum that help keeping the metadata of the self-documenting
LATEX packages in the STEX distribution up to date.

installFonts.sh that installs the fonts necessary for chinese STEX documents.

These are supplemented by a set of UNIX Makefiles in the lib/make directory.
The way to use them is to include them into a Makefile in the directory and
then run one of the targets pdf and mpdf to make the PDF versions of the drivers
and modules12 and omdoc and mods to generate OMDoc. Note that we need toEdN:12
make sms in order to make the respective STEX module signatures for the modules.

3.3 MathHub: a Portal for Active Mathematical Docu-
ments

MathHub (http://mathhub.info see [IanJucKoh:sdm14]) is a portal for Active
Mathematical Documents – documents that are made context-aware and interac-
tive by semantic annotations. STEX is one of the main input formats for informal
active documents. MathHub supports STEX documents in three ways:

1. MathHub offers free/open hosting in document repositories for (mathemat-
ical) STEX document collections.

2. the backend system supports the large-scale change- and error-management
for STEX documents in the “little modules” paradigm.

3. the front-end displays interactive (HTML5) documents generated from the

STEX sources (via OMDoc).

The MathHub system is probably the best way of developing and hosting larger

STEX document collections. It offers two authoring workflows an online authoring
workflow via a direct web interface [MathHub:oa:on] or casual users and an
offline authoring workflow that we describe next.

3.4 lmh: MathHub’s Build System Locally

As direct web editing workflows are not efficient for larger document collections,
the MathHub system offers an offline authoring system. This uses GIT repositories
for distribution – the author develops the document collection on a local working
copy and then commits for inclusion to MathHub. The MathHub build system can
be used locally for efficient development via the localmh system [lmh:github:on].
In a nutshell – see [MathHub:law:on] for details –

12EdNote: MK: what about the fragments?

13

http://mathhub.info

1. localmh is installed in a docker container that supplies the build system and
provides the lmh command suite.

2. lmh pdf formats STEX modules to PDF – building all dependencies, e.g.
module signatures, first.

3. lmh omdoc generates OMDoc for STEX documents – again with dependen-
cies.

4. lmh xhtml generates active documents (in XHTML5) from the STEX sources
or their OMDoc versions.

5. lmh 〈gitsc〉 distributes the git subcommand 〈gitsc〉 over multiple repositories.

Various other lmh subcommands help with large-scale editing problems like re-
naming or moving modules, translations in multilingual settings, etc.

14

4 The Implementation

4.1 Package Options

The first step is to declare (a few) package options that handle whether certain
information is printed or not. They all come with their own conditionals that are
set by the options.

1 〈∗package〉
2 \DeclareOption*{\PassOptionsToPackage{\CurrentOption}{statements}

3 \PassOptionsToPackage{\CurrentOption}{structview}

4 \PassOptionsToPackage{\CurrentOption}{sproofs}

5 \PassOptionsToPackage{\CurrentOption}{omdoc}

6 \PassOptionsToPackage{\CurrentOption}{cmath}

7 \PassOptionsToPackage{\CurrentOption}{dcm}}

8 \ProcessOptions

Then we make sure that the necessary packages are loaded (in the right ver-
sions).

9 \RequirePackage{stex-logo}

10 \RequirePackage{omdoc}

11 \RequirePackage{statements}

12 \RequirePackage{structview}

13 \RequirePackage{sproof}

14 \RequirePackage{cmath}

15 \RequirePackage{dcm}

16 〈/package〉

4.2 The STEX Logo

To provide default identifiers, we tag all elements that allow xml:id attributes by
executing the numberIt procedure from omdoc.sty.ltxml.

17 〈∗logo〉
18 \RequirePackage{xspace}

19 \def\stex{%

20 \@ifundefined{texorpdfstring}%

21 {\let\texorpdfstring\@firstoftwo}%

22 {}%

23 \texorpdfstring{\raisebox{-.5ex}S\kern-.5ex\TeX}{sTeX}\xspace%

24 }

25 \def\sTeX{\stex}

26 〈/logo〉

15

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

*, 5 LaTeXML, 5

16

	Introduction
	The XML vs. TeX/LaTeX Formats and Workflows
	A LaTeX-based Workflow for XML-based Mathematical Documents
	Generating OMDoc from sTeX
	Conclusion
	Licensing, Download and Setup

	The Packages of the sTeX Collection
	The sTeX Distribution
	Content Markup of Mathematical Formulae in TeX/LaTeX
	Mathematical Statements
	Context Markup for Mathematics
	Mathematical Document Classes
	Metadata
	Support for MathHub
	Auxiliary Packages

	Workflows and Best Practices
	The ``Little Modules'' Approach
	Basic Utilities & Makefiles
	MathHub: a Portal for Active Mathematical Documents
	lmh: MathHub's Build System Locally

	The Implementation
	Package Options
	The sTeX Logo

